Change-Id: Ieb10a881ef1d983f11318f0f6934491fd19fd0bf Signed-off-by: Elyes HAOUAS <ehaouas@noos.fr> Reviewed-on: https://review.coreboot.org/c/coreboot/+/50268 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Julius Werner <jwerner@chromium.org>
		
			
				
	
	
		
			713 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			713 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *
 | |
|  * Copyright 2014 Google Inc.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in the
 | |
|  *    documentation and/or other materials provided with the distribution.
 | |
|  * 3. The name of the author may not be used to endorse or promote products
 | |
|  *    derived from this software without specific prior written permission.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 | |
|  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | |
|  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | |
|  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | |
|  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | |
|  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | |
|  * SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| #include <assert.h>
 | |
| #include <stdlib.h>
 | |
| #include <stdint.h>
 | |
| #include <string.h>
 | |
| 
 | |
| #include <arch/mmu.h>
 | |
| #include <arch/lib_helpers.h>
 | |
| #include <arch/cache.h>
 | |
| 
 | |
| /* Maximum number of XLAT Tables available based on ttb buffer size */
 | |
| static unsigned int max_tables;
 | |
| /* Address of ttb buffer */
 | |
| static uint64_t *xlat_addr;
 | |
| 
 | |
| static int free_idx;
 | |
| static uint8_t ttb_buffer[TTB_DEFAULT_SIZE] __attribute__((aligned(GRANULE_SIZE)));
 | |
| 
 | |
| static const char * const tag_to_string[] = {
 | |
| 	[TYPE_NORMAL_MEM] = "normal",
 | |
| 	[TYPE_DEV_MEM] = "device",
 | |
| 	[TYPE_DMA_MEM] = "uncached",
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * The usedmem_ranges is used to describe all the memory ranges that are
 | |
|  * actually used by payload i.e. _start -> _end in linker script and the
 | |
|  * coreboot tables. This is required for two purposes:
 | |
|  * 1) During the pre_sysinfo_scan_mmu_setup, these are the only ranges
 | |
|  * initialized in the page table as we do not know the entire memory map.
 | |
|  * 2) During the post_sysinfo_scan_mmu_setup, these ranges are used to check if
 | |
|  * the DMA buffer is being placed in a sane location and does not overlap any of
 | |
|  * the used mem ranges.
 | |
|  */
 | |
| static struct mmu_ranges usedmem_ranges;
 | |
| 
 | |
| static void __attribute__((noreturn)) mmu_error(void)
 | |
| {
 | |
| 	halt();
 | |
| }
 | |
| 
 | |
| /* Func : get_block_attr
 | |
|  * Desc : Get block descriptor attributes based on the value of tag in memrange
 | |
|  * region
 | |
|  */
 | |
| static uint64_t get_block_attr(unsigned long tag)
 | |
| {
 | |
| 	uint64_t attr;
 | |
| 
 | |
| 	/* We should be in EL2(which is non-secure only) or EL1(non-secure) */
 | |
| 	attr = BLOCK_NS;
 | |
| 
 | |
| 	/* Assuming whole memory is read-write */
 | |
| 	attr |= BLOCK_AP_RW;
 | |
| 
 | |
| 	attr |= BLOCK_ACCESS;
 | |
| 
 | |
| 	switch (tag) {
 | |
| 
 | |
| 	case TYPE_NORMAL_MEM:
 | |
| 		attr |= BLOCK_SH_INNER_SHAREABLE;
 | |
| 		attr |= (BLOCK_INDEX_MEM_NORMAL << BLOCK_INDEX_SHIFT);
 | |
| 		break;
 | |
| 	case TYPE_DEV_MEM:
 | |
| 		attr |= BLOCK_INDEX_MEM_DEV_NGNRNE << BLOCK_INDEX_SHIFT;
 | |
| 		attr |= BLOCK_XN;
 | |
| 		break;
 | |
| 	case TYPE_DMA_MEM:
 | |
| 		attr |= BLOCK_INDEX_MEM_NORMAL_NC << BLOCK_INDEX_SHIFT;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return attr;
 | |
| }
 | |
| 
 | |
| /* Func : table_desc_valid
 | |
|  * Desc : Check if a table entry contains valid desc
 | |
|  */
 | |
| static uint64_t table_desc_valid(uint64_t desc)
 | |
| {
 | |
| 	return((desc & TABLE_DESC) == TABLE_DESC);
 | |
| }
 | |
| 
 | |
| /* Func : setup_new_table
 | |
|  * Desc : Get next free table from TTB and set it up to match old parent entry.
