Change-Id: I6967a106ce1286d633ddeeb041f582e65f9ea78c Signed-off-by: Elyes HAOUAS <ehaouas@noos.fr> Reviewed-on: https://review.coreboot.org/28208 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net> Reviewed-by: Martin Roth <martinroth@google.com>
		
			
				
	
	
		
			963 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			963 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
| xxHash - Fast Hash algorithm
 | |
| Copyright (C) 2012-2015, Yann Collet
 | |
| 
 | |
| BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
 | |
| 
 | |
| Redistribution and use in source and binary forms, with or without
 | |
| modification, are permitted provided that the following conditions are
 | |
| met:
 | |
| 
 | |
| * Redistributions of source code must retain the above copyright
 | |
| notice, this list of conditions and the following disclaimer.
 | |
| * Redistributions in binary form must reproduce the above
 | |
| copyright notice, this list of conditions and the following disclaimer
 | |
| in the documentation and/or other materials provided with the
 | |
| distribution.
 | |
| 
 | |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
| "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
| A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | |
| OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
| SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
| LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
| DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
| THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
| (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
| OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| 
 | |
| You can contact the author at :
 | |
| - xxHash source repository : https://github.com/Cyan4973/xxHash
 | |
| */
 | |
| 
 | |
| 
 | |
| /**************************************
 | |
| *  Tuning parameters
 | |
| **************************************/
 | |
| /* XXH_FORCE_MEMORY_ACCESS
 | |
|  * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
 | |
|  * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
 | |
|  * The below switch allow to select different access method for improved performance.
 | |
|  * Method 0 (default) : use `memcpy()`. Safe and portable.
 | |
|  * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
 | |
|  *            This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
 | |
|  * Method 2 : direct access. This method is portable but violate C standard.
 | |
|  *            It can generate buggy code on targets which generate assembly depending on alignment.
 | |
|  *            But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
 | |
|  * See http://stackoverflow.com/a/32095106/646947 for details.
 | |
|  * Prefer these methods in priority order (0 > 1 > 2)
 | |
|  */
 | |
| #ifndef XXH_FORCE_MEMORY_ACCESS   /* can be defined externally, on command line for example */
 | |
| #  if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
 | |
| #    define XXH_FORCE_MEMORY_ACCESS 2
 | |
| #  elif defined(__INTEL_COMPILER) || \
 | |
|   (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
 | |
| #    define XXH_FORCE_MEMORY_ACCESS 1
 | |
| #  endif
 | |
| #endif
 | |
| 
 | |
| /* XXH_ACCEPT_NULL_INPUT_POINTER :
 | |
|  * If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.
 | |
|  * When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
 | |
|  * By default, this option is disabled. To enable it, uncomment below define :
 | |
|  */
 | |
| /* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */
 | |
| 
 | |
| /* XXH_FORCE_NATIVE_FORMAT :
 | |
|  * By default, xxHash library provides endian-independent Hash values, based on little-endian convention.
 | |
|  * Results are therefore identical for little-endian and big-endian CPU.
 | |
|  * This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
 | |
|  * Should endian-independance be of no importance for your application, you may set the #define below to 1,
 | |
|  * to improve speed for Big-endian CPU.
 | |
|  * This option has no impact on Little_Endian CPU.
 | |
|  */
 | |
| #define XXH_FORCE_NATIVE_FORMAT 0
 | |
| 
 | |
| /* XXH_USELESS_ALIGN_BRANCH :
 | |
|  * This is a minor performance trick, only useful with lots of very small keys.
 | |
|  * It means : don't make a test between aligned/unaligned, because performance will be the same.
 | |
|  * It saves one initial branch per hash.
