Change-Id: I4a8297397d878e38516c8df19dd311c7ef19ec06 Signed-off-by: Martin Roth <martinroth@google.com> Reviewed-on: https://review.coreboot.org/17478 Tested-by: build bot (Jenkins) Reviewed-by: Nico Huber <nico.h@gmx.de>
1202 lines
28 KiB
C
1202 lines
28 KiB
C
/*
|
|
* This file is part of the coreboot project.
|
|
*
|
|
* Copyright (C) 2005 Eric W. Biederman and Tom Zimmerman
|
|
* Copyright (C) 2008 Arastra, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
*/
|
|
|
|
#include <cpu/x86/mtrr.h>
|
|
#include <cpu/x86/cache.h>
|
|
#include <cpu/intel/speedstep.h>
|
|
#include <lib.h>
|
|
#include <stdlib.h>
|
|
#include "raminit.h"
|
|
#include "i3100.h"
|
|
|
|
/* DDR2 memory controller register space */
|
|
#define MCBAR ((u8 *)(0x90000000))
|
|
|
|
static void sdram_set_registers(const struct mem_controller *ctrl)
|
|
{
|
|
static const u32 register_values[] = {
|
|
|
|
/* CKDIS 0x8c disable clocks */
|
|
PCI_ADDR(0, 0x00, 0, CKDIS), 0xffff0000, 0x0000ffff,
|
|
|
|
/* 0x9c Device present and extended RAM control
|
|
* DEVPRES is very touchy, hard code the initialization
|
|
* of PCI-E ports here.
|
|
*/
|
|
PCI_ADDR(0, 0x00, 0, DEVPRES), 0x00000000, 0x07020801 | DEVPRES_CONFIG,
|
|
|
|
/* 0xc8 Remap RAM base and limit off */
|
|
PCI_ADDR(0, 0x00, 0, REMAPLIMIT), 0x00000000, 0x03df0000,
|
|
|
|
/* ??? */
|
|
PCI_ADDR(0, 0x00, 0, 0xd8), 0x00000000, 0xb5930000,
|
|
PCI_ADDR(0, 0x00, 0, 0xe8), 0x00000000, 0x00004a2a,
|
|
|
|
/* 0x50 scrub */
|
|
PCI_ADDR(0, 0x00, 0, MCHCFG0), 0xfce0ffff, 0x00006000, /* 6000 */
|
|
|
|
/* 0x58 0x5c PAM */
|
|
PCI_ADDR(0, 0x00, 0, PAM-1), 0xcccccc7f, 0x33333000,
|
|
PCI_ADDR(0, 0x00, 0, PAM+3), 0xcccccccc, 0x33333333,
|
|
|
|
/* 0xf4 */
|
|
PCI_ADDR(0, 0x00, 0, DEVPRES1), 0xffbffff, (1<<22)|(6<<2) | DEVPRES1_CONFIG,
|
|
|
|
/* 0x14 */
|
|
PCI_ADDR(0, 0x00, 0, IURBASE), 0x00000fff, (uintptr_t)(MCBAR + 0),
|
|
};
|
|
int i;
|
|
int max;
|
|
|
|
max = ARRAY_SIZE(register_values);
|
|
for (i = 0; i < max; i += 3) {
|
|
device_t dev;
|
|
u32 where;
|
|
u32 reg;
|
|
dev = (register_values[i] & ~0xff) - PCI_DEV(0, 0x00, 0) + ctrl->f0;
|
|
where = register_values[i] & 0xff;
|
|
reg = pci_read_config32(dev, where);
|
|
reg &= register_values[i+1];
|
|
reg |= register_values[i+2];
|
|
pci_write_config32(dev, where, reg);
|
|
}
|
|
printk(BIOS_SPEW, "done.\n");
|
|
}
|
|
|
|
struct dimm_size {
|
|
u32 side1;
|
|
u32 side2;
|
|
};
|
|
|
|
static struct dimm_size spd_get_dimm_size(u16 device)
|
|
{
|
|
/* Calculate the log base 2 size of a DIMM in bits */
|
|
struct dimm_size sz;
|
|
int value, low;
|
|
sz.side1 = 0;
|
|
sz.side2 = 0;
|
|
|
|
/* Note it might be easier to use byte 31 here, it has the DIMM size as
|
|
* a multiple of 4MB. The way we do it now we can size both
|
|
* sides of an asymmetric dimm.
|
|
*/
|
|
value = spd_read_byte(device, 3); /* rows */
|
|
if (value < 0) goto hw_err;
|
|
if ((value & 0xf) == 0) goto val_err;
|
|
sz.side1 += value & 0xf;
|
|
|
|
value = spd_read_byte(device, 4); /* columns */
|
|
if (value < 0) goto hw_err;
|
|
if ((value & 0xf) == 0) goto val_err;
|
|
sz.side1 += value & 0xf;
|
|
|
|
value = spd_read_byte(device, 17); /* banks */
|
|
if (value < 0) goto hw_err;
|
|
if ((value & 0xff) == 0) goto val_err;
|
|
sz.side1 += log2(value & 0xff);
|
|
|
|
/* Get the module data width and convert it to a power of two */
|
|
value = spd_read_byte(device, 7); /* (high byte) */
|
|
if (value < 0) goto hw_err;
|
|
value &= 0xff;
|
|
value <<= 8;
|
|
|
|
low = spd_read_byte(device, 6); /* (low byte) */
|
|
if (low < 0) goto hw_err;
|
|
value = value | (low & 0xff);
|
|
if ((value != 72) && (value != 64)) goto val_err;
|
|
sz.side1 += log2(value);
|
|
|
|
/* side 2 */
|
|
value = spd_read_byte(device, 5); /* number of physical banks */
|
|
|
|
if (value < 0) goto hw_err;
|
|
value &= 7;
|
|
value++;
|
|
if (value == 1) goto out;
|
|
if (value != 2) goto val_err;
