Used commands: perl -i -p0e 's|\/\*[\s*]*.*is free software[:;][\s*]*you[\s*]*can[\s*]*redistribute[\s*]*it[\s*]*and\/or[\s*]*modify[\s*]*it[\s*]*under[\s*]*the[\s*]*terms[\s*]*of[\s*]*the[\s*]*GNU[\s*]*General[\s*]*Public[\s*]*License[\s*]*as[\s*]*published[\s*]*by[\s*]*the[\s*]*Free[\s*]*Software[\s*]*Foundation[;,][\s*]*version[\s*]*2[\s*]*of[\s*]*the[\s*]*License.[\s*]*This[\s*]*program[\s*]*is[\s*]*distributed[\s*]*in[\s*]*the[\s*]*hope[\s*]*that[\s*]*it[\s*]*will[\s*]*be[\s*]*useful,[\s*]*but[\s*]*WITHOUT[\s*]*ANY[\s*]*WARRANTY;[\s*]*without[\s*]*even[\s*]*the[\s*]*implied[\s*]*warranty[\s*]*of[\s*]*MERCHANTABILITY[\s*]*or[\s*]*FITNESS[\s*]*FOR[\s*]*A[\s*]*PARTICULAR[\s*]*PURPOSE.[\s*]*See[\s*]*the[\s*]*GNU[\s*]*General[\s*]*Public[\s*]*License[\s*]*for[\s*]*more[\s*]*details.[\s*]*\*\/|/* SPDX-License-Identifier: GPL-2.0-only */|' $(cat filelist) perl -i -p0e 's|This[\s*]*program[\s*]*is[\s*]*free[\s*]*software[:;][\s*]*you[\s*]*can[\s*]*redistribute[\s*]*it[\s*]*and/or[\s*]*modify[\s*]*it[\s*]*under[\s*]*the[\s*]*terms[\s*]*of[\s*]*the[\s*]*GNU[\s*]*General[\s*]*Public[\s*]*License[\s*]*as[\s*]*published[\s*]*by[\s*]*the[\s*]*Free[\s*]*Software[\s*]*Foundation[;,][\s*]*either[\s*]*version[\s*]*2[\s*]*of[\s*]*the[\s*]*License,[\s*]*or[\s*]*.at[\s*]*your[\s*]*option.*[\s*]*any[\s*]*later[\s*]*version.[\s*]*This[\s*]*program[\s*]*is[\s*]*distributed[\s*]*in[\s*]*the[\s*]*hope[\s*]*that[\s*]*it[\s*]*will[\s*]*be[\s*]*useful,[\s*]*but[\s*]*WITHOUT[\s*]*ANY[\s*]*WARRANTY;[\s*]*without[\s*]*even[\s*]*the[\s*]*implied[\s*]*warranty[\s*]*of[\s*]*MERCHANTABILITY[\s*]*or[\s*]*FITNESS[\s*]*FOR[\s*]*A[\s*]*PARTICULAR[\s*]*PURPOSE.[\s*]*See[\s*]*the[\s*]*GNU[\s*]*General[\s*]*Public[\s*]*License[\s*]*for[\s*]*more[\s*]*details.[\s*]*\*\/|/* SPDX-License-Identifier: GPL-2.0-or-later */|' $(cat filelist) perl -i -p0e 's|\/\*[\s*]*.*This[\s*#]*program[\s*#]*is[\s*#]*free[\s*#]*software[;:,][\s*#]*you[\s*#]*can[\s*#]*redistribute[\s*#]*it[\s*#]*and/or[\s*#]*modify[\s*#]*it[\s*#]*under[\s*#]*the[\s*#]*terms[\s*#]*of[\s*#]*the[\s*#]*GNU[\s*#]*General[\s*#]*Public[\s*#]*License[\s*#]*as[\s*#]*published[\s*#]*by[\s*#]*the[\s*#]*Free[\s*#]*Software[\s*#]*Foundation[;:,][\s*#]*either[\s*#]*version[\s*#]*3[\s*#]*of[\s*#]*the[\s*#]*License[;:,][\s*#]*or[\s*#]*.at[\s*#]*your[\s*#]*option.*[\s*#]*any[\s*#]*later[\s*#]*version.[\s*#]*This[\s*#]*program[\s*#]*is[\s*#]*distributed[\s*#]*in[\s*#]*the[\s*#]*hope[\s*#]*that[\s*#]*it[\s*#]*will[\s*#]*be[\s*#]*useful[;:,][\s*#]*but[\s*#]*WITHOUT[\s*#]*ANY[\s*#]*WARRANTY[;:,][\s*#]*without[\s*#]*even[\s*#]*the[\s*#]*implied[\s*#]*warranty[\s*#]*of[\s*#]*MERCHANTABILITY[\s*#]*or[\s*#]*FITNESS[\s*#]*FOR[\s*#]*A[\s*#]*PARTICULAR[\s*#]*PURPOSE.[\s*#]*See[\s*#]*the[\s*#]*GNU[\s*#]*General[\s*#]*Public[\s*#]*License[\s*#]*for[\s*#]*more[\s*#]*details.[\s*]*\*\/|/* SPDX-License-Identifier: GPL-3.0-or-later */|' $(cat filelist) perl -i -p0e 's|(\#\#*)[\w]*.*is free software[:;][\#\s]*you[\#\s]*can[\#\s]*redistribute[\#\s]*it[\#\s]*and\/or[\#\s]*modify[\#\s]*it[\s\#]*under[\s \#]*the[\s\#]*terms[\s\#]*of[\s\#]*the[\s\#]*GNU[\s\#]*General[\s\#]*Public[\s\#]*License[\s\#]*as[\s\#]*published[\s\#]*by[\s\#]*the[\s\#]*Free[\s\#]*Software[\s\#]*Foundation[;,][\s\#]*version[\s\#]*2[\s\#]*of[\s\#]*the[\s\#]*License.*[\s\#]*This[\s\#]*program[\s\#]*is[\s\#]*distributed[\s\#]*in[\s\#]*the[\s\#]*hope[\s\#]*that[\s\#]*it[\s\#]*will[\#\s]*be[\#\s]*useful,[\#\s]*but[\#\s]*WITHOUT[\#\s]*ANY[\#\s]*WARRANTY;[\#\s]*without[\#\s]*even[\#\s]*the[\#\s]*implied[\#\s]*warranty[\#\s]*of[\#\s]*MERCHANTABILITY[\#\s]*or[\#\s]*FITNESS[\#\s]*FOR[\#\s]*A[\#\s]*PARTICULAR[\#\s]*PURPOSE.[\#\s]*See[\#\s]*the[\#\s]*GNU[\#\s]*General[\#\s]*Public[\#\s]*License[\#\s]*for[\#\s]*more[\#\s]*details.\s(#* *\n)*|\1 SPDX-License-Identifier: GPL-2.0-only\n\n|' $(cat filelist) perl -i -p0e 's|(\#\#*)[\w*]*.*is free software[:;][\s*]*you[\s*]*can[\s*]*redistribute[\s*]*it[\s*]*and\/or[\s*]*modify[\s*]*it[\s*]*under[\s*]*the[\s*]*terms[\s*]*of[\s*]*the[\s*]*GNU[\s*]*General[\s*]*Public[\s*]*License[\s*]*as[\s*]*published[\s*]*by[\s*]*the[\s*]*Free[\s*]*Software[\s*]*Foundation[;,][\s*]*version[\s*]*2[\s*]*of[\s*]*the[\s*]*License.[\s*]*This[\s*]*program[\s*]*is[\s*]*distributed[\s*]*in[\s*]*the[\s*]*hope[\s*]*that[\s*]*it[\s*]*will[\s*]*be[\s*]*useful,[\s*]*but[\s*]*WITHOUT[\s*]*ANY[\s*]*WARRANTY;[\s*]*without[\s*]*even[\s*]*the[\s*]*implied[\s*]*warranty[\s*]*of[\s*]*MERCHANTABILITY[\s*]*or[\s*]*FITNESS[\s*]*FOR[\s*]*A[\s*]*PARTICULAR[\s*]*PURPOSE.[\s*]*See[\s*]*the[\s*]*GNU[\s*]*General[\s*]*Public[\s*]*License[\s*]*for[\s*]*more[\s*]*details.\s(#* *\n)*|\1 SPDX-License-Identifier: GPL-2.0-only\n\n|' $(cat filelist) Change-Id: I1008a63b804f355a916221ac994701d7584f60ff Signed-off-by: Patrick Georgi <pgeorgi@google.com> Signed-off-by: Elyes HAOUAS <ehaouas@noos.fr> Reviewed-on: https://review.coreboot.org/c/coreboot/+/41177 Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
		
			
				
	
	
		
			1459 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1459 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* elf header parsing */
 | |
| /* SPDX-License-Identifier: GPL-2.0-only */
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| 
 | |
| #include "elfparsing.h"
 | |
| #include "common.h"
 | |
| #include "cbfs.h"
 | |
| 
 | |
| /*
 | |
|  * Short form: this is complicated, but we've tried making it simple
 | |
|  * and we keep hitting problems with our ELF parsing.
 | |
|  *
 | |
|  * The ELF parsing situation has always been a bit tricky.  In fact,
 | |
|  * we (and most others) have been getting it wrong in small ways for
 | |
|  * years. Recently this has caused real trouble for the ARM V8 build.