 | |
|  */
 | |
| #if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
 | |
| #  define XXH_USELESS_ALIGN_BRANCH 1
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /**************************************
 | |
| *  Compiler Specific Options
 | |
| ***************************************/
 | |
| #ifdef _MSC_VER    /* Visual Studio */
 | |
| #  pragma warning(disable : 4127)      /* disable: C4127: conditional expression is constant */
 | |
| #  define FORCE_INLINE static __forceinline
 | |
| #else
 | |
| #  if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* C99 */
 | |
| #    ifdef __GNUC__
 | |
| #      define FORCE_INLINE static inline __attribute__((always_inline))
 | |
| #    else
 | |
| #      define FORCE_INLINE static inline
 | |
| #    endif
 | |
| #  else
 | |
| #    define FORCE_INLINE static
 | |
| #  endif /* __STDC_VERSION__ */
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /**************************************
 | |
| *  Includes & Memory related functions
 | |
| ***************************************/
 | |
| #include "xxhash.h"
 | |
| /* Modify the local functions below should you wish to use some other memory routines */
 | |
| /* for malloc(), free() */
 | |
| #include <stdlib.h>
 | |
| static void* XXH_malloc(size_t s) { return malloc(s); }
 | |
| static void  XXH_free  (void* p)  { free(p); }
 | |
| /* for memcpy() */
 | |
| #include <string.h>
 | |
| static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); }
 | |
| 
 | |
| 
 | |
| /**************************************
 | |
| *  Basic Types
 | |
| ***************************************/
 | |
| #if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* C99 */
 | |
| # include <stdint.h>
 | |
|   typedef uint8_t  BYTE;
 | |
|   typedef uint16_t U16;
 | |
|   typedef uint32_t U32;
 | |
|   typedef  int32_t S32;
 | |
|   typedef uint64_t U64;
 | |
| #else
 | |
|   typedef unsigned char      BYTE;
 | |
|   typedef unsigned short     U16;
 | |
|   typedef unsigned int       U32;
 | |
|   typedef   signed int       S32;
 | |
|   typedef unsigned long long U64;
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
 | |
| 
 | |
| /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
 | |
| static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; }
 | |
| static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; }
 | |
| 
 | |
| #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
 | |
| 
 | |
| /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
 | |
| /* currently only defined for gcc and icc */
 | |
| typedef union { U32 u32; U64 u64; } __packed unalign;
 | |
| 
 | |
| static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
 | |
| static U64 XXH_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
 | |
| 
 | |
| #else
 | |
| 
 | |
| /* portable and safe solution. Generally efficient.
 | |
|  * see : http://stackoverflow.com/a/32095106/646947
 | |
|  */
 | |
| 
 | |
| static U32 XXH_read32(const void* memPtr)
 | |
| {
 | |
|     U32 val;
 | |
|     memcpy(&val, memPtr, sizeof(val));
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| static U64 XXH_read64(const void* memPtr)
 | |
| {
 | |
|     U64 val;
 | |
|     memcpy(&val, memPtr, sizeof(val));
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| #endif // XXH_FORCE_DIRECT_MEMORY_ACCESS
 | |
| 
 | |
| 
 | |
| /******************************************
 | |
| *  Compiler-specific Functions and Macros
 | |
| ******************************************/
 | |
| #define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
 | |
| 
 | |
| /* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */
 | |
| #if defined(_MSC_VER)
 | |
| #  define XXH_rotl32(x,r) _rotl(x,r)
 | |
| #  define XXH_rotl64(x,r) _rotl64(x,r)
 | |
| #else
 | |
| #  define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
 | |
| #  define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
 | |
| #endif
 | |
| 
 | |
| #if defined(_MSC_VER)     /* Visual Studio */
 | |
| #  define XXH_swap32 _byteswap_ulong
 | |
| #  define XXH_swap64 _byteswap_uint64
 | |
| #elif GCC_VERSION >= 403
 | |
| #  define XXH_swap32 __builtin_bswap32
 | |
| #  define XXH_swap64 __builtin_bswap64
 | |
| #else
 | |
| static U32 XXH_swap32 (U32 x)
 | |
| {
 | |