|
|
|
|
/* Start with the symmetrical case */
|
|
sz.side2 = sz.side1;
|
|
|
|
value = spd_read_byte(device, 3); /* rows */
|
|
if (value < 0) goto hw_err;
|
|
if ((value & 0xf0) == 0) goto out; /* If symmetrical we are done */
|
|
sz.side2 -= (value & 0x0f); /* Subtract out rows on side 1 */
|
|
sz.side2 += ((value >> 4) & 0x0f); /* Add in rows on side 2 */
|
|
|
|
value = spd_read_byte(device, 4); /* columns */
|
|
if (value < 0) goto hw_err;
|
|
if ((value & 0xff) == 0) goto val_err;
|
|
sz.side2 -= (value & 0x0f); /* Subtract out columns on side 1 */
|
|
sz.side2 += ((value >> 4) & 0x0f); /* Add in columns on side 2 */
|
|
goto out;
|
|
|
|
val_err:
|
|
die("Bad SPD value\n");
|
|
/* If an hw_error occurs report that I have no memory */
|
|
hw_err:
|
|
sz.side1 = 0;
|
|
sz.side2 = 0;
|
|
out:
|
|
return sz;
|
|
|
|
}
|
|
|
|
static long spd_set_ram_size(const struct mem_controller *ctrl, long dimm_mask)
|
|
{
|
|
int i;
|
|
int cum;
|
|
|
|
for (i = cum = 0; i < DIMM_SOCKETS; i++) {
|
|
struct dimm_size sz;
|
|
if (dimm_mask & (1 << i)) {
|
|
sz = spd_get_dimm_size(ctrl->channel0[i]);
|
|
if (sz.side1 < 29) {
|
|
return -1; /* Report SPD error */
|
|
}
|
|
/* convert bits to multiples of 64MB */
|
|
sz.side1 -= 29;
|
|
cum += (1 << sz.side1);
|
|
/* DRB = 0x60 */
|
|
pci_write_config8(ctrl->f0, DRB + (i*2), cum);
|
|
if ( sz.side2 > 28) {
|
|
sz.side2 -= 29;
|
|
cum += (1 << sz.side2);
|
|
}
|
|
pci_write_config8(ctrl->f0, DRB+1 + (i*2), cum);
|
|
}
|
|
else {
|
|
pci_write_config8(ctrl->f0, DRB + (i*2), cum);
|
|
pci_write_config8(ctrl->f0, DRB+1 + (i*2), cum);
|
|
}
|
|
}
|
|
cum >>= 1;
|
|
/* set TOM top of memory 0xcc */
|
|
pci_write_config16(ctrl->f0, TOM, cum);
|
|
/* set TOLM top of low memory */
|
|
if (cum > 0x18) {
|
|
cum = 0x18;
|
|
}
|
|
cum <<= 11;
|
|
/* 0xc4 TOLM */
|
|
pci_write_config16(ctrl->f0, TOLM, cum);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static u32 spd_detect_dimms(const struct mem_controller *ctrl)
|
|
{
|
|
u32 dimm_mask;
|
|
int i;
|
|
dimm_mask = 0;
|
|
for (i = 0; i < DIMM_SOCKETS; i++) {
|
|
int byte;
|
|
u16 device;
|
|
device = ctrl->channel0[i];
|
|
if (device) {
|
|
byte = spd_read_byte(device, 2); /* Type */
|
|
if (byte == 8) {
|
|
dimm_mask |= (1 << i);
|
|
}
|
|
}
|
|
device = ctrl->channel1[i];
|
|
if (device) {
|
|
byte = spd_read_byte(device, 2);
|
|
if (byte == 8) {
|
|
dimm_mask |= (1 << (i + DIMM_SOCKETS));
|
|
}
|
|
}
|
|
}
|
|
return dimm_mask;
|
|
}
|
|
|
|
|
|
static int spd_set_row_attributes(const struct mem_controller *ctrl,
|
|
long dimm_mask)
|
|
{
|
|
int value;
|
|
int reg;
|
|
int dra;
|
|
int cnt;
|
|
|
|
dra = 0;
|
|
for (cnt = 0; cnt < 4; cnt++) {
|
|
if (!(dimm_mask & (1 << cnt))) {
|
|
continue;
|
|
}
|
|
reg =0;
|
|
value = spd_read_byte(ctrl->channel0[cnt], 3); /* rows */
|
|
if (value < 0) goto hw_err;
|
|
if ((value & 0xf) == 0) goto val_err;
|
|
reg += value & 0xf;
|
|
|
|
value = spd_read_byte(ctrl->channel0[cnt], 4); /* columns */
|
|
if (value < 0) goto hw_err;
|
|
if ((value & 0xf) == 0) goto val_err;
|
|
reg += value & 0xf;
|
|
|
|
value = spd_read_byte(ctrl->channel0[cnt], 17); /* banks */
|
|
if (value < 0) goto hw_err;
|
|
if ((value & 0xff) == 0) goto val_err;
|
|
reg += log2(value & 0xff);
|
|
|
|
/* Get the device width and convert it to a power of two */
|
|
value = spd_read_byte(ctrl->channel0[cnt], 13);
|
|
if (value < 0) goto hw_err;
|
|
value = log2(value & 0xff);
|
|
reg += value;
|
|
if (reg < 27) goto hw_err;
|
|
reg -= 27;
|
|
reg += (value << 2);
|
|
|
|
dra += reg << (cnt*8);
|
|
value = spd_read_byte(ctrl->channel0[cnt], 5);
|
|
if (value & 2)
|
|
dra += reg << ((cnt*8)+4);
|
|
}
|
|
|
|
/* 0x70 DRA */
|
|
pci_write_config32(ctrl->f0, DRA, dra);
|
|
goto out;
|
|
|
|
val_err:
|
|
die("Bad SPD value\n");
|
|
/* If an hw_error occurs report that I have no memory */
|
|
hw_err:
|
|
dra = 0;
|
|
out:
|
|