 | |
|  * In this file we attempt to finally get it right for all variations
 | |
|  * of endian-ness and word size and target architectures and
 | |
|  * architectures we might get run on. Phew!. To do this we borrow a
 | |
|  * page from the FreeBSD NFS xdr model (see elf_ehdr and elf_phdr),
 | |
|  * the Plan 9 endianness functions (see xdr.c), and Go interfaces (see
 | |
|  * how we use buffer structs in this file). This ends up being a bit
 | |
|  * wordy at the lowest level, but greatly simplifies the elf parsing
 | |
|  * code and removes a common source of bugs, namely, forgetting to
 | |
|  * flip type endianness when referencing a struct member.
 | |
|  *
 | |
|  * ELF files can have four combinations of data layout: 32/64, and
 | |
|  * big/little endian.  Further, to add to the fun, depending on the
 | |
|  * word size, the size of the ELF structs varies. The coreboot SELF
 | |
|  * format is simpler in theory: it's supposed to be always BE, and the
 | |
|  * various struct members allow room for growth: the entry point is
 | |
|  * always 64 bits, for example, so the size of a SELF struct is
 | |
|  * constant, regardless of target architecture word size.  Hence, we
 | |
|  * need to do some transformation of the ELF files.
 | |
|  *
 | |
|  * A given architecture, realistically, only supports one of the four
 | |
|  * combinations at a time as the 'native' format. Hence, our code has
 | |
|  * been sprinkled with every variation of [nh]to[hn][sll] over the
 | |
|  * years. We've never quite gotten it all right, however, and a quick
 | |
|  * pass over this code revealed another bug.  It's all worked because,
 | |
|  * until now, all the working platforms that had CBFS were 32 LE. Even then,
 | |
|  * however, bugs crept in: we recently realized that we're not
 | |
|  * transforming the entry point to big format when we store into the
 | |
|  * SELF image.
 | |
|  *
 | |
|  * The problem is essentially an XDR operation:
 | |
|  * we have something in a foreign format and need to transform it.
 | |
|  * It's most like XDR because:
 | |
|  * 1) the byte order can be wrong
 | |
|  * 2) the word size can be wrong
 | |
|  * 3) the size of elements in the stream depends on the value
 | |
|  *    of other elements in the stream
 | |
|  * it's not like XDR because:
 | |
|  * 1) the byte order can be right
 | |
|  * 2) the word size can be right
 | |
|  * 3) the struct members are all on a natural alignment
 | |
|  *
 | |
|  * Hence, this new approach.  To cover word size issues, we *always*
 | |
|  * transform the two structs we care about, the file header and
 | |
|  * program header, into a native struct in the 64 bit format:
 | |
|  *
 | |
|  * [32,little] -> [Elf64_Ehdr, Elf64_Phdr]
 | |
|  * [64,little] -> [Elf64_Ehdr, Elf64_Phdr]
 | |
|  * [32,big] -> [Elf64_Ehdr, Elf64_Phdr]
 | |
|  * [64,big] -> [Elf64_Ehdr, Elf64_Phdr]
 | |
|  * Then we just use those structs, and all the need for inline ntoh* goes away,
 | |
|  * as well as all the chances for error.
 | |
|  * This works because all the SELF structs have fields large enough for
 | |
|  * the largest ELF 64 struct members, and all the Elf64 struct members
 | |
|  * are at least large enough for all ELF 32 struct members.
 | |
|  * We end up with one function to do all our ELF parsing, and two functions
 | |
|  * to transform the headers. For the put case, we also have
 | |
|  * XDR functions, and hopefully we'll never again spend 5 years with the
 | |
|  * wrong endian-ness on an output value :-)
 | |
|  * This should work for all word sizes and endianness we hope to target.
 | |
|  * I *really* don't want to be here for 128 bit addresses.
 | |
|  *
 | |
|  * The parse functions are called with a pointer to an input buffer
 | |
|  * struct. One might ask: are there enough bytes in the input buffer?
 | |
|  * We know there need to be at *least* sizeof(Elf32_Ehdr) +
 | |
|  * sizeof(Elf32_Phdr) bytes. Realistically, there has to be some data
 | |
|  * too.  If we start to worry, though we have not in the past, we
 | |
|  * might apply the simple test: the input buffer needs to be at least
 | |
|  * sizeof(Elf64_Ehdr) + sizeof(Elf64_Phdr) bytes because, even if it's
 | |
|  * ELF 32, there's got to be *some* data! This is not theoretically
 | |
|  * accurate but it is actually good enough in practice. It allows the
 | |
|  * header transformation code to ignore the possibility of underrun.
 | |
|  *
 | |
|  * We also must accommodate different ELF files, and hence formats,
 | |
|  * in the same cbfs invocation. We might load a 64-bit payload
 | |
|  * on a 32-bit machine; we might even have a mixed armv7/armv8
 | |
|  * SOC or even a system with an x86/ARM!
 | |
|  *
 | |
|  * A possibly problematic (though unlikely to be so) assumption
 | |
|  * is that we expect the BIOS to remain in the lowest 32 bits
 | |
|  * of the physical address space. Since ARMV8 has standardized
 | |
|  * on that, and x86_64 also has, this seems a safe assumption.
 | |
|  *
 | |
|  * To repeat, ELF structs are different sizes because ELF struct
 | |
|  * members are different sizes, depending on values in the ELF file
 | |
|  * header. For this we use the functions defined in xdr.c, which
 | |
|  * consume bytes, convert the endianness, and advance the data pointer
 | |
|  * in the buffer struct.
 | |
|  */
 | |
| 
 | |
| 
 | |
| static int iself(const void *input)
 | |
| {
 | |
| 	const Elf32_Ehdr *ehdr = input;
 | |
| 	return !memcmp(ehdr->e_ident, ELFMAG, 4);
 | |
| }
 | |
| 
 | |
| /* Get the ident array, so we can figure out
 | |
|  * endian-ness, word size, and in future other useful
 | |
|  * parameters
 | |
|  */
 | |
| static void
 | |
| elf_eident(struct buffer *input, Elf64_Ehdr *ehdr)
 | |
| {
 | |
| 	bgets(input, ehdr->e_ident, sizeof(ehdr->e_ident));
 | |
| }
 | |
| 
 | |
| 
 | |
| static int
 | |
| check_size(const struct buffer *b, size_t offset, size_t size, const char *desc)
 | |
| {
 | |
| 	if (size == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (offset >= buffer_size(b) || (offset + size) > buffer_size(b)) {
 | |
| 		ERROR("The file is not large enough for the '%s'. "
 | |
| 		      "%zu bytes @ offset %zu, input %zu bytes.\n",
 | |
| 		      desc, size, offset, buffer_size(b));
 | |
| 		return -1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| elf_ehdr(struct buffer *input, Elf64_Ehdr *ehdr, struct xdr *xdr, int bit64)
 | |
| {
 | |
| 	ehdr->e_type = xdr->get16(input);
 | |
| 	ehdr->e_machine = xdr->get16(input);
 | |
| 	ehdr->e_version = xdr->get32(input);
 | |
| 	if (bit64){
 | |
| 		ehdr->e_entry = xdr->get64(input);
 | |
| 		ehdr->e_phoff = xdr->get64(input);
 | |
| 		ehdr->e_shoff = xdr->get64(input);
 | |
| 	} else {
 | |
| 		ehdr->e_entry = xdr->get32(input);
 | |
| 		ehdr->e_phoff = xdr->get32(input);
 | |
| 		ehdr->e_shoff = xdr->get32(input);
 | |
| 	}
 | |
| 	ehdr->e_flags = xdr->get32(input);
 | |
| 	ehdr->e_ehsize = xdr->get16(input);
 | |
| 	ehdr->e_phentsize = xdr->get16(input);
 | |
| 	ehdr->e_phnum = xdr->get16(input);
 | |
| 	ehdr->e_shentsize = xdr->get16(input);
 | |
| 	ehdr->e_shnum = xdr->get16(input);
 | |
| 	ehdr->e_shstrndx = xdr->get16(input);
 | |
| }
 | |
| 
 | |
| static void
 | |
| elf_phdr(struct buffer *pinput, Elf64_Phdr *phdr,
 | |
| 	 int entsize, struct xdr *xdr, int bit64)
 | |
| {
 | |
| 	/*
 | |
| 	 * The entsize need not be sizeof(*phdr).
 | |
| 	 * Hence, it is easier to keep a copy of the input,
 | |
| 	 * as the xdr functions may not advance the input
 | |
| 	 * pointer the full entsize; rather than get tricky
 | |
| 	 * we just advance it below.
 | |
| 	 */
 | |
| 	struct buffer input;
 | |
| 	buffer_clone(&input, pinput);
 | |
| 	if (bit64){
 | |
| 		phdr->p_type = xdr->get32(&input);
 | |
| 		phdr->p_flags = xdr->get32(&input);
 | |
| 		phdr->p_offset = xdr->get64(&input);
 | |
| 		phdr->p_vaddr = xdr->get64(&input);
 | |
| 		phdr->p_paddr = xdr->get64(&input);
 | |
| 		phdr->p_filesz = xdr->get64(&input);
 | |
| 		phdr->p_memsz = xdr->get64(&input);
 | |
| 		phdr->p_align = xdr->get64(&input);
 | |
| 	} else {
 | |
| 		phdr->p_type = xdr->get32(&input);
 | |
| 		phdr->p_offset = xdr->get32(&input);
 | |
| 		phdr->p_vaddr = xdr->get32(&input);
 | |
| 		phdr->p_paddr = xdr->get32(&input);
 | |
| 		phdr->p_filesz = xdr->get32(&input);
 | |
| 		phdr->p_memsz = xdr->get32(&input);
 | |
| 		phdr->p_flags = xdr->get32(&input);
 | |
| 		phdr->p_align = xdr->get32(&input);
 | |
| 	}
 | |
| 	buffer_seek(pinput, entsize);
 | |
| }
 | |
| 
 | |
| static void
 | |
| elf_shdr(struct buffer *pinput, Elf64_Shdr *shdr,
 | |
| 	 int entsize, struct xdr *xdr, int bit64)
 | |
| {
 | |
| 	/*
 | |
| 	 * The entsize need not be sizeof(*shdr).