|     return  ((x << 24) & 0xff000000 ) |
 | |
|             ((x <<  8) & 0x00ff0000 ) |
 | |
|             ((x >>  8) & 0x0000ff00 ) |
 | |
|             ((x >> 24) & 0x000000ff );
 | |
| }
 | |
| static U64 XXH_swap64 (U64 x)
 | |
| {
 | |
|     return  ((x << 56) & 0xff00000000000000ULL) |
 | |
|             ((x << 40) & 0x00ff000000000000ULL) |
 | |
|             ((x << 24) & 0x0000ff0000000000ULL) |
 | |
|             ((x << 8)  & 0x000000ff00000000ULL) |
 | |
|             ((x >> 8)  & 0x00000000ff000000ULL) |
 | |
|             ((x >> 24) & 0x0000000000ff0000ULL) |
 | |
|             ((x >> 40) & 0x000000000000ff00ULL) |
 | |
|             ((x >> 56) & 0x00000000000000ffULL);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /***************************************
 | |
| *  Architecture Macros
 | |
| ***************************************/
 | |
| typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianness;
 | |
| 
 | |
| /* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example one the compiler command line */
 | |
| #ifndef XXH_CPU_LITTLE_ENDIAN
 | |
|     static const int one = 1;
 | |
| #   define XXH_CPU_LITTLE_ENDIAN   (*(const char*)(&one))
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*****************************
 | |
| *  Memory reads
 | |
| *****************************/
 | |
| typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
 | |
| 
 | |
| FORCE_INLINE U32 XXH_readLE32_align(const void* ptr, XXH_endianness endian, XXH_alignment align)
 | |
| {
 | |
|     if (align==XXH_unaligned)
 | |
|         return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
 | |
|     else
 | |
|         return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr);
 | |
| }
 | |
| 
 | |
| FORCE_INLINE U32 XXH_readLE32(const void* ptr, XXH_endianness endian)
 | |
| {
 | |
|     return XXH_readLE32_align(ptr, endian, XXH_unaligned);
 | |
| }
 | |
| 
 | |
| FORCE_INLINE U64 XXH_readLE64_align(const void* ptr, XXH_endianness endian, XXH_alignment align)
 | |
| {
 | |
|     if (align==XXH_unaligned)
 | |
|         return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
 | |
|     else
 | |
|         return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr);
 | |
| }
 | |
| 
 | |
| FORCE_INLINE U64 XXH_readLE64(const void* ptr, XXH_endianness endian)
 | |
| {
 | |
|     return XXH_readLE64_align(ptr, endian, XXH_unaligned);
 | |
| }
 | |
| 
 | |
| 
 | |
| /***************************************
 | |
| *  Macros
 | |
| ***************************************/
 | |
| #define XXH_STATIC_ASSERT(c)   { enum { XXH_static_assert = 1/(!!(c)) }; }    /* use only *after* variable declarations */
 | |
| 
 | |
| 
 | |
| /***************************************
 | |
| *  Constants
 | |
| ***************************************/
 | |
| #define PRIME32_1   2654435761U
 | |
| #define PRIME32_2   2246822519U
 | |
| #define PRIME32_3   3266489917U
 | |
| #define PRIME32_4    668265263U
 | |
| #define PRIME32_5    374761393U
 | |
| 
 | |
| #define PRIME64_1 11400714785074694791ULL
 | |
| #define PRIME64_2 14029467366897019727ULL
 | |
| #define PRIME64_3  1609587929392839161ULL
 | |
| #define PRIME64_4  9650029242287828579ULL
 | |
| #define PRIME64_5  2870177450012600261ULL
 | |
| 
 | |
| 
 | |
| /*****************************
 | |
| *  Simple Hash Functions
 | |
| *****************************/
 | |
| FORCE_INLINE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianness endian, XXH_alignment align)
 | |
| {
 | |
|     const BYTE* p = (const BYTE*)input;
 | |
|     const BYTE* bEnd = p + len;
 | |
|     U32 h32;
 | |
| #define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)
 | |
| 
 | |
| #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
 | |
|     if (p==NULL)
 | |
|     {
 | |
|         len=0;
 | |
|         bEnd=p=(const BYTE*)(size_t)16;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (len>=16)
 | |
|     {
 | |
|         const BYTE* const limit = bEnd - 16;
 | |
|         U32 v1 = seed + PRIME32_1 + PRIME32_2;
 | |
|         U32 v2 = seed + PRIME32_2;
 | |
|         U32 v3 = seed + 0;
 | |
|         U32 v4 = seed - PRIME32_1;
 | |
| 
 | |
|         do
 | |
|         {
 | |
|             v1 += XXH_get32bits(p) * PRIME32_2;
 | |
