If some error happens in cbfs_payload_make_elf, the code jumps to "out", and elf_writer_destroy(ew) is called. This may happen before an elf writer is allocated. To avoid accessing an uninitialized pointer, initialize ew to NULL; elf_writer_destroy will perform no action in this case. Change-Id: I5f1f9c4d37f2bdeaaeeca7a15720c7b4c963d953 Reported-By: Coverity Scan (1361475) Signed-off-by: Jonathan Neuschäfer <j.neuschaefer@gmx.net> Reviewed-on: https://review.coreboot.org/16124 Tested-by: build bot (Jenkins) Reviewed-by: Aaron Durbin <adurbin@chromium.org>
		
			
				
	
	
		
			1949 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1949 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * CBFS Image Manipulation
 | |
|  *
 | |
|  * Copyright (C) 2013 The Chromium OS Authors. All rights reserved.
 | |
|  * Copyright (C) 2016 Siemens AG. All rights reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; version 2 of the License.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  */
 | |
| 
 | |
| #include <inttypes.h>
 | |
| #include <libgen.h>
 | |
| #include <stddef.h>
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <strings.h>
 | |
| #include <commonlib/endian.h>
 | |
| 
 | |
| #include "common.h"
 | |
| #include "cbfs_image.h"
 | |
| #include "elfparsing.h"
 | |
| #include "rmodule.h"
 | |
| 
 | |
| /* Even though the file-adding functions---cbfs_add_entry() and
 | |
|  * cbfs_add_entry_at()---perform their sizing checks against the beginning of
 | |
|  * the subsequent section rather than a stable recorded value such as an empty
 | |
|  * file header's len field, it's possible to prove two interesting properties
 | |
|  * about their behavior:
 | |
|  *  - Placing a new file within an empty entry located below an existing file
 | |
|  *    entry will never leave an aligned flash address containing neither the
 | |
|  *    beginning of a file header nor part of a file.
 | |
|  *  - Placing a new file in an empty entry at the very end of the image such
 | |
|  *    that it fits, but leaves no room for a final header, is guaranteed not to
 | |
|  *    change the total amount of space for entries, even if that new file is
 | |
|  *    later removed from the CBFS.
 | |
|  * These properties are somewhat nonobvious from the implementation, so the
 | |
|  * reader is encouraged to blame this comment and examine the full proofs
 | |
|  * in the commit message before making significant changes that would risk
 | |
|  * removing said guarantees.
 | |
|  */
 | |
| 
 | |
| /* The file name align is not defined in CBFS spec -- only a preference by
 | |
|  * (old) cbfstool. */
 | |
| #define CBFS_FILENAME_ALIGN	(16)
 | |
| 
 | |
| /* Type and format */
 | |
| 
 | |
| static const struct typedesc_t types_cbfs_compression[] = {
 | |
| 	{CBFS_COMPRESS_NONE, "none"},
 | |
| 	{CBFS_COMPRESS_LZMA, "LZMA"},
 | |
| 	{CBFS_COMPRESS_LZ4, "LZ4"},
 | |
| 	{0, NULL},
 | |
| };
 | |
| 
 | |
| static const char *lookup_name_by_type(const struct typedesc_t *desc, uint32_t type,
 | |
| 				const char *default_value)
 | |
| {
 | |
| 	int i;
 | |
| 	for (i = 0; desc[i].name; i++)
 | |
| 		if (desc[i].type == type)
 | |
| 			return desc[i].name;
 | |
| 	return default_value;
 | |
| }
 | |
| 
 | |
| static int lookup_type_by_name(const struct typedesc_t *desc, const char *name)
 | |
| {
 | |
| 	int i;
 | |
| 	for (i = 0; desc[i].name && strcasecmp(name, desc[i].name); ++i);
 | |
| 	return desc[i].name ? (int)desc[i].type : -1;
 | |
| }
 | |
| 
 | |
| static const char *get_cbfs_entry_type_name(uint32_t type)
 | |
| {
 | |
| 	return lookup_name_by_type(filetypes, type, "(unknown)");
 | |
| }
 | |
| 
 | |
| int cbfs_parse_comp_algo(const char *name)
 | |
| {
 | |
| 	return lookup_type_by_name(types_cbfs_compression, name);
 | |
| }
 | |
| 
 | |
| static const char *get_hash_attr_name(uint16_t hash_type)
 | |
| {
 | |
| 	return lookup_name_by_type(types_cbfs_hash, hash_type, "(invalid)");
 | |
| }
 | |
| 
 | |
| int cbfs_parse_hash_algo(const char *name)
 | |
| {
 | |
| 	return lookup_type_by_name(types_cbfs_hash, name);
 | |
| }
 | |
| 
 | |
| /* CBFS image */
 | |
| 
 | |
| size_t cbfs_calculate_file_header_size(const char *name)
 | |
| {
 | |
| 	return (sizeof(struct cbfs_file) +
 | |
| 		align_up(strlen(name) + 1, CBFS_FILENAME_ALIGN));
 | |
| }
 | |
| 
 | |
| /* Only call on legacy CBFSes possessing a master header. */
 | |
| static int cbfs_fix_legacy_size(struct cbfs_image *image, char *hdr_loc)
 | |
| {
 | |
| 	assert(image);
 | |
| 	assert(cbfs_is_legacy_cbfs(image));
 | |
| 	// A bug in old cbfstool may produce extra few bytes (by alignment) and
 | |
| 	// cause cbfstool to overwrite things after free space -- which is
 | |
| 	// usually CBFS header on x86. We need to workaround that.
 | |
| 	// Except when we run across a file that contains the actual header,
 | |
| 	// in which case this image is a safe, new-style
 | |
| 	// `cbfstool add-master-header` based image.
 | |
| 
 | |
| 	struct cbfs_file *entry, *first = NULL, *last = NULL;
 | |
| 	for (first = entry = cbfs_find_first_entry(image);
 | |
| 	     entry && cbfs_is_valid_entry(image, entry);
 | |
| 	     entry = cbfs_find_next_entry(image, entry)) {
 | |
| 		/* Is the header guarded by a CBFS file entry? Then exit */
 | |
| 		if (((char *)entry) + ntohl(entry->offset) == hdr_loc) {
 | |
| 			return 0;
 | |
| 		}
 | |
| 		last = entry;
 | |
| 	}
 | |
| 	if ((char *)first < (char *)hdr_loc &&
 | |
| 	    (char *)entry > (char *)hdr_loc) {
 | |
| 		WARN("CBFS image was created with old cbfstool with size bug. "
 | |
| 		     "Fixing size in last entry...\n");
 | |
| 		last->len = htonl(ntohl(last->len) - image->header.align);
 | |
| 		DEBUG("Last entry has been changed from 0x%x to 0x%x.\n",
 | |
| 		      cbfs_get_entry_addr(image, entry),
 | |
| 		      cbfs_get_entry_addr(image,
 | |
| 					  cbfs_find_next_entry(image, last)));
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void cbfs_put_header(void *dest, const struct cbfs_header *header)
 | |
| {
 | |
| 	struct buffer outheader;
 | |
| 
 | |
| 	outheader.data = dest;
 | |
| 	outheader.size = 0;
 | |
| 
 | |
| 	xdr_be.put32(&outheader, header->magic);
 | |
| 	xdr_be.put32(&outheader, header->version);
 | |
| 	xdr_be.put32(&outheader, header->romsize);
 | |
| 	xdr_be.put32(&outheader, header->bootblocksize);
 | |
| 	xdr_be.put32(&outheader, header->align);
 | |
| 	xdr_be.put32(&outheader, header->offset);
 | |
| 	xdr_be.put32(&outheader, header->architecture);
 | |
| }
 | |
| 
 | |
| static void cbfs_decode_payload_segment(struct cbfs_payload_segment *output,
 | |
| 					struct cbfs_payload_segment *input)
 | |
| {
 | |
| 	struct buffer seg = {
 | |
| 		.data = (void *)input,
 | |
| 		.size = sizeof(*input),
 | |
| 	};
 | |
| 	output->type = xdr_be.get32(&seg);
 | |
| 	output->compression = xdr_be.get32(&seg);
 | |
| 	output->offset = xdr_be.get32(&seg);
 | |
| 	output->load_addr = xdr_be.get64(&seg);
 | |
| 	output->len = xdr_be.get32(&seg);
 | |
| 	output->mem_len = xdr_be.get32(&seg);
 | |
| 	assert(seg.size == 0);
 | |
| }
 | |
| 
 | |
| static int cbfs_file_get_compression_info(struct cbfs_file *entry,
 | |
| 	uint32_t *decompressed_size)
 | |
| {
 | |
| 	unsigned int compression = CBFS_COMPRESS_NONE;
 | |
| 	*decompressed_size = ntohl(entry->len);
 | |
| 	for (struct cbfs_file_attribute *attr = cbfs_file_first_attr(entry);
 | |
| 	     attr != NULL;
 | |
| 	     attr = cbfs_file_next_attr(entry, attr)) {
 | |
| 		if (ntohl(attr->tag) == CBFS_FILE_ATTR_TAG_COMPRESSION) {
 | |
| 			struct cbfs_file_attr_compression *ac =
 | |
| 				(struct cbfs_file_attr_compression *)attr;
 | |
| 			compression = ntohl(ac->compression);
 | |
| 			if (decompressed_size)
 | |
| 				*decompressed_size =
 | |
| 					ntohl(ac->decompressed_size);
 | |
| 		}
 | |
| 	}
 | |
| 	return compression;
 | |
| }
 | |
| 
 | |
| static struct cbfs_file_attr_hash *cbfs_file_get_next_hash(
 | |
| 	struct cbfs_file *entry, struct cbfs_file_attr_hash *cur)
 | |
| {
 | |
| 	struct cbfs_file_attribute *attr = (struct cbfs_file_attribute *)cur;
 | |
| 	if (attr == NULL) {
 | |
| 		attr = cbfs_file_first_attr(entry);
 | |
| 		if (attr == NULL)
 | |
| 			return NULL;
 | |
| 		if (ntohl(attr->tag) == CBFS_FILE_ATTR_TAG_HASH)
 | |
| 			return (struct cbfs_file_attr_hash *)attr;
 | |
| 	}
 | |
| 	while ((attr = cbfs_file_next_attr(entry, attr)) != NULL) {
 | |
| 		if (ntohl(attr->tag) == CBFS_FILE_ATTR_TAG_HASH)
 | |
| 			return (struct cbfs_file_attr_hash *)attr;
 | |
| 	};
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| void cbfs_get_header(struct cbfs_header *header, void *src)
 | |
| {
 | |
| 	struct buffer outheader;
 | |
| 
 | |
| 	outheader.data = src;	/* We're not modifying the data */
 | |
| 	outheader.size = 0;
 | |
| 
 | |
| 	header->magic = xdr_be.get32(&outheader);
 | |
| 	header->version = xdr_be.get32(&outheader);
 | |
| 	header->romsize = xdr_be.get32(&outheader);
 | |
| 	header->bootblocksize = xdr_be.get32(&outheader);
 | |
| 	header->align = xdr_be.get32(&outheader);
 | |
| 	header->offset = xdr_be.get32(&outheader);
 | |
| 	header->architecture = xdr_be.get32(&outheader);
 | |
| }
 | |
| 
 | |
| int cbfs_image_create(struct cbfs_image *image, size_t entries_size)
 | |
| {
 | |
| 	assert(image);
 | |
| 	assert(image->buffer.data);
 | |
| 
 | |
| 	size_t empty_header_len = cbfs_calculate_file_header_size("");
 | |
| 	uint32_t entries_offset = 0;
 | |
| 	uint32_t align = CBFS_ENTRY_ALIGNMENT;
 | |
| 	if (image->has_header) {
 | |
| 		entries_offset = image->header.offset;
 | |
| 
 | |
| 		if (entries_offset > image->buffer.size) {
 | |
| 			ERROR("CBFS file entries are located outside CBFS itself\n");
 | |
| 			return -1;
 | |
| 		}
 | |
| 
 | |
| 		align = image->header.align;
 | |
| 	}
 | |
| 
 | |
| 	// This attribute must be given in order to prove that this module
 | |
| 	// correctly preserves certain CBFS properties. See the block comment
 | |
| 	// near the top of this file (and the associated commit message).