 | |
|  */
 | |
| static uint64_t *setup_new_table(uint64_t desc, size_t xlat_size)
 | |
| {
 | |
| 	uint64_t *new, *entry;
 | |
| 
 | |
| 	assert(free_idx < max_tables);
 | |
| 
 | |
| 	new = (uint64_t*)((unsigned char *)xlat_addr + free_idx * GRANULE_SIZE);
 | |
| 	free_idx++;
 | |
| 
 | |
| 	if (!desc) {
 | |
| 		memset(new, 0, GRANULE_SIZE);
 | |
| 	} else {
 | |
| 		/* Can reuse old parent entry, but may need to adjust type. */
 | |
| 		if (xlat_size == L3_XLAT_SIZE)
 | |
| 			desc |= PAGE_DESC;
 | |
| 
 | |
| 		for (entry = new; (u8 *)entry < (u8 *)new + GRANULE_SIZE;
 | |
| 		     entry++, desc += xlat_size)
 | |
| 			*entry = desc;
 | |
| 	}
 | |
| 
 | |
| 	return new;
 | |
| }
 | |
| 
 | |
| /* Func : get_table_from_desc
 | |
|  * Desc : Get next level table address from table descriptor
 | |
|  */
 | |
| static uint64_t *get_table_from_desc(uint64_t desc)
 | |
| {
 | |
| 	uint64_t *ptr = (uint64_t*)(desc & XLAT_TABLE_MASK);
 | |
| 	return ptr;
 | |
| }
 | |
| 
 | |
| /* Func: get_next_level_table
 | |
|  * Desc: Check if the table entry is a valid descriptor. If not, initialize new
 | |
|  * table, update the entry and return the table addr. If valid, return the addr.
 | |
|  */
 | |
| static uint64_t *get_next_level_table(uint64_t *ptr, size_t xlat_size)
 | |
| {
 | |
| 	uint64_t desc = *ptr;
 | |
| 
 | |
| 	if (!table_desc_valid(desc)) {
 | |
| 		uint64_t *new_table = setup_new_table(desc, xlat_size);
 | |
| 		desc = ((uint64_t)new_table) | TABLE_DESC;
 | |
| 		*ptr = desc;
 | |
| 	}
 | |
| 	return get_table_from_desc(desc);
 | |
| }
 | |
| 
 | |
| /* Func : init_xlat_table
 | |
|  * Desc : Given a base address and size, it identifies the indices within
 | |
|  * different level XLAT tables which map the given base addr. Similar to table
 | |
|  * walk, except that all invalid entries during the walk are updated
 | |
|  * accordingly. On success, it returns the size of the block/page addressed by
 | |
|  * the final table.