|             v1 = XXH_rotl32(v1, 13);
 | |
|             v1 *= PRIME32_1;
 | |
|             p+=4;
 | |
|             v2 += XXH_get32bits(p) * PRIME32_2;
 | |
|             v2 = XXH_rotl32(v2, 13);
 | |
|             v2 *= PRIME32_1;
 | |
|             p+=4;
 | |
|             v3 += XXH_get32bits(p) * PRIME32_2;
 | |
|             v3 = XXH_rotl32(v3, 13);
 | |
|             v3 *= PRIME32_1;
 | |
|             p+=4;
 | |
|             v4 += XXH_get32bits(p) * PRIME32_2;
 | |
|             v4 = XXH_rotl32(v4, 13);
 | |
|             v4 *= PRIME32_1;
 | |
|             p+=4;
 | |
|         }
 | |
|         while (p<=limit);
 | |
| 
 | |
|         h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         h32  = seed + PRIME32_5;
 | |
|     }
 | |
| 
 | |
|     h32 += (U32) len;
 | |
| 
 | |
|     while (p+4<=bEnd)
 | |
|     {
 | |
|         h32 += XXH_get32bits(p) * PRIME32_3;
 | |
|         h32  = XXH_rotl32(h32, 17) * PRIME32_4 ;
 | |
|         p+=4;
 | |
|     }
 | |
| 
 | |
|     while (p<bEnd)
 | |
|     {
 | |
|         h32 += (*p) * PRIME32_5;
 | |
|         h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
 | |
|         p++;
 | |
|     }
 | |
| 
 | |
|     h32 ^= h32 >> 15;
 | |
|     h32 *= PRIME32_2;
 | |
|     h32 ^= h32 >> 13;
 | |
|     h32 *= PRIME32_3;
 | |
|     h32 ^= h32 >> 16;
 | |
| 
 | |
|     return h32;
 | |
| }
 | |
| 
 | |
| 
 | |
| unsigned int XXH32 (const void* input, size_t len, unsigned int seed)
 | |
| {
 | |
| #if 0
 | |
|     /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
 | |
|     XXH32_state_t state;
 | |
|     XXH32_reset(&state, seed);
 | |
|     XXH32_update(&state, input, len);
 | |
|     return XXH32_digest(&state);
 | |
| #else
 | |
|     XXH_endianness endian_detected = (XXH_endianness)XXH_CPU_LITTLE_ENDIAN;
 | |
| 
 | |
| #  if !defined(XXH_USELESS_ALIGN_BRANCH)
 | |
|     if ((((size_t)input) & 3) == 0)   /* Input is 4-bytes aligned, leverage the speed benefit */
 | |
|     {
 | |
|         if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
 | |
|             return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
 | |
|         else
 | |
|             return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
 | |
|     }
 | |
| #  endif
 | |
| 
 | |
|     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
 | |
|         return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
 | |
|     else
 | |
|         return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| FORCE_INLINE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianness endian, XXH_alignment align)
 | |
| {
 | |
|     const BYTE* p = (const BYTE*)input;
 | |
|     const BYTE* bEnd = p + len;
 | |
|     U64 h64;
 | |
| #define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)
 | |
| 
 | |
| #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
 | |
|     if (p==NULL)
 | |
|     {
 | |
|         len=0;
 | |
|         bEnd=p=(const BYTE*)(size_t)32;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (len>=32)
 | |
|     {
 | |
|         const BYTE* const limit = bEnd - 32;
 | |
|         U64 v1 = seed + PRIME64_1 + PRIME64_2;
 | |
|         U64 v2 = seed + PRIME64_2;
 | |
|         U64 v3 = seed + 0;
 | |
|         U64 v4 = seed - PRIME64_1;
 | |
| 
 | |
|         do
 | |
|         {
 | |
|             v1 += XXH_get64bits(p) * PRIME64_2;
 | |
|             p+=8;
 | |
|             v1 = XXH_rotl64(v1, 31);
 | |
|             v1 *= PRIME64_1;
 | |
|             v2 += XXH_get64bits(p) * PRIME64_2;
 | |
|             p+=8;
 | |
|             v2 = XXH_rotl64(v2, 31);
 | |
|             v2 *= PRIME64_1;
 | |
|             v3 += XXH_get64bits(p) * PRIME64_2;
 | |
|             p+=8;
 | |
|             v3 = XXH_rotl64(v3, 31);
 | |
|             v3 *= PRIME64_1;
 | |
|             v4 += XXH_get64bits(p) * PRIME64_2;
 | |
|             p+=8;
 | |
|             v4 = XXH_rotl64(v4, 31);
 | |
|             v4 *= PRIME64_1;
 | |
|         }
 | |
|         while (p<=limit);
 | |
| 
 | |
|         h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
 | |
| 
 | |
|         v1 *= PRIME64_2;
 | |
|         v1 = XXH_rotl64(v1, 31);
 | |
|         v1 *= PRIME64_1;
 | |
|         h64 ^= v1;
 | |
|         h64 = h64 * PRIME64_1 + PRIME64_4;