return dra;
|
|
|
|
}
|
|
|
|
|
|
static int spd_set_drt_attributes(const struct mem_controller *ctrl,
|
|
long dimm_mask, u32 drc)
|
|
{
|
|
int value;
|
|
int reg;
|
|
u32 drt;
|
|
int cnt;
|
|
int first_dimm;
|
|
int cas_latency = 0;
|
|
int latency;
|
|
u32 index = 0;
|
|
u32 index2 = 0;
|
|
static const u8 cycle_time[3] = { 0x75, 0x60, 0x50 };
|
|
static const u8 latency_indicies[] = { 26, 23, 9 };
|
|
|
|
/* 0x78 DRT */
|
|
drt = pci_read_config32(ctrl->f0, DRT);
|
|
drt &= 3; /* save bits 1:0 */
|
|
|
|
for (first_dimm = 0; first_dimm < 4; first_dimm++) {
|
|
if (dimm_mask & (1 << first_dimm))
|
|
break;
|
|
}
|
|
|
|
drt |= (1<<6); /* back to back write turn around */
|
|
|
|
drt |= (3<<18); /* Trasmax */
|
|
|
|
for (cnt = 0; cnt < 4; cnt++) {
|
|
if (!(dimm_mask & (1 << cnt))) {
|
|
continue;
|
|
}
|
|
reg = spd_read_byte(ctrl->channel0[cnt], 18); /* CAS Latency */
|
|
/* Compute the lowest cas latency supported */
|
|
latency = log2(reg) -2;
|
|
|
|
/* Loop through and find a fast clock with a low latency */
|
|
for (index = 0; index < 3; index++, latency++) {
|
|
if ((latency < 2) || (latency > 4) ||
|
|
(!(reg & (1 << latency)))) {
|
|
continue;
|
|
}
|
|
value = spd_read_byte(ctrl->channel0[cnt],
|
|
latency_indicies[index]);
|
|
|
|
if (value <= cycle_time[drc & 3]) {
|
|
if ( latency > cas_latency) {
|
|
cas_latency = latency;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
index = (cas_latency-2);
|
|
if ((index) == 0) cas_latency = 20;
|
|
else if ((index) == 1) cas_latency = 25;
|
|
else cas_latency = 30;
|
|
|
|
for (cnt = 0; cnt < 4; cnt++) {
|
|
if (!(dimm_mask & (1 << cnt))) {
|
|
continue;
|
|
}
|
|
reg = spd_read_byte(ctrl->channel0[cnt], 27)&0x0ff;
|
|
if (((index>>8) & 0x0ff) < reg) {
|
|
index &= ~(0x0ff << 8);
|
|
index |= (reg << 8);
|
|
}
|
|
reg = spd_read_byte(ctrl->channel0[cnt], 28)&0x0ff;
|
|
if (((index>>16) & 0x0ff) < reg) {
|
|
index &= ~(0x0ff << 16);
|
|
index |= (reg<<16);
|
|
}
|
|
reg = spd_read_byte(ctrl->channel0[cnt], 29)&0x0ff;
|
|
if (((index2>>0) & 0x0ff) < reg) {
|
|
index2 &= ~(0x0ff << 0);
|
|
index2 |= (reg<<0);
|
|
}
|
|
reg = spd_read_byte(ctrl->channel0[cnt], 41)&0x0ff;
|
|
if (((index2>>8) & 0x0ff) < reg) {
|
|
index2 &= ~(0x0ff << 8);
|
|
index2 |= (reg<<8);
|
|
}
|
|
reg = spd_read_byte(ctrl->channel0[cnt], 42)&0x0ff;
|
|
if (((index2>>16) & 0x0ff) < reg) {
|
|
index2 &= ~(0x0ff << 16);
|
|
index2 |= (reg<<16);
|
|
}
|
|
}
|
|
|
|
/* get dimm speed */
|
|
value = cycle_time[drc & 3];
|
|
if (value <= 0x50) { /* 200 MHz */
|
|
if ((index & 7) > 2) {
|
|
drt |= (2<<2); /* CAS latency 4 */
|
|
cas_latency = 40;
|
|
} else {
|
|
drt |= (1<<2); /* CAS latency 3 */
|
|
cas_latency = 30;
|
|
}
|
|
if ((index & 0x0ff00) <= 0x03c00) {
|
|
drt |= (1<<8); /* Trp RAS Precharge */
|
|
} else {
|
|
drt |= (2<<8); /* Trp RAS Precharge */
|
|
}
|
|
|
|
/* Trcd RAS to CAS delay */
|
|
if ((index2 & 0x0ff) <= 0x03c) {
|
|
drt |= (0<<10);
|
|
} else {
|
|
drt |= (1<<10);
|
|
}
|
|
|
|
/* Tdal Write auto precharge recovery delay */
|
|
drt |= (1<<12);
|
|
|
|
/* Trc TRS min */
|
|
if ((index2 & 0x0ff00) <= 0x03700)
|
|
drt |= (0<<14);
|
|
else if ((index2 & 0xff00) <= 0x03c00)
|
|
drt |= (1<<14);
|
|
else
|
|
drt |= (2<<14); /* spd 41 */
|
|
|
|
drt |= (2<<16); /* Twr not defined for DDR docs say use 2 */
|
|
|
|
/* Trrd Row Delay */
|
|
if ((index & 0x0ff0000) <= 0x0140000) {
|
|
drt |= (0<<20);
|
|
} else if ((index & 0x0ff0000) <= 0x0280000) {
|
|
drt |= (1<<20);
|
|
} else if ((index & 0x0ff0000) <= 0x03c0000) {
|
|
drt |= (2<<20);
|
|
} else {
|
|
drt |= (3<<20);
|
|
}
|
|
|
|
/* Trfc Auto refresh cycle time */
|
|
if ((index2 & 0x0ff0000) <= 0x04b0000) {
|
|
drt |= (0<<22);
|
|
} else if ((index2 & 0x0ff0000) <= 0x0690000) {
|
|
drt |= (1<<22);
|
|
} else {
|
|
drt |= (2<<22);
|
|
}
|
|
/* Docs say use 55 for all 200MHz */
|
|
drt |= (0x055<<24);
|
|
}
|
|