 | |
|  */
 | |
| static uint64_t init_xlat_table(uint64_t base_addr,
 | |
| 				uint64_t size,
 | |
| 				uint64_t tag)
 | |
| {
 | |
| 	uint64_t l0_index = (base_addr & L0_ADDR_MASK) >> L0_ADDR_SHIFT;
 | |
| 	uint64_t l1_index = (base_addr & L1_ADDR_MASK) >> L1_ADDR_SHIFT;
 | |
| 	uint64_t l2_index = (base_addr & L2_ADDR_MASK) >> L2_ADDR_SHIFT;
 | |
| 	uint64_t l3_index = (base_addr & L3_ADDR_MASK) >> L3_ADDR_SHIFT;
 | |
| 	uint64_t *table = xlat_addr;
 | |
| 	uint64_t desc;
 | |
| 	uint64_t attr = get_block_attr(tag);
 | |
| 
 | |
| 	/* L0 entry stores a table descriptor (doesn't support blocks) */
 | |
| 	table = get_next_level_table(&table[l0_index], L1_XLAT_SIZE);
 | |
| 
 | |
| 	/* L1 table lookup */
 | |
| 	if ((size >= L1_XLAT_SIZE) &&
 | |
| 	    IS_ALIGNED(base_addr, (1UL << L1_ADDR_SHIFT))) {
 | |
| 			/* If block address is aligned and size is greater than
 | |
| 			 * or equal to size addressed by each L1 entry, we can
 | |
| 			 * directly store a block desc */
 | |
| 			desc = base_addr | BLOCK_DESC | attr;
 | |
| 			table[l1_index] = desc;
 | |
| 			/* L2 lookup is not required */
 | |
| 			return L1_XLAT_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	/* L1 entry stores a table descriptor */
 | |
| 	table = get_next_level_table(&table[l1_index], L2_XLAT_SIZE);
 | |
| 
 | |
| 	/* L2 table lookup */
 | |
| 	if ((size >= L2_XLAT_SIZE) &&
 | |
| 	    IS_ALIGNED(base_addr, (1UL << L2_ADDR_SHIFT))) {
 | |
| 		/* If block address is aligned and size is greater than
 | |
| 		 * or equal to size addressed by each L2 entry, we can
 | |
| 		 * directly store a block desc */
 | |
| 		desc = base_addr | BLOCK_DESC | attr;
 | |
| 		table[l2_index] = desc;
 | |
| 		/* L3 lookup is not required */
 | |
| 		return L2_XLAT_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	/* L2 entry stores a table descriptor */
 | |
| 	table = get_next_level_table(&table[l2_index], L3_XLAT_SIZE);
 | |
| 
 | |
| 	/* L3 table lookup */
 | |
| 	desc = base_addr | PAGE_DESC | attr;
 | |
| 	table[l3_index] = desc;
 | |
| 	return L3_XLAT_SIZE;
 | |
| }
 | |
| 
 | |
| /* Func : sanity_check
 | |
|  * Desc : Check address/size alignment of a table or page.
 | |
|  */
 | |
| static void sanity_check(uint64_t addr, uint64_t size)
 | |
| {
 | |
| 	assert(!(addr & GRANULE_SIZE_MASK) &&
 | |
| 	       !(size & GRANULE_SIZE_MASK) &&
 | |
| 	       (addr + size < (1UL << BITS_PER_VA)) &&
 | |
| 	       size >= GRANULE_SIZE);
 | |
| }
 | |
| 
 | |
| /* Func : mmu_config_range
 | |
|  * Desc : This function repeatedly calls init_xlat_table with the base
 | |
|  * address. Based on size returned from init_xlat_table, base_addr is updated
 | |
|  * and subsequent calls are made for initializing the xlat table until the whole
 | |
|  * region is initialized.
 | |
|  */
 | |
| void mmu_config_range(void *start, size_t size, uint64_t tag)
 | |
| {
 | |
| 	uint64_t base_addr = (uintptr_t)start;
 | |
| 	uint64_t temp_size = size;
 | |
| 
 | |
| 	assert(tag < ARRAY_SIZE(tag_to_string));
 | |
| 	printf("Libpayload: ARM64 MMU: Mapping address range [%p:%p) as %s\n",
 | |
| 	       start, start + size, tag_to_string[tag]);
 | |
| 	sanity_check(base_addr, temp_size);
 | |
| 
 | |
| 	while (temp_size)
 | |
| 		temp_size -= init_xlat_table(base_addr + (size - temp_size),
 | |
| 					     temp_size, tag);
 | |
| 
 | |
| 	/* ARMv8 MMUs snoop L1 data cache, no need to flush it. */
 | |
| 	dsb();
 | |
| 	tlbiall_el2();
 | |
| 	dsb();
 | |
| 	isb();
 | |
| }
 | |
| 
 | |
| /* Func : mmu_init
 | |
|  * Desc : Initialize mmu based on the mmu_memrange passed. ttb_buffer is used as
 | |
|  * the base address for xlat tables. TTB_DEFAULT_SIZE defines the max number of
 | |
|  * tables that can be used
 | |
|  * Assuming that memory 0-4GiB is device memory.