 | |
| 
 | |
|         v2 *= PRIME64_2;
 | |
|         v2 = XXH_rotl64(v2, 31);
 | |
|         v2 *= PRIME64_1;
 | |
|         h64 ^= v2;
 | |
|         h64 = h64 * PRIME64_1 + PRIME64_4;
 | |
| 
 | |
|         v3 *= PRIME64_2;
 | |
|         v3 = XXH_rotl64(v3, 31);
 | |
|         v3 *= PRIME64_1;
 | |
|         h64 ^= v3;
 | |
|         h64 = h64 * PRIME64_1 + PRIME64_4;
 | |
| 
 | |
|         v4 *= PRIME64_2;
 | |
|         v4 = XXH_rotl64(v4, 31);
 | |
|         v4 *= PRIME64_1;
 | |
|         h64 ^= v4;
 | |
|         h64 = h64 * PRIME64_1 + PRIME64_4;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         h64  = seed + PRIME64_5;
 | |
|     }
 | |
| 
 | |
|     h64 += (U64) len;
 | |
| 
 | |
|     while (p+8<=bEnd)
 | |
|     {
 | |
|         U64 k1 = XXH_get64bits(p);
 | |
|         k1 *= PRIME64_2;
 | |
|         k1 = XXH_rotl64(k1,31);
 | |
|         k1 *= PRIME64_1;
 | |
|         h64 ^= k1;
 | |
|         h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
 | |
|         p+=8;
 | |
|     }
 | |
| 
 | |
|     if (p+4<=bEnd)
 | |
|     {
 | |
|         h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;
 | |
|         h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
 | |
|         p+=4;
 | |
|     }
 | |
| 
 | |
|     while (p<bEnd)
 | |
|     {
 | |
|         h64 ^= (*p) * PRIME64_5;
 | |
|         h64 = XXH_rotl64(h64, 11) * PRIME64_1;
 | |
|         p++;
 | |
|     }
 | |
| 
 | |
|     h64 ^= h64 >> 33;
 | |
|     h64 *= PRIME64_2;
 | |
|     h64 ^= h64 >> 29;
 | |
|     h64 *= PRIME64_3;
 | |
|     h64 ^= h64 >> 32;
 | |
| 
 | |
|     return h64;
 | |
| }
 | |
| 
 | |
| 
 | |
| unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed)
 | |
| {
 | |
| #if 0
 | |
|     /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
 | |
|     XXH64_state_t state;
 | |
|     XXH64_reset(&state, seed);
 | |
|     XXH64_update(&state, input, len);
 | |
|     return XXH64_digest(&state);
 | |
| #else
 | |
|     XXH_endianness endian_detected = (XXH_endianness)XXH_CPU_LITTLE_ENDIAN;
 | |
| 
 | |
| #  if !defined(XXH_USELESS_ALIGN_BRANCH)
 | |
|     if ((((size_t)input) & 7)==0)   /* Input is aligned, let's leverage the speed advantage */
 | |
|     {
 | |
|         if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
 | |
|             return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
 | |
|         else
 | |
|             return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
 | |
|     }
 | |
| #  endif
 | |
| 
 | |
|     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
 | |
|         return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
 | |
|     else
 | |
|         return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /****************************************************
 | |
| *  Advanced Hash Functions
 | |
| ****************************************************/
 | |
| 
 | |
| /*** Allocation ***/
 | |
| typedef struct
 | |
| {
 | |
|     U64 total_len;
 | |
|     U32 seed;
 | |
|     U32 v1;
 | |
|     U32 v2;
 | |
|     U32 v3;
 | |
|     U32 v4;
 | |
|     U32 mem32[4];   /* defined as U32 for alignment */
 | |
|     U32 memsize;
 | |
| } XXH_istate32_t;
 | |
| 
 | |
| typedef struct
 | |
| {
 | |
|     U64 total_len;
 | |
|     U64 seed;
 | |
|     U64 v1;
 | |
|     U64 v2;
 | |
|     U64 v3;
 | |
|     U64 v4;
 | |
|     U64 mem64[4];   /* defined as U64 for alignment */
 | |
|     U32 memsize;
 | |
| } XXH_istate64_t;
 | |
| 
 | |
| 
 | |
| XXH32_state_t* XXH32_createState(void)
 | |
| {
 | |
|     XXH_STATIC_ASSERT(sizeof(XXH32_state_t) >= sizeof(XXH_istate32_t));   /* A compilation error here means XXH32_state_t is not large enough */
 | |
|     return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
 | |
| }
 | |
| XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
 | |
| {
 | |
|     XXH_free(statePtr);
 | |
|     return XXH_OK;
 | |
| }
 | |
| 
 | |
| XXH64_state_t* XXH64_createState(void)
 | |
| {
 | |
|     XXH_STATIC_ASSERT(sizeof(XXH64_state_t) >= sizeof(XXH_istate64_t));   /* A compilation error here means XXH64_state_t is not large enough */
 | |
|     return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
 | |
| }
 | |
| XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
