Also fix the MTRR check to use the total_mtrrs variable instead of a hardcoded 8. Change-Id: I2c5ceb3910cd949f43ecf5b8aff857d6ffe0b1a5 Signed-off-by: Duncan Laurie <dlaurie@google.com> Reviewed-on: http://review.coreboot.org/873 Tested-by: build bot (Jenkins) Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
551 lines
16 KiB
C
551 lines
16 KiB
C
/*
|
|
* mtrr.c: setting MTRR to decent values for cache initialization on P6
|
|
*
|
|
* Derived from intel_set_mtrr in intel_subr.c and mtrr.c in linux kernel
|
|
*
|
|
* Copyright 2000 Silicon Integrated System Corporation
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*
|
|
*
|
|
* Reference: Intel Architecture Software Developer's Manual, Volume 3: System Programming
|
|
*/
|
|
|
|
/*
|
|
2005.1 yhlu add NC support to spare mtrrs for 64G memory above installed
|
|
2005.6 Eric add address bit in x86_setup_mtrrs
|
|
2005.6 yhlu split x86_setup_var_mtrrs and x86_setup_fixed_mtrrs,
|
|
for AMD, it will not use x86_setup_fixed_mtrrs
|
|
*/
|
|
|
|
#include <stddef.h>
|
|
#include <console/console.h>
|
|
#include <device/device.h>
|
|
#include <cpu/x86/msr.h>
|
|
#include <cpu/x86/mtrr.h>
|
|
#include <cpu/x86/cache.h>
|
|
#include <cpu/x86/lapic.h>
|
|
#include <arch/cpu.h>
|
|
#include <arch/acpi.h>
|
|
|
|
#if CONFIG_GFXUMA
|
|
extern uint64_t uma_memory_base, uma_memory_size;
|
|
#endif
|
|
|
|
static unsigned int mtrr_msr[] = {
|
|
MTRRfix64K_00000_MSR, MTRRfix16K_80000_MSR, MTRRfix16K_A0000_MSR,
|
|
MTRRfix4K_C0000_MSR, MTRRfix4K_C8000_MSR, MTRRfix4K_D0000_MSR, MTRRfix4K_D8000_MSR,
|
|
MTRRfix4K_E0000_MSR, MTRRfix4K_E8000_MSR, MTRRfix4K_F0000_MSR, MTRRfix4K_F8000_MSR,
|
|
};
|
|
|
|
/* 2 MTRRS are reserved for the operating system */
|
|
#define BIOS_MTRRS 6
|
|
#define OS_MTRRS 2
|
|
#define MTRRS (BIOS_MTRRS + OS_MTRRS)
|
|
|
|
static int total_mtrrs = MTRRS;
|
|
static int bios_mtrrs = BIOS_MTRRS;
|
|
|
|
static void detect_var_mtrrs(void)
|
|
{
|
|
msr_t msr;
|
|
|
|
msr = rdmsr(MTRRcap_MSR);
|
|
|
|
total_mtrrs = msr.lo & 0xff;
|
|
bios_mtrrs = total_mtrrs - OS_MTRRS;
|
|
}
|
|
|
|
void enable_fixed_mtrr(void)
|
|
{
|
|
msr_t msr;
|
|
|
|
msr = rdmsr(MTRRdefType_MSR);
|
|
msr.lo |= 0xc00;
|
|
wrmsr(MTRRdefType_MSR, msr);
|
|
}
|
|
|
|
static void enable_var_mtrr(void)
|
|
{
|
|
msr_t msr;
|
|
|
|
msr = rdmsr(MTRRdefType_MSR);
|
|
msr.lo |= MTRRdefTypeEn;
|
|
wrmsr(MTRRdefType_MSR, msr);
|
|
}
|
|
|
|
/* setting variable mtrr, comes from linux kernel source */
|
|
static void set_var_mtrr(
|
|
unsigned int reg, unsigned long basek, unsigned long sizek,
|
|
unsigned char type, unsigned address_bits)
|
|
{
|
|
msr_t base, mask;
|
|
unsigned address_mask_high;
|
|
|
|
if (reg >= total_mtrrs)
|
|
return;
|
|
|
|
// it is recommended that we disable and enable cache when we
|
|
// do this.