 | |
|  */
 | |
| uint64_t mmu_init(struct mmu_ranges *mmu_ranges)
 | |
| {
 | |
| 	int i = 0;
 | |
| 
 | |
| 	xlat_addr = (uint64_t *)&ttb_buffer;
 | |
| 
 | |
| 	memset((void*)xlat_addr, 0, GRANULE_SIZE);
 | |
| 	max_tables = (TTB_DEFAULT_SIZE >> GRANULE_SIZE_SHIFT);
 | |
| 	free_idx = 1;
 | |
| 
 | |
| 	printf("Libpayload ARM64: TTB_BUFFER: %p Max Tables: %d\n",
 | |
| 	       (void*)xlat_addr, max_tables);
 | |
| 
 | |
| 	/*
 | |
| 	 * To keep things simple we start with mapping the entire base 4GB as
 | |
| 	 * device memory. This accommodates various architectures' default
 | |
| 	 * settings (for instance rk3399 mmio starts at 0xf8000000); it is
 | |
| 	 * fine tuned (e.g. mapping DRAM areas as write-back) later in the
 | |
| 	 * boot process.
 | |
| 	 */
 | |
| 	mmu_config_range(NULL, 0x100000000, TYPE_DEV_MEM);
 | |
| 
 | |
| 	for (; i < mmu_ranges->used; i++)
 | |
| 		mmu_config_range((void *)mmu_ranges->entries[i].base,
 | |
| 				 mmu_ranges->entries[i].size,
 | |
| 				 mmu_ranges->entries[i].type);
 | |
| 
 | |
| 	printf("Libpayload ARM64: MMU init done\n");
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static uint32_t is_mmu_enabled(void)
 | |
| {
 | |
| 	uint32_t sctlr;
 | |
| 
 | |
| 	sctlr = raw_read_sctlr_el2();
 | |
| 
 | |
| 	return (sctlr & SCTLR_M);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Func: mmu_enable
 | |
|  * Desc: Initialize MAIR, TCR, TTBR and enable MMU by setting appropriate bits
 | |
|  * in SCTLR
 | |
|  */
 | |
| void mmu_enable(void)
 | |
| {
 | |
| 	uint32_t sctlr;
 | |
| 
 | |
| 	/* Initialize MAIR indices */
 | |
| 	raw_write_mair_el2(MAIR_ATTRIBUTES);
 | |
| 
 | |
| 	/* Invalidate TLBs */
 | |
| 	tlbiall_el2();
 | |
| 
 | |
| 	/* Initialize TCR flags */
 | |
| 	raw_write_tcr_el2(TCR_TOSZ | TCR_IRGN0_NM_WBWAC | TCR_ORGN0_NM_WBWAC |
 | |
| 			      TCR_SH0_IS | TCR_TG0_4KB | TCR_PS_256TB |
 | |
| 			      TCR_TBI_USED);
 | |
| 
 | |
| 	/* Initialize TTBR */
 | |
| 	raw_write_ttbr0_el2((uintptr_t)xlat_addr);
 | |
| 
 | |
| 	/* Ensure system register writes are committed before enabling MMU */
 | |
| 	isb();
 | |
| 
 | |
| 	/* Enable MMU */
 | |
| 	sctlr = raw_read_sctlr_el2();
 | |
| 	sctlr |= SCTLR_C | SCTLR_M | SCTLR_I;
 | |
| 	raw_write_sctlr_el2(sctlr);
 | |
| 
 | |
| 	isb();
 | |
| 
 | |
| 	if(is_mmu_enabled())
 | |
| 		printf("ARM64: MMU enable done\n");
 | |
| 	else
 | |
| 		printf("ARM64: MMU enable failed\n");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Func: mmu_add_memrange
 | |
|  * Desc: Adds a new memory range
 | |
|  */
 | |
| static struct mmu_memrange *mmu_add_memrange(struct mmu_ranges *r,
 | |
| 					     uint64_t base, uint64_t size,
 | |
| 					     uint64_t type)
 | |
| {
 | |
| 	struct mmu_memrange *curr = NULL;
 | |
| 	int i = r->used;
 | |
| 
 | |
| 	if (i < ARRAY_SIZE(r->entries)) {
 | |