 | |
| {
 | |
|     XXH_free(statePtr);
 | |
|     return XXH_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*** Hash feed ***/
 | |
| 
 | |
| XXH_errorcode XXH32_reset(XXH32_state_t* state_in, unsigned int seed)
 | |
| {
 | |
|     XXH_istate32_t* state = (XXH_istate32_t*) state_in;
 | |
|     state->seed = seed;
 | |
|     state->v1 = seed + PRIME32_1 + PRIME32_2;
 | |
|     state->v2 = seed + PRIME32_2;
 | |
|     state->v3 = seed + 0;
 | |
|     state->v4 = seed - PRIME32_1;
 | |
|     state->total_len = 0;
 | |
|     state->memsize = 0;
 | |
|     return XXH_OK;
 | |
| }
 | |
| 
 | |
| XXH_errorcode XXH64_reset(XXH64_state_t* state_in, unsigned long long seed)
 | |
| {
 | |
|     XXH_istate64_t* state = (XXH_istate64_t*) state_in;
 | |
|     state->seed = seed;
 | |
|     state->v1 = seed + PRIME64_1 + PRIME64_2;
 | |
|     state->v2 = seed + PRIME64_2;
 | |
|     state->v3 = seed + 0;
 | |
|     state->v4 = seed - PRIME64_1;
 | |
|     state->total_len = 0;
 | |
|     state->memsize = 0;
 | |
|     return XXH_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| FORCE_INLINE XXH_errorcode XXH32_update_endian (XXH32_state_t* state_in, const void* input, size_t len, XXH_endianness endian)
 | |
| {
 | |
|     XXH_istate32_t* state = (XXH_istate32_t *) state_in;
 | |
|     const BYTE* p = (const BYTE*)input;
 | |
|     const BYTE* const bEnd = p + len;
 | |
| 
 | |
| #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
 | |
|     if (input==NULL) return XXH_ERROR;
 | |
| #endif
 | |
| 
 | |
|     state->total_len += len;
 | |
| 
 | |
|     if (state->memsize + len < 16)   /* fill in tmp buffer */
 | |
|     {
 | |
|         XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len);
 | |
|         state->memsize += (U32)len;
 | |
|         return XXH_OK;
 | |
|     }
 | |
| 
 | |
|     if (state->memsize)   /* some data left from previous update */
 | |
|     {
 | |
|         XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize);
 | |
|         {
 | |
|             const U32* p32 = state->mem32;
 | |
|             state->v1 += XXH_readLE32(p32, endian) * PRIME32_2;
 | |
|             state->v1 = XXH_rotl32(state->v1, 13);
 | |
|             state->v1 *= PRIME32_1;
 | |
|             p32++;
 | |
|             state->v2 += XXH_readLE32(p32, endian) * PRIME32_2;
 | |
|             state->v2 = XXH_rotl32(state->v2, 13);
 | |
|             state->v2 *= PRIME32_1;
 | |
|             p32++;
 | |
|             state->v3 += XXH_readLE32(p32, endian) * PRIME32_2;
 | |
|             state->v3 = XXH_rotl32(state->v3, 13);
 | |
|             state->v3 *= PRIME32_1;
 | |
|             p32++;
 | |
|             state->v4 += XXH_readLE32(p32, endian) * PRIME32_2;
 | |
|             state->v4 = XXH_rotl32(state->v4, 13);
 | |
|             state->v4 *= PRIME32_1;
 | |
|             p32++;
 | |
|         }
 | |
|         p += 16-state->memsize;
 | |
|         state->memsize = 0;
 | |
|     }
 | |
| 
 | |
|     if (p <= bEnd-16)
 | |
|     {
 | |
|         const BYTE* const limit = bEnd - 16;
 | |
|         U32 v1 = state->v1;
 | |
|         U32 v2 = state->v2;
 | |
|         U32 v3 = state->v3;
 | |
|         U32 v4 = state->v4;
 | |
| 
 | |
|         do
 | |
|         {
 | |
|             v1 += XXH_readLE32(p, endian) * PRIME32_2;
 | |
|             v1 = XXH_rotl32(v1, 13);
 | |
|             v1 *= PRIME32_1;
 | |
|             p+=4;
 | |
|             v2 += XXH_readLE32(p, endian) * PRIME32_2;
 | |
|             v2 = XXH_rotl32(v2, 13);
 | |
|             v2 *= PRIME32_1;
 | |
|             p+=4;
 | |
|             v3 += XXH_readLE32(p, endian) * PRIME32_2;
 | |
|             v3 = XXH_rotl32(v3, 13);
 | |
|             v3 *= PRIME32_1;
 | |
|             p+=4;
 | |
|             v4 += XXH_readLE32(p, endian) * PRIME32_2;
 | |
|             v4 = XXH_rotl32(v4, 13);
 | |
|             v4 *= PRIME32_1;
 | |
|             p+=4;
 | |
|         }
 | |
|         while (p<=limit);
 | |
| 
 | |
|         state->v1 = v1;
 | |
|         state->v2 = v2;
 | |
|         state->v3 = v3;
 | |
|         state->v4 = v4;
 | |
|     }
 | |
| 
 | |
|     if (p < bEnd)
 | |
|     {
 | |
|         XXH_memcpy(state->mem32, p, bEnd-p);
 | |
|         state->memsize = (int)(bEnd-p);