 | |
| 	 * Hence, it is easier to keep a copy of the input,
 | |
| 	 * as the xdr functions may not advance the input
 | |
| 	 * pointer the full entsize; rather than get tricky
 | |
| 	 * we just advance it below.
 | |
| 	 */
 | |
| 	struct buffer input = *pinput;
 | |
| 	if (bit64){
 | |
| 		shdr->sh_name = xdr->get32(&input);
 | |
| 		shdr->sh_type = xdr->get32(&input);
 | |
| 		shdr->sh_flags = xdr->get64(&input);
 | |
| 		shdr->sh_addr = xdr->get64(&input);
 | |
| 		shdr->sh_offset = xdr->get64(&input);
 | |
| 		shdr->sh_size= xdr->get64(&input);
 | |
| 		shdr->sh_link = xdr->get32(&input);
 | |
| 		shdr->sh_info = xdr->get32(&input);
 | |
| 		shdr->sh_addralign = xdr->get64(&input);
 | |
| 		shdr->sh_entsize = xdr->get64(&input);
 | |
| 	} else {
 | |
| 		shdr->sh_name = xdr->get32(&input);
 | |
| 		shdr->sh_type = xdr->get32(&input);
 | |
| 		shdr->sh_flags = xdr->get32(&input);
 | |
| 		shdr->sh_addr = xdr->get32(&input);
 | |
| 		shdr->sh_offset = xdr->get32(&input);
 | |
| 		shdr->sh_size = xdr->get32(&input);
 | |
| 		shdr->sh_link = xdr->get32(&input);
 | |
| 		shdr->sh_info = xdr->get32(&input);
 | |
| 		shdr->sh_addralign = xdr->get32(&input);
 | |
| 		shdr->sh_entsize = xdr->get32(&input);
 | |
| 	}
 | |
| 	buffer_seek(pinput, entsize);
 | |
| }
 | |
| 
 | |
| static int
 | |
| phdr_read(const struct buffer *in, struct parsed_elf *pelf,
 | |
|           struct xdr *xdr, int bit64)
 | |
| {
 | |
| 	struct buffer b;
 | |
| 	Elf64_Phdr *phdr;
 | |
| 	Elf64_Ehdr *ehdr;
 | |
| 	int i;
 | |
| 
 | |
| 	ehdr = &pelf->ehdr;
 | |
| 	/* cons up an input buffer for the headers.
 | |
| 	 * Note that the program headers can be anywhere,
 | |
| 	 * per the ELF spec, You'd be surprised how many ELF
 | |
| 	 * readers miss this little detail.
 | |
| 	 */
 | |
| 	buffer_splice(&b, in, ehdr->e_phoff,
 | |
| 		      (uint32_t)ehdr->e_phentsize * ehdr->e_phnum);
 | |
| 	if (check_size(in, ehdr->e_phoff, buffer_size(&b), "program headers"))
 | |
| 		return -1;
 | |
| 
 | |
| 	/* gather up all the phdrs.
 | |
| 	 * We do them all at once because there is more
 | |
| 	 * than one loop over all the phdrs.
 | |
| 	 */
 | |
| 	phdr = calloc(ehdr->e_phnum, sizeof(*phdr));
 | |
| 	for (i = 0; i < ehdr->e_phnum; i++) {
 | |
| 		DEBUG("Parsing segment %d\n", i);
 | |
| 		elf_phdr(&b, &phdr[i], ehdr->e_phentsize, xdr, bit64);
 | |
| 
 | |
| 		/* Ensure the contents are valid within the elf file. */
 | |
| 		if (check_size(in, phdr[i].p_offset, phdr[i].p_filesz,
 | |
| 	                  "segment contents")) {
 | |
| 			free(phdr);
 | |
| 			return -1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	pelf->phdr = phdr;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| shdr_read(const struct buffer *in, struct parsed_elf *pelf,
 | |
|           struct xdr *xdr, int bit64)
 | |
| {
 | |
| 	struct buffer b;
 | |
| 	Elf64_Shdr *shdr;
 | |
| 	Elf64_Ehdr *ehdr;
 | |
| 	int i;
 | |
| 
 | |
| 	ehdr = &pelf->ehdr;
 | |
| 
 | |
| 	/* cons up an input buffer for the section headers.
 | |
| 	 * Note that the section headers can be anywhere,
 | |
| 	 * per the ELF spec, You'd be surprised how many ELF
 | |
| 	 * readers miss this little detail.
 | |
| 	 */
 | |
| 	buffer_splice(&b, in, ehdr->e_shoff,
 | |
| 		      (uint32_t)ehdr->e_shentsize * ehdr->e_shnum);
 | |
| 	if (check_size(in, ehdr->e_shoff, buffer_size(&b), "section headers"))
 | |
| 		return -1;
 | |
| 
 | |
| 	/* gather up all the shdrs. */
 | |
| 	shdr = calloc(ehdr->e_shnum, sizeof(*shdr));
 | |
| 	for (i = 0; i < ehdr->e_shnum; i++) {
 | |
| 		DEBUG("Parsing section %d\n", i);
 | |
| 		elf_shdr(&b, &shdr[i], ehdr->e_shentsize, xdr, bit64);
 | |
| 	}
 | |
| 
 | |
| 	pelf->shdr = shdr;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| reloc_read(const struct buffer *in, struct parsed_elf *pelf,
 | |
|            struct xdr *xdr, int bit64)
 | |
| {
 | |
| 	struct buffer b;
 | |
| 	Elf64_Word i;
 | |
| 	Elf64_Ehdr *ehdr;
 | |
| 
 | |
| 	ehdr = &pelf->ehdr;
 | |
| 	pelf->relocs = calloc(ehdr->e_shnum, sizeof(Elf64_Rela *));
 | |
| 
 | |
| 	/* Allocate array for each section that contains relocation entries. */
 | |
| 	for (i = 0; i < ehdr->e_shnum; i++) {
 | |
| 		Elf64_Shdr *shdr;
 | |
| 		Elf64_Rela *rela;
 | |
| 		Elf64_Xword j;
 | |
| 		Elf64_Xword nrelocs;
 | |
| 		int is_rela;
 | |
| 
 | |
| 		shdr = &pelf->shdr[i];
 | |
| 
 | |
| 		/* Only process REL and RELA sections. */
 | |
| 		if (shdr->sh_type != SHT_REL && shdr->sh_type != SHT_RELA)
 | |
| 			continue;
 | |
| 
 | |
| 		DEBUG("Checking relocation section %u\n", i);
 | |
| 
 | |
| 		/* Ensure the section that relocations apply is a valid. */
 | |
| 		if (shdr->sh_info >= ehdr->e_shnum ||
 | |
| 		    shdr->sh_info == SHN_UNDEF) {
 | |
| 			ERROR("Relocations apply to an invalid section: %u\n",
 | |
| 			      shdr[i].sh_info);
 | |
| 			return -1;
 | |
| 		}
 | |
| 
 | |
| 		is_rela = shdr->sh_type == SHT_RELA;
 | |
| 
 | |
| 		/* Determine the number relocations in this section. */
 | |
| 		nrelocs = shdr->sh_size / shdr->sh_entsize;
 | |
| 
 | |
| 		pelf->relocs[i] = calloc(nrelocs, sizeof(Elf64_Rela));
 | |
| 
 | |
| 		buffer_splice(&b, in, shdr->sh_offset, shdr->sh_size);
 | |
| 		if (check_size(in, shdr->sh_offset, buffer_size(&b),
 | |
| 		               "relocation section")) {
 | |
| 			ERROR("Relocation section %u failed.\n", i);
 | |
| 			return -1;
 | |
| 		}
 | |
| 
 | |
| 		rela = pelf->relocs[i];
 | |
| 		for (j = 0; j < nrelocs; j++) {
 | |
| 			if (bit64) {
 | |
| 				rela->r_offset = xdr->get64(&b);
 | |
| 				rela->r_info = xdr->get64(&b);
 | |
| 				if (is_rela)
 | |
| 					rela->r_addend = xdr->get64(&b);
 | |
| 			} else {
 | |
| 				uint32_t r_info;
 | |
| 
 | |
| 				rela->r_offset = xdr->get32(&b);
 | |
| 				r_info = xdr->get32(&b);
 | |
| 				rela->r_info = ELF64_R_INFO(ELF32_R_SYM(r_info),
 | |
| 				                          ELF32_R_TYPE(r_info));
 | |