| 		curr = &r->entries[i];
 | |
| 		curr->base = base;
 | |
| 		curr->size = size;
 | |
| 		curr->type = type;
 | |
| 
 | |
| 		r->used = i + 1;
 | |
| 	}
 | |
| 
 | |
| 	return curr;
 | |
| }
 | |
| 
 | |
| /* Structure to define properties of new memrange request */
 | |
| struct mmu_new_range_prop {
 | |
| 	/* Type of memrange */
 | |
| 	uint64_t type;
 | |
| 	/* Size of the range */
 | |
| 	uint64_t size;
 | |
| 	/*
 | |
| 	 * If any restrictions on the max addr limit(This addr is exclusive for
 | |
| 	 * the range), else 0
 | |
| 	 */
 | |
| 	uint64_t lim_excl;
 | |
| 	/* If any restrictions on alignment of the range base, else 0 */
 | |
| 	uint64_t align;
 | |
| 	/*
 | |
| 	 * Function to test whether selected range is fine.
 | |
| 	 * NULL=any range is fine
 | |
| 	 * Return value 1=valid range, 0=otherwise
 | |
| 	 */
 | |
| 	int (*is_valid_range)(uint64_t, uint64_t);
 | |
| 	/* From what type of source range should this range be extracted */
 | |
| 	uint64_t src_type;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Func: mmu_is_range_free
 | |
|  * Desc: We need to ensure that the new range being allocated doesn't overlap
 | |
|  * with any used memory range. Basically:
 | |
|  * 1. Memory ranges used by the payload (usedmem_ranges)
 | |
|  * 2. Any area that falls below _end symbol in linker script (Kernel needs to be
 | |
|  * loaded in lower areas of memory, So, the payload linker script can have
 | |
|  * kernel memory below _start and _end. Thus, we want to make sure we do not
 | |
|  * step in those areas as well.
 | |
|  * Returns: 1 on success, 0 on error
 | |
|  * ASSUMPTION: All the memory used by payload resides below the program
 | |
|  * proper. If there is any memory used above the _end symbol, then it should be
 | |
|  * marked as used memory in usedmem_ranges during the presysinfo_scan.
 | |
|  */
 | |
| static int mmu_is_range_free(uint64_t r_base,
 | |
| 			     uint64_t r_end)
 | |
| {
 | |
| 	uint64_t payload_end = (uint64_t)&_end;
 | |
| 	uint64_t i;
 | |
| 	struct mmu_memrange *r = &usedmem_ranges.entries[0];
 | |
| 
 | |
| 	/* Allocate memranges only above payload */
 | |
| 	if ((r_base <= payload_end) || (r_end <= payload_end))
 | |
| 		return 0;
 | |
| 
 | |
| 	for (i = 0; i < usedmem_ranges.used; i++) {
 | |
| 		uint64_t start = r[i].base;
 | |
| 		uint64_t end = start + r[i].size;
 | |
| 
 | |
| 		if ((start < r_end) && (end > r_base))
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Func: mmu_get_new_range
 | |
|  * Desc: Add a requested new memrange. We take as input set of all memranges and
 | |
|  * a structure to define the new memrange properties i.e. its type, size,
 | |
|  * max_addr it can grow upto, alignment restrictions, source type to take range
 | |
|  * from and finally a function pointer to check if the chosen range is valid.