 | |
|     }
 | |
| 
 | |
|     return XXH_OK;
 | |
| }
 | |
| 
 | |
| XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len)
 | |
| {
 | |
|     XXH_endianness endian_detected = (XXH_endianness)XXH_CPU_LITTLE_ENDIAN;
 | |
| 
 | |
|     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
 | |
|         return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
 | |
|     else
 | |
|         return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| FORCE_INLINE U32 XXH32_digest_endian (const XXH32_state_t* state_in, XXH_endianness endian)
 | |
| {
 | |
|     const XXH_istate32_t* state = (const XXH_istate32_t*) state_in;
 | |
|     const BYTE * p = (const BYTE*)state->mem32;
 | |
|     const BYTE* bEnd = (const BYTE*)(state->mem32) + state->memsize;
 | |
|     U32 h32;
 | |
| 
 | |
|     if (state->total_len >= 16)
 | |
|     {
 | |
|         h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         h32  = state->seed + PRIME32_5;
 | |
|     }
 | |
| 
 | |
|     h32 += (U32) state->total_len;
 | |
| 
 | |
|     while (p+4<=bEnd)
 | |
|     {
 | |
|         h32 += XXH_readLE32(p, endian) * PRIME32_3;
 | |
|         h32  = XXH_rotl32(h32, 17) * PRIME32_4;
 | |
|         p+=4;
 | |
|     }
 | |
| 
 | |
|     while (p<bEnd)
 | |
|     {
 | |
|         h32 += (*p) * PRIME32_5;
 | |
|         h32 = XXH_rotl32(h32, 11) * PRIME32_1;
 | |
|         p++;
 | |
|     }
 | |
| 
 | |
|     h32 ^= h32 >> 15;
 | |
|     h32 *= PRIME32_2;
 | |
|     h32 ^= h32 >> 13;
 | |
|     h32 *= PRIME32_3;
 | |
|     h32 ^= h32 >> 16;
 | |
| 
 | |
|     return h32;
 | |
| }
 | |
| 
 | |
| 
 | |
| unsigned int XXH32_digest (const XXH32_state_t* state_in)
 | |
| {
 | |
|     XXH_endianness endian_detected = (XXH_endianness)XXH_CPU_LITTLE_ENDIAN;
 | |
| 
 | |
|     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
 | |
|         return XXH32_digest_endian(state_in, XXH_littleEndian);
 | |
|     else
 | |
|         return XXH32_digest_endian(state_in, XXH_bigEndian);
 | |
| }
 | |
| 
 | |
| 
 | |
| FORCE_INLINE XXH_errorcode XXH64_update_endian (XXH64_state_t* state_in, const void* input, size_t len, XXH_endianness endian)
 | |
| {
 | |
|     XXH_istate64_t * state = (XXH_istate64_t *) state_in;
 | |
|     const BYTE* p = (const BYTE*)input;
 | |
|     const BYTE* const bEnd = p + len;
 | |
| 
 | |
| #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
 | |
|     if (input==NULL) return XXH_ERROR;
 | |
| #endif
 | |
| 
 | |
|     state->total_len += len;
 | |
| 
 | |
|     if (state->memsize + len < 32)   /* fill in tmp buffer */
 | |
|     {
 | |
|         XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);
 | |
|         state->memsize += (U32)len;
 | |
|         return XXH_OK;
 | |
|     }
 | |
| 
 | |
|     if (state->memsize)   /* some data left from previous update */
 | |
|     {
 | |
|         XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize);
 | |
|         {
 | |
|             const U64* p64 = state->mem64;
 | |
|             state->v1 += XXH_readLE64(p64, endian) * PRIME64_2;
 | |
|             state->v1 = XXH_rotl64(state->v1, 31);
 | |
|             state->v1 *= PRIME64_1;
 | |
|             p64++;
 | |
|             state->v2 += XXH_readLE64(p64, endian) * PRIME64_2;
 | |
|             state->v2 = XXH_rotl64(state->v2, 31);
 | |
|             state->v2 *= PRIME64_1;
 | |
|             p64++;
 | |
|             state->v3 += XXH_readLE64(p64, endian) * PRIME64_2;
 | |
|             state->v3 = XXH_rotl64(state->v3, 31);
 | |
|             state->v3 *= PRIME64_1;
 | |
|             p64++;
 | |
|             state->v4 += XXH_readLE64(p64, endian) * PRIME64_2;
 | |
|             state->v4 = XXH_rotl64(state->v4, 31);
 | |
|             state->v4 *= PRIME64_1;
 | |
|             p64++;
 | |
|         }
 | |
|         p += 32-state->memsize;
 | |
|         state->memsize = 0;
 | |
|     }
 | |
| 
 | |
|     if (p+32 <= bEnd)
 | |
|     {
 | |
|         const BYTE* const limit = bEnd - 32;
 | |
|         U64 v1 = state->v1;
 | |
|         U64 v2 = state->v2;
 | |
|         U64 v3 = state->v3;
 | |
|         U64 v4 = state->v4;
 | |
| 
 | |
|         do
 | |
|         {
 | |
|             v1 += XXH_readLE64(p, endian) * PRIME64_2;
 | |
|             v1 = XXH_rotl64(v1, 31);