| 				if (is_rela)
 | |
| 					rela->r_addend = xdr->get32(&b);
 | |
| 			}
 | |
| 			rela++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int strtab_read(const struct buffer *in, struct parsed_elf *pelf)
 | |
| {
 | |
| 	Elf64_Ehdr *ehdr;
 | |
| 	Elf64_Word i;
 | |
| 
 | |
| 	ehdr = &pelf->ehdr;
 | |
| 
 | |
| 	if (ehdr->e_shstrndx >= ehdr->e_shnum) {
 | |
| 		ERROR("Section header string table index out of range: %d\n",
 | |
| 		      ehdr->e_shstrndx);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	/* For each section of type SHT_STRTAB create a symtab buffer. */
 | |
| 	pelf->strtabs = calloc(ehdr->e_shnum, sizeof(struct buffer *));
 | |
| 
 | |
| 	for (i = 0; i < ehdr->e_shnum; i++) {
 | |
| 		struct buffer *b;
 | |
| 		Elf64_Shdr *shdr = &pelf->shdr[i];
 | |
| 
 | |
| 		if (shdr->sh_type != SHT_STRTAB)
 | |
| 			continue;
 | |
| 
 | |
| 		b = calloc(1, sizeof(*b));
 | |
| 		buffer_splice(b, in, shdr->sh_offset, shdr->sh_size);
 | |
| 		if (check_size(in, shdr->sh_offset, buffer_size(b), "strtab")) {
 | |
| 			ERROR("STRTAB section not within bounds: %d\n", i);
 | |
| 			free(b);
 | |
| 			return -1;
 | |
| 		}
 | |
| 		pelf->strtabs[i] = b;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| symtab_read(const struct buffer *in, struct parsed_elf *pelf,
 | |
|             struct xdr *xdr, int bit64)
 | |
| {
 | |
| 	Elf64_Ehdr *ehdr;
 | |
| 	Elf64_Shdr *shdr;
 | |
| 	Elf64_Half shnum;
 | |
| 	Elf64_Xword i;
 | |
| 	Elf64_Xword nsyms;
 | |
| 	Elf64_Sym *sym;
 | |
| 	struct buffer b;
 | |
| 
 | |
| 	ehdr = &pelf->ehdr;
 | |
| 
 | |
| 	shdr = NULL;
 | |
| 	for (shnum = 0; shnum < ehdr->e_shnum; shnum++) {
 | |
| 		if (pelf->shdr[shnum].sh_type != SHT_SYMTAB)
 | |
| 			continue;
 | |
| 
 | |
| 		if (shdr != NULL) {
 | |
| 			ERROR("Multiple symbol sections found. %u and %u\n",
 | |
| 			      (unsigned int)(shdr - pelf->shdr), shnum);
 | |
| 			return -1;
 | |
| 		}
 | |
| 
 | |
| 		shdr = &pelf->shdr[shnum];
 | |
| 	}
 | |
| 
 | |
| 	if (shdr == NULL) {
 | |
| 		ERROR("No symbol table found.\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	buffer_splice(&b, in, shdr->sh_offset, shdr->sh_size);
 | |
| 	if (check_size(in, shdr->sh_offset, buffer_size(&b), "symtab"))
 | |
| 		return -1;
 | |
| 
 | |
| 	nsyms = shdr->sh_size / shdr->sh_entsize;
 | |
| 
 | |
| 	pelf->syms = calloc(nsyms, sizeof(Elf64_Sym));
 | |
| 
 | |
| 	for (i = 0; i < nsyms; i++) {
 | |
| 		sym = &pelf->syms[i];
 | |
| 
 | |
| 		if (bit64) {
 | |
| 			sym->st_name = xdr->get32(&b);
 | |
| 			sym->st_info = xdr->get8(&b);
 | |
| 			sym->st_other = xdr->get8(&b);
 | |
| 			sym->st_shndx = xdr->get16(&b);
 | |
| 			sym->st_value = xdr->get64(&b);
 | |
| 			sym->st_size = xdr->get64(&b);
 | |
| 		} else {
 | |
| 			sym->st_name = xdr->get32(&b);
 | |
| 			sym->st_value = xdr->get32(&b);
 | |
| 			sym->st_size = xdr->get32(&b);
 | |
| 			sym->st_info = xdr->get8(&b);
 | |
| 			sym->st_other = xdr->get8(&b);
 | |
| 			sym->st_shndx = xdr->get16(&b);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int parse_elf(const struct buffer *pinput, struct parsed_elf *pelf, int flags)
 | |
| {
 | |
| 	struct xdr *xdr = &xdr_le;
 | |
| 	int bit64 = 0;
 | |
| 	struct buffer input;
 | |
| 	Elf64_Ehdr *ehdr;
 | |
| 
 | |
| 	/* Zero out the parsed elf structure. */
 | |
| 	memset(pelf, 0, sizeof(*pelf));
 | |
| 
 | |
| 	if (!iself(buffer_get(pinput))) {
 | |
| 		DEBUG("The stage file is not in ELF format!\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	buffer_clone(&input, pinput);
 | |
| 	ehdr = &pelf->ehdr;
 | |
| 	elf_eident(&input, ehdr);
 | |
| 	bit64 = ehdr->e_ident[EI_CLASS] == ELFCLASS64;
 | |
| 	/* Assume LE unless we are sure otherwise.
 | |
| 	 * We're not going to take on the task of
 | |
| 	 * fully validating the ELF file. That way
 | |
| 	 * lies madness.
 | |
| 	 */
 | |
| 	if (ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
 | |
| 		xdr = &xdr_be;
 | |
| 
 | |
| 	elf_ehdr(&input, ehdr, xdr, bit64);
 | |
| 
 | |
| 	/* Relocation processing requires section header parsing. */
 | |
| 	if (flags & ELF_PARSE_RELOC)
 | |
| 		flags |= ELF_PARSE_SHDR;
 | |
| 
 | |
| 	/* String table processing requires section header parsing. */
 | |
| 	if (flags & ELF_PARSE_STRTAB)
 | |
| 		flags |= ELF_PARSE_SHDR;
 | |
| 
 | |
| 	/* Symbole table processing requires section header parsing. */
 | |
| 	if (flags & ELF_PARSE_SYMTAB)
 | |
| 		flags |= ELF_PARSE_SHDR;
 | |
| 
 | |
| 	if ((flags & ELF_PARSE_PHDR) && phdr_read(pinput, pelf, xdr, bit64))
 | |
| 		goto fail;
 | |
| 
 | |
| 	if ((flags & ELF_PARSE_SHDR) && shdr_read(pinput, pelf, xdr, bit64))
 | |
| 		goto fail;
 | |
| 
 | |
| 	if ((flags & ELF_PARSE_RELOC) && reloc_read(pinput, pelf, xdr, bit64))
 | |
| 		goto fail;
 | |
| 
 | |
| 	if ((flags & ELF_PARSE_STRTAB) && strtab_read(pinput, pelf))
 | |
| 		goto fail;
 | |
| 
 | |
| 	if ((flags & ELF_PARSE_SYMTAB) && symtab_read(pinput, pelf, xdr, bit64))
 | |
| 		goto fail;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| fail:
 | |
| 	parsed_elf_destroy(pelf);
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| void parsed_elf_destroy(struct parsed_elf *pelf)
 | |
| {
 | |
| 	Elf64_Half i;
 | |
| 
 | |
| 	free(pelf->phdr);
 | |
| 	free(pelf->shdr);
 | |
| 	if (pelf->relocs != NULL) {
 | |
| 		for (i = 0; i < pelf->ehdr.e_shnum; i++)
 | |
| 			free(pelf->relocs[i]);
 | |
| 	}
 | |
| 	free(pelf->relocs);
 | |
| 
 | |
| 	if (pelf->strtabs != NULL) {
 | |
| 		for (i = 0; i < pelf->ehdr.e_shnum; i++)
 | |
| 			free(pelf->strtabs[i]);
 | |
| 	}
 | |
| 	free(pelf->strtabs);
 | |
| 	free(pelf->syms);
 | |
| }
 | |
| 
 | |
| /* Get the headers from the buffer.
 | |
|  * Return -1 in the event of an error.
 | |
|  * The section headers are optional; if NULL
 | |
|  * is passed in for pshdr they won't be parsed.
 | |
|  * We don't (yet) make payload parsing optional
 | |
|  * because we've never seen a use case.