 | |
| 	if (align < empty_header_len) {
 | |
| 		ERROR("CBFS must be aligned to at least %zu bytes\n",
 | |
| 							empty_header_len);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	if (entries_size > image->buffer.size - entries_offset) {
 | |
| 		ERROR("CBFS doesn't have enough space to fit its file entries\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	if (empty_header_len > entries_size) {
 | |
| 		ERROR("CBFS is too small to fit any header\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 	struct cbfs_file *entry_header =
 | |
| 		(struct cbfs_file *)(image->buffer.data + entries_offset);
 | |
| 	// This alignment is necessary in order to prove that this module
 | |
| 	// correctly preserves certain CBFS properties. See the block comment
 | |
| 	// near the top of this file (and the associated commit message).
 | |
| 	entries_size -= entries_size % align;
 | |
| 
 | |
| 	size_t capacity = entries_size - empty_header_len;
 | |
| 	LOG("Created CBFS (capacity = %zu bytes)\n", capacity);
 | |
| 	return cbfs_create_empty_entry(entry_header, CBFS_COMPONENT_NULL,
 | |
| 		capacity, "");
 | |
| }
 | |
| 
 | |
| int cbfs_legacy_image_create(struct cbfs_image *image,
 | |
| 			     uint32_t architecture,
 | |
| 			     uint32_t align,
 | |
| 			     struct buffer *bootblock,
 | |
| 			     uint32_t bootblock_offset,
 | |
| 			     uint32_t header_offset,
 | |
| 			     uint32_t entries_offset)
 | |
| {
 | |
| 	assert(image);
 | |
| 	assert(image->buffer.data);
 | |
| 	assert(bootblock);
 | |
| 
 | |
| 	int32_t *rel_offset;
 | |
| 	uint32_t cbfs_len;
 | |
| 	void *header_loc;
 | |
| 	size_t size = image->buffer.size;
 | |
| 
 | |
| 	DEBUG("cbfs_image_create: bootblock=0x%x+0x%zx, "
 | |
| 	      "header=0x%x+0x%zx, entries_offset=0x%x\n",
 | |
| 	      bootblock_offset, bootblock->size, header_offset,
 | |
| 	      sizeof(image->header), entries_offset);
 | |
| 
 | |
| 	// Adjust legacy top-aligned address to ROM offset.
 | |
| 	if (IS_TOP_ALIGNED_ADDRESS(entries_offset))
 | |
| 		entries_offset = size + (int32_t)entries_offset;
 | |
| 	if (IS_TOP_ALIGNED_ADDRESS(bootblock_offset))
 | |
| 		bootblock_offset = size + (int32_t)bootblock_offset;
 | |
| 	if (IS_TOP_ALIGNED_ADDRESS(header_offset))
 | |
| 		header_offset = size + (int32_t)header_offset;
 | |
| 
 | |
| 	DEBUG("cbfs_create_image: (real offset) bootblock=0x%x, "
 | |
| 	      "header=0x%x, entries_offset=0x%x\n",
 | |
| 	      bootblock_offset, header_offset, entries_offset);
 | |
| 
 | |
| 	// Prepare bootblock
 | |
| 	if (bootblock_offset + bootblock->size > size) {
 | |
| 		ERROR("Bootblock (0x%x+0x%zx) exceed ROM size (0x%zx)\n",
 | |
| 		      bootblock_offset, bootblock->size, size);
 | |
| 		return -1;
 | |
| 	}
 | |
| 	if (entries_offset > bootblock_offset &&
 | |
| 	    entries_offset < bootblock->size) {
 | |
| 		ERROR("Bootblock (0x%x+0x%zx) overlap CBFS data (0x%x)\n",
 | |
| 		      bootblock_offset, bootblock->size, entries_offset);
 | |
| 		return -1;
 | |
| 	}
 | |
| 	memcpy(image->buffer.data + bootblock_offset, bootblock->data,
 | |
| 	       bootblock->size);
 | |
| 
 | |
| 	// Prepare header
 | |
| 	if (header_offset + sizeof(image->header) > size - sizeof(int32_t)) {
 | |
| 		ERROR("Header (0x%x+0x%zx) exceed ROM size (0x%zx)\n",
 | |
| 		      header_offset, sizeof(image->header), size);
 | |
| 		return -1;
 | |
| 	}
 | |
| 	image->header.magic = CBFS_HEADER_MAGIC;
 | |
| 	image->header.version = CBFS_HEADER_VERSION;
 | |
| 	image->header.romsize = size;
 | |
| 	image->header.bootblocksize = bootblock->size;
 | |
| 	image->header.align = align;
 | |
| 	image->header.offset = entries_offset;
 | |
| 	image->header.architecture = architecture;
 | |
| 
 | |
| 	header_loc = (image->buffer.data + header_offset);
 | |
| 	cbfs_put_header(header_loc, &image->header);
 | |
| 	image->has_header = true;
 | |
| 
 | |
| 	// The last 4 byte of the image contain the relative offset from the end
 | |
| 	// of the image to the master header as a 32-bit signed integer. x86
 | |
| 	// relies on this also being its (memory-mapped, top-aligned) absolute
 | |
| 	// 32-bit address by virtue of how two's complement numbers work.
 | |
| 	assert(size % sizeof(int32_t) == 0);
 | |
| 	rel_offset = (int32_t *)(image->buffer.data + size - sizeof(int32_t));
 | |
| 	*rel_offset = header_offset - size;
 | |
| 
 | |
| 	// Prepare entries
 | |
| 	if (align_up(entries_offset, align) != entries_offset) {
 | |
| 		ERROR("Offset (0x%x) must be aligned to 0x%x.\n",
 | |
| 		      entries_offset, align);
 | |
| 		return -1;
 | |
| 	}
 | |
| 	// To calculate available length, find
 | |
| 	//   e = min(bootblock, header, rel_offset) where e > entries_offset.
 | |
| 	cbfs_len = size - sizeof(int32_t);
 | |
| 	if (bootblock_offset > entries_offset && bootblock_offset < cbfs_len)
 | |
| 		cbfs_len = bootblock_offset;
 | |
| 	if (header_offset > entries_offset && header_offset < cbfs_len)
 | |
| 		cbfs_len = header_offset;
 | |
| 
 | |
| 	if (cbfs_image_create(image, cbfs_len - entries_offset))
 | |
| 		return -1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int cbfs_image_from_buffer(struct cbfs_image *out, struct buffer *in,
 | |
| 			   uint32_t offset)
 | |
| {
 | |
| 	assert(out);
 | |
| 	assert(in);
 | |
| 	assert(in->data);
 | |
| 
 | |
| 	buffer_clone(&out->buffer, in);
 | |
| 	out->has_header = false;
 | |
| 
 | |
| 	if (cbfs_is_valid_cbfs(out)) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	void *header_loc = cbfs_find_header(in->data, in->size, offset);
 | |
| 	if (header_loc) {
 | |
| 		cbfs_get_header(&out->header, header_loc);
 | |
| 		out->has_header = true;
 | |
| 		cbfs_fix_legacy_size(out, header_loc);
 | |
| 		return 0;
 | |
| 	} else if (offset != ~0u) {
 | |
| 		ERROR("The -H switch is only valid on legacy images having CBFS master headers.\n");
 | |
| 		return 1;
 | |
| 	}
 | |
| 	ERROR("Selected image region is not a valid CBFS.\n");
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int cbfs_copy_instance(struct cbfs_image *image, struct buffer *dst)
 | |
| {
 | |
| 	assert(image);
 | |
| 
 | |
| 	struct cbfs_file *src_entry, *dst_entry;
 | |
| 	size_t align;
 | |
| 	ssize_t last_entry_size;
 | |
| 
 | |
| 	size_t copy_end = buffer_size(dst);
 | |
| 
 | |
| 	align = CBFS_ENTRY_ALIGNMENT;
 | |
| 
 | |
| 	dst_entry = (struct cbfs_file *)buffer_get(dst);
 | |
| 
 | |
| 	/* Copy non-empty files */
 | |
| 	for (src_entry = cbfs_find_first_entry(image);
 | |
| 	     src_entry && cbfs_is_valid_entry(image, src_entry);
 | |
| 	     src_entry = cbfs_find_next_entry(image, src_entry)) {
 | |
| 		size_t entry_size;
 | |
| 
 | |
| 		if ((src_entry->type == htonl(CBFS_COMPONENT_NULL)) ||
 | |
| 		    (src_entry->type == htonl(CBFS_COMPONENT_CBFSHEADER)) ||
 | |
| 		    (src_entry->type == htonl(CBFS_COMPONENT_DELETED)))
 | |
| 			continue;
 | |
| 
 | |
| 		entry_size = htonl(src_entry->len) + htonl(src_entry->offset);
 | |
| 		memcpy(dst_entry, src_entry, entry_size);
 | |
| 		dst_entry = (struct cbfs_file *)(
 | |
| 			(uintptr_t)dst_entry + align_up(entry_size, align));
 | |
| 
 | |
| 		if ((size_t)((void *)dst_entry - buffer_get(dst)) >=
 | |
| 								copy_end) {
 | |
| 			ERROR("Ran out of room in copy region.\n");
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Last entry size is all the room above it, except for top 4 bytes
 | |
| 	 * which may be used by the master header pointer. This messes with
 | |
| 	 * the ability to stash something "top-aligned" into the region, but
 | |
| 	 * keeps things simpler. */
 | |
| 	last_entry_size = copy_end - ((void *)dst_entry - buffer_get(dst))
 | |
| 		- cbfs_calculate_file_header_size("") - sizeof(int32_t);
 | |
| 
 | |
| 	if (last_entry_size < 0)
 | |
| 		WARN("No room to create the last entry!\n")
 | |
| 	else
 | |
| 		cbfs_create_empty_entry(dst_entry, CBFS_COMPONENT_NULL,
 | |
| 			last_entry_size, "");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static size_t cbfs_file_entry_metadata_size(const struct cbfs_file *f)
 | |
| {
 | |
| 	return ntohl(f->offset);
 | |
| }
 | |
| 
 | |
| static size_t cbfs_file_entry_data_size(const struct cbfs_file *f)
 | |
| {
 | |
| 	return ntohl(f->len);
 | |
| }
 | |
| 
 | |
| static size_t cbfs_file_entry_size(const struct cbfs_file *f)
 | |
| {
 | |
| 	return cbfs_file_entry_metadata_size(f) + cbfs_file_entry_data_size(f);
 | |
| }
 | |
| 
 | |
| int cbfs_compact_instance(struct cbfs_image *image)
 | |
| {
 | |
| 	assert(image);
 | |
| 
 | |
| 	struct cbfs_file *prev;
 | |
| 	struct cbfs_file *cur;
 | |
| 
 | |
| 	/* The prev entry will always be an empty entry. */
 | |
| 	prev = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Note: this function does not honor alignment or fixed location files.