else if (value <= 0x60) { /* 167 MHz */
|
|
/* according to new documentation CAS latency is 00
|
|
* for bits 3:2 for all 167 MHz
|
|
drt |= ((index & 3)<<2); */ /* set CAS latency */
|
|
if ((index & 0x0ff00) <= 0x03000) {
|
|
drt |= (1<<8); /* Trp RAS Precharge */
|
|
} else {
|
|
drt |= (2<<8); /* Trp RAS Precharge */
|
|
}
|
|
|
|
/* Trcd RAS to CAS delay */
|
|
if ((index2 & 0x0ff) <= 0x030) {
|
|
drt |= (0<<10);
|
|
} else {
|
|
drt |= (1<<10);
|
|
}
|
|
|
|
/* Tdal Write auto precharge recovery delay */
|
|
drt |= (2<<12);
|
|
|
|
/* Trc TRS min */
|
|
drt |= (2<<14); /* spd 41, but only one choice */
|
|
|
|
drt |= (2<<16); /* Twr not defined for DDR docs say 2 */
|
|
|
|
/* Trrd Row Delay */
|
|
if ((index & 0x0ff0000) <= 0x0180000) {
|
|
drt |= (0<<20);
|
|
} else if ((index & 0x0ff0000) <= 0x0300000) {
|
|
drt |= (1<<20);
|
|
} else {
|
|
drt |= (2<<20);
|
|
}
|
|
|
|
/* Trfc Auto refresh cycle time */
|
|
if ((index2 & 0x0ff0000) <= 0x0480000) {
|
|
drt |= (0<<22);
|
|
} else if ((index2 & 0x0ff0000) <= 0x0780000) {
|
|
drt |= (2<<22);
|
|
} else {
|
|
drt |= (2<<22);
|
|
}
|
|
/* Docs state to use 99 for all 167 MHz */
|
|
drt |= (0x099<<24);
|
|
}
|
|
else if (value <= 0x75) { /* 133 MHz */
|
|
drt |= ((index & 3)<<2); /* set CAS latency */
|
|
if ((index & 0x0ff00) <= 0x03c00) {
|
|
drt |= (1<<8); /* Trp RAS Precharge */
|
|
} else {
|
|
drt |= (2<<8); /* Trp RAS Precharge */
|
|
}
|
|
|
|
/* Trcd RAS to CAS delay */
|
|
if ((index2 & 0x0ff) <= 0x03c) {
|
|
drt |= (0<<10);
|
|
} else {
|
|
drt |= (1<<10);
|
|
}
|
|
|
|
/* Tdal Write auto precharge recovery delay */
|
|
drt |= (1<<12);
|
|
|
|
/* Trc TRS min */
|
|
drt |= (2<<14); /* spd 41, but only one choice */
|
|
|
|
drt |= (1<<16); /* Twr not defined for DDR docs say 1 */
|
|
|
|
/* Trrd Row Delay */
|
|
if ((index & 0x0ff0000) <= 0x01e0000) {
|
|
drt |= (0<<20);
|
|
} else if ((index & 0x0ff0000) <= 0x03c0000) {
|
|
drt |= (1<<20);
|
|
} else {
|
|
drt |= (2<<20);
|
|
}
|
|
|
|
/* Trfc Auto refresh cycle time */
|
|
if ((index2 & 0x0ff0000) <= 0x04b0000) {
|
|
drt |= (0<<22);
|
|
} else if ((index2 & 0x0ff0000) <= 0x0780000) {
|
|
drt |= (2<<22);
|
|
} else {
|
|
drt |= (2<<22);
|
|
}
|
|
|
|
/* Based on CAS latency */
|
|
if (index & 7)
|
|
drt |= (0x099<<24);
|
|
else
|
|
drt |= (0x055<<24);
|
|
|
|
}
|
|
else {
|
|
die("Invalid SPD 9 bus speed.\n");
|
|
}
|
|
|
|
/* 0x78 DRT */
|
|
pci_write_config32(ctrl->f0, DRT, drt);
|
|
|
|
return(cas_latency);
|
|
}
|
|
|
|
static int spd_set_dram_controller_mode(const struct mem_controller *ctrl,
|
|
long dimm_mask)
|
|
{
|
|
int value;
|
|
int drc;
|
|
int cnt;
|
|
msr_t msr;
|
|
u8 rate = 62;
|
|
static const u8 spd_rates[6] = {15,3,7,7,62,62};
|
|
static const u8 drc_rates[5] = {0,15,7,62,3};
|
|
static const u8 fsb_conversion[8] = {0,1,3,2,3,0,3,3};
|
|
|
|
/* 0x7c DRC */
|
|
drc = pci_read_config32(ctrl->f0, DRC);
|
|
for (cnt = 0; cnt < 4; cnt++) {
|
|
if (!(dimm_mask & (1 << cnt))) {
|
|
continue;
|
|
}
|
|
value = spd_read_byte(ctrl->channel0[cnt], 11); /* ECC */
|
|
if (value != 2) die("ERROR - Non ECC memory dimm\n");
|
|
|
|
value = spd_read_byte(ctrl->channel0[cnt], 12); /*refresh rate*/
|
|
value &= 0x0f; /* clip self refresh bit */
|
|
if (value > 5) goto hw_err;
|
|
if (rate > spd_rates[value])
|
|
rate = spd_rates[value];
|
|
|
|
value = spd_read_byte(ctrl->channel0[cnt], 9); /* cycle time */
|
|
if (value > 0x75) goto hw_err;
|
|
}
|
|
drc |= (1 << 20); /* enable ECC */
|
|
for (cnt = 1; cnt < 5; cnt++)
|
|
if (drc_rates[cnt] == rate)
|
|
break;
|
|
if (cnt < 5) {
|
|
drc &= ~(7 << 8); /* clear the rate bits */
|
|
drc |= (cnt << 8);
|
|
}
|
|
|
|
drc |= (1 << 26); /* set the overlap bit - the factory BIOS does */
|
|
drc |= (1 << 27); /* set DED retry enable - the factory BIOS does */
|
|
drc |= (1 << 7);
|
|
drc &= ~(1 << 5); /* enable ODT */
|
|
drc |= (1 << 4); /* independent clocks */