 | |
|  */
 | |
| int
 | |
| elf_headers(const struct buffer *pinput,
 | |
| 	    Elf64_Ehdr *ehdr,
 | |
| 	    Elf64_Phdr **pphdr,
 | |
| 	    Elf64_Shdr **pshdr)
 | |
| {
 | |
| 	struct parsed_elf pelf;
 | |
| 	int flags;
 | |
| 
 | |
| 	flags = ELF_PARSE_PHDR;
 | |
| 
 | |
| 	if (pshdr != NULL)
 | |
| 		flags |= ELF_PARSE_SHDR;
 | |
| 
 | |
| 	if (parse_elf(pinput, &pelf, flags))
 | |
| 		return -1;
 | |
| 
 | |
| 	/* Copy out the parsed elf header. */
 | |
| 	memcpy(ehdr, &pelf.ehdr, sizeof(*ehdr));
 | |
| 
 | |
| 	*pphdr = calloc(ehdr->e_phnum, sizeof(Elf64_Phdr));
 | |
| 	memcpy(*pphdr, pelf.phdr, ehdr->e_phnum * sizeof(Elf64_Phdr));
 | |
| 
 | |
| 	if (pshdr != NULL) {
 | |
| 		*pshdr = calloc(ehdr->e_shnum, sizeof(Elf64_Shdr));
 | |
| 		memcpy(*pshdr, pelf.shdr, ehdr->e_shnum * sizeof(Elf64_Shdr));
 | |
| 	}
 | |
| 
 | |
| 	parsed_elf_destroy(&pelf);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* ELF Writing  Support
 | |
|  *
 | |
|  * The ELF file is written according to the following layout:
 | |
|  * +------------------+
 | |
|  * |    ELF Header    |
 | |
|  * +------------------+
 | |
|  * | Section  Headers |
 | |
|  * +------------------+
 | |
|  * | Program  Headers |
 | |
|  * +------------------+
 | |
|  * |   String table   |
 | |
|  * +------------------+ <- 4KiB Aligned
 | |
|  * |     Code/Data    |
 | |
|  * +------------------+
 | |
|  */
 | |
| 
 | |
| void elf_init_eheader(Elf64_Ehdr *ehdr, int machine, int nbits, int endian)
 | |
| {
 | |
| 	memset(ehdr, 0, sizeof(*ehdr));
 | |
| 	ehdr->e_ident[EI_MAG0] = ELFMAG0;
 | |
| 	ehdr->e_ident[EI_MAG1] = ELFMAG1;
 | |
| 	ehdr->e_ident[EI_MAG2] = ELFMAG2;
 | |
| 	ehdr->e_ident[EI_MAG3] = ELFMAG3;
 | |
| 	ehdr->e_ident[EI_CLASS] = nbits;
 | |
| 	ehdr->e_ident[EI_DATA] = endian;
 | |
| 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
 | |
| 	ehdr->e_type = ET_EXEC;
 | |
| 	ehdr->e_machine = machine;
 | |
| 	ehdr->e_version = EV_CURRENT;
 | |
| 	if (nbits == ELFCLASS64) {
 | |
| 		ehdr->e_ehsize = sizeof(Elf64_Ehdr);
 | |
| 		ehdr->e_phentsize = sizeof(Elf64_Phdr);
 | |
| 		ehdr->e_shentsize = sizeof(Elf64_Shdr);
 | |
| 	} else {
 | |
| 		ehdr->e_ehsize = sizeof(Elf32_Ehdr);
 | |
| 		ehdr->e_phentsize = sizeof(Elf32_Phdr);
 | |
| 		ehdr->e_shentsize = sizeof(Elf32_Shdr);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Arbitrary maximum number of sections. */
 | |
| #define MAX_SECTIONS 16
 | |
| struct elf_writer_section {
 | |
| 	Elf64_Shdr shdr;
 | |
| 	struct buffer content;
 | |
| 	const char *name;
 | |
| };
 | |
| 
 | |
| struct elf_writer_string_table {
 | |
| 	size_t next_offset;
 | |
| 	size_t max_size;
 | |
| 	char *buffer;
 | |
| };
 | |
| 
 | |
| struct elf_writer_sym_table {
 | |
| 	size_t max_entries;
 | |
| 	size_t num_entries;
 | |
| 	Elf64_Sym *syms;
 | |
| };
 | |
| 
 | |
| #define MAX_REL_NAME 32
 | |
| struct elf_writer_rel {
 | |
| 	size_t num_entries;
 | |
| 	size_t max_entries;
 | |
| 	Elf64_Rel *rels;
 | |
| 	struct elf_writer_section *sec;
 | |
| 	char name[MAX_REL_NAME];
 | |
| };
 | |
| 
 | |
| struct elf_writer
 | |
| {
 | |
| 	Elf64_Ehdr ehdr;
 | |
| 	struct xdr *xdr;
 | |
| 	size_t num_secs;
 | |
| 	struct elf_writer_section sections[MAX_SECTIONS];
 | |
| 	struct elf_writer_rel rel_sections[MAX_SECTIONS];
 | |
| 	Elf64_Phdr *phdrs;
 | |
| 	struct elf_writer_section *shstrtab_sec;
 | |
| 	struct elf_writer_section *strtab_sec;
 | |
| 	struct elf_writer_section *symtab_sec;
 | |
| 	struct elf_writer_string_table strtab;
 | |
| 	struct elf_writer_sym_table symtab;
 | |
| 	int bit64;
 | |
| };
 | |
| 
 | |
| static size_t section_index(struct elf_writer *ew,
 | |
| 					struct elf_writer_section *sec)
 | |
| {
 | |
| 	return sec - &ew->sections[0];
 | |
| }
 | |
| 
 | |
| static struct elf_writer_section *last_section(struct elf_writer *ew)
 | |
| {
 | |
| 	return &ew->sections[ew->num_secs - 1];
 | |
| }
 | |
| 
 | |
| static void strtab_init(struct elf_writer *ew, size_t size)
 | |
| {
 | |
| 	struct buffer b;
 | |
| 	Elf64_Shdr shdr;
 | |
| 
 | |
| 	/* Start adding strings after the initial NUL entry. */
 | |
| 	ew->strtab.next_offset = 1;
 | |
| 	ew->strtab.max_size = size;
 | |
| 	ew->strtab.buffer = calloc(1, ew->strtab.max_size);
 | |
| 
 | |
| 	buffer_init(&b, NULL, ew->strtab.buffer, ew->strtab.max_size);
 | |
| 	memset(&shdr, 0, sizeof(shdr));
 | |
| 	shdr.sh_type = SHT_STRTAB;
 | |
| 	shdr.sh_addralign = 1;
 | |
| 	shdr.sh_size = ew->strtab.max_size;
 | |
| 	elf_writer_add_section(ew, &shdr, &b, ".strtab");
 | |
| 	ew->strtab_sec = last_section(ew);
 | |
| }
 | |
| 
 | |
| static void symtab_init(struct elf_writer *ew, size_t max_entries)
 | |
| {
 | |
| 	struct buffer b;
 | |
| 	Elf64_Shdr shdr;
 | |
| 
 | |
| 	memset(&shdr, 0, sizeof(shdr));
 | |
| 	shdr.sh_type = SHT_SYMTAB;
 | |
| 
 | |
| 	if (ew->bit64) {
 | |
| 		shdr.sh_entsize = sizeof(Elf64_Sym);
 | |
| 		shdr.sh_addralign = sizeof(Elf64_Addr);
 | |
| 	} else {
 | |
| 		shdr.sh_entsize = sizeof(Elf32_Sym);
 | |
| 		shdr.sh_addralign = sizeof(Elf32_Addr);
 | |
| 	}
 | |
| 
 | |
| 	shdr.sh_size = shdr.sh_entsize * max_entries;
 | |
| 
 | |
| 	ew->symtab.syms = calloc(max_entries, sizeof(Elf64_Sym));
 | |
| 	ew->symtab.num_entries = 1;
 | |
| 	ew->symtab.max_entries = max_entries;
 | |
| 
 | |
| 	buffer_init(&b, NULL, ew->symtab.syms, shdr.sh_size);
 | |
| 
 | |
| 	elf_writer_add_section(ew, &shdr, &b, ".symtab");
 | |
| 	ew->symtab_sec = last_section(ew);
 | |
| }
 | |
| 
 | |
| struct elf_writer *elf_writer_init(const Elf64_Ehdr *ehdr)
 | |
| {
 | |
| 	struct elf_writer *ew;
 | |
| 	Elf64_Shdr shdr;
 | |
| 	struct buffer empty_buffer;
 | |
| 
 | |
| 	if (!iself(ehdr))
 | |
| 		return NULL;
 | |
| 
 | |
| 	ew = calloc(1, sizeof(*ew));
 | |
| 
 | |
| 	memcpy(&ew->ehdr, ehdr, sizeof(ew->ehdr));
 | |
| 
 | |
| 	ew->bit64 = ew->ehdr.e_ident[EI_CLASS] == ELFCLASS64;
 | |
| 
 | |
| 	/* Set the endinan ops. */
 | |
| 	if (ew->ehdr.e_ident[EI_DATA] == ELFDATA2MSB)
 | |
| 		ew->xdr = &xdr_be;
 | |
| 	else
 | |
| 		ew->xdr = &xdr_le;
 | |
| 
 | |
| 	/* Reset count and offsets */
 | |
| 	ew->ehdr.e_phoff = 0;
 | |
| 	ew->ehdr.e_shoff = 0;
 | |
| 	ew->ehdr.e_shnum = 0;
 | |
| 	ew->ehdr.e_phnum = 0;
 | |
| 
 | |
| 	memset(&empty_buffer, 0, sizeof(empty_buffer));
 | |
| 	memset(&shdr, 0, sizeof(shdr));
 | |
| 
 | |
| 	/* Add SHT_NULL section header. */
 | |
| 	shdr.sh_type = SHT_NULL;
 | |
| 	elf_writer_add_section(ew, &shdr, &empty_buffer, NULL);
 | |
| 
 | |
| 	/* Add section header string table and maintain reference to it.  */
 | |
| 	shdr.sh_type = SHT_STRTAB;
 | |
| 	elf_writer_add_section(ew, &shdr, &empty_buffer, ".shstrtab");
 | |
| 	ew->shstrtab_sec = last_section(ew);
 | |
| 	ew->ehdr.e_shstrndx = section_index(ew, ew->shstrtab_sec);
 | |
| 
 | |
| 	/* Add a small string table and symbol table. */
 | |
| 	strtab_init(ew, 4096);
 | |
| 	symtab_init(ew, 100);
 | |
| 
 | |
| 	return ew;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clean up any internal state represented by ew. Aftewards the elf_writer
 | |
|  * is invalid.
 | |
|  * It is safe to call elf_writer_destroy with ew as NULL. It returns without
 | |
|  * performing any action.
 | |
|  */
 | |
| void elf_writer_destroy(struct elf_writer *ew)
 | |
| {
 | |
| 	int i;
 | |
| 	if (ew == NULL)
 | |
| 		return;
 | |
| 	if (ew->phdrs != NULL)
 | |
| 		free(ew->phdrs);
 | |
| 	free(ew->strtab.buffer);
 | |
| 	free(ew->symtab.syms);
 | |
| 	for (i = 0; i < MAX_SECTIONS; i++)
 | |
| 		free(ew->rel_sections[i].rels);
 | |
| 	free(ew);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add a section to the ELF file. Section type, flags, and memsize are
 | |
|  * maintained from the passed in Elf64_Shdr. The buffer represents the
 | |
|  * content of the section while the name is the name of section itself.
 | |
|  * Returns < 0 on error, 0 on success.