 | |
|  */
 | |
| static struct mmu_memrange *mmu_get_new_range(struct mmu_ranges *mmu_ranges,
 | |
| 					      struct mmu_new_range_prop *new)
 | |
| {
 | |
| 	int i = 0;
 | |
| 	struct mmu_memrange *r = &mmu_ranges->entries[0];
 | |
| 
 | |
| 	if (new->size == 0) {
 | |
| 		printf("MMU Error: Invalid range size\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	for (; i < mmu_ranges->used; i++) {
 | |
| 
 | |
| 		if ((r[i].type != new->src_type) ||
 | |
| 		    (r[i].size < new->size) ||
 | |
| 		    (new->lim_excl && (r[i].base >= new->lim_excl)))
 | |
| 			continue;
 | |
| 
 | |
| 		uint64_t base_addr;
 | |
| 		uint64_t range_end_addr = r[i].base + r[i].size;
 | |
| 		uint64_t end_addr = range_end_addr;
 | |
| 
 | |
| 		/* Make sure we do not go above max if it is non-zero */
 | |
| 		if (new->lim_excl && (end_addr >= new->lim_excl))
 | |
| 			end_addr = new->lim_excl;
 | |
| 
 | |
| 		while (1) {
 | |
| 			/*
 | |
| 			 * In case of alignment requirement,
 | |
| 			 * if end_addr is aligned, then base_addr will be too.
 | |
| 			 */
 | |
| 			if (new->align)
 | |
| 				end_addr = ALIGN_DOWN(end_addr, new->align);
 | |
| 
 | |
| 			base_addr = end_addr - new->size;
 | |
| 
 | |
| 			if (base_addr < r[i].base)
 | |
| 				break;
 | |
| 
 | |
| 			/*
 | |
| 			 * If the selected range is not used and valid for the
 | |
| 			 * user, move ahead with it
 | |
| 			 */
 | |
| 			if (mmu_is_range_free(base_addr, end_addr) &&
 | |
| 			    ((new->is_valid_range == NULL) ||
 | |
| 			     new->is_valid_range(base_addr, end_addr)))
 | |
| 				break;
 | |
| 
 | |
| 			/* Drop to the next address. */
 | |
| 			end_addr -= 1;
 | |
| 		}
 | |
| 
 | |
| 		if (base_addr < r[i].base)
 | |
| 			continue;
 | |
| 
 | |
| 		if (end_addr != range_end_addr) {
 | |
| 			/* Add a new memrange since we split up one
 | |
| 			 * range crossing the 4GiB boundary or doing an
 | |
| 			 * ALIGN_DOWN on end_addr.
 | |
| 			 */
 | |
| 			r[i].size -= (range_end_addr - end_addr);
 | |
| 			if (mmu_add_memrange(mmu_ranges, end_addr,
 | |
| 					     range_end_addr - end_addr,
 | |
| 					     r[i].type) == NULL)
 | |
| 				mmu_error();
 | |
| 		}
 | |
| 
 | |
| 		if (r[i].size == new->size) {
 | |
| 			r[i].type = new->type;
 | |
| 			return &r[i];
 | |
| 		}
 | |
| 
 | |
| 		r[i].size -= new->size;
 | |
| 
 | |
| 		r = mmu_add_memrange(mmu_ranges, base_addr, new->size,
 | |
| 				     new->type);
 | |
| 
 | |
| 		if (r == NULL)
 | |
| 			mmu_error();
 | |
| 
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| 	/* Should never reach here if everything went fine */
 | |
| 	printf("ARM64 ERROR: No region allocated\n");
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Func: mmu_alloc_range
 | |
|  * Desc: Call get_new_range to get a new memrange which is unused and mark it as
 | |
|  * used to avoid same range being allocated for different purposes.
 | |
|  */
 | |
| static struct mmu_memrange *mmu_alloc_range(struct mmu_ranges *mmu_ranges,
 | |
| 					    struct mmu_new_range_prop *p)
 | |
| {
 | |
| 	struct mmu_memrange *r = mmu_get_new_range(mmu_ranges, p);
 | |
| 
 | |
| 	if (r == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Mark this memrange as used memory. Important since function
 | |
| 	 * can be called multiple times and we do not want to reuse some
 | |
| 	 * range already allocated.