|
|
if (sizek == 0) {
|
|
disable_cache();
|
|
|
|
msr_t zero;
|
|
zero.lo = zero.hi = 0;
|
|
/* The invalid bit is kept in the mask, so we simply clear the
|
|
relevant mask register to disable a range. */
|
|
wrmsr (MTRRphysMask_MSR(reg), zero);
|
|
|
|
enable_cache();
|
|
return;
|
|
}
|
|
|
|
|
|
address_mask_high = ((1u << (address_bits - 32u)) - 1u);
|
|
|
|
base.hi = basek >> 22;
|
|
base.lo = basek << 10;
|
|
|
|
printk(BIOS_SPEW, "ADDRESS_MASK_HIGH=%#x\n", address_mask_high);
|
|
|
|
if (sizek < 4*1024*1024) {
|
|
mask.hi = address_mask_high;
|
|
mask.lo = ~((sizek << 10) -1);
|
|
}
|
|
else {
|
|
mask.hi = address_mask_high & (~((sizek >> 22) -1));
|
|
mask.lo = 0;
|
|
}
|
|
|
|
// it is recommended that we disable and enable cache when we
|
|
// do this.
|
|
disable_cache();
|
|
|
|
/* Bit 32-35 of MTRRphysMask should be set to 1 */
|
|
base.lo |= type;
|
|
mask.lo |= MTRRphysMaskValid;
|
|
wrmsr (MTRRphysBase_MSR(reg), base);
|
|
wrmsr (MTRRphysMask_MSR(reg), mask);
|
|
|
|
enable_cache();
|
|
}
|
|
|
|
/* fms: find most sigificant bit set, stolen from Linux Kernel Source. */
|
|
static inline unsigned int fms(unsigned int x)
|
|
{
|
|
int r;
|
|
|
|
__asm__("bsrl %1,%0\n\t"
|
|
"jnz 1f\n\t"
|
|
"movl $0,%0\n"
|
|
"1:" : "=r" (r) : "g" (x));
|
|
return r;
|
|
}
|
|
|
|
/* fls: find least sigificant bit set */
|
|
static inline unsigned int fls(unsigned int x)
|
|
{
|
|
int r;
|
|
|
|
__asm__("bsfl %1,%0\n\t"
|
|
"jnz 1f\n\t"
|
|
"movl $32,%0\n"
|
|
"1:" : "=r" (r) : "g" (x));
|
|
return r;
|
|
}
|
|
|
|
/* setting up variable and fixed mtrr
|
|
*
|
|
* From Intel Vol. III Section 9.12.4, the Range Size and Base Alignment has some kind of requirement:
|
|
* 1. The range size must be 2^N byte for N >= 12 (i.e 4KB minimum).
|
|
* 2. The base address must be 2^N aligned, where the N here is equal to the N in previous
|
|
* requirement. So a 8K range must be 8K aligned not 4K aligned.
|
|
*
|
|
* These requirement is meet by "decompositing" the ramsize into Sum(Cn * 2^n, n = [0..N], Cn = [0, 1]).
|
|
* For Cm = 1, there is a WB range of 2^m size at base address Sum(Cm * 2^m, m = [N..n]).
|
|
* A 124MB (128MB - 4MB SMA) example:
|
|
* ramsize = 124MB == 64MB (at 0MB) + 32MB (at 64MB) + 16MB (at 96MB ) + 8MB (at 112MB) + 4MB (120MB).
|
|
* But this wastes a lot of MTRR registers so we use another more "aggresive" way with Uncacheable Regions.
|
|
*
|
|
* In the Uncacheable Region scheme, we try to cover the whole ramsize by one WB region as possible,
|
|
* If (an only if) this can not be done we will try to decomposite the ramesize, the mathematical formula
|
|
* whould be ramsize = Sum(Cn * 2^n, n = [0..N], Cn = [-1, 0, 1]). For Cn = -1, a Uncachable Region is used.