 | |
| 	 * It's behavior is akin to cbfs_copy_instance() in that it expects
 | |
| 	 * the caller to understand the ramifications of compacting a
 | |
| 	 * fragmented CBFS image.
 | |
| 	 */
 | |
| 
 | |
| 	for (cur = cbfs_find_first_entry(image);
 | |
| 	     cur && cbfs_is_valid_entry(image, cur);
 | |
| 	     cur = cbfs_find_next_entry(image, cur)) {
 | |
| 		size_t prev_size;
 | |
| 		size_t cur_size;
 | |
| 		size_t empty_metadata_size;
 | |
| 		size_t spill_size;
 | |
| 		uint32_t type = htonl(cur->type);
 | |
| 
 | |
| 		/* Current entry is empty. Kepp track of it. */
 | |
| 		if ((type == htonl(CBFS_COMPONENT_NULL)) ||
 | |
| 		    (type == htonl(CBFS_COMPONENT_DELETED))) {
 | |
| 			prev = cur;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Need to ensure the previous entry is an empty one. */
 | |
| 		if (prev == NULL)
 | |
| 			continue;
 | |
| 
 | |
| 		/* At this point prev is an empty entry. Put the non-empty
 | |
| 		 * file in prev's location. Then add a new emptry entry. This
 | |
| 		 * essentialy bubbles empty entries towards the end. */
 | |
| 
 | |
| 		prev_size = cbfs_file_entry_size(prev);
 | |
| 		cur_size = cbfs_file_entry_size(cur);
 | |
| 
 | |
| 		/*
 | |
| 		 * Adjust the empty file size by the actual space occupied
 | |
| 		 * bewtween the beginning of the empty file and the non-empty
 | |
| 		 * file.
 | |
| 		 */
 | |
| 		prev_size += (cbfs_get_entry_addr(image, cur) -
 | |
| 				cbfs_get_entry_addr(image, prev)) - prev_size;
 | |
| 
 | |
| 		/* Move the non-empty file over the empty file. */
 | |
| 		memmove(prev, cur, cur_size);
 | |
| 
 | |
| 		/*
 | |
| 		 * Get location of the empty file. Note that since prev was
 | |
| 		 * overwritten with the non-empty file the previously moved
 | |
| 		 * file needs to be used to calculate the empty file's location.
 | |
| 		 */
 | |
| 		cur = cbfs_find_next_entry(image, prev);
 | |
| 
 | |
| 		/*
 | |
| 		 * The total space to work with for swapping the 2 entries
 | |
| 		 * consists of the 2 files' sizes combined. However, the
 | |
| 		 * cbfs_file entries start on CBFS_ALIGNMENT boundaries.
 | |
| 		 * Because of this the empty file size may end up smaller
 | |
| 		 * because of the non-empty file's metadata and data length.
 | |
| 		 *
 | |
| 		 * Calculate the spill size which is the amount of data lost
 | |
| 		 * due to the alignment constraints after moving the non-empty
 | |
| 		 * file.
 | |
| 		 */
 | |
| 		spill_size = (cbfs_get_entry_addr(image, cur) -
 | |
| 				cbfs_get_entry_addr(image, prev)) - cur_size;
 | |
| 
 | |
| 		empty_metadata_size = cbfs_calculate_file_header_size("");
 | |
| 
 | |
| 		/* Check if new empty size can contain the metadata. */
 | |
| 		if (empty_metadata_size + spill_size > prev_size) {
 | |
| 			ERROR("Unable to swap '%s' with prev empty entry.\n",
 | |
| 				prev->filename);
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		/* Update the empty file's size. */
 | |
| 		prev_size -= spill_size + empty_metadata_size;
 | |
| 
 | |
| 		/* Create new empty file. */
 | |
| 		cbfs_create_empty_entry(cur, CBFS_COMPONENT_NULL,
 | |
| 					prev_size, "");
 | |
| 
 | |
| 		/* Merge any potential empty entries together. */
 | |
| 		cbfs_walk(image, cbfs_merge_empty_entry, NULL);
 | |
| 
 | |
| 		/*
 | |
| 		 * Since current switched to an empty file keep track of it.
 | |
| 		 * Even if any empty files were merged the empty entry still
 | |
| 		 * starts at previously calculated location.
 | |
| 		 */
 | |
| 		prev = cur;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int cbfs_image_delete(struct cbfs_image *image)
 | |
| {
 | |
| 	if (image == NULL)
 | |
| 		return 0;
 | |
| 
 | |
| 	buffer_delete(&image->buffer);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Tries to add an entry with its data (CBFS_SUBHEADER) at given offset. */
 | |
| static int cbfs_add_entry_at(struct cbfs_image *image,
 | |
| 			     struct cbfs_file *entry,
 | |
| 			     const void *data,
 | |
| 			     uint32_t content_offset,
 | |
| 			     const struct cbfs_file *header)
 | |
| {
 | |
| 	struct cbfs_file *next = cbfs_find_next_entry(image, entry);
 | |
| 	uint32_t addr = cbfs_get_entry_addr(image, entry),
 | |
| 		 addr_next = cbfs_get_entry_addr(image, next);
 | |
| 	uint32_t min_entry_size = cbfs_calculate_file_header_size("");
 | |
| 	uint32_t len, header_offset;
 | |
| 	uint32_t align = image->has_header ? image->header.align :
 | |
| 							CBFS_ENTRY_ALIGNMENT;
 | |
| 	uint32_t header_size = ntohl(header->offset);
 | |
| 
 | |
| 	header_offset = content_offset - header_size;
 | |
| 	if (header_offset % align)
 | |
| 		header_offset -= header_offset % align;
 | |
| 	if (header_offset < addr) {
 | |
| 		ERROR("No space to hold cbfs_file header.");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	// Process buffer BEFORE content_offset.
 | |
| 	if (header_offset - addr > min_entry_size) {
 | |
| 		DEBUG("|min|...|header|content|... <create new entry>\n");
 | |
| 		len = header_offset - addr - min_entry_size;
 | |
| 		cbfs_create_empty_entry(entry, CBFS_COMPONENT_NULL, len, "");
 | |
| 		if (verbose > 1) cbfs_print_entry_info(image, entry, stderr);
 | |
| 		entry = cbfs_find_next_entry(image, entry);
 | |
| 		addr = cbfs_get_entry_addr(image, entry);
 | |
| 	}
 | |
| 
 | |
| 	len = content_offset - addr - header_size;
 | |
| 	memcpy(entry, header, header_size);
 | |
| 	if (len != 0) {
 | |
| 		/* the header moved backwards a bit to accomodate cbfs_file
 | |
| 		 * alignment requirements, so patch up ->offset to still point
 | |
| 		 * to file data.
 | |
| 		 */
 | |
| 		DEBUG("|..|header|content|... <use offset to create entry>\n");
 | |
| 		DEBUG("before: offset=0x%x\n", ntohl(entry->offset));
 | |
| 		// TODO reset expanded name buffer to 0xFF.
 | |
| 		entry->offset = htonl(ntohl(entry->offset) + len);
 | |
| 		DEBUG("after: offset=0x%x\n", ntohl(entry->len));
 | |
| 	}
 | |
| 
 | |
| 	// Ready to fill data into entry.
 | |
| 	DEBUG("content_offset: 0x%x, entry location: %x\n",
 | |
| 	      content_offset, (int)((char*)CBFS_SUBHEADER(entry) -
 | |
| 				    image->buffer.data));
 | |
| 	assert((char*)CBFS_SUBHEADER(entry) - image->buffer.data ==
 | |
| 	       (ptrdiff_t)content_offset);
 | |
| 	memcpy(CBFS_SUBHEADER(entry), data, ntohl(entry->len));
 | |
| 	if (verbose > 1) cbfs_print_entry_info(image, entry, stderr);
 | |
| 
 | |
| 	// Process buffer AFTER entry.
 | |
| 	entry = cbfs_find_next_entry(image, entry);
 | |
| 	addr = cbfs_get_entry_addr(image, entry);
 | |
| 	if (addr == addr_next)
 | |
| 		return 0;
 | |
| 
 | |
| 	assert(addr < addr_next);
 | |
| 	if (addr_next - addr < min_entry_size) {
 | |
| 		DEBUG("No need for new \"empty\" entry\n");
 | |
| 		/* No need to increase the size of the just
 | |
| 		 * stored file to extend to next file. Alignment
 | |
| 		 * of next file takes care of this.
 | |
| 		 */
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	len = addr_next - addr - min_entry_size;
 | |
| 	/* keep space for master header pointer */
 | |
| 	if ((void *)entry + min_entry_size + len > buffer_get(&image->buffer) +
 | |
| 		buffer_size(&image->buffer) - sizeof(int32_t)) {
 | |
| 		len -= sizeof(int32_t);
 | |
| 	}
 | |
| 	cbfs_create_empty_entry(entry, CBFS_COMPONENT_NULL, len, "");
 | |
| 	if (verbose > 1) cbfs_print_entry_info(image, entry, stderr);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int cbfs_add_entry(struct cbfs_image *image, struct buffer *buffer,
 | |
| 		   uint32_t content_offset,
 | |
| 		   struct cbfs_file *header)
 | |
| {
 | |
| 	assert(image);
 | |
| 	assert(buffer);
 | |
| 	assert(buffer->data);
 | |
| 	assert(!IS_TOP_ALIGNED_ADDRESS(content_offset));
 | |
| 
 | |
| 	const char *name = header->filename;
 | |
| 
 | |
| 	uint32_t entry_type;
 | |
| 	uint32_t addr, addr_next;
 | |
| 	struct cbfs_file *entry, *next;
 | |
| 	uint32_t need_size;
 | |
| 	uint32_t header_size = ntohl(header->offset);
 | |
| 
 | |
| 	need_size = header_size + buffer->size;
 | |
| 	DEBUG("cbfs_add_entry('%s'@0x%x) => need_size = %u+%zu=%u\n",
 | |
| 	      name, content_offset, header_size, buffer->size, need_size);
 | |
| 
 | |
| 	// Merge empty entries.
 | |
| 	DEBUG("(trying to merge empty entries...)\n");
 | |
| 	cbfs_walk(image, cbfs_merge_empty_entry, NULL);
 | |
| 
 | |
| 	for (entry = cbfs_find_first_entry(image);
 | |
| 	     entry && cbfs_is_valid_entry(image, entry);
 | |
| 	     entry = cbfs_find_next_entry(image, entry)) {
 | |
| 
 | |
| 		entry_type = ntohl(entry->type);
 | |
| 		if (entry_type != CBFS_COMPONENT_NULL)
 | |
| 			continue;
 | |
| 
 | |
| 		addr = cbfs_get_entry_addr(image, entry);
 | |
| 		next = cbfs_find_next_entry(image, entry);
 | |
| 		addr_next = cbfs_get_entry_addr(image, next);
 | |
| 
 | |
| 		DEBUG("cbfs_add_entry: space at 0x%x+0x%x(%d) bytes\n",
 | |
| 		      addr, addr_next - addr, addr_next - addr);
 | |
| 
 | |
| 		/* Will the file fit? Don't yet worry if we have space for a new
 | |
| 		 * "empty" entry. We take care of that later.