|
|
|
|
/* set front side bus speed */
|
|
msr = rdmsr(MSR_FSB_FREQ); /* returns 0 on Pentium M 90nm */
|
|
value = msr.lo & 0x07;
|
|
drc &= ~(3 << 2);
|
|
drc |= (fsb_conversion[value] << 2);
|
|
|
|
/* set dram type to ddr2 */
|
|
drc &= ~(3 << 0);
|
|
drc |= (2 << 0);
|
|
|
|
goto out;
|
|
|
|
/* If an hw_error occurs report that I have no memory */
|
|
hw_err:
|
|
drc = 0;
|
|
out:
|
|
return drc;
|
|
}
|
|
|
|
static void sdram_set_spd_registers(const struct mem_controller *ctrl)
|
|
{
|
|
long dimm_mask;
|
|
|
|
/* Test if we can read the spd and if RAM is ddr or ddr2 */
|
|
dimm_mask = spd_detect_dimms(ctrl);
|
|
if (!(dimm_mask & ((1 << DIMM_SOCKETS) - 1))) {
|
|
printk(BIOS_ERR, "No memory for this cpu\n");
|
|
return;
|
|
}
|
|
return;
|
|
}
|
|
|
|
static void do_delay(void)
|
|
{
|
|
int i;
|
|
u8 b;
|
|
for (i = 0; i < 16; i++)
|
|
b = inb(0x80);
|
|
}
|
|
|
|
#define TIMEOUT_LOOPS 300000
|
|
|
|
#define DCALCSR 0x100
|
|
#define DCALADDR 0x104
|
|
#define DCALDATA 0x108
|
|
|
|
static void set_on_dimm_termination_enable(const struct mem_controller *ctrl)
|
|
{
|
|
u8 c1,c2;
|
|
u32 dimm,i;
|
|
u32 data32 = 0;
|
|
u32 t4;
|
|
|
|
/* Set up northbridge values */
|
|
/* ODT enable */
|
|
pci_write_config32(ctrl->f0, SDRC, 0x30000000);
|
|
/* Figure out which slots are Empty, Single, or Double sided */
|
|
for (i = 0,t4 = 0,c2 = 0; i < 8; i+=2) {
|
|
c1 = pci_read_config8(ctrl->f0, DRB+i);
|
|
if (c1 == c2) continue;
|
|
c2 = pci_read_config8(ctrl->f0, DRB+1+i);
|
|
if (c1 == c2)
|
|
t4 |= (1 << (i*4));
|
|
else
|
|
t4 |= (2 << (i*4));
|
|
}
|
|
for (i = 0; i < 1; i++) {
|
|
if ((t4 & 0x0f) == 1) {
|
|
if ( ((t4>>8)&0x0f) == 0 ) {
|
|
data32 = 0x00000010; /* EEES */
|
|
break;
|
|
}
|
|
if ( ((t4>>16)&0x0f) == 0 ) {
|
|
data32 = 0x00003132; /* EESS */
|
|
break;
|
|
}
|
|
if ( ((t4>>24)&0x0f) == 0 ) {
|
|
data32 = 0x00335566; /* ESSS */
|
|
break;
|
|
}
|
|
data32 = 0x77bbddee; /* SSSS */
|
|
break;
|
|
}
|
|
if ((t4 & 0x0f) == 2) {
|
|
if ( ((t4>>8)&0x0f) == 0 ) {
|
|
data32 = 0x00003132; /* EEED */
|
|
break;
|
|
}
|
|
if ( ((t4>>8)&0x0f) == 2 ) {
|
|
data32 = 0xb373ecdc; /* EEDD */
|
|
break;
|
|
}
|
|
if ( ((t4>>16)&0x0f) == 0 ) {
|
|
data32 = 0x00b3a898; /* EESD */
|
|
break;
|
|
}
|
|
data32 = 0x777becdc; /* ESSD */
|
|
break;
|
|
}
|
|
die("Error - First dimm slot empty\n");
|
|
}
|
|
|
|
printk(BIOS_DEBUG, "ODT Value = %08x\n", data32);
|
|
|
|
pci_write_config32(ctrl->f0, DDR2ODTC, data32);
|
|
|
|
for (dimm = 0;dimm < 8;dimm+=2) {
|
|
|
|
write32(MCBAR+DCALADDR, 0x0b840001);
|
|
write32(MCBAR+DCALCSR, 0x81000003 | (dimm << 20));
|
|
|
|
for (i = 0; i < 1001; i++) {
|
|
data32 = read32(MCBAR+DCALCSR);
|
|
if (!(data32 & (1<<31)))
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
static void set_receive_enable(const struct mem_controller *ctrl)
|
|
{
|
|
u32 i;
|
|
u32 cnt;
|
|
u32 recena = 0;
|
|
u32 recenb = 0;
|
|
|
|
{
|
|
u32 dimm;
|
|
u32 edge;
|
|
int32_t data32;
|
|
u32 dcal_data32_0;
|
|
u32 dcal_data32_1;
|
|
u32 dcal_data32_2;
|
|
u32 dcal_data32_3;
|
|
u32 work32l;
|
|
u32 work32h;
|
|
u32 data32r;
|
|
int32_t recen;
|
|
for (dimm = 0;dimm < 8;dimm+=1) {
|
|
|
|
if (!(dimm & 1)) {
|
|
write32(MCBAR+DCALDATA+(17*4), 0x04020000);
|
|
write32(MCBAR+DCALCSR, 0x81800004 | (dimm << 20));
|
|
|
|
for (i = 0; i < 1001; i++) {
|
|
data32 = read32(MCBAR+DCALCSR);
|
|
if (!(data32 & (1<<31)))
|
|
break;
|
|
}
|
|
if (i >= 1000)
|
|
continue;
|
|
|
|
dcal_data32_0 = read32(MCBAR+DCALDATA + 0);
|
|
dcal_data32_1 = read32(MCBAR+DCALDATA + 4);
|
|
dcal_data32_2 = read32(MCBAR+DCALDATA + 8);
|
|
dcal_data32_3 = read32(MCBAR+DCALDATA + 12);
|
|
}
|
|
else {
|
|
dcal_data32_0 = read32(MCBAR+DCALDATA + 16);
|
|
dcal_data32_1 = read32(MCBAR+DCALDATA + 20);
|
|
dcal_data32_2 = read32(MCBAR+DCALDATA + 24);
|
|
dcal_data32_3 = read32(MCBAR+DCALDATA + 28);
|
|
}
|
|
|
|
/* check if bank is installed */