 | |
| 	 */
 | |
| 	if (mmu_add_memrange(&usedmem_ranges, r->base, r->size, r->type)
 | |
| 	    == NULL)
 | |
| 		mmu_error();
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Func: mmu_add_dma_range
 | |
|  * Desc: Add a memrange for dma operations. This is special because we want to
 | |
|  * initialize this memory as non-cacheable. We have a constraint that the DMA
 | |
|  * buffer should be below 4GiB(32-bit only). So, we lookup a TYPE_NORMAL_MEM
 | |
|  * from the lowest available addresses and align it to page size i.e. 64KiB.
 | |
|  */
 | |
| static struct mmu_memrange *mmu_add_dma_range(struct mmu_ranges *mmu_ranges)
 | |
| {
 | |
| 	struct mmu_new_range_prop prop;
 | |
| 
 | |
| 	prop.type = TYPE_DMA_MEM;
 | |
| 	/* DMA_DEFAULT_SIZE is multiple of GRANULE_SIZE */
 | |
| 	assert((DMA_DEFAULT_SIZE % GRANULE_SIZE) == 0);
 | |
| 	prop.size = DMA_DEFAULT_SIZE;
 | |
| 	prop.lim_excl = (uint64_t)CONFIG_LP_DMA_LIM_EXCL * MiB;
 | |
| 	prop.align = GRANULE_SIZE;
 | |
| 	prop.is_valid_range = NULL;
 | |
| 	prop.src_type = TYPE_NORMAL_MEM;
 | |
| 
 | |
| 	return mmu_alloc_range(mmu_ranges, &prop);
 | |
| }
 | |
| 
 | |
| static struct mmu_memrange *_mmu_add_fb_range(
 | |
| 		uint32_t size,
 | |
| 		struct mmu_ranges *mmu_ranges)
 | |
| {
 | |
| 	struct mmu_new_range_prop prop;
 | |
| 
 | |
| 	prop.type = TYPE_DMA_MEM;
 | |
| 
 | |
| 	/* make sure to allocate a size of multiple of GRANULE_SIZE */
 | |
| 	size = ALIGN_UP(size, GRANULE_SIZE);
 | |
| 	prop.size = size;
 | |
| 	prop.lim_excl = MIN_64_BIT_ADDR;
 | |
| 	prop.align = MB_SIZE;
 | |
| 	prop.is_valid_range = NULL;
 | |
| 	prop.src_type = TYPE_NORMAL_MEM;
 | |
| 
 | |
| 	return mmu_alloc_range(mmu_ranges, &prop);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Func: mmu_extract_ranges
 | |
|  * Desc: Assumption is that coreboot tables have memranges in sorted
 | |
|  * order. So, if there is an opportunity to combine ranges, we do that as
 | |
|  * well. Memranges are initialized for both CB_MEM_RAM and CB_MEM_TABLE as
 | |
|  * TYPE_NORMAL_MEM.