 | |
| 		 */
 | |
| 		if (addr + need_size > addr_next)
 | |
| 			continue;
 | |
| 
 | |
| 		// Test for complicated cases
 | |
| 		if (content_offset > 0) {
 | |
| 			if (addr_next < content_offset) {
 | |
| 				DEBUG("Not for specified offset yet");
 | |
| 				continue;
 | |
| 			} else if (addr > content_offset) {
 | |
| 				DEBUG("Exceed specified content_offset.");
 | |
| 				break;
 | |
| 			} else if (addr + header_size > content_offset) {
 | |
| 				ERROR("Not enough space for header.\n");
 | |
| 				break;
 | |
| 			} else if (content_offset + buffer->size > addr_next) {
 | |
| 				ERROR("Not enough space for content.\n");
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// TODO there are more few tricky cases that we may
 | |
| 		// want to fit by altering offset.
 | |
| 
 | |
| 		if (content_offset == 0) {
 | |
| 			// we tested every condition earlier under which
 | |
| 			// placing the file there might fail
 | |
| 			content_offset = addr + header_size;
 | |
| 		}
 | |
| 
 | |
| 		DEBUG("section 0x%x+0x%x for content_offset 0x%x.\n",
 | |
| 		      addr, addr_next - addr, content_offset);
 | |
| 
 | |
| 		if (cbfs_add_entry_at(image, entry, buffer->data,
 | |
| 				      content_offset, header) == 0) {
 | |
| 			return 0;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	ERROR("Could not add [%s, %zd bytes (%zd KB)@0x%x]; too big?\n",
 | |
| 	      buffer->name, buffer->size, buffer->size / 1024, content_offset);
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| struct cbfs_file *cbfs_get_entry(struct cbfs_image *image, const char *name)
 | |
| {
 | |
| 	struct cbfs_file *entry;
 | |
| 	for (entry = cbfs_find_first_entry(image);
 | |
| 	     entry && cbfs_is_valid_entry(image, entry);
 | |
| 	     entry = cbfs_find_next_entry(image, entry)) {
 | |
| 		if (strcasecmp(entry->filename, name) == 0) {
 | |
| 			DEBUG("cbfs_get_entry: found %s\n", name);
 | |
| 			return entry;
 | |
| 		}
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static int cbfs_stage_decompress(struct cbfs_stage *stage, struct buffer *buff)
 | |
| {
 | |
| 	struct buffer reader;
 | |
| 	char *orig_buffer;
 | |
| 	char *new_buffer;
 | |
| 	size_t new_buff_sz;
 | |
| 	decomp_func_ptr decompress;
 | |
| 
 | |
| 	buffer_clone(&reader, buff);
 | |
| 
 | |
| 	/* The stage metadata is in little endian. */
 | |
| 	stage->compression = xdr_le.get32(&reader);
 | |
| 	stage->entry = xdr_le.get64(&reader);
 | |
| 	stage->load = xdr_le.get64(&reader);
 | |
| 	stage->len = xdr_le.get32(&reader);
 | |
| 	stage->memlen = xdr_le.get32(&reader);
 | |
| 
 | |
| 	/* Create a buffer just with the uncompressed program now that the
 | |
| 	 * struct cbfs_stage has been peeled off. */
 | |
| 	if (stage->compression == CBFS_COMPRESS_NONE) {
 | |
| 		new_buff_sz = buffer_size(buff) - sizeof(struct cbfs_stage);
 | |
| 
 | |
| 		orig_buffer = buffer_get(buff);
 | |
| 		new_buffer = calloc(1, new_buff_sz);
 | |
| 		memcpy(new_buffer, orig_buffer + sizeof(struct cbfs_stage),
 | |
| 			new_buff_sz);
 | |
| 		buffer_init(buff, buff->name, new_buffer, new_buff_sz);
 | |
| 		free(orig_buffer);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	decompress = decompression_function(stage->compression);
 | |
| 	if (decompress == NULL)
 | |
| 		return -1;
 | |
| 
 | |
| 	orig_buffer = buffer_get(buff);
 | |
| 
 | |
| 	/* This can be too big of a buffer needed, but there's no current
 | |
| 	 * field indicating decompressed size of data. */
 | |
| 	new_buff_sz = stage->memlen;
 | |
| 	new_buffer = calloc(1, new_buff_sz);
 | |
| 
 | |
| 	if (decompress(orig_buffer + sizeof(struct cbfs_stage),
 | |
| 			(int)(buffer_size(buff) - sizeof(struct cbfs_stage)),
 | |
| 			new_buffer, (int)new_buff_sz, &new_buff_sz)) {
 | |
| 		ERROR("Couldn't decompress stage.\n");
 | |
| 		free(new_buffer);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	/* Include correct size for full stage info. */
 | |
| 	buffer_init(buff, buff->name, new_buffer, new_buff_sz);
 | |
| 
 | |
| 	/* True decompressed size is just the data size -- no metadata. */
 | |
| 	stage->len = new_buff_sz;
 | |
| 	/* Stage is not compressed. */
 | |
| 	stage->compression = CBFS_COMPRESS_NONE;
 | |
| 
 | |
| 	free(orig_buffer);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cbfs_payload_decompress(struct cbfs_payload_segment *segments,
 | |
| 		struct buffer *buff, int num_seg)
 | |
| {
 | |
| 	struct buffer new_buffer;
 | |
| 	struct buffer seg_buffer;
 | |
| 	size_t new_buff_sz;
 | |
| 	char *in_ptr;
 | |
| 	char *out_ptr;
 | |
| 	size_t new_offset;
 | |
| 	decomp_func_ptr decompress;
 | |
| 
 | |
| 	new_offset = num_seg * sizeof(*segments);
 | |
| 	new_buff_sz = num_seg * sizeof(*segments);
 | |
| 
 | |
| 	/* Find out and allocate the amount of memory occupied
 | |
| 	 * by the binary data */
 | |
| 	for (int i = 0; i < num_seg; i++)
 | |
| 		new_buff_sz += segments[i].mem_len;
 | |
| 
 | |
| 	if (buffer_create(&new_buffer, new_buff_sz, "decompressed_buff"))
 | |
| 		return -1;
 | |
| 
 | |
| 	in_ptr = buffer_get(buff) + new_offset;
 | |
| 	out_ptr = buffer_get(&new_buffer) + new_offset;
 | |
| 
 | |
| 	for (int i = 0; i < num_seg; i++) {
 | |
| 		struct buffer tbuff;
 | |
| 		size_t decomp_size;
 | |
| 
 | |
| 		/* The payload uses an unknown compression algorithm. */
 | |
| 		decompress = decompression_function(segments[i].compression);
 | |
| 		if (decompress == NULL) {
 | |
| 			ERROR("Unknown decompression algorithm: %u",
 | |
| 					segments[i].compression);
 | |
| 			return -1;
 | |
| 		}
 | |
| 
 | |
| 		/* Segments BSS and ENTRY do not have binary data. */
 | |
| 		if (segments[i].type == PAYLOAD_SEGMENT_BSS ||
 | |
| 				segments[i].type == PAYLOAD_SEGMENT_ENTRY) {
 | |
| 			continue;
 | |
| 		} else if (segments[i].type == PAYLOAD_SEGMENT_PARAMS) {
 | |
| 			memcpy(out_ptr, in_ptr, segments[i].len);
 | |
| 			segments[i].offset = new_offset;
 | |
| 			new_offset += segments[i].len;
 | |
| 			in_ptr += segments[i].len;
 | |
| 			out_ptr += segments[i].len;
 | |
| 			segments[i].compression = CBFS_COMPRESS_NONE;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (buffer_create(&tbuff, segments[i].mem_len, "segment")) {
 | |
| 			buffer_delete(&new_buffer);
 | |
| 			return -1;
 | |
| 		}
 | |
| 
 | |
| 		if (decompress(in_ptr, segments[i].len, buffer_get(&tbuff),
 | |
| 					(int) buffer_size(&tbuff),
 | |
| 					&decomp_size)) {
 | |
| 			ERROR("Couldn't decompress payload segment %u\n", i);
 | |
| 			buffer_delete(&new_buffer);
 | |
| 			buffer_delete(&tbuff);
 | |
| 			return -1;
 | |
| 		}
 | |
| 
 | |
| 		memcpy(out_ptr, buffer_get(&tbuff), decomp_size);
 | |
| 
 | |
| 		in_ptr += segments[i].len;
 | |
| 
 | |
| 		/* Update the offset of the segment. */
 | |
| 		segments[i].offset = new_offset;
 | |
| 		/* True decompressed size is just the data size. No metadata */
 | |
| 		segments[i].len = decomp_size;
 | |
| 		/* Segment is not compressed. */
 | |
| 		segments[i].compression = CBFS_COMPRESS_NONE;
 | |
| 
 | |
| 		/* Update the offset and output buffer pointer. */
 | |
| 		new_offset += decomp_size;
 | |
| 		out_ptr += decomp_size;
 | |
| 
 | |
| 		buffer_delete(&tbuff);
 | |
| 	}
 | |
| 
 | |
| 	buffer_splice(&seg_buffer, &new_buffer, 0, 0);
 | |
| 	xdr_segs(&seg_buffer, segments, num_seg);
 | |
| 
 | |
| 	buffer_delete(buff);
 | |
| 	*buff = new_buffer;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int init_elf_from_arch(Elf64_Ehdr *ehdr, uint32_t cbfs_arch)
 | |
| {
 | |
| 	int endian;
 | |
| 	int nbits;
 | |
| 	int machine;
 | |
| 
 | |
| 	switch (cbfs_arch) {
 | |
| 	case CBFS_ARCHITECTURE_X86:
 | |
| 		endian = ELFDATA2LSB;
 | |
| 		nbits = ELFCLASS32;
 | |
| 		machine = EM_386;
 | |
| 		break;
 | |
| 	case CBFS_ARCHITECTURE_ARM:
 | |
| 		endian = ELFDATA2LSB;
 | |
| 		nbits = ELFCLASS32;
 | |
| 		machine = EM_ARM;
 | |
| 		break;
 | |
| 	case CBFS_ARCHITECTURE_AARCH64:
 | |
| 		endian = ELFDATA2LSB;
 | |
| 		nbits = ELFCLASS64;
 | |
| 		machine = EM_AARCH64;
 | |
| 		break;
 | |
| 	case CBFS_ARCHITECTURE_MIPS:
 | |
| 		endian = ELFDATA2LSB;
 | |
| 		nbits = ELFCLASS32;
 | |
| 		machine = EM_MIPS;
 | |
| 		break;
 | |
| 	case CBFS_ARCHITECTURE_RISCV:
 | |
| 		endian = ELFDATA2LSB;
 | |
| 		nbits = ELFCLASS32;
 | |
| 		machine = EM_RISCV;
 | |
| 		break;
 | |
| 	default:
 | |
| 		ERROR("Unsupported arch: %x\n", cbfs_arch);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	elf_init_eheader(ehdr, machine, nbits, endian);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cbfs_stage_make_elf(struct buffer *buff, uint32_t arch)
 | |
| {
 | |
| 	Elf64_Ehdr ehdr;
 | |
| 	Elf64_Shdr shdr;
 | |
| 	struct cbfs_stage stage;
 | |
| 	struct elf_writer *ew;
 | |
| 	struct buffer elf_out;
 | |
| 	size_t empty_sz;
 | |
| 	int rmod_ret;
 | |
| 
 | |
| 	if (arch == CBFS_ARCHITECTURE_UNKNOWN) {
 | |