|
|
* The same 124MB example:
|
|
* ramsize = 124MB == 128MB WB (at 0MB) + 4MB UC (at 124MB)
|
|
* or a 156MB (128MB + 32MB - 4MB SMA) example:
|
|
* ramsize = 156MB == 128MB WB (at 0MB) + 32MB WB (at 128MB) + 4MB UC (at 156MB)
|
|
*/
|
|
|
|
static void set_fixed_mtrrs(unsigned int first, unsigned int last, unsigned char type)
|
|
{
|
|
unsigned int i;
|
|
unsigned int fixed_msr = NUM_FIXED_RANGES >> 3;
|
|
msr_t msr;
|
|
msr.lo = msr.hi = 0; /* Shut up gcc */
|
|
for(i = first; i < last; i++) {
|
|
/* When I switch to a new msr read it in */
|
|
if (fixed_msr != i >> 3) {
|
|
/* But first write out the old msr */
|
|
if (fixed_msr < (NUM_FIXED_RANGES >> 3)) {
|
|
disable_cache();
|
|
wrmsr(mtrr_msr[fixed_msr], msr);
|
|
enable_cache();
|
|
}
|
|
fixed_msr = i>>3;
|
|
msr = rdmsr(mtrr_msr[fixed_msr]);
|
|
}
|
|
if ((i & 7) < 4) {
|
|
msr.lo &= ~(0xff << ((i&3)*8));
|
|
msr.lo |= type << ((i&3)*8);
|
|
} else {
|
|
msr.hi &= ~(0xff << ((i&3)*8));
|
|
msr.hi |= type << ((i&3)*8);
|
|
}
|
|
}
|
|
/* Write out the final msr */
|
|
if (fixed_msr < (NUM_FIXED_RANGES >> 3)) {
|
|
disable_cache();
|
|
wrmsr(mtrr_msr[fixed_msr], msr);
|
|
enable_cache();
|
|
}
|
|
}
|
|
|
|
static unsigned fixed_mtrr_index(unsigned long addrk)
|
|
{
|
|
unsigned index;
|
|
index = (addrk - 0) >> 6;
|
|
if (index >= 8) {
|
|
index = ((addrk - 8*64) >> 4) + 8;
|
|
}
|
|
if (index >= 24) {
|
|
index = ((addrk - (8*64 + 16*16)) >> 2) + 24;
|
|
}
|
|
if (index > NUM_FIXED_RANGES) {
|
|
index = NUM_FIXED_RANGES;
|
|
}
|
|
return index;
|
|
}
|
|
|
|
static unsigned int range_to_mtrr(unsigned int reg,
|
|
unsigned long range_startk, unsigned long range_sizek,
|
|
unsigned long next_range_startk, unsigned char type,
|
|
unsigned int address_bits, unsigned int above4gb)
|
|
{
|
|
unsigned long hole_startk = 0, hole_sizek = 0;
|
|
|
|
if (!range_sizek) {
|
|
/* If there's no MTRR hole, this function will bail out
|
|
* here when called for the hole.
|
|
*/
|
|
printk(BIOS_SPEW, "Zero-sized MTRR range @%ldKB\n", range_startk);
|
|
return reg;
|
|
}
|
|
|
|
if (reg >= bios_mtrrs) {
|
|
printk(BIOS_ERR, "Warning: Out of MTRRs for base: %4ldMB, range: %ldMB, type %s\n",
|
|
range_startk >>10, range_sizek >> 10,
|
|
(type==MTRR_TYPE_UNCACHEABLE)?"UC":
|
|
((type==MTRR_TYPE_WRBACK)?"WB":"Other") );
|
|
return reg;
|
|
}
|
|
|
|
#define MIN_ALIGN 0x10000 /* 64MB */
|
|
|
|
if (above4gb == 2 && type == MTRR_TYPE_WRBACK &&
|
|
range_sizek > MIN_ALIGN && range_sizek % MIN_ALIGN) {
|
|
/*
|
|
* If this range is not divisible then instead
|
|
* make a larger range and carve out an uncached hole.