 | |
|  */
 | |
| int elf_writer_add_section(struct elf_writer *ew, const Elf64_Shdr *shdr,
 | |
|                            struct buffer *contents, const char *name)
 | |
| {
 | |
| 	struct elf_writer_section *newsh;
 | |
| 
 | |
| 	if (ew->num_secs == MAX_SECTIONS)
 | |
| 		return -1;
 | |
| 
 | |
| 	newsh = &ew->sections[ew->num_secs];
 | |
| 	ew->num_secs++;
 | |
| 
 | |
| 	memcpy(&newsh->shdr, shdr, sizeof(newsh->shdr));
 | |
| 	newsh->shdr.sh_offset = 0;
 | |
| 
 | |
| 	newsh->name = name;
 | |
| 	if (contents != NULL)
 | |
| 		buffer_clone(&newsh->content, contents);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void ehdr_write(struct elf_writer *ew, struct buffer *m)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < EI_NIDENT; i++)
 | |
| 		ew->xdr->put8(m, ew->ehdr.e_ident[i]);
 | |
| 	ew->xdr->put16(m, ew->ehdr.e_type);
 | |
| 	ew->xdr->put16(m, ew->ehdr.e_machine);
 | |
| 	ew->xdr->put32(m, ew->ehdr.e_version);
 | |
| 	if (ew->bit64) {
 | |
| 		ew->xdr->put64(m, ew->ehdr.e_entry);
 | |
| 		ew->xdr->put64(m, ew->ehdr.e_phoff);
 | |
| 		ew->xdr->put64(m, ew->ehdr.e_shoff);
 | |
| 	} else {
 | |
| 		ew->xdr->put32(m, ew->ehdr.e_entry);
 | |
| 		ew->xdr->put32(m, ew->ehdr.e_phoff);
 | |
| 		ew->xdr->put32(m, ew->ehdr.e_shoff);
 | |
| 	}
 | |
| 	ew->xdr->put32(m, ew->ehdr.e_flags);
 | |
| 	ew->xdr->put16(m, ew->ehdr.e_ehsize);
 | |
| 	ew->xdr->put16(m, ew->ehdr.e_phentsize);
 | |
| 	ew->xdr->put16(m, ew->ehdr.e_phnum);
 | |
| 	ew->xdr->put16(m, ew->ehdr.e_shentsize);
 | |
| 	ew->xdr->put16(m, ew->ehdr.e_shnum);
 | |
| 	ew->xdr->put16(m, ew->ehdr.e_shstrndx);
 | |
| }
 | |
| 
 | |
| static void shdr_write(struct elf_writer *ew, size_t n, struct buffer *m)
 | |
| {
 | |
| 	struct xdr *xdr = ew->xdr;
 | |
| 	int bit64 = ew->bit64;
 | |
| 	struct elf_writer_section *sec = &ew->sections[n];
 | |
| 	Elf64_Shdr *shdr = &sec->shdr;
 | |
| 
 | |
| 	xdr->put32(m, shdr->sh_name);
 | |
| 	xdr->put32(m, shdr->sh_type);
 | |
| 	if (bit64) {
 | |
| 		xdr->put64(m, shdr->sh_flags);
 | |
| 		xdr->put64(m, shdr->sh_addr);
 | |
| 		xdr->put64(m, shdr->sh_offset);
 | |
| 		xdr->put64(m, shdr->sh_size);
 | |
| 		xdr->put32(m, shdr->sh_link);
 | |
| 		xdr->put32(m, shdr->sh_info);
 | |
| 		xdr->put64(m, shdr->sh_addralign);
 | |
| 		xdr->put64(m, shdr->sh_entsize);
 | |
| 	} else {
 | |
| 		xdr->put32(m, shdr->sh_flags);
 | |
| 		xdr->put32(m, shdr->sh_addr);
 | |
| 		xdr->put32(m, shdr->sh_offset);
 | |
| 		xdr->put32(m, shdr->sh_size);
 | |
| 		xdr->put32(m, shdr->sh_link);
 | |
| 		xdr->put32(m, shdr->sh_info);
 | |
| 		xdr->put32(m, shdr->sh_addralign);
 | |
| 		xdr->put32(m, shdr->sh_entsize);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| phdr_write(struct elf_writer *ew, struct buffer *m, Elf64_Phdr *phdr)
 | |
| {
 | |
| 	if (ew->bit64) {
 | |
| 		ew->xdr->put32(m, phdr->p_type);
 | |
| 		ew->xdr->put32(m, phdr->p_flags);
 | |
| 		ew->xdr->put64(m, phdr->p_offset);
 | |
| 		ew->xdr->put64(m, phdr->p_vaddr);
 | |
| 		ew->xdr->put64(m, phdr->p_paddr);
 | |
| 		ew->xdr->put64(m, phdr->p_filesz);
 | |
| 		ew->xdr->put64(m, phdr->p_memsz);
 | |
| 		ew->xdr->put64(m, phdr->p_align);
 | |
| 	} else {
 | |
| 		ew->xdr->put32(m, phdr->p_type);
 | |
| 		ew->xdr->put32(m, phdr->p_offset);
 | |
| 		ew->xdr->put32(m, phdr->p_vaddr);
 | |
| 		ew->xdr->put32(m, phdr->p_paddr);
 | |
| 		ew->xdr->put32(m, phdr->p_filesz);
 | |
| 		ew->xdr->put32(m, phdr->p_memsz);
 | |
| 		ew->xdr->put32(m, phdr->p_flags);
 | |
| 		ew->xdr->put32(m, phdr->p_align);
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| static int section_consecutive(struct elf_writer *ew, Elf64_Half secidx)
 | |
| {
 | |
| 	Elf64_Half i;
 | |
| 	struct elf_writer_section *prev_alloc = NULL;
 | |
| 
 | |
| 	if (secidx == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	for (i = 0; i < secidx; i++) {
 | |
| 		if (ew->sections[i].shdr.sh_flags & SHF_ALLOC)
 | |
| 			prev_alloc = &ew->sections[i];
 | |
| 	}
 | |
| 
 | |
| 	if (prev_alloc == NULL)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (prev_alloc->shdr.sh_addr + prev_alloc->shdr.sh_size ==
 | |
| 	    ew->sections[secidx].shdr.sh_addr)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void write_phdrs(struct elf_writer *ew, struct buffer *phdrs)
 | |
| {
 | |
| 	Elf64_Half i;
 | |
| 	Elf64_Phdr phdr;
 | |
| 	size_t num_written = 0;
 | |
| 	size_t num_needs_write = 0;
 | |
| 
 | |
| 	for (i = 0; i < ew->num_secs; i++) {
 | |
| 		struct elf_writer_section *sec = &ew->sections[i];
 | |
| 
 | |
| 		if (!(sec->shdr.sh_flags & SHF_ALLOC))
 | |
| 			continue;
 | |
| 
 | |
| 		if (!section_consecutive(ew, i)) {
 | |
| 			/* Write out previously set phdr. */
 | |
| 			if (num_needs_write != num_written) {
 | |
| 				phdr_write(ew, phdrs, &phdr);
 | |
| 				num_written++;
 | |
| 			}
 | |
| 			phdr.p_type = PT_LOAD;
 | |
| 			phdr.p_offset = sec->shdr.sh_offset;
 | |
| 			phdr.p_vaddr = sec->shdr.sh_addr;
 | |
| 			phdr.p_paddr = sec->shdr.sh_addr;
 | |
| 			phdr.p_filesz = buffer_size(&sec->content);
 | |
| 			phdr.p_memsz = sec->shdr.sh_size;
 | |
| 			phdr.p_flags = 0;
 | |
| 			if (sec->shdr.sh_flags & SHF_EXECINSTR)
 | |
| 				phdr.p_flags |= PF_X | PF_R;
 | |
| 			if (sec->shdr.sh_flags & SHF_WRITE)
 | |
| 				phdr.p_flags |= PF_W;
 | |
| 			phdr.p_align = sec->shdr.sh_addralign;
 | |
| 			num_needs_write++;
 | |
| 
 | |
| 		} else {
 | |
| 			/* Accumulate file size and memsize. The assumption
 | |
| 			 * is that each section is either NOBITS or full
 | |
| 			 * (sh_size == file size). This is standard in that
 | |
| 			 * an ELF section doesn't have a file size component. */
 | |
| 			if (sec->shdr.sh_flags & SHF_EXECINSTR)
 | |
| 				phdr.p_flags |= PF_X | PF_R;
 | |
| 			if (sec->shdr.sh_flags & SHF_WRITE)
 | |
| 				phdr.p_flags |= PF_W;
 | |
| 			phdr.p_filesz += buffer_size(&sec->content);
 | |
| 			phdr.p_memsz += sec->shdr.sh_size;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Write out the last phdr. */
 | |
| 	if (num_needs_write != num_written) {
 | |
| 		phdr_write(ew, phdrs, &phdr);
 | |
| 		num_written++;
 | |
| 	}
 | |
| 	assert(num_written == ew->ehdr.e_phnum);
 | |
| }
 | |
| 
 | |
| static void fixup_symbol_table(struct elf_writer *ew)
 | |
| {
 | |
| 	struct elf_writer_section *sec = ew->symtab_sec;