|
|
if ((dcal_data32_0 == 0) && (dcal_data32_2 == 0))
|
|
continue;
|
|
/* Calculate the timing value */
|
|
{
|
|
u32 bit;
|
|
for (i = 0,edge = 0,bit = 63,cnt = 31,data32r = 0,
|
|
work32l = dcal_data32_1,work32h = dcal_data32_3;
|
|
(i < 4) && bit; i++) {
|
|
for (;;bit--,cnt--) {
|
|
if (work32l & (1<<cnt))
|
|
break;
|
|
if (!cnt) {
|
|
work32l = dcal_data32_0;
|
|
work32h = dcal_data32_2;
|
|
cnt = 32;
|
|
}
|
|
if (!bit) break;
|
|
}
|
|
for (;;bit--,cnt--) {
|
|
if (!(work32l & (1<<cnt)))
|
|
break;
|
|
if (!cnt) {
|
|
work32l = dcal_data32_0;
|
|
work32h = dcal_data32_2;
|
|
cnt = 32;
|
|
}
|
|
if (!bit) break;
|
|
}
|
|
if (!bit) {
|
|
break;
|
|
}
|
|
data32 = ((bit%8) << 1);
|
|
if (work32h & (1<<cnt))
|
|
data32 += 1;
|
|
if (data32 < 4) {
|
|
if (!edge) {
|
|
edge = 1;
|
|
}
|
|
else {
|
|
if (edge != 1) {
|
|
data32 = 0x0f;
|
|
}
|
|
}
|
|
}
|
|
if (data32 > 12) {
|
|
if (!edge) {
|
|
edge = 2;
|
|
}
|
|
else {
|
|
if (edge != 2) {
|
|
data32 = 0x00;
|
|
}
|
|
}
|
|
}
|
|
data32r += data32;
|
|
}
|
|
}
|
|
work32l = dcal_data32_0;
|
|
work32h = dcal_data32_2;
|
|
recen = data32r;
|
|
recen += 3;
|
|
recen = recen>>2;
|
|
for (cnt = 5; cnt < 24;) {
|
|
for (;; cnt++)
|
|
if (!(work32l & (1<<cnt)))
|
|
break;
|
|
for (;; cnt++) {
|
|
if (work32l & (1<<cnt))
|
|
break;
|
|
}
|
|
data32 = (((cnt-1)%8)<<1);
|
|
if (work32h & (1<<(cnt-1))) {
|
|
data32++;
|
|
}
|
|
/* test for frame edge cross overs */
|
|
if ((edge == 1) && (data32 > 12) &&
|
|
(((recen+16)-data32) < 3)) {
|
|
data32 = 0;
|
|
cnt += 2;
|
|
}
|
|
if ((edge == 2) && (data32 < 4) &&
|
|
((recen - data32) > 12)) {
|
|
data32 = 0x0f;
|
|
cnt -= 2;
|
|
}
|
|
if (((recen+3) >= data32) && ((recen-3) <= data32))
|
|
break;
|
|
}
|
|
cnt--;
|
|
cnt /= 8;
|
|
cnt--;
|
|
if (recen & 1)
|
|
recen+=2;
|
|
recen >>= 1;
|
|
recen += (cnt*8);
|
|
recen+=2; /* this is not in the spec, but matches
|
|
the factory output, and has less failure */
|
|
recen <<= (dimm/2) * 8;
|
|
if (!(dimm & 1)) {
|
|
recena |= recen;
|
|
}
|
|
else {
|
|
recenb |= recen;
|
|
}
|
|
}
|
|
}
|
|
/* Check for Errata problem */
|
|
for (i = cnt = 0; i < 32; i+=8) {
|
|
if (((recena>>i)&0x0f)>7) {
|
|
cnt+= 0x101;
|
|
}
|
|
else {
|
|
if ((recena>>i)&0x0f) {
|
|
cnt++;
|
|
}
|
|
}
|
|
}
|
|
if (cnt & 0x0f00) {
|
|
cnt = (cnt & 0x0f) - (cnt>>16);
|
|
if (cnt > 1) {
|
|
for (i = 0; i < 32; i+=8) {
|
|
if (((recena>>i)&0x0f)>7) {
|
|
recena &= ~(0x0f<<i);
|
|
recena |= (7<<i);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
for (i = 0; i < 32; i+=8) {
|
|
if (((recena>>i)&0x0f)<8) {
|
|
recena &= ~(0x0f<<i);
|
|
recena |= (8<<i);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for (i = cnt = 0; i < 32; i+=8) {
|
|
if (((recenb>>i)&0x0f)>7) {
|
|
cnt+= 0x101;
|
|
}
|
|
else {
|
|
if ((recenb>>i)&0x0f) {
|
|
cnt++;
|
|
}
|
|
}
|
|
}
|
|
if (cnt & 0x0f00) {
|
|
cnt = (cnt & 0x0f) - (cnt>>16);
|
|
if (cnt > 1) {
|
|
for (i = 0; i < 32; i+=8) {
|
|
if (((recenb>>i)&0x0f)>7) {
|
|
recenb &= ~(0x0f<<i);
|
|
recenb |= (7<<i);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
for (i = 0; i < 32; i+=8) {
|
|
if (((recenb>>8)&0x0f)<8) {
|
|
recenb &= ~(0x0f<<i);
|
|
recenb |= (8<<i);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
printk(BIOS_DEBUG, "Receive enable A = %08x, Receive enable B = %08x\n",
|
|
recena, recenb);
|
|
|
|
/* clear out the calibration area */
|
|
write32(MCBAR+DCALDATA+(16*4), 0x00000000);
|
|
write32(MCBAR+DCALDATA+(17*4), 0x00000000);
|
|
write32(MCBAR+DCALDATA+(18*4), 0x00000000);
|
|
write32(MCBAR+DCALDATA+(19*4), 0x00000000);
|
|
|
|
/* No command */
|
|
write32(MCBAR+DCALCSR, 0x0000000f);
|
|
|
|
write32(MCBAR+0x150, recena);
|
|
write32(MCBAR+0x154, recenb);
|
|
}
|
|
|
|
static void cache_ramstage(void)
|
|
{
|
|
/* Enable cached access to RAM in the range 0M to CACHE_TMP_RAMTOP */
|
|
disable_cache();
|
|
