Files
system76-coreboot/src/soc/amd/stoneyridge/sb_util.c
Richard Spiegel b40e193948 soc/amd/stoneyridge: Access SMBUS through MMIO
Currently SMBUS registers are accessed through IO, but with stoneyridge
they can be accessed through MMIO. This reduces the time of execution by
a tiny amount (MMIO write is faster than IO write, though MMIO read is about
as fast as IO read) as most of the time consumed is actually transaction
time. Convert code to MMIO access.

BUG=b:117754784
TEST=Used IO to write and MMIO to read, to confirm a one to one relationship
between IO and MMIO. Then build and boot grunt.

Change-Id: Ibe1471d1d578611e7d666f70bc97de4c3b74d7f8
Signed-off-by: Richard Spiegel <richard.spiegel@silverbackltd.com>
Reviewed-on: https://review.coreboot.org/c/29258
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Martin Roth <martinroth@google.com>
2019-01-30 11:01:37 +00:00

241 lines
4.7 KiB
C

/*
* This file is part of the coreboot project.
*
* Copyright 2017 Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <arch/acpi.h>
#include <soc/southbridge.h>
void pm_write8(u8 reg, u8 value)
{
write8((void *)(PM_MMIO_BASE + reg), value);
}
u8 pm_read8(u8 reg)
{
return read8((void *)(PM_MMIO_BASE + reg));
}
void pm_write16(u8 reg, u16 value)
{
write16((void *)(PM_MMIO_BASE + reg), value);
}
u16 pm_read16(u8 reg)
{
return read16((void *)(PM_MMIO_BASE + reg));
}
void misc_write32(u8 reg, u32 value)
{
write32((void *)(MISC_MMIO_BASE + reg), value);
}
u32 misc_read32(u8 reg)
{
return read32((void *)(MISC_MMIO_BASE + reg));
}
void pm_write32(u8 reg, u32 value)
{
write32((void *)(PM_MMIO_BASE + reg), value);
}
u32 pm_read32(u8 reg)
{
return read32((void *)(PM_MMIO_BASE + reg));
}
u8 acpi_read8(u8 reg)
{
return read8((void *)(ACPI_REG_MMIO_BASE + reg));
}
u16 acpi_read16(u8 reg)
{
return read16((void *)(ACPI_REG_MMIO_BASE + reg));
}
u32 acpi_read32(u8 reg)
{
return read32((void *)(ACPI_REG_MMIO_BASE + reg));
}
void acpi_write8(u8 reg, u8 value)
{
write8((void *)(ACPI_REG_MMIO_BASE + reg), value);
}
void acpi_write16(u8 reg, u16 value)
{
write16((void *)(ACPI_REG_MMIO_BASE + reg), value);
}
void acpi_write32(u8 reg, u32 value)
{
write32((void *)(ACPI_REG_MMIO_BASE + reg), value);
}
void smi_write32(uint8_t offset, uint32_t value)
{
write32((void *)(APU_SMI_BASE + offset), value);
}
uint32_t smi_read32(uint8_t offset)
{
return read32((void *)(APU_SMI_BASE + offset));
}
uint16_t smi_read16(uint8_t offset)
{
return read16((void *)(APU_SMI_BASE + offset));
}
void smi_write16(uint8_t offset, uint16_t value)
{
write16((void *)(APU_SMI_BASE + offset), value);
}
uint8_t smi_read8(uint8_t offset)
{
return read8((void *)(APU_SMI_BASE + offset));
}
void smi_write8(uint8_t offset, uint8_t value)
{
write8((void *)(APU_SMI_BASE + offset), value);
}
uint8_t biosram_read8(uint8_t offset)
{
return read8((void *)(BIOSRAM_MMIO_BASE + offset));
}
void biosram_write8(uint8_t offset, uint8_t value)
{
write8((void *)(BIOSRAM_MMIO_BASE + offset), value);
}
/* BiosRam may only be accessed a byte at a time */
uint16_t biosram_read16(uint8_t offset)
{
int i;
uint16_t value = 0;
for (i = sizeof(value) - 1 ; i >= 0 ; i--)
value = (value << 8) | biosram_read8(offset + i);
return value;
}
uint32_t biosram_read32(uint8_t offset)
{
uint32_t value = biosram_read16(offset + sizeof(uint16_t)) << 16;
return value | biosram_read16(offset);
}
void biosram_write16(uint8_t offset, uint16_t value)
{
int i;
for (i = 0 ; i < sizeof(value) ; i++) {
biosram_write8(offset + i, value & 0xff);
value >>= 8;
}
}
void biosram_write32(uint8_t offset, uint32_t value)
{
int i;
for (i = 0 ; i < sizeof(value) ; i++) {
biosram_write8(offset + i, value & 0xff);
value >>= 8;
}
}
uint16_t pm_acpi_pm_cnt_blk(void)
{
return pm_read16(PM1_CNT_BLK);
}
uint16_t pm_acpi_pm_evt_blk(void)
{
return pm_read16(PM_EVT_BLK);
}
void xhci_pm_write8(uint8_t reg, uint8_t value)
{
write8((void *)(XHCI_ACPI_PM_MMIO_BASE + reg), value);
}
uint8_t xhci_pm_read8(uint8_t reg)
{
return read8((void *)(XHCI_ACPI_PM_MMIO_BASE + reg));
}
void xhci_pm_write16(uint8_t reg, uint16_t value)
{
write16((void *)(XHCI_ACPI_PM_MMIO_BASE + reg), value);
}
uint16_t xhci_pm_read16(uint8_t reg)
{
return read16((void *)(XHCI_ACPI_PM_MMIO_BASE + reg));
}
void xhci_pm_write32(uint8_t reg, uint32_t value)
{
write32((void *)(XHCI_ACPI_PM_MMIO_BASE + reg), value);
}
uint32_t xhci_pm_read32(uint8_t reg)
{
return read32((void *)(XHCI_ACPI_PM_MMIO_BASE + reg));
}
void smbus_write8(uint32_t mmio, uint8_t reg, uint8_t value)
{
write8((void *)(mmio + reg), value);
}
uint8_t smbus_read8(uint32_t mmio, uint8_t reg)
{
return read8((void *)(mmio + reg));
}
int acpi_get_sleep_type(void)
{
return acpi_sleep_from_pm1(inw(pm_acpi_pm_cnt_blk()));
}
void save_uma_size(uint32_t size)
{
biosram_write32(BIOSRAM_UMA_SIZE, size);
}
void save_uma_base(uint64_t base)
{
biosram_write32(BIOSRAM_UMA_BASE, (uint32_t) base);
biosram_write32(BIOSRAM_UMA_BASE + 4, (uint32_t) (base >> 32));
}
uint32_t get_uma_size(void)
{
return biosram_read32(BIOSRAM_UMA_SIZE);
}
uint64_t get_uma_base(void)
{
uint64_t base;
base = biosram_read32(BIOSRAM_UMA_BASE);
base |= ((uint64_t)(biosram_read32(BIOSRAM_UMA_BASE + 4)) << 32);
return base;
}