|
|
*/
|
|
hole_startk = range_startk + range_sizek;
|
|
hole_sizek = MIN_ALIGN - (range_sizek % MIN_ALIGN);
|
|
range_sizek += hole_sizek;
|
|
}
|
|
|
|
while(range_sizek) {
|
|
unsigned long max_align, align;
|
|
unsigned long sizek;
|
|
/* Compute the maximum size I can make a range */
|
|
max_align = fls(range_startk);
|
|
align = fms(range_sizek);
|
|
if (align > max_align) {
|
|
align = max_align;
|
|
}
|
|
sizek = 1 << align;
|
|
printk(BIOS_DEBUG, "Setting variable MTRR %d, base: %4ldMB, range: %4ldMB, type %s\n",
|
|
reg, range_startk >>10, sizek >> 10,
|
|
(type==MTRR_TYPE_UNCACHEABLE)?"UC":
|
|
((type==MTRR_TYPE_WRBACK)?"WB":"Other")
|
|
);
|
|
|
|
/* if range is above 4GB, MTRR is needed
|
|
* only if above4gb flag is set
|
|
*/
|
|
if (range_startk < 0x100000000ull / 1024 || above4gb)
|
|
set_var_mtrr(reg++, range_startk, sizek, type, address_bits);
|
|
range_startk += sizek;
|
|
range_sizek -= sizek;
|
|
if (reg >= bios_mtrrs) {
|
|
printk(BIOS_ERR, "Running out of variable MTRRs!\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (hole_sizek) {
|
|
printk(BIOS_DEBUG, "Adding hole at %ldMB-%ldMB\n",
|
|
hole_startk >> 10, (hole_startk + hole_sizek) >> 10);
|
|
reg = range_to_mtrr(reg, hole_startk, hole_sizek,
|
|
next_range_startk, MTRR_TYPE_UNCACHEABLE,
|
|
address_bits, above4gb);
|
|
}
|
|
|
|
return reg;
|
|
}
|
|
|
|
static unsigned long resk(uint64_t value)
|
|
{
|
|
unsigned long resultk;
|
|
if (value < (1ULL << 42)) {
|
|
resultk = value >> 10;
|
|
}
|
|
else {
|
|
resultk = 0xffffffff;
|
|
}
|
|
return resultk;
|
|
}
|
|
|
|
static void set_fixed_mtrr_resource(void *gp, struct device *dev, struct resource *res)
|
|
{
|
|
unsigned int start_mtrr;
|
|
unsigned int last_mtrr;
|
|
start_mtrr = fixed_mtrr_index(resk(res->base));
|
|
last_mtrr = fixed_mtrr_index(resk((res->base + res->size)));
|
|
if (start_mtrr >= NUM_FIXED_RANGES) {
|
|
return;
|
|
}
|
|
printk(BIOS_DEBUG, "Setting fixed MTRRs(%d-%d) Type: WB\n",
|
|
start_mtrr, last_mtrr);
|
|
set_fixed_mtrrs(start_mtrr, last_mtrr, MTRR_TYPE_WRBACK);
|
|
|
|
}
|
|
|
|
#ifndef CONFIG_VAR_MTRR_HOLE
|
|
#define CONFIG_VAR_MTRR_HOLE 1
|
|
#endif
|
|
|
|
struct var_mtrr_state {
|
|
unsigned long range_startk, range_sizek;
|
|
unsigned int reg;
|
|
unsigned long hole_startk, hole_sizek;
|
|
unsigned int address_bits;
|
|
unsigned int above4gb; /* Set if MTRRs are needed for DRAM above 4GB */
|
|
};
|
|
|
|
void set_var_mtrr_resource(void *gp, struct device *dev, struct resource *res)
|
|
{
|
|
struct var_mtrr_state *state = gp;
|
|
unsigned long basek, sizek;
|
|
if (state->reg >= bios_mtrrs)
|
|
return;
|
|
basek = resk(res->base);
|
|
sizek = resk(res->size);
|
|
/* See if I can merge with the last range
|
|
* Either I am below 1M and the fixed mtrrs handle it, or
|
|
* the ranges touch.