 | |
| 
 | |
| 	/* If there is only the NULL section, mark section as inactive. */
 | |
| 	if (ew->symtab.num_entries == 1) {
 | |
| 		sec->shdr.sh_type = SHT_NULL;
 | |
| 		sec->shdr.sh_size = 0;
 | |
| 	} else {
 | |
| 		size_t i;
 | |
| 		struct buffer wr;
 | |
| 
 | |
| 		buffer_clone(&wr, &sec->content);
 | |
| 		/* To appease xdr. */
 | |
| 		buffer_set_size(&wr, 0);
 | |
| 		for (i = 0; i < ew->symtab.num_entries; i++) {
 | |
| 			/* Create local copy as were over-writing backing
 | |
| 			 * store of the symbol. */
 | |
| 			Elf64_Sym sym = ew->symtab.syms[i];
 | |
| 			if (ew->bit64) {
 | |
| 				ew->xdr->put32(&wr, sym.st_name);
 | |
| 				ew->xdr->put8(&wr, sym.st_info);
 | |
| 				ew->xdr->put8(&wr, sym.st_other);
 | |
| 				ew->xdr->put16(&wr, sym.st_shndx);
 | |
| 				ew->xdr->put64(&wr, sym.st_value);
 | |
| 				ew->xdr->put64(&wr, sym.st_size);
 | |
| 			} else {
 | |
| 				ew->xdr->put32(&wr, sym.st_name);
 | |
| 				ew->xdr->put32(&wr, sym.st_value);
 | |
| 				ew->xdr->put32(&wr, sym.st_size);
 | |
| 				ew->xdr->put8(&wr, sym.st_info);
 | |
| 				ew->xdr->put8(&wr, sym.st_other);
 | |
| 				ew->xdr->put16(&wr, sym.st_shndx);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Update section size. */
 | |
| 		sec->shdr.sh_size = sec->shdr.sh_entsize;
 | |
| 		sec->shdr.sh_size *= ew->symtab.num_entries;
 | |
| 
 | |
| 		/* Fix up sh_link to point to string table. */
 | |
| 		sec->shdr.sh_link = section_index(ew, ew->strtab_sec);
 | |
| 		/* sh_info is supposed to be 1 greater than symbol table
 | |
| 		 * index of last local binding. Just use max symbols. */
 | |
| 		sec->shdr.sh_info = ew->symtab.num_entries;
 | |
| 	}
 | |
| 
 | |
| 	buffer_set_size(&sec->content, sec->shdr.sh_size);
 | |
| }
 | |
| 
 | |
| static void fixup_relocations(struct elf_writer *ew)
 | |
| {
 | |
| 	int i;
 | |
| 	Elf64_Xword type;
 | |
| 
 | |
| 	switch (ew->ehdr.e_machine) {
 | |
| 	case EM_386:
 | |
| 		type = R_386_32;
 | |
| 		break;
 | |
| 	case EM_X86_64:
 | |
| 		type =  R_AMD64_64;
 | |
| 		break;
 | |
| 	case EM_ARM:
 | |
| 		type = R_ARM_ABS32;
 | |
| 		break;
 | |
| 	case EM_AARCH64:
 | |
| 		type = R_AARCH64_ABS64;
 | |
| 		break;
 | |
| 	case EM_MIPS:
 | |
| 		type = R_MIPS_32;
 | |
| 		break;
 | |
| 	case EM_RISCV:
 | |
| 		type = R_RISCV_32;
 | |
| 		break;
 | |
| 	case EM_PPC64:
 | |
| 		type = R_PPC64_ADDR32;
 | |
| 		break;
 | |
| 	default:
 | |
| 		ERROR("Unable to handle relocations for e_machine %x\n",
 | |
| 			ew->ehdr.e_machine);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < MAX_SECTIONS; i++) {
 | |
| 		struct elf_writer_rel *rel_sec = &ew->rel_sections[i];
 | |
| 		struct elf_writer_section *sec = rel_sec->sec;
 | |
| 		struct buffer writer;
 | |
| 		size_t j;
 | |
| 
 | |
| 		if (sec == NULL)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Update section header size as well as content size. */
 | |
| 		buffer_init(&sec->content, sec->content.name, rel_sec->rels,
 | |
| 				rel_sec->num_entries * sec->shdr.sh_entsize);
 | |
| 		sec->shdr.sh_size = buffer_size(&sec->content);
 | |
| 		buffer_clone(&writer, &sec->content);
 | |
| 		/* To make xdr happy. */
 | |
| 		buffer_set_size(&writer, 0);
 | |
| 
 | |
| 		for (j = 0; j < ew->rel_sections[i].num_entries; j++) {
 | |
| 			/* Make copy as we're overwriting backing store. */
 | |
| 			Elf64_Rel rel = rel_sec->rels[j];
 | |
| 			rel.r_info = ELF64_R_INFO(ELF64_R_SYM(rel.r_info),
 | |
| 						  ELF64_R_TYPE(type));
 | |
| 
 | |
| 			if (ew->bit64) {
 | |
| 				ew->xdr->put64(&writer, rel.r_offset);
 | |
| 				ew->xdr->put64(&writer, rel.r_info);
 | |
| 			} else {
 | |
| 				Elf32_Rel rel32;
 | |
| 				rel32.r_offset = rel.r_offset;
 | |
| 				rel32.r_info =
 | |
| 					ELF32_R_INFO(ELF64_R_SYM(rel.r_info),
 | |
| 						     ELF64_R_TYPE(rel.r_info));
 | |
| 				ew->xdr->put32(&writer, rel32.r_offset);
 | |
| 				ew->xdr->put32(&writer, rel32.r_info);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Serialize the ELF file to the output buffer. Return < 0 on error,
 | |
|  * 0 on success.
 | |
|  */
 | |
| int elf_writer_serialize(struct elf_writer *ew, struct buffer *out)
 | |
| {
 | |
| 	Elf64_Half i;
 | |
| 	Elf64_Xword metadata_size;
 | |
| 	Elf64_Xword program_size;
 | |
| 	Elf64_Off shstroffset;
 | |
| 	size_t shstrlen;
 | |
| 	struct buffer metadata;
 | |
| 	struct buffer phdrs;
 | |
| 	struct buffer data;
 | |
| 	struct buffer *strtab;
 | |
| 
 | |
| 	INFO("Writing %zu sections.\n", ew->num_secs);
 | |
| 
 | |
| 	/* Perform any necessary work for special sections. */
 | |
| 	fixup_symbol_table(ew);
 | |
| 	fixup_relocations(ew);
 | |
| 
 | |
| 	/* Determine size of sections to be written. */
 | |
| 	program_size = 0;
 | |
| 	/* Start with 1 byte for first byte of section header string table. */
 | |
| 	shstrlen = 1;
 | |
| 	for (i = 0; i < ew->num_secs; i++) {
 | |
| 		struct elf_writer_section *sec = &ew->sections[i];
 | |
| 
 | |
| 		if (sec->shdr.sh_flags & SHF_ALLOC) {
 | |
| 			if (!section_consecutive(ew, i))
 | |
| 				ew->ehdr.e_phnum++;
 | |
| 		}
 | |
| 
 | |
| 		program_size += buffer_size(&sec->content);
 | |
| 
 | |
| 		/* Keep track of the length sections' names. */
 | |
| 		if (sec->name != NULL) {
 | |
| 			sec->shdr.sh_name = shstrlen;
 | |
| 			shstrlen += strlen(sec->name) + 1;
 | |
| 		}
 | |
| 	}
 | |
| 	ew->ehdr.e_shnum = ew->num_secs;
 | |
| 	metadata_size = 0;
 | |
| 	metadata_size += ew->ehdr.e_ehsize;
 | |
| 	metadata_size += (Elf64_Xword)ew->ehdr.e_shnum * ew->ehdr.e_shentsize;
 | |
| 	metadata_size += (Elf64_Xword)ew->ehdr.e_phnum * ew->ehdr.e_phentsize;
 | |
| 	shstroffset = metadata_size;
 | |
| 	/* Align up section header string size and metadata size to 4KiB */
 | |
| 	metadata_size = ALIGN(metadata_size + shstrlen, 4096);
 | |
| 
 | |
| 	if (buffer_create(out, metadata_size + program_size, "elfout")) {
 | |
| 		ERROR("Could not create output buffer for ELF.\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	INFO("Created %zu output buffer for ELF file.\n", buffer_size(out));
 | |
| 
 | |
| 	/*
 | |
| 	 * Write out ELF header. Section headers come right after ELF header
 | |
| 	 * followed by the program headers. Buffers need to be created first
 | |
| 	 * to do the writing.