 | |
|  */
 | |
| static void mmu_extract_ranges(struct memrange *cb_ranges,
 | |
| 			       uint64_t ncb,
 | |
| 			       struct mmu_ranges *mmu_ranges)
 | |
| {
 | |
| 	int i = 0;
 | |
| 	struct mmu_memrange *prev_range = NULL;
 | |
| 
 | |
| 	/* Extract memory ranges to be mapped */
 | |
| 	for (; i < ncb; i++) {
 | |
| 		switch (cb_ranges[i].type) {
 | |
| 		case CB_MEM_RAM:
 | |
| 		case CB_MEM_TABLE:
 | |
| 			if (prev_range && (prev_range->base + prev_range->size
 | |
| 					   == cb_ranges[i].base)) {
 | |
| 				prev_range->size += cb_ranges[i].size;
 | |
| 			} else {
 | |
| 				prev_range = mmu_add_memrange(mmu_ranges,
 | |
| 							      cb_ranges[i].base,
 | |
| 							      cb_ranges[i].size,
 | |
| 							      TYPE_NORMAL_MEM);
 | |
| 				if (prev_range == NULL)
 | |
| 					mmu_error();
 | |
| 			}
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void mmu_add_fb_range(struct mmu_ranges *mmu_ranges)
 | |
| {
 | |
| 	struct mmu_memrange *fb_range;
 | |
| 	struct cb_framebuffer *framebuffer = &lib_sysinfo.framebuffer;
 | |
| 	uint32_t fb_size;
 | |
| 
 | |
| 	/* Check whether framebuffer is needed */
 | |
| 	fb_size = framebuffer->bytes_per_line * framebuffer->y_resolution;
 | |
| 	if (!fb_size)
 | |
| 		return;
 | |
| 
 | |
| 	/* framebuffer address has been set already, so just add it as DMA */
 | |
| 	if (framebuffer->physical_address) {
 | |
| 		if (mmu_add_memrange(mmu_ranges,
 | |
| 		    framebuffer->physical_address,
 | |
| 		    fb_size,
 | |
| 		    TYPE_DMA_MEM) == NULL)
 | |
| 			mmu_error();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Allocate framebuffer */
 | |
| 	fb_range = _mmu_add_fb_range(fb_size, mmu_ranges);
 | |
| 	if (fb_range == NULL)
 | |
| 		mmu_error();
 | |
| 
 | |
| 	framebuffer->physical_address = fb_range->base;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Func: mmu_init_ranges
 | |
|  * Desc: Initialize mmu_memranges based on the memranges obtained from coreboot
 | |
|  * tables. Also, initialize dma memrange and xlat_addr for ttb buffer.
 | |
|  */
 | |
| struct mmu_memrange *mmu_init_ranges_from_sysinfo(struct memrange *cb_ranges,
 | |
| 						  uint64_t ncb,
 | |
| 						  struct mmu_ranges *mmu_ranges)
 | |
| {
 | |
| 	struct mmu_memrange *dma_range;
 | |
| 
 | |
| 	/* Initialize mmu_ranges to contain no entries. */
 | |
| 	mmu_ranges->used = 0;
 | |
| 
 | |
| 	/* Extract ranges from memrange in lib_sysinfo */
 | |
| 	mmu_extract_ranges(cb_ranges, ncb, mmu_ranges);
 | |
| 
 | |
| 	/* Get a range for dma */
 | |
| 	dma_range = mmu_add_dma_range(mmu_ranges);
 | |
| 
 | |
| 	/* Get a range for framebuffer */
 | |
| 	mmu_add_fb_range(mmu_ranges);
 | |
| 
 | |
| 	if (dma_range == NULL)
 | |
| 		mmu_error();
 | |
| 
 | |
| 	return dma_range;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Func: mmu_presysinfo_memory_used
 | |
|  * Desc: Initializes all the memory used for presysinfo page table
 | |
|  * initialization and enabling of MMU. All these ranges are stored in
 | |
|  * usedmem_ranges. usedmem_ranges plays an important role in selecting the dma
 | |
|  * buffer as well since we check the dma buffer range against the used memory
 | |
|  * ranges to prevent any overstepping.
 | |
|  */
 | |
| void mmu_presysinfo_memory_used(uint64_t base, uint64_t size)
 | |
| {
 | |
| 	uint64_t range_base;
 | |
| 
 | |
| 	range_base = ALIGN_DOWN(base, GRANULE_SIZE);
 | |
| 
 | |
| 	size += (base - range_base);
 | |
| 	size = ALIGN_UP(size, GRANULE_SIZE);
 | |
| 
 | |
| 	mmu_add_memrange(&usedmem_ranges, range_base, size, TYPE_NORMAL_MEM);
 | |
| }
 | |
| 
 | |
| void mmu_presysinfo_enable(void)
 | |
| {
 | |
| 	mmu_init(&usedmem_ranges);
 | |
| 	mmu_enable();
 | |
| }
 | |
| 
 | |
| const struct mmu_ranges *mmu_get_used_ranges(void)
 | |
| {
 | |
| 	return &usedmem_ranges;
 | |
| }
 |