|
|
*/
|
|
if ((basek <= 1024) || (state->range_startk + state->range_sizek == basek)) {
|
|
unsigned long endk = basek + sizek;
|
|
state->range_sizek = endk - state->range_startk;
|
|
return;
|
|
}
|
|
/* Write the range mtrrs */
|
|
if (state->range_sizek != 0) {
|
|
#if CONFIG_VAR_MTRR_HOLE
|
|
if (state->hole_sizek == 0 && state->above4gb != 2) {
|
|
/* We need to put that on to hole */
|
|
unsigned long endk = basek + sizek;
|
|
state->hole_startk = state->range_startk + state->range_sizek;
|
|
state->hole_sizek = basek - state->hole_startk;
|
|
state->range_sizek = endk - state->range_startk;
|
|
return;
|
|
}
|
|
#endif
|
|
state->reg = range_to_mtrr(state->reg, state->range_startk,
|
|
state->range_sizek, basek, MTRR_TYPE_WRBACK,
|
|
state->address_bits, state->above4gb);
|
|
#if CONFIG_VAR_MTRR_HOLE
|
|
state->reg = range_to_mtrr(state->reg, state->hole_startk,
|
|
state->hole_sizek, basek, MTRR_TYPE_UNCACHEABLE,
|
|
state->address_bits, state->above4gb);
|
|
#endif
|
|
state->range_startk = 0;
|
|
state->range_sizek = 0;
|
|
state->hole_startk = 0;
|
|
state->hole_sizek = 0;
|
|
}
|
|
/* Allocate an msr */
|
|
printk(BIOS_SPEW, " Allocate an msr - basek = %08lx, sizek = %08lx,\n", basek, sizek);
|
|
state->range_startk = basek;
|
|
state->range_sizek = sizek;
|
|
}
|
|
|
|
void x86_setup_fixed_mtrrs(void)
|
|
{
|
|
/* Try this the simple way of incrementally adding together
|
|
* mtrrs. If this doesn't work out we can get smart again
|
|
* and clear out the mtrrs.
|
|
*/
|
|
|
|
printk(BIOS_DEBUG, "\n");
|
|
/* Initialized the fixed_mtrrs to uncached */
|
|
printk(BIOS_DEBUG, "Setting fixed MTRRs(%d-%d) Type: UC\n",
|
|
0, NUM_FIXED_RANGES);
|
|
set_fixed_mtrrs(0, NUM_FIXED_RANGES, MTRR_TYPE_UNCACHEABLE);
|
|
|
|
/* Now see which of the fixed mtrrs cover ram.
|
|
*/
|
|
search_global_resources(
|
|
IORESOURCE_MEM | IORESOURCE_CACHEABLE, IORESOURCE_MEM | IORESOURCE_CACHEABLE,
|
|
set_fixed_mtrr_resource, NULL);
|
|
printk(BIOS_DEBUG, "DONE fixed MTRRs\n");
|
|
|
|
/* enable fixed MTRR */
|
|
printk(BIOS_SPEW, "call enable_fixed_mtrr()\n");
|
|
enable_fixed_mtrr();
|
|
|
|
}
|
|
|
|
void x86_setup_var_mtrrs(unsigned int address_bits, unsigned int above4gb)
|
|
/* this routine needs to know how many address bits a given processor
|
|
* supports. CPUs get grumpy when you set too many bits in
|
|
* their mtrr registers :( I would generically call cpuid here
|
|
* and find out how many physically supported but some cpus are
|
|
* buggy, and report more bits then they actually support.
|
|
* If above4gb flag is set, variable MTRR ranges must be used to
|
|
* set cacheability of DRAM above 4GB. If above4gb flag is clear,
|
|
* some other mechanism is controlling cacheability of DRAM above 4GB.
|
|
*/
|
|
{
|
|
/* Try this the simple way of incrementally adding together
|
|
* mtrrs. If this doesn't work out we can get smart again
|
|
* and clear out the mtrrs.
|
|
*/
|
|
struct var_mtrr_state var_state;
|
|
|
|
/* Cache as many memory areas as possible */
|
|
/* FIXME is there an algorithm for computing the optimal set of mtrrs?
|
|
* In some cases it is definitely possible to do better.