| 		ERROR("You need to specify -m ARCH.\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	if (cbfs_stage_decompress(&stage, buff)) {
 | |
| 		ERROR("Failed to decompress stage.\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	if (init_elf_from_arch(&ehdr, arch))
 | |
| 		return -1;
 | |
| 
 | |
| 	ehdr.e_entry = stage.entry;
 | |
| 
 | |
| 	/* Attempt rmodule translation first. */
 | |
| 	rmod_ret = rmodule_stage_to_elf(&ehdr, buff);
 | |
| 
 | |
| 	if (rmod_ret < 0) {
 | |
| 		ERROR("rmodule parsing failed\n");
 | |
| 		return -1;
 | |
| 	} else if (rmod_ret == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Rmodule couldn't do anything with the data. Continue on with SELF. */
 | |
| 
 | |
| 	ew = elf_writer_init(&ehdr);
 | |
| 	if (ew == NULL) {
 | |
| 		ERROR("Unable to init ELF writer.\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	memset(&shdr, 0, sizeof(shdr));
 | |
| 	shdr.sh_type = SHT_PROGBITS;
 | |
| 	shdr.sh_flags = SHF_WRITE | SHF_ALLOC | SHF_EXECINSTR;
 | |
| 	shdr.sh_addr = stage.load;
 | |
| 	shdr.sh_size = stage.len;
 | |
| 	empty_sz = stage.memlen - stage.len;
 | |
| 
 | |
| 	if (elf_writer_add_section(ew, &shdr, buff, ".program")) {
 | |
| 		ERROR("Unable to add ELF section: .program\n");
 | |
| 		elf_writer_destroy(ew);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	if (empty_sz != 0) {
 | |
| 		struct buffer b;
 | |
| 
 | |
| 		buffer_init(&b, NULL, NULL, 0);
 | |
| 		memset(&shdr, 0, sizeof(shdr));
 | |
| 		shdr.sh_type = SHT_NOBITS;
 | |
| 		shdr.sh_flags = SHF_WRITE | SHF_ALLOC;
 | |
| 		shdr.sh_addr = stage.load + stage.len;
 | |
| 		shdr.sh_size = empty_sz;
 | |
| 		if (elf_writer_add_section(ew, &shdr, &b, ".empty")) {
 | |
| 			ERROR("Unable to add ELF section: .empty\n");
 | |
| 			elf_writer_destroy(ew);
 | |
| 			return -1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (elf_writer_serialize(ew, &elf_out)) {
 | |
| 		ERROR("Unable to create ELF file from stage.\n");
 | |
| 		elf_writer_destroy(ew);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	/* Flip buffer with the created ELF one. */
 | |
| 	buffer_delete(buff);
 | |
| 	*buff = elf_out;
 | |
| 
 | |
| 	elf_writer_destroy(ew);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cbfs_payload_make_elf(struct buffer *buff, uint32_t arch)
 | |
| {
 | |
| 	Elf64_Ehdr ehdr;
 | |
| 	Elf64_Shdr shdr;
 | |
| 	struct cbfs_payload_segment *segs = NULL;
 | |
| 	struct elf_writer *ew = NULL;
 | |
| 	struct buffer elf_out;
 | |
| 	int segments = 0;
 | |
| 	int retval = -1;
 | |
| 
 | |
| 	if (arch == CBFS_ARCHITECTURE_UNKNOWN) {
 | |
| 		ERROR("You need to specify -m ARCH.\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Count the number of segments inside buffer */
 | |
| 	while (true) {
 | |
| 		uint32_t payload_type = 0;
 | |
| 
 | |
| 		struct cbfs_payload_segment *seg;
 | |
| 
 | |
| 		seg = buffer_get(buff);
 | |
| 		payload_type = read_be32(&seg[segments].type);
 | |
| 
 | |
| 		if (payload_type == PAYLOAD_SEGMENT_CODE) {
 | |
| 			segments++;
 | |
| 		} else if (payload_type == PAYLOAD_SEGMENT_DATA) {
 | |
| 			segments++;
 | |
| 		} else if (payload_type == PAYLOAD_SEGMENT_BSS) {
 | |
| 			segments++;
 | |
| 		} else if (payload_type == PAYLOAD_SEGMENT_PARAMS) {
 | |
| 			segments++;
 | |
| 		} else if (payload_type == PAYLOAD_SEGMENT_ENTRY) {
 | |
| 			/* The last segment in a payload is always ENTRY as
 | |
| 			 * specified by the  parse_elf_to_payload() function.
 | |
| 			 * Therefore there is no need to continue looking for
 | |
| 			 * segments.*/
 | |
| 			segments++;
 | |
| 			break;
 | |
| 		} else {
 | |
| 			ERROR("Unknown payload segment type: %x\n",
 | |
| 					payload_type);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	segs = malloc(segments * sizeof(*segs));
 | |
| 
 | |
| 	/* Decode xdr segments */
 | |
| 	for (int i = 0; i < segments; i++) {
 | |
| 		struct cbfs_payload_segment *serialized_seg = buffer_get(buff);
 | |
| 		xdr_get_seg(&segs[i], &serialized_seg[i]);
 | |
| 	}
 | |
| 
 | |
| 	if (cbfs_payload_decompress(segs, buff, segments)) {
 | |
| 		ERROR("Failed to decompress payload.\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (init_elf_from_arch(&ehdr, arch))
 | |
| 		goto out;
 | |
| 
 | |
| 	ehdr.e_entry = segs[segments-1].load_addr;
 | |
| 
 | |
| 	ew = elf_writer_init(&ehdr);
 | |
| 	if (ew == NULL) {
 | |
| 		ERROR("Unable to init ELF writer.\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	for (int i = 0; i < segments; i++) {
 | |
| 		struct buffer tbuff;
 | |
| 		size_t empty_sz = 0;
 | |
| 
 | |
| 		memset(&shdr, 0, sizeof(shdr));
 | |
| 		char *name = NULL;
 | |
| 
 | |
| 		if (segs[i].type == PAYLOAD_SEGMENT_CODE) {
 | |
| 			shdr.sh_type = SHT_PROGBITS;
 | |
| 			shdr.sh_flags = SHF_WRITE | SHF_ALLOC | SHF_EXECINSTR;
 | |
| 			shdr.sh_addr = segs[i].load_addr;
 | |
| 			shdr.sh_size = segs[i].len;
 | |
| 			empty_sz = segs[i].mem_len - segs[i].len;
 | |
| 			name = strdup(".text");
 | |
| 			buffer_splice(&tbuff, buff, segs[i].offset,
 | |
| 				       segs[i].len);
 | |
| 		} else if (segs[i].type == PAYLOAD_SEGMENT_DATA) {
 | |
| 			shdr.sh_type = SHT_PROGBITS;
 | |
| 			shdr.sh_flags = SHF_ALLOC | SHF_WRITE;
 | |
| 			shdr.sh_addr = segs[i].load_addr;
 | |
| 			shdr.sh_size = segs[i].len;
 | |
| 			empty_sz = segs[i].mem_len - segs[i].len;
 | |
| 			name = strdup(".data");
 | |
| 			buffer_splice(&tbuff, buff, segs[i].offset,
 | |
| 				       segs[i].len);
 | |
| 		} else if (segs[i].type == PAYLOAD_SEGMENT_BSS) {
 | |
| 			shdr.sh_type = SHT_NOBITS;
 | |
| 			shdr.sh_flags = SHF_ALLOC | SHF_WRITE;
 | |
| 			shdr.sh_addr = segs[i].load_addr;
 | |
| 			shdr.sh_size = segs[i].len;
 | |
| 			name = strdup(".bss");
 | |
| 			buffer_splice(&tbuff, buff, 0, 0);
 | |
| 		} else if (segs[i].type == PAYLOAD_SEGMENT_PARAMS) {
 | |
| 			shdr.sh_type = SHT_NOTE;
 | |
| 			shdr.sh_flags = 0;
 | |
| 			shdr.sh_size = segs[i].len;
 | |
| 			name = strdup(".note.pinfo");
 | |
| 			buffer_splice(&tbuff, buff, segs[i].offset,
 | |
| 				       segs[i].len);
 | |
| 		} else if (segs[i].type == PAYLOAD_SEGMENT_ENTRY) {
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 
 | |
| 		if (elf_writer_add_section(ew, &shdr, &tbuff, name)) {
 | |
| 			ERROR("Unable to add ELF section: %s\n", name);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (empty_sz != 0) {
 | |
| 			struct buffer b;
 | |
| 
 | |
| 			buffer_init(&b, NULL, NULL, 0);
 | |
| 			memset(&shdr, 0, sizeof(shdr));
 | |
| 			shdr.sh_type = SHT_NOBITS;
 | |
| 			shdr.sh_flags = SHF_WRITE | SHF_ALLOC;
 | |
| 			shdr.sh_addr = segs[i].load_addr + segs[i].len;
 | |
| 			shdr.sh_size = empty_sz;
 | |
| 			name = strdup(".empty");
 | |
| 			if (elf_writer_add_section(ew, &shdr, &b, name)) {
 | |
| 				ERROR("Unable to add ELF section: %s\n", name);
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (elf_writer_serialize(ew, &elf_out)) {
 | |
| 		ERROR("Unable to create ELF file from stage.\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Flip buffer with the created ELF one. */
 | |
| 	buffer_delete(buff);
 | |
| 	*buff = elf_out;
 | |
| 	retval = 0;
 | |
| 
 | |
| out:
 | |
| 	free(segs);
 | |
| 	elf_writer_destroy(ew);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| int cbfs_export_entry(struct cbfs_image *image, const char *entry_name,
 | |
| 		      const char *filename, uint32_t arch)
 | |
| {
 | |
| 	struct cbfs_file *entry = cbfs_get_entry(image, entry_name);
 | |
| 	struct buffer buffer;
 | |
| 	if (!entry) {
 | |
| 		ERROR("File not found: %s\n", entry_name);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	unsigned int decompressed_size = 0;
 | |
| 	unsigned int compression = cbfs_file_get_compression_info(entry,
 | |
| 		&decompressed_size);
 | |
| 
 | |
| 	decomp_func_ptr decompress = decompression_function(compression);
 | |
| 	if (!decompress) {
 | |
| 		ERROR("looking up decompression routine failed\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	LOG("Found file %.30s at 0x%x, type %.12s, size %d\n",
 | |
| 	    entry_name, cbfs_get_entry_addr(image, entry),
 | |
| 	    get_cbfs_entry_type_name(ntohl(entry->type)), decompressed_size);
 | |
| 
 | |
| 	buffer_init(&buffer, strdup("(cbfs_export_entry)"), NULL, 0);
 | |
| 
 | |
| 	buffer.data = malloc(decompressed_size);
 | |
| 	buffer.size = decompressed_size;
 | |
| 	if (decompress(CBFS_SUBHEADER(entry), ntohl(entry->len),
 | |
| 		buffer.data, buffer.size, NULL)) {
 | |
| 		ERROR("decompression failed for %s\n", entry_name);
 | |
| 		buffer_delete(&buffer);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The stage metadata is never compressed proper for cbfs_stage
 | |
| 	 * files. The contents of the stage data can be though. Therefore
 | |
| 	 * one has to do a second pass for stages to potentially decompress
 | |
| 	 * the stage data to make it more meaningful.