set_var_mtrr(0, 0x00000000, CACHE_TMP_RAMTOP, MTRR_TYPE_WRBACK);
|
|
enable_cache();
|
|
}
|
|
|
|
static void sdram_enable(int controllers, const struct mem_controller *ctrl)
|
|
{
|
|
int i;
|
|
int cs;
|
|
int cnt;
|
|
u8 *cntptr;
|
|
int cas_latency;
|
|
long mask;
|
|
u32 drc;
|
|
u32 data32;
|
|
u32 mode_reg;
|
|
const u32 *iptr;
|
|
u16 data16;
|
|
static const struct {
|
|
u32 clkgr[4];
|
|
} gearing [] = {
|
|
/* FSB 100 */
|
|
{{ 0x00000010, 0x00000000, 0x00000002, 0x00000001}},
|
|
/* FSB 133 */
|
|
{{ 0x00000120, 0x00000000, 0x00000032, 0x00000010}},
|
|
/* FSB 167 */
|
|
{{ 0x00154320, 0x00000000, 0x00065432, 0x00010000}},
|
|
/* FSB 200 DIMM 400 */
|
|
{{ 0x00000001, 0x00000000, 0x00000001, 0x00000000}},
|
|
};
|
|
|
|
static const u32 dqs_data[] = {
|
|
0xffffffff, 0xffffffff, 0x000000ff,
|
|
0xffffffff, 0xffffffff, 0x000000ff,
|
|
0xffffffff, 0xffffffff, 0x000000ff,
|
|
0xffffffff, 0xffffffff, 0x000000ff,
|
|
0xffffffff, 0xffffffff, 0x000000ff,
|
|
0xffffffff, 0xffffffff, 0x000000ff,
|
|
0xffffffff, 0xffffffff, 0x000000ff,
|
|
0xffffffff, 0xffffffff, 0x000000ff};
|
|
|
|
mask = spd_detect_dimms(ctrl);
|
|
printk(BIOS_DEBUG, "Starting SDRAM Enable\n");
|
|
|
|
/* 0x80 */
|
|
pci_write_config32(ctrl->f0, DRM,
|
|
0x00410000 | CONFIG_DIMM_MAP_LOGICAL);
|
|
/* set dram type and Front Side Bus freq. */
|
|
drc = spd_set_dram_controller_mode(ctrl, mask);
|
|
if ( drc == 0) {
|
|
die("Error calculating DRC\n");
|
|
}
|
|
data32 = drc & ~(3 << 20); /* clear ECC mode */
|
|
data32 = data32 & ~(7 << 8); /* clear refresh rates */
|
|
data32 = data32 | (1 << 5); /* temp turn off ODT */
|
|
/* Set gearing, then dram controller mode */
|
|
/* drc bits 3:2 = FSB speed */
|
|
for (iptr = gearing[(drc>>2)&3].clkgr,cnt = 0; cnt < 4; cnt++) {
|
|
pci_write_config32(ctrl->f0, 0xa0+(cnt*4), iptr[cnt]);
|
|
}
|
|
/* 0x7c DRC */
|
|
pci_write_config32(ctrl->f0, DRC, data32);
|
|
|
|
/* turn the clocks on */
|
|
/* 0x8c CKDIS */
|
|
pci_write_config16(ctrl->f0, CKDIS, 0x0000);
|
|
|
|
/* 0x9a DDRCSR Take subsystem out of idle */
|
|
data16 = pci_read_config16(ctrl->f0, DDRCSR);
|
|
data16 &= ~(7 << 12);
|
|
data16 |= (1 << 12);
|
|
pci_write_config16(ctrl->f0, DDRCSR, data16);
|
|
|
|
/* program row size DRB */
|
|
spd_set_ram_size(ctrl, mask);
|
|
|
|
/* program page size DRA */
|
|
spd_set_row_attributes(ctrl, mask);
|
|
|
|
/* program DRT timing values */
|
|
cas_latency = spd_set_drt_attributes(ctrl, mask, drc);
|
|
|
|
for (i = 0; i < 8; i+=2) { /* loop through each dimm to test */
|
|
printk(BIOS_DEBUG, "DIMM %08x\n", i);
|
|
/* Apply NOP */
|
|
do_delay();
|
|
|
|
write32(MCBAR+DCALCSR, (0x01000000 | (i<<20)));
|
|
write32(MCBAR+DCALCSR, (0x81000000 | (i<<20)));
|
|
|
|
do data32 = read32(MCBAR+DCALCSR);
|
|
while (data32 & 0x80000000);
|
|
}
|
|
|
|
/* Apply NOP */
|
|
do_delay();
|
|
|
|
for (cs = 0; cs < 8; cs+=2) {
|
|
write32(MCBAR + DCALCSR, (0x81000000 | (cs<<20)));
|
|
do data32 = read32(MCBAR+DCALCSR);
|
|
while (data32 & 0x80000000);
|
|
}
|
|
|
|
/* Precharge all banks */
|
|
do_delay();
|
|
for (cs = 0; cs < 8; cs+=2) {
|
|
write32(MCBAR+DCALADDR, 0x04000000);
|
|
write32(MCBAR+DCALCSR, (0x81000002 | (cs<<20)));
|
|
do data32 = read32(MCBAR+DCALCSR);
|
|
while (data32 & 0x80000000);
|
|
}
|
|
|
|
/* EMRS dll's enabled */
|
|
do_delay();
|
|
for (cs = 0; cs < 8; cs+=2) {
|
|
/* fixme hard code AL additive latency */
|
|
write32(MCBAR+DCALADDR, 0x0b940001);
|
|
write32(MCBAR+DCALCSR, (0x81000003 | (cs<<20)));
|
|
do data32 = read32(MCBAR+DCALCSR);
|
|
while (data32 & 0x80000000);
|
|
}
|
|
/* MRS reset dll's */
|
|
do_delay();
|
|
if (cas_latency == 30)
|
|
mode_reg = 0x053a0000;
|
|
else
|
|
mode_reg = 0x054a0000;
|
|
for (cs = 0; cs < 8; cs+=2) {
|
|
write32(MCBAR+DCALADDR, mode_reg);
|
|
write32(MCBAR+DCALCSR, (0x81000003 | (cs<<20)));
|
|
do data32 = read32(MCBAR+DCALCSR);
|
|
while (data32 & 0x80000000);
|
|
}
|
|
|
|