 | |
|             v1 *= PRIME64_1;
 | |
|             p+=8;
 | |
|             v2 += XXH_readLE64(p, endian) * PRIME64_2;
 | |
|             v2 = XXH_rotl64(v2, 31);
 | |
|             v2 *= PRIME64_1;
 | |
|             p+=8;
 | |
|             v3 += XXH_readLE64(p, endian) * PRIME64_2;
 | |
|             v3 = XXH_rotl64(v3, 31);
 | |
|             v3 *= PRIME64_1;
 | |
|             p+=8;
 | |
|             v4 += XXH_readLE64(p, endian) * PRIME64_2;
 | |
|             v4 = XXH_rotl64(v4, 31);
 | |
|             v4 *= PRIME64_1;
 | |
|             p+=8;
 | |
|         }
 | |
|         while (p<=limit);
 | |
| 
 | |
|         state->v1 = v1;
 | |
|         state->v2 = v2;
 | |
|         state->v3 = v3;
 | |
|         state->v4 = v4;
 | |
|     }
 | |
| 
 | |
|     if (p < bEnd)
 | |
|     {
 | |
|         XXH_memcpy(state->mem64, p, bEnd-p);
 | |
|         state->memsize = (int)(bEnd-p);
 | |
|     }
 | |
| 
 | |
|     return XXH_OK;
 | |
| }
 | |
| 
 | |
| XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len)
 | |
| {
 | |
|     XXH_endianness endian_detected = (XXH_endianness)XXH_CPU_LITTLE_ENDIAN;
 | |
| 
 | |
|     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
 | |
|         return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
 | |
|     else
 | |
|         return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| FORCE_INLINE U64 XXH64_digest_endian (const XXH64_state_t* state_in, XXH_endianness endian)
 | |
| {
 | |
|     const XXH_istate64_t * state = (const XXH_istate64_t *) state_in;
 | |
|     const BYTE * p = (const BYTE*)state->mem64;
 | |
|     const BYTE* bEnd = (const BYTE*)state->mem64 + state->memsize;
 | |
|     U64 h64;
 | |
| 
 | |
|     if (state->total_len >= 32)
 | |
|     {
 | |
|         U64 v1 = state->v1;
 | |
|         U64 v2 = state->v2;
 | |
|         U64 v3 = state->v3;
 | |
|         U64 v4 = state->v4;
 | |
| 
 | |
|         h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
 | |
| 
 | |
|         v1 *= PRIME64_2;
 | |
|         v1 = XXH_rotl64(v1, 31);
 | |
|         v1 *= PRIME64_1;
 | |
|         h64 ^= v1;
 | |
|         h64 = h64*PRIME64_1 + PRIME64_4;
 | |
| 
 | |
|         v2 *= PRIME64_2;
 | |
|         v2 = XXH_rotl64(v2, 31);
 | |
|         v2 *= PRIME64_1;
 | |
|         h64 ^= v2;
 | |
|         h64 = h64*PRIME64_1 + PRIME64_4;
 | |
| 
 | |
|         v3 *= PRIME64_2;
 | |
|         v3 = XXH_rotl64(v3, 31);
 | |
|         v3 *= PRIME64_1;
 | |
|         h64 ^= v3;
 | |
|         h64 = h64*PRIME64_1 + PRIME64_4;
 | |
| 
 | |
|         v4 *= PRIME64_2;
 | |
|         v4 = XXH_rotl64(v4, 31);
 | |
|         v4 *= PRIME64_1;
 | |
|         h64 ^= v4;
 | |
|         h64 = h64*PRIME64_1 + PRIME64_4;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         h64  = state->seed + PRIME64_5;
 | |
|     }
 | |
| 
 | |
|     h64 += (U64) state->total_len;
 | |
| 
 | |
|     while (p+8<=bEnd)
 | |
|     {
 | |
|         U64 k1 = XXH_readLE64(p, endian);
 | |
|         k1 *= PRIME64_2;
 | |
|         k1 = XXH_rotl64(k1,31);
 | |
|         k1 *= PRIME64_1;
 | |
|         h64 ^= k1;
 | |
|         h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
 | |
|         p+=8;
 | |
|     }
 | |
| 
 | |
|     if (p+4<=bEnd)
 | |
|     {
 | |
|         h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1;
 | |
|         h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
 | |
|         p+=4;
 | |
|     }
 | |
| 
 | |
|     while (p<bEnd)
 | |
|     {
 | |
|         h64 ^= (*p) * PRIME64_5;
 | |
|         h64 = XXH_rotl64(h64, 11) * PRIME64_1;
 | |
|         p++;
 | |
|     }
 | |
| 
 | |
|     h64 ^= h64 >> 33;
 | |
|     h64 *= PRIME64_2;
 | |
|     h64 ^= h64 >> 29;
 | |
|     h64 *= PRIME64_3;
 | |
|     h64 ^= h64 >> 32;
 | |
| 
 | |
|     return h64;
 | |
| }
 | |
| 
 | |
| 
 | |
| unsigned long long XXH64_digest (const XXH64_state_t* state_in)
 | |
| {
 | |
|     XXH_endianness endian_detected = (XXH_endianness)XXH_CPU_LITTLE_ENDIAN;
 | |
| 
 | |
|     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
 | |
|         return XXH64_digest_endian(state_in, XXH_littleEndian);
 | |
|     else
 | |
|         return XXH64_digest_endian(state_in, XXH_bigEndian);
 | |
| }
 | |
| 
 | |
| 
 |