 | |
| 	 */
 | |
| 	if (ntohl(entry->type) == CBFS_COMPONENT_STAGE) {
 | |
| 		if (cbfs_stage_make_elf(&buffer, arch)) {
 | |
| 			buffer_delete(&buffer);
 | |
| 			return -1;
 | |
| 		}
 | |
| 	} else if (ntohl(entry->type) == CBFS_COMPONENT_PAYLOAD) {
 | |
| 		if (cbfs_payload_make_elf(&buffer, arch)) {
 | |
| 			buffer_delete(&buffer);
 | |
| 			return -1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (buffer_write_file(&buffer, filename) != 0) {
 | |
| 		ERROR("Failed to write %s into %s.\n",
 | |
| 		      entry_name, filename);
 | |
| 		buffer_delete(&buffer);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	buffer_delete(&buffer);
 | |
| 	INFO("Successfully dumped the file to: %s\n", filename);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int cbfs_remove_entry(struct cbfs_image *image, const char *name)
 | |
| {
 | |
| 	struct cbfs_file *entry;
 | |
| 	entry = cbfs_get_entry(image, name);
 | |
| 	if (!entry) {
 | |
| 		ERROR("CBFS file %s not found.\n", name);
 | |
| 		return -1;
 | |
| 	}
 | |
| 	DEBUG("cbfs_remove_entry: Removed %s @ 0x%x\n",
 | |
| 	      entry->filename, cbfs_get_entry_addr(image, entry));
 | |
| 	entry->type = htonl(CBFS_COMPONENT_DELETED);
 | |
| 	cbfs_walk(image, cbfs_merge_empty_entry, NULL);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int cbfs_print_header_info(struct cbfs_image *image)
 | |
| {
 | |
| 	char *name = strdup(image->buffer.name);
 | |
| 	assert(image);
 | |
| 	printf("%s: %zd kB, bootblocksize %d, romsize %d, offset 0x%x\n"
 | |
| 	       "alignment: %d bytes, architecture: %s\n\n",
 | |
| 	       basename(name),
 | |
| 	       image->buffer.size / 1024,
 | |
| 	       image->header.bootblocksize,
 | |
| 	       image->header.romsize,
 | |
| 	       image->header.offset,
 | |
| 	       image->header.align,
 | |
| 	       arch_to_string(image->header.architecture));
 | |
| 	free(name);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cbfs_print_stage_info(struct cbfs_stage *stage, FILE* fp)
 | |
| {
 | |
| 	fprintf(fp,
 | |
| 		"    %s compression, entry: 0x%" PRIx64 ", load: 0x%" PRIx64 ", "
 | |
| 		"length: %d/%d\n",
 | |
| 		lookup_name_by_type(types_cbfs_compression,
 | |
| 				    stage->compression, "(unknown)"),
 | |
| 		stage->entry,
 | |
| 		stage->load,
 | |
| 		stage->len,
 | |
| 		stage->memlen);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cbfs_print_decoded_payload_segment_info(
 | |
| 		struct cbfs_payload_segment *seg, FILE *fp)
 | |
| {
 | |
| 	/* The input (seg) must be already decoded by
 | |
| 	 * cbfs_decode_payload_segment.
 | |
| 	 */
 | |
| 	switch (seg->type) {
 | |
| 		case PAYLOAD_SEGMENT_CODE:
 | |
| 		case PAYLOAD_SEGMENT_DATA:
 | |
| 			fprintf(fp, "    %s (%s compression, offset: 0x%x, "
 | |
| 				"load: 0x%" PRIx64 ", length: %d/%d)\n",
 | |
| 				(seg->type == PAYLOAD_SEGMENT_CODE ?
 | |
| 				 "code " : "data"),
 | |
| 				lookup_name_by_type(types_cbfs_compression,
 | |
| 						    seg->compression,
 | |
| 						    "(unknown)"),
 | |
| 				seg->offset, seg->load_addr, seg->len,
 | |
| 				seg->mem_len);
 | |
| 			break;
 | |
| 
 | |
| 		case PAYLOAD_SEGMENT_ENTRY:
 | |
| 			fprintf(fp, "    entry (0x%" PRIx64 ")\n",
 | |
| 				seg->load_addr);
 | |
| 			break;
 | |
| 
 | |
| 		case PAYLOAD_SEGMENT_BSS:
 | |
| 			fprintf(fp, "    BSS (address 0x%016" PRIx64 ", "
 | |
| 				"length 0x%x)\n",
 | |
| 				seg->load_addr, seg->len);
 | |
| 			break;
 | |
| 
 | |
| 		case PAYLOAD_SEGMENT_PARAMS:
 | |
| 			fprintf(fp, "    parameters\n");
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 			fprintf(fp, "   0x%x (%s compression, offset: 0x%x, "
 | |
| 				"load: 0x%" PRIx64 ", length: %d/%d\n",
 | |
| 				seg->type,
 | |
| 				lookup_name_by_type(types_cbfs_compression,
 | |
| 						    seg->compression,
 | |
| 						    "(unknown)"),
 | |
| 				seg->offset, seg->load_addr, seg->len,
 | |
| 				seg->mem_len);
 | |
| 			break;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int cbfs_print_entry_info(struct cbfs_image *image, struct cbfs_file *entry,
 | |
| 			  void *arg)
 | |
| {
 | |
| 	const char *name = entry->filename;
 | |
| 	struct cbfs_payload_segment *payload;
 | |
| 	FILE *fp = (FILE *)arg;
 | |
| 
 | |
| 	if (!cbfs_is_valid_entry(image, entry)) {
 | |
| 		ERROR("cbfs_print_entry_info: Invalid entry at 0x%x\n",
 | |
| 		      cbfs_get_entry_addr(image, entry));
 | |
| 		return -1;
 | |
| 	}
 | |
| 	if (!fp)
 | |
| 		fp = stdout;
 | |
| 
 | |
| 	unsigned int decompressed_size = 0;
 | |
| 	unsigned int compression = cbfs_file_get_compression_info(entry,
 | |
| 		&decompressed_size);
 | |
| 
 | |
| 	if (compression == CBFS_COMPRESS_NONE) {
 | |
| 		fprintf(fp, "%-30s 0x%-8x %-12s %d\n",
 | |
| 			*name ? name : "(empty)",
 | |
| 			cbfs_get_entry_addr(image, entry),
 | |
| 			get_cbfs_entry_type_name(ntohl(entry->type)),
 | |
| 			ntohl(entry->len));
 | |
| 	} else {
 | |
| 		fprintf(fp, "%-30s 0x%-8x %-12s %d (%d after %s decompression)\n",
 | |
| 			*name ? name : "(empty)",
 | |
| 			cbfs_get_entry_addr(image, entry),
 | |
| 			get_cbfs_entry_type_name(ntohl(entry->type)),
 | |
| 			ntohl(entry->len),
 | |
| 			decompressed_size,
 | |
| 			lookup_name_by_type(types_cbfs_compression,
 | |
| 				compression, "(unknown)")
 | |
| 			);
 | |
| 	}
 | |
| 
 | |
| 	struct cbfs_file_attr_hash *hash = NULL;
 | |
| 	while ((hash = cbfs_file_get_next_hash(entry, hash)) != NULL) {
 | |
| 		unsigned int hash_type = ntohl(hash->hash_type);
 | |
| 		if (hash_type > CBFS_NUM_SUPPORTED_HASHES) {
 | |
| 			fprintf(fp, "invalid hash type %d\n", hash_type);
 | |
| 			break;
 | |
| 		}
 | |
| 		size_t hash_len = widths_cbfs_hash[hash_type];
 | |
| 		char *hash_str = bintohex(hash->hash_data, hash_len);
 | |
| 		uint8_t local_hash[hash_len];
 | |
| 		if (vb2_digest_buffer(CBFS_SUBHEADER(entry),
 | |
| 			ntohl(entry->len), hash_type, local_hash,
 | |
| 			hash_len) != VB2_SUCCESS) {
 | |
| 			fprintf(fp, "failed to hash '%s'\n", name);
 | |
| 			break;
 | |
| 		}
 | |
| 		int valid = memcmp(local_hash, hash->hash_data, hash_len) == 0;
 | |
| 		const char *valid_str = valid ? "valid" : "invalid";
 | |
| 
 | |
| 		fprintf(fp, "    hash %s:%s %s\n",
 | |
| 			get_hash_attr_name(hash_type),
 | |
| 			hash_str, valid_str);
 | |
| 		free(hash_str);
 | |
| 	}
 | |
| 
 | |
| 	if (!verbose)
 | |
| 		return 0;
 | |
| 
 | |
| 	DEBUG(" cbfs_file=0x%x, offset=0x%x, content_address=0x%x+0x%x\n",
 | |
| 	      cbfs_get_entry_addr(image, entry), ntohl(entry->offset),
 | |
| 	      cbfs_get_entry_addr(image, entry) + ntohl(entry->offset),
 | |
| 	      ntohl(entry->len));
 | |
| 
 | |
| 	/* note the components of the subheader may be in host order ... */
 | |
| 	switch (ntohl(entry->type)) {
 | |
| 		case CBFS_COMPONENT_STAGE:
 | |
| 			cbfs_print_stage_info((struct cbfs_stage *)
 | |
| 					      CBFS_SUBHEADER(entry), fp);
 | |
| 			break;
 | |
| 
 | |
| 		case CBFS_COMPONENT_PAYLOAD:
 | |
| 			payload = (struct cbfs_payload_segment *)
 | |
| 					CBFS_SUBHEADER(entry);
 | |
| 			while (payload) {
 | |
| 				struct cbfs_payload_segment seg;
 | |
| 				cbfs_decode_payload_segment(&seg, payload);
 | |
| 				cbfs_print_decoded_payload_segment_info(
 | |
| 						&seg, fp);
 | |
| 				if (seg.type == PAYLOAD_SEGMENT_ENTRY)
 | |
| 					break;
 | |
| 				else
 | |
| 				payload ++;
 | |
| 			}
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cbfs_print_parseable_entry_info(struct cbfs_image *image,
 | |
| 					struct cbfs_file *entry, void *arg)
 | |
| {
 | |
| 	FILE *fp = (FILE *)arg;
 | |
| 	const char *name;
 | |
| 	const char *type;
 | |
| 	size_t offset;
 | |
| 	size_t metadata_size;
 | |
| 	size_t data_size;
 | |
| 	const char *sep = "\t";
 | |
| 
 | |
| 	if (!cbfs_is_valid_entry(image, entry)) {
 | |
| 		ERROR("cbfs_print_entry_info: Invalid entry at 0x%x\n",
 | |
| 		      cbfs_get_entry_addr(image, entry));
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	name = entry->filename;
 | |
| 	if (*name == '\0')
 | |
| 		name = "(empty)";
 | |
| 	type = get_cbfs_entry_type_name(ntohl(entry->type)),
 | |
| 	metadata_size = ntohl(entry->offset);
 | |
| 	data_size = ntohl(entry->len);
 | |
| 	offset = cbfs_get_entry_addr(image, entry);
 | |
| 
 | |
| 	fprintf(fp, "%s%s", name, sep);
 | |
| 	fprintf(fp, "0x%zx%s", offset, sep);
 | |
| 	fprintf(fp, "%s%s", type, sep);
 | |
| 	fprintf(fp, "0x%zx%s", metadata_size, sep);
 | |
| 	fprintf(fp, "0x%zx%s", data_size, sep);
 | |
| 	fprintf(fp, "0x%zx\n", metadata_size + data_size);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int cbfs_print_directory(struct cbfs_image *image)
 | |
| {
 | |
| 	if (cbfs_is_legacy_cbfs(image))
 | |
| 		cbfs_print_header_info(image);
 | |
| 	printf("%-30s %-10s %-12s Size\n", "Name", "Offset", "Type");
 | |
| 	cbfs_walk(image, cbfs_print_entry_info, NULL);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int cbfs_print_parseable_directory(struct cbfs_image *image)
 | |
| {
 | |
| 	size_t i;
 | |
| 	const char *header[] = {
 | |
| 		"Name",
 | |
| 		"Offset",
 | |
| 		"Type",
 | |
| 		"Metadata Size",
 | |
| 		"Data Size",
 | |
| 		"Total Size",
 | |
| 	};
 | |
| 	const char *sep = "\t";
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(header) - 1; i++)
 | |
| 		fprintf(stdout, "%s%s", header[i], sep);
 | |
| 	fprintf(stdout, "%s\n", header[i]);
 | |
| 	cbfs_walk(image, cbfs_print_parseable_entry_info, stdout);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int cbfs_merge_empty_entry(struct cbfs_image *image, struct cbfs_file *entry,
 | |
| 			   unused void *arg)
 | |
| {
 | |
| 	struct cbfs_file *next;
 | |
| 	uint8_t *name;
 | |
| 	uint32_t type, addr, last_addr;
 | |
| 
 | |
| 	type = ntohl(entry->type);
 | |
| 	if (type == CBFS_COMPONENT_DELETED) {
 | |
| 		// Ready to be recycled.