/* Precharge all banks */
|
|
do_delay();
|
|
do_delay();
|
|
do_delay();
|
|
for (cs = 0; cs < 8; cs+=2) {
|
|
write32(MCBAR+DCALADDR, 0x04000000);
|
|
write32(MCBAR+DCALCSR, (0x81000002 | (cs<<20)));
|
|
do data32 = read32(MCBAR+DCALCSR);
|
|
while (data32 & 0x80000000);
|
|
}
|
|
|
|
/* Do 2 refreshes */
|
|
do_delay();
|
|
for (cs = 0; cs < 8; cs+=2) {
|
|
write32(MCBAR+DCALCSR, (0x81000001 | (cs<<20)));
|
|
do data32 = read32(MCBAR+DCALCSR);
|
|
while (data32 & 0x80000000);
|
|
}
|
|
do_delay();
|
|
for (cs = 0; cs < 8; cs+=2) {
|
|
write32(MCBAR+DCALCSR, (0x81000001 | (cs<<20)));
|
|
do data32 = read32(MCBAR+DCALCSR);
|
|
while (data32 & 0x80000000);
|
|
}
|
|
do_delay();
|
|
/* for good luck do 6 more */
|
|
for (cs = 0; cs < 8; cs+=2) {
|
|
write32(MCBAR+DCALCSR, (0x81000001 | (cs<<20)));
|
|
}
|
|
do_delay();
|
|
for (cs = 0; cs < 8; cs+=2) {
|
|
write32(MCBAR+DCALCSR, (0x81000001 | (cs<<20)));
|
|
}
|
|
do_delay();
|
|
for (cs = 0; cs < 8; cs+=2) {
|
|
write32(MCBAR+DCALCSR, (0x81000001 | (cs<<20)));
|
|
}
|
|
do_delay();
|
|
for (cs = 0; cs < 8; cs+=2) {
|
|
write32(MCBAR+DCALCSR, (0x81000001 | (cs<<20)));
|
|
}
|
|
do_delay();
|
|
for (cs = 0; cs < 8; cs+=2) {
|
|
write32(MCBAR+DCALCSR, (0x81000001 | (cs<<20)));
|
|
}
|
|
do_delay();
|
|
for (cs = 0; cs < 8; cs+=2) {
|
|
write32(MCBAR+DCALCSR, (0x81000001 | (cs<<20)));
|
|
}
|
|
do_delay();
|
|
/* MRS reset dll's normal */
|
|
do_delay();
|
|
for (cs = 0; cs < 8; cs+=2) {
|
|
write32(MCBAR+DCALADDR, (mode_reg & ~(1<<24)));
|
|
write32(MCBAR+DCALCSR, (0x81000003 | (cs<<20)));
|
|
do data32 = read32(MCBAR+DCALCSR);
|
|
while (data32 & 0x80000000);
|
|
}
|
|
|
|
/* Do only if DDR2 EMRS dll's enabled */
|
|
do_delay();
|
|
for (cs = 0; cs < 8; cs+=2) {
|
|
write32(MCBAR+DCALADDR, (0x0b940001));
|
|
write32(MCBAR+DCALCSR, (0x81000003 | (cs<<20)));
|
|
do data32 = read32(MCBAR+DCALCSR);
|
|
while (data32 & 0x80000000);
|
|
}
|
|
|
|
do_delay();
|
|
/* No command */
|
|
write32(MCBAR+DCALCSR, 0x0000000f);
|
|
|
|
/* enable on dimm termination */
|
|
set_on_dimm_termination_enable(ctrl);
|
|
|
|
/* receive enable calibration */
|
|
set_receive_enable(ctrl);
|
|
|
|
/* DQS */
|
|
pci_write_config32(ctrl->f0, 0x94, 0x3904aa00);
|
|
for (i = 0, cntptr = (MCBAR+0x200); i < 24; i++, cnt+=4) {
|
|
write32(cntptr, dqs_data[i]);
|
|
}
|
|
pci_write_config32(ctrl->f0, 0x94, 0x3900aa00);
|
|
|
|
/* Enable refresh */
|
|
/* 0x7c DRC */
|
|
data32 = drc & ~(3 << 20); /* clear ECC mode */
|
|
pci_write_config32(ctrl->f0, DRC, data32);
|
|
write32(MCBAR+DCALCSR, 0x0008000f);
|
|
|
|
/* clear memory and init ECC */
|
|
printk(BIOS_DEBUG, "Clearing memory\n");
|
|
for (i = 0; i < 64; i+=4) {
|
|
write32(MCBAR+DCALDATA+i, 0x00000000);
|
|
}
|
|
|
|
for (cs = 0; cs < 8; cs+=2) {
|
|
write32(MCBAR+DCALCSR, (0x810831d8 | (cs<<20)));
|
|
do data32 = read32(MCBAR+DCALCSR);
|
|
while (data32 & 0x80000000);
|
|
}
|
|
|
|
/* Bring memory subsystem on line */
|
|
data32 = pci_read_config32(ctrl->f0, 0x98);
|
|
data32 |= (1 << 31);
|
|
pci_write_config32(ctrl->f0, 0x98, data32);
|
|
/* wait for completion */
|
|
printk(BIOS_DEBUG, "Waiting for mem complete\n");
|
|
while (1) {
|
|
data32 = pci_read_config32(ctrl->f0, 0x98);
|
|
if ( (data32 & (1<<31)) == 0)
|
|
break;
|
|
}
|
|
printk(BIOS_DEBUG, "Done\n");
|
|
|
|
/* Set initialization complete */
|
|
/* 0x7c DRC */
|
|
drc |= (1 << 29);
|
|
data32 = drc & ~(3 << 20); /* clear ECC mode */
|
|
pci_write_config32(ctrl->f0, DRC, data32);
|
|
|
|
/* Set the ecc mode */
|
|
pci_write_config32(ctrl->f0, DRC, drc);
|
|
|
|
/* Enable memory scrubbing */
|
|
/* 0x52 MCHSCRB */
|
|
data16 = pci_read_config16(ctrl->f0, MCHSCRB);
|
|
data16 &= ~0x0f;
|
|
data16 |= ((2 << 2) | (2 << 0));
|
|
pci_write_config16(ctrl->f0, MCHSCRB, data16);
|
|
|
|
/* The memory is now setup, use it */
|
|
if (!IS_ENABLED(CONFIG_CACHE_AS_RAM))
|
|
cache_ramstage();
|
|
}
|