|
|
*/
|
|
var_state.range_startk = 0;
|
|
var_state.range_sizek = 0;
|
|
var_state.hole_startk = 0;
|
|
var_state.hole_sizek = 0;
|
|
var_state.reg = 0;
|
|
var_state.address_bits = address_bits;
|
|
var_state.above4gb = above4gb;
|
|
|
|
/* Detect number of variable MTRRs */
|
|
if (above4gb == 2)
|
|
detect_var_mtrrs();
|
|
|
|
search_global_resources(
|
|
IORESOURCE_MEM | IORESOURCE_CACHEABLE, IORESOURCE_MEM | IORESOURCE_CACHEABLE,
|
|
set_var_mtrr_resource, &var_state);
|
|
|
|
#if (CONFIG_GFXUMA == 1) /* UMA or SP. */
|
|
/* For now we assume the UMA space is at the end of memory below 4GB */
|
|
if (var_state.hole_startk || var_state.hole_sizek) {
|
|
printk(BIOS_DEBUG, "Warning: Can't set up MTRR hole for UMA due to pre-existing MTRR hole.\n");
|
|
} else {
|
|
#if CONFIG_VAR_MTRR_HOLE
|
|
// Increase the base range and set up UMA as an UC hole instead
|
|
if (above4gb != 2)
|
|
var_state.range_sizek += (uma_memory_size >> 10);
|
|
|
|
var_state.hole_startk = (uma_memory_base >> 10);
|
|
var_state.hole_sizek = (uma_memory_size >> 10);
|
|
#endif
|
|
}
|
|
#endif
|
|
/* Write the last range */
|
|
var_state.reg = range_to_mtrr(var_state.reg, var_state.range_startk,
|
|
var_state.range_sizek, 0, MTRR_TYPE_WRBACK,
|
|
var_state.address_bits, var_state.above4gb);
|
|
#if CONFIG_VAR_MTRR_HOLE
|
|
var_state.reg = range_to_mtrr(var_state.reg, var_state.hole_startk,
|
|
var_state.hole_sizek, 0, MTRR_TYPE_UNCACHEABLE,
|
|
var_state.address_bits, var_state.above4gb);
|
|
#endif
|
|
printk(BIOS_DEBUG, "DONE variable MTRRs\n");
|
|
printk(BIOS_DEBUG, "Clear out the extra MTRR's\n");
|
|
/* Clear out the extra MTRR's */
|
|
while(var_state.reg < total_mtrrs) {
|
|
set_var_mtrr(var_state.reg++, 0, 0, 0, var_state.address_bits);
|
|
}
|
|
|
|
#if CONFIG_CACHE_ROM
|
|
/* Enable Caching and speculative Reads for the
|
|
* complete ROM now that we actually have RAM.
|
|
*/
|
|
if (boot_cpu() && (acpi_slp_type != 3)) {
|
|
set_var_mtrr(total_mtrrs - 1, (4096 - 8)*1024, 8 * 1024,
|
|
MTRR_TYPE_WRPROT, address_bits);
|
|
}
|
|
#endif
|
|
|
|
printk(BIOS_SPEW, "call enable_var_mtrr()\n");
|
|
enable_var_mtrr();
|
|
printk(BIOS_SPEW, "Leave %s\n", __func__);
|
|
post_code(0x6A);
|
|
}
|
|
|
|
|
|
void x86_setup_mtrrs(void)
|
|
{
|
|
int address_size;
|
|
x86_setup_fixed_mtrrs();
|
|
address_size = cpu_phys_address_size();
|
|
printk(BIOS_DEBUG, "CPU physical address size: %d bits\n", address_size);
|
|
x86_setup_var_mtrrs(address_size, 1);
|
|
}
|
|
|
|
|
|
int x86_mtrr_check(void)
|
|
{
|
|
/* Only Pentium Pro and later have MTRR */
|
|
msr_t msr;
|
|
printk(BIOS_DEBUG, "\nMTRR check\n");
|
|
|
|
msr = rdmsr(0x2ff);
|
|
msr.lo >>= 10;
|
|
|
|
printk(BIOS_DEBUG, "Fixed MTRRs : ");
|
|
if (msr.lo & 0x01)
|
|
printk(BIOS_DEBUG, "Enabled\n");
|
|
else
|
|
printk(BIOS_DEBUG, "Disabled\n");
|
|
|
|
printk(BIOS_DEBUG, "Variable MTRRs: ");
|
|
if (msr.lo & 0x02)
|
|
printk(BIOS_DEBUG, "Enabled\n");
|
|
else
|
|
printk(BIOS_DEBUG, "Disabled\n");
|
|
|
|
printk(BIOS_DEBUG, "\n");
|
|
|
|
post_code(0x93);
|
|
return ((int) msr.lo);
|
|
}
|