 | |
| 		type = CBFS_COMPONENT_NULL;
 | |
| 		entry->type = htonl(type);
 | |
| 		// Place NUL byte as first byte of name to be viewed as "empty".
 | |
| 		name = (void *)&entry[1];
 | |
| 		*name = '\0';
 | |
| 	}
 | |
| 	if (type != CBFS_COMPONENT_NULL)
 | |
| 		return 0;
 | |
| 
 | |
| 	next = cbfs_find_next_entry(image, entry);
 | |
| 
 | |
| 	while (next && cbfs_is_valid_entry(image, next)) {
 | |
| 		type = ntohl(next->type);
 | |
| 		if (type == CBFS_COMPONENT_DELETED) {
 | |
| 			type = CBFS_COMPONENT_NULL;
 | |
| 			next->type = htonl(type);
 | |
| 		}
 | |
| 		if (type != CBFS_COMPONENT_NULL)
 | |
| 			return 0;
 | |
| 
 | |
| 		addr = cbfs_get_entry_addr(image, entry);
 | |
| 		last_addr = cbfs_get_entry_addr(
 | |
| 				image, cbfs_find_next_entry(image, next));
 | |
| 
 | |
| 		// Now, we find two deleted/empty entries; try to merge now.
 | |
| 		DEBUG("join_empty_entry: combine 0x%x+0x%x and 0x%x+0x%x.\n",
 | |
| 		      cbfs_get_entry_addr(image, entry), ntohl(entry->len),
 | |
| 		      cbfs_get_entry_addr(image, next), ntohl(next->len));
 | |
| 		cbfs_create_empty_entry(entry, CBFS_COMPONENT_NULL,
 | |
| 					(last_addr - addr -
 | |
| 					 cbfs_calculate_file_header_size("")),
 | |
| 					"");
 | |
| 		DEBUG("new empty entry: length=0x%x\n", ntohl(entry->len));
 | |
| 		next = cbfs_find_next_entry(image, entry);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int cbfs_walk(struct cbfs_image *image, cbfs_entry_callback callback,
 | |
| 	      void *arg)
 | |
| {
 | |
| 	int count = 0;
 | |
| 	struct cbfs_file *entry;
 | |
| 	for (entry = cbfs_find_first_entry(image);
 | |
| 	     entry && cbfs_is_valid_entry(image, entry);
 | |
| 	     entry = cbfs_find_next_entry(image, entry)) {
 | |
| 		count ++;
 | |
| 		if (callback(image, entry, arg) != 0)
 | |
| 			break;
 | |
| 	}
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static int cbfs_header_valid(struct cbfs_header *header)
 | |
| {
 | |
| 	if ((ntohl(header->magic) == CBFS_HEADER_MAGIC) &&
 | |
| 	    ((ntohl(header->version) == CBFS_HEADER_VERSION1) ||
 | |
| 	     (ntohl(header->version) == CBFS_HEADER_VERSION2)) &&
 | |
| 	    (ntohl(header->offset) < ntohl(header->romsize)))
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct cbfs_header *cbfs_find_header(char *data, size_t size,
 | |
| 				     uint32_t forced_offset)
 | |
| {
 | |
| 	size_t offset;
 | |
| 	int found = 0;
 | |
| 	int32_t rel_offset;
 | |
| 	struct cbfs_header *header, *result = NULL;
 | |
| 
 | |
| 	if (forced_offset < (size - sizeof(struct cbfs_header))) {
 | |
| 		/* Check if the forced header is valid. */
 | |
| 		header = (struct cbfs_header *)(data + forced_offset);
 | |
| 		if (cbfs_header_valid(header))
 | |
| 			return header;
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	// Try finding relative offset of master header at end of file first.
 | |
| 	rel_offset = *(int32_t *)(data + size - sizeof(int32_t));
 | |
| 	offset = size + rel_offset;
 | |
| 	DEBUG("relative offset: %#zx(-%#zx), offset: %#zx\n",
 | |
| 	      (size_t)rel_offset, (size_t)-rel_offset, offset);
 | |
| 
 | |
| 	if (offset >= size - sizeof(*header) ||
 | |
| 	    !cbfs_header_valid((struct cbfs_header *)(data + offset))) {
 | |
| 		// Some use cases append non-CBFS data to the end of the ROM.
 | |
| 		DEBUG("relative offset seems wrong, scanning whole image...\n");
 | |
| 		offset = 0;
 | |
| 	}
 | |
| 
 | |
| 	for (; offset + sizeof(*header) < size; offset++) {
 | |
| 		header = (struct cbfs_header *)(data + offset);
 | |
| 		if (!cbfs_header_valid(header))
 | |
| 			continue;
 | |
| 		if (!found++)
 | |
| 			result = header;
 | |
| 	}
 | |
| 	if (found > 1)
 | |
| 		// Top-aligned images usually have a working relative offset
 | |
| 		// field, so this is more likely to happen on bottom-aligned
 | |
| 		// ones (where the first header is the "outermost" one)
 | |
| 		WARN("Multiple (%d) CBFS headers found, using the first one.\n",
 | |
| 		       found);
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| 
 | |
| struct cbfs_file *cbfs_find_first_entry(struct cbfs_image *image)
 | |
| {
 | |
| 	assert(image);
 | |
| 	if (image->has_header)
 | |
| 		/* header.offset is relative to start of flash, not
 | |
| 		 * start of region, so use it with the full image.
 | |
| 		 */
 | |
| 		return (struct cbfs_file *)
 | |
| 			(buffer_get_original_backing(&image->buffer) +
 | |
| 			image->header.offset);
 | |
| 	else
 | |
| 		return (struct cbfs_file *)buffer_get(&image->buffer);
 | |
| }
 | |
| 
 | |
| struct cbfs_file *cbfs_find_next_entry(struct cbfs_image *image,
 | |
| 				       struct cbfs_file *entry)
 | |
| {
 | |
| 	uint32_t addr = cbfs_get_entry_addr(image, entry);
 | |
| 	int align = image->has_header ? image->header.align :
 | |
| 							CBFS_ENTRY_ALIGNMENT;
 | |
| 	assert(entry && cbfs_is_valid_entry(image, entry));
 | |
| 	addr += ntohl(entry->offset) + ntohl(entry->len);
 | |
| 	addr = align_up(addr, align);
 | |
| 	return (struct cbfs_file *)(image->buffer.data + addr);
 | |
| }
 | |
| 
 | |
| uint32_t cbfs_get_entry_addr(struct cbfs_image *image, struct cbfs_file *entry)
 | |
| {
 | |
| 	assert(image && image->buffer.data && entry);
 | |
| 	return (int32_t)((char *)entry - image->buffer.data);
 | |
| }
 | |
| 
 | |
| int cbfs_is_valid_cbfs(struct cbfs_image *image)
 | |
| {
 | |
| 	return buffer_check_magic(&image->buffer, CBFS_FILE_MAGIC,
 | |
| 						strlen(CBFS_FILE_MAGIC));
 | |
| }
 | |
| 
 | |
| int cbfs_is_legacy_cbfs(struct cbfs_image *image)
 | |
| {
 | |
| 	return image->has_header;
 | |
| }
 | |
| 
 | |
| int cbfs_is_valid_entry(struct cbfs_image *image, struct cbfs_file *entry)
 | |
| {
 | |
| 	uint32_t offset = cbfs_get_entry_addr(image, entry);
 | |
| 
 | |
| 	if (offset >= image->buffer.size)
 | |
| 		return 0;
 | |
| 
 | |
| 	struct buffer entry_data;
 | |
| 	buffer_clone(&entry_data, &image->buffer);
 | |
| 	buffer_seek(&entry_data, offset);
 | |
| 	return buffer_check_magic(&entry_data, CBFS_FILE_MAGIC,
 | |
| 						strlen(CBFS_FILE_MAGIC));
 | |
| }
 | |
| 
 | |
| struct cbfs_file *cbfs_create_file_header(int type,
 | |
| 			    size_t len, const char *name)
 | |
| {
 | |
| 	struct cbfs_file *entry = malloc(MAX_CBFS_FILE_HEADER_BUFFER);
 | |
| 	memset(entry, CBFS_CONTENT_DEFAULT_VALUE, MAX_CBFS_FILE_HEADER_BUFFER);
 | |
| 	memcpy(entry->magic, CBFS_FILE_MAGIC, sizeof(entry->magic));
 | |
| 	entry->type = htonl(type);
 | |
| 	entry->len = htonl(len);
 | |
| 	entry->attributes_offset = 0;
 | |
| 	entry->offset = htonl(cbfs_calculate_file_header_size(name));
 | |
| 	memset(entry->filename, 0, ntohl(entry->offset) - sizeof(*entry));
 | |
| 	strcpy(entry->filename, name);
 | |
| 	return entry;
 | |
| }
 | |
| 
 | |
| int cbfs_create_empty_entry(struct cbfs_file *entry, int type,
 | |
| 			    size_t len, const char *name)
 | |
| {
 | |
| 	struct cbfs_file *tmp = cbfs_create_file_header(type, len, name);
 | |
| 	memcpy(entry, tmp, ntohl(tmp->offset));
 | |
| 	free(tmp);
 | |
| 	memset(CBFS_SUBHEADER(entry), CBFS_CONTENT_DEFAULT_VALUE, len);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct cbfs_file_attribute *cbfs_file_first_attr(struct cbfs_file *file)
 | |
| {
 | |
| 	/* attributes_offset should be 0 when there is no attribute, but all
 | |
| 	 * values that point into the cbfs_file header are invalid, too. */
 | |
| 	if (ntohl(file->attributes_offset) <= sizeof(*file))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* There needs to be enough space for the file header and one
 | |
| 	 * attribute header for this to make sense. */
 | |
| 	if (ntohl(file->offset) <=
 | |
| 		sizeof(*file) + sizeof(struct cbfs_file_attribute))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return (struct cbfs_file_attribute *)
 | |
| 		(((uint8_t *)file) + ntohl(file->attributes_offset));
 | |
| }
 | |
| 
 | |
| struct cbfs_file_attribute *cbfs_file_next_attr(struct cbfs_file *file,
 | |
| 	struct cbfs_file_attribute *attr)
 | |
| {
 | |
| 	/* ex falso sequitur quodlibet */
 | |
| 	if (attr == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* Is there enough space for another attribute? */
 | |
| 	if ((uint8_t *)attr + ntohl(attr->len) +
 | |
| 		sizeof(struct cbfs_file_attribute) >=
 | |
| 		(uint8_t *)file + ntohl(file->offset))
 | |
| 		return NULL;
 | |
| 
 | |
| 	struct cbfs_file_attribute *next = (struct cbfs_file_attribute *)
 | |
| 		(((uint8_t *)attr) + ntohl(attr->len));
 | |
| 	/* If any, "unused" attributes must come last. */
 | |
| 	if (ntohl(next->tag) == CBFS_FILE_ATTR_TAG_UNUSED)
 | |
| 		return NULL;
 | |
| 	if (ntohl(next->tag) == CBFS_FILE_ATTR_TAG_UNUSED2)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return next;
 | |
| }
 | |
| 
 | |
| struct cbfs_file_attribute *cbfs_add_file_attr(struct cbfs_file *header,
 | |
| 					       uint32_t tag,
 | |
| 					       uint32_t size)
 | |
| {
 | |
| 	struct cbfs_file_attribute *attr, *next;
 | |
| 	next = cbfs_file_first_attr(header);
 | |
| 	do {
 | |
| 		attr = next;
 | |
| 		next = cbfs_file_next_attr(header, attr);
 | |
| 	} while (next != NULL);
 | |
| 	uint32_t header_size = ntohl(header->offset) + size;
 | |
| 	if (header_size > MAX_CBFS_FILE_HEADER_BUFFER) {
 | |
| 		DEBUG("exceeding allocated space for cbfs_file headers");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	/* attr points to the last valid attribute now.