 | |
| 	 */
 | |
| 	ew->ehdr.e_shoff = ew->ehdr.e_ehsize;
 | |
| 	ew->ehdr.e_phoff = ew->ehdr.e_shoff +
 | |
| 			   (Elf64_Off)ew->ehdr.e_shnum * ew->ehdr.e_shentsize;
 | |
| 
 | |
| 	buffer_splice(&metadata, out, 0, metadata_size);
 | |
| 	buffer_splice(&phdrs, out, ew->ehdr.e_phoff,
 | |
| 		      (uint32_t)ew->ehdr.e_phnum * ew->ehdr.e_phentsize);
 | |
| 	buffer_splice(&data, out, metadata_size, program_size);
 | |
| 	/* Set up the section header string table contents. */
 | |
| 	strtab = &ew->shstrtab_sec->content;
 | |
| 	buffer_splice(strtab, out, shstroffset, shstrlen);
 | |
| 	ew->shstrtab_sec->shdr.sh_size = shstrlen;
 | |
| 
 | |
| 	/* Reset current locations. */
 | |
| 	buffer_set_size(&metadata, 0);
 | |
| 	buffer_set_size(&data, 0);
 | |
| 	buffer_set_size(&phdrs, 0);
 | |
| 	buffer_set_size(strtab, 0);
 | |
| 
 | |
| 	/* ELF Header */
 | |
| 	ehdr_write(ew, &metadata);
 | |
| 
 | |
| 	/* Write out section headers, section strings, section content, and
 | |
| 	 * program headers. */
 | |
| 	ew->xdr->put8(strtab, 0);
 | |
| 	for (i = 0; i < ew->num_secs; i++) {
 | |
| 		struct elf_writer_section *sec = &ew->sections[i];
 | |
| 
 | |
| 		/* Update section offsets. Be sure to not update SHN_UNDEF. */
 | |
| 		if (sec == ew->shstrtab_sec)
 | |
| 			sec->shdr.sh_offset = shstroffset;
 | |
| 		else if (i != SHN_UNDEF)
 | |
| 			sec->shdr.sh_offset = buffer_size(&data) +
 | |
| 			                      metadata_size;
 | |
| 
 | |
| 		shdr_write(ew, i, &metadata);
 | |
| 
 | |
| 		/* Add section name to string table. */
 | |
| 		if (sec->name != NULL)
 | |
| 			bputs(strtab, sec->name, strlen(sec->name) + 1);
 | |
| 
 | |
| 		/* Output section data for all sections but SHN_UNDEF and
 | |
| 		 * section header string table. */
 | |
| 		if (i != SHN_UNDEF && sec != ew->shstrtab_sec)
 | |
| 			bputs(&data, buffer_get(&sec->content),
 | |
| 			      buffer_size(&sec->content));
 | |
| 	}
 | |
| 
 | |
| 	write_phdrs(ew, &phdrs);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Add a string to the string table returning index on success, < 0 on error. */
 | |
| static int elf_writer_add_string(struct elf_writer *ew, const char *new)
 | |
| {
 | |
| 	size_t current_offset;
 | |
| 	size_t new_len;
 | |
| 
 | |
| 	for (current_offset = 0; current_offset < ew->strtab.next_offset; ) {
 | |
| 		const char *str = ew->strtab.buffer + current_offset;
 | |
| 		size_t len = strlen(str) + 1;
 | |
| 
 | |
| 		if (!strcmp(str, new))
 | |
| 			return current_offset;
 | |
| 		current_offset += len;
 | |
| 	}
 | |
| 
 | |
| 	new_len = strlen(new) + 1;
 | |
| 
 | |
| 	if (current_offset + new_len > ew->strtab.max_size) {
 | |
| 		ERROR("No space for string in .strtab.\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	memcpy(ew->strtab.buffer + current_offset, new, new_len);
 | |
| 	ew->strtab.next_offset = current_offset + new_len;
 | |
| 
 | |
| 	return current_offset;
 | |
| }
 | |
| 
 | |
| static int elf_writer_section_index(struct elf_writer *ew, const char *name)
 | |
| {
 | |
| 	size_t i;
 | |
| 
 | |
| 	for (i = 0; i < ew->num_secs; i++) {
 | |
| 		if (ew->sections[i].name == NULL)
 | |
| 			continue;
 | |
| 		if (!strcmp(ew->sections[i].name, name))
 | |
| 			return i;
 | |
| 	}
 | |
| 
 | |
| 	ERROR("ELF Section not found: %s\n", name);
 | |
| 
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| int elf_writer_add_symbol(struct elf_writer *ew, const char *name,
 | |
| 				const char *section_name,
 | |
| 				Elf64_Addr value, Elf64_Word size,
 | |
| 				int binding, int type)
 | |
| {
 | |
| 	int i;
 | |
| 	Elf64_Sym sym = {
 | |
| 		.st_value = value,
 | |
| 		.st_size = size,
 | |
| 		.st_info = ELF64_ST_INFO(binding, type),
 | |
| 	};
 | |
| 
 | |
| 	if (ew->symtab.max_entries == ew->symtab.num_entries) {
 | |
| 		ERROR("No more symbol entries left.\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	i = elf_writer_add_string(ew, name);
 | |
| 	if (i < 0)
 | |
| 		return -1;
 | |
| 	sym.st_name = i;
 | |
| 
 | |
| 	i = elf_writer_section_index(ew, section_name);
 | |
| 	if (i < 0)
 | |
| 		return -1;
 | |
| 	sym.st_shndx = i;
 | |
| 
 | |
| 	ew->symtab.syms[ew->symtab.num_entries++] = sym;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int elf_sym_index(struct elf_writer *ew, const char *sym)
 | |
| {
 | |
| 	int j;
 | |
| 	size_t i;
 | |
| 	Elf64_Word st_name;
 | |
| 
 | |
| 	/* Determine index of symbol in the string table. */
 | |
| 	j = elf_writer_add_string(ew, sym);
 | |
| 	if (j < 0)
 | |
| 		return -1;
 | |
| 
 | |
| 	st_name = j;
 | |
| 
 | |
| 	for (i = 0; i < ew->symtab.num_entries; i++)
 | |
| 		if (ew->symtab.syms[i].st_name == st_name)
 | |
| 			return i;
 | |
| 
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static struct elf_writer_rel *rel_section(struct elf_writer *ew,
 | |
| 						const Elf64_Rel *r)
 | |
| {
 | |
| 	Elf64_Sym *sym;
 | |
| 	struct elf_writer_rel *rel;
 | |
| 	Elf64_Shdr shdr;
 | |
| 	struct buffer b;
 | |
| 
 | |
| 	sym = &ew->symtab.syms[ELF64_R_SYM(r->r_info)];
 | |
| 
 | |
| 	/* Determine if section has been initialized yet. */
 | |
| 	rel = &ew->rel_sections[sym->st_shndx];
 | |
| 	if (rel->sec != NULL)
 | |
| 		return rel;
 | |
| 
 | |
| 	memset(&shdr, 0, sizeof(shdr));
 | |
| 	shdr.sh_type = SHT_REL;
 | |
| 	shdr.sh_link = section_index(ew, ew->symtab_sec);
 | |
| 	shdr.sh_info = sym->st_shndx;
 | |
| 
 | |
| 	if (ew->bit64) {
 | |
| 		shdr.sh_addralign = sizeof(Elf64_Addr);
 | |
| 		shdr.sh_entsize = sizeof(Elf64_Rel);
 | |
| 	} else {
 | |
| 		shdr.sh_addralign = sizeof(Elf32_Addr);
 | |
| 		shdr.sh_entsize = sizeof(Elf32_Rel);
 | |
| 	}
 | |
| 
 | |
| 	if ((strlen(".rel") + strlen(ew->sections[sym->st_shndx].name) + 1) >
 | |
| 	    MAX_REL_NAME) {
 | |
| 		ERROR("Rel Section name won't fit\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	strcat(rel->name, ".rel");
 | |
| 	strcat(rel->name, ew->sections[sym->st_shndx].name);
 | |
| 	buffer_init(&b, rel->name, NULL, 0);
 | |
| 
 | |
| 	elf_writer_add_section(ew, &shdr, &b, rel->name);
 | |
| 	rel->sec = last_section(ew);
 | |
| 
 | |
| 	return rel;
 | |
| }
 | |
| 
 | |
| static int add_rel(struct elf_writer_rel *rel_sec, const Elf64_Rel *rel)
 | |
| {
 | |
| 	if (rel_sec->num_entries == rel_sec->max_entries) {
 | |
| 		size_t num = rel_sec->max_entries * 2;
 | |
| 		Elf64_Rel *old_rels;
 | |
| 
 | |
| 		if (num == 0)
 | |
| 			num = 128;
 | |
| 
 | |
| 		old_rels = rel_sec->rels;
 | |
| 		rel_sec->rels = calloc(num, sizeof(Elf64_Rel));
 | |
| 
 | |
| 		memcpy(rel_sec->rels, old_rels,
 | |
| 			rel_sec->num_entries * sizeof(Elf64_Rel));
 | |
| 		free(old_rels);
 | |
| 
 | |
| 		rel_sec->max_entries = num;
 | |
| 	}
 | |
| 
 | |
| 	rel_sec->rels[rel_sec->num_entries] = *rel;
 | |
| 	rel_sec->num_entries++;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int elf_writer_add_rel(struct elf_writer *ew, const char *sym, Elf64_Addr addr)
 | |
| {
 | |
| 	Elf64_Rel rel;
 | |
| 	Elf64_Xword sym_info;
 | |
| 	int sym_index;
 | |
| 	struct elf_writer_rel *rel_sec;
 | |
| 
 | |
| 	sym_index = elf_sym_index(ew, sym);
 | |
| 
 | |
| 	if (sym_index < 0) {
 | |
| 		ERROR("Unable to locate symbol: %s\n", sym);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	sym_info = sym_index;
 | |
| 
 | |
| 	/* The relocation type will get fixed prior to serialization. */
 | |
| 	rel.r_offset = addr;
 | |
| 	rel.r_info = ELF64_R_INFO(sym_info, 0);
 | |
| 
 | |
| 	rel_sec = rel_section(ew, &rel);
 | |
| 
 | |
| 	if (rel_sec == NULL)
 | |
| 		return -1;
 | |
| 
 | |
| 	return add_rel(rel_sec, &rel);
 | |
| }
 | |
| 
 | |
| int elf_program_file_size(const struct buffer *input, size_t *file_size)
 | |
| {
 | |
| 	Elf64_Ehdr ehdr;
 | |
| 	Elf64_Phdr *phdr;
 | |
| 	int i;
 | |
| 	size_t loadable_file_size = 0;
 | |
| 
 | |
| 	if (elf_headers(input, &ehdr, &phdr, NULL))
 | |
| 		return -1;
 | |
| 
 | |
| 	for (i = 0; i < ehdr.e_phnum; i++) {
 | |
| 		if (phdr[i].p_type != PT_LOAD)
 | |
| 			continue;
 | |
| 		loadable_file_size += phdr[i].p_filesz;
 | |
| 	}
 | |
| 
 | |
| 	*file_size = loadable_file_size;
 | |
| 
 | |
| 	free(phdr);
 | |
| 
 | |
| 	return 0;
 | |
| }
 |