 | |
| 	 * If NULL, we have to create the first one. */
 | |
| 	if (attr == NULL) {
 | |
| 		/* New attributes start where the header ends.
 | |
| 		 * header->offset is later set to accomodate the
 | |
| 		 * additional structure.
 | |
| 		 * No endianess translation necessary here, because both
 | |
| 		 * fields are encoded the same way. */
 | |
| 		header->attributes_offset = header->offset;
 | |
| 		attr = (struct cbfs_file_attribute *)
 | |
| 			(((uint8_t *)header) +
 | |
| 			ntohl(header->attributes_offset));
 | |
| 	} else {
 | |
| 		attr = (struct cbfs_file_attribute *)
 | |
| 			(((uint8_t *)attr) +
 | |
| 			ntohl(attr->len));
 | |
| 	}
 | |
| 	header->offset = htonl(header_size);
 | |
| 	memset(attr, CBFS_CONTENT_DEFAULT_VALUE, size);
 | |
| 	attr->tag = htonl(tag);
 | |
| 	attr->len = htonl(size);
 | |
| 	return attr;
 | |
| }
 | |
| 
 | |
| int cbfs_add_file_hash(struct cbfs_file *header, struct buffer *buffer,
 | |
| 	enum vb2_hash_algorithm hash_type)
 | |
| {
 | |
| 	uint32_t hash_index = hash_type;
 | |
| 
 | |
| 	if (hash_index >= CBFS_NUM_SUPPORTED_HASHES)
 | |
| 		return -1;
 | |
| 
 | |
| 	unsigned hash_size = widths_cbfs_hash[hash_type];
 | |
| 	if (hash_size == 0)
 | |
| 		return -1;
 | |
| 
 | |
| 	struct cbfs_file_attr_hash *attrs =
 | |
| 		(struct cbfs_file_attr_hash *)cbfs_add_file_attr(header,
 | |
| 			CBFS_FILE_ATTR_TAG_HASH,
 | |
| 			sizeof(struct cbfs_file_attr_hash) + hash_size);
 | |
| 
 | |
| 	if (attrs == NULL)
 | |
| 		return -1;
 | |
| 
 | |
| 	attrs->hash_type = htonl(hash_type);
 | |
| 	if (vb2_digest_buffer(buffer_get(buffer), buffer_size(buffer),
 | |
| 		hash_type, attrs->hash_data, hash_size) != VB2_SUCCESS)
 | |
| 		return -1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Finds a place to hold whole data in same memory page. */
 | |
| static int is_in_same_page(uint32_t start, uint32_t size, uint32_t page)
 | |
| {
 | |
| 	if (!page)
 | |
| 		return 1;
 | |
| 	return (start / page) == (start + size - 1) / page;
 | |
| }
 | |
| 
 | |
| /* Tests if data can fit in a range by given offset:
 | |
|  *  start ->| metadata_size | offset (+ size) |<- end
 | |
|  */
 | |
| static int is_in_range(size_t start, size_t end, size_t metadata_size,
 | |
| 		       size_t offset, size_t size)
 | |
| {
 | |
| 	return (offset >= start + metadata_size && offset + size <= end);
 | |
| }
 | |
| 
 | |
| static size_t absolute_align(const struct cbfs_image *image, size_t val,
 | |
| 				size_t align)
 | |
| {
 | |
| 	const size_t region_offset = buffer_offset(&image->buffer);
 | |
| 	/* To perform alignment on absolute address, take the region offset */
 | |
| 	/* of the image into account.					    */
 | |
| 	return align_up(val + region_offset, align) - region_offset;
 | |
| 
 | |
| }
 | |
| 
 | |
| int32_t cbfs_locate_entry(struct cbfs_image *image, size_t size,
 | |
| 			  size_t page_size, size_t align, size_t metadata_size)
 | |
| {
 | |
| 	struct cbfs_file *entry;
 | |
| 	size_t need_len;
 | |
| 	size_t addr, addr_next, addr2, addr3, offset;
 | |
| 
 | |
| 	/* Default values: allow fitting anywhere in ROM. */
 | |
| 	if (!page_size)
 | |
| 		page_size = image->has_header ? image->header.romsize :
 | |
| 							image->buffer.size;
 | |
| 	if (!align)
 | |
| 		align = 1;
 | |
| 
 | |
| 	if (size > page_size)
 | |
| 		ERROR("Input file size (%zd) greater than page size (%zd).\n",
 | |
| 		      size, page_size);
 | |
| 
 | |
| 	size_t image_align = image->has_header ? image->header.align :
 | |
| 							CBFS_ENTRY_ALIGNMENT;
 | |
| 	if (page_size % image_align)
 | |
| 		WARN("%s: Page size (%#zx) not aligned with CBFS image (%#zx).\n",
 | |
| 		     __func__, page_size, image_align);
 | |
| 
 | |
| 	need_len = metadata_size + size;
 | |
| 
 | |
| 	// Merge empty entries to build get max available space.
 | |
| 	cbfs_walk(image, cbfs_merge_empty_entry, NULL);
 | |
| 
 | |
| 	/* Three cases of content location on memory page:
 | |
| 	 * case 1.
 | |
| 	 *          |  PAGE 1  |   PAGE 2  |
 | |
| 	 *          |     <header><content>| Fit. Return start of content.
 | |
| 	 *
 | |
| 	 * case 2.
 | |
| 	 *          |  PAGE 1  |   PAGE 2  |
 | |
| 	 *          | <header><content>    | Fits when we shift content to align
 | |
| 	 *  shift-> |  <header>|<content>  | at starting of PAGE 2.
 | |
| 	 *
 | |
| 	 * case 3. (large content filling whole page)
 | |
| 	 *  | PAGE 1 |  PAGE 2  | PAGE 3 |
 | |
| 	 *  |  <header>< content >       | Can't fit. If we shift content to
 | |
| 	 *  |trial-> <header>< content > | PAGE 2, header can't fit in free
 | |
| 	 *  |  shift->  <header><content> space, so we must use PAGE 3.
 | |
| 	 *
 | |
| 	 * The returned address can be then used as "base-address" (-b) in add-*
 | |
| 	 * commands (will be re-calculated and positioned by cbfs_add_entry_at).
 | |
| 	 * For stage targets, the address is also used to re-link stage before
 | |
| 	 * being added into CBFS.
 | |
| 	 */
 | |
| 	for (entry = cbfs_find_first_entry(image);
 | |
| 	     entry && cbfs_is_valid_entry(image, entry);
 | |
| 	     entry = cbfs_find_next_entry(image, entry)) {
 | |
| 
 | |
| 		uint32_t type = ntohl(entry->type);
 | |
| 		if (type != CBFS_COMPONENT_NULL)
 | |
| 			continue;
 | |
| 
 | |
| 		addr = cbfs_get_entry_addr(image, entry);
 | |
| 		addr_next = cbfs_get_entry_addr(image, cbfs_find_next_entry(
 | |
| 				image, entry));
 | |
| 		if (addr_next - addr < need_len)
 | |
| 			continue;
 | |
| 
 | |
| 		offset = absolute_align(image, addr + metadata_size, align);
 | |
| 		if (is_in_same_page(offset, size, page_size) &&
 | |
| 		    is_in_range(addr, addr_next, metadata_size, offset, size)) {
 | |
| 			DEBUG("cbfs_locate_entry: FIT (PAGE1).");
 | |
| 			return offset;
 | |
| 		}
 | |
| 
 | |
| 		addr2 = align_up(addr, page_size);
 | |
| 		offset = absolute_align(image, addr2, align);
 | |
| 		if (is_in_range(addr, addr_next, metadata_size, offset, size)) {
 | |
| 			DEBUG("cbfs_locate_entry: OVERLAP (PAGE2).");
 | |
| 			return offset;
 | |
| 		}
 | |
| 
 | |
| 		/* Assume page_size >= metadata_size so adding one page will
 | |
| 		 * definitely provide the space for header. */
 | |
| 		assert(page_size >= metadata_size);
 | |
| 		addr3 = addr2 + page_size;
 | |
| 		offset = absolute_align(image, addr3, align);
 | |
| 		if (is_in_range(addr, addr_next, metadata_size, offset, size)) {
 | |
| 			DEBUG("cbfs_locate_entry: OVERLAP+ (PAGE3).");
 | |
| 			return offset;
 | |
| 		}
 | |
| 	}
 | |
| 	return -1;
 | |
| }
 |