In order to have a proper runtime-modifyable page table API (e.g. to remap DRAM after it was intialized), we need to remove any external bookkeeping kept in global variables (which do not persist across stages) from the MMU code. This patch implements this in a similar way as it has recently been done for ARM32 (marking free table slots with a special sentinel value in the first PTE that cannot occur as part of a normal page table). Since this requires the page table buffer to be known at compile-time, we have to remove the option of passing it to mmu_init() at runtime (which I already kinda deprecated before). The existing Tegra chipsets that still used it are switched to instead define it in memlayout in a minimally invasive change. This might not be the best way to design this overall (I think we should probably just throw the tables into SRAM like on all other platforms), but I don't have a Tegra system to test so I'd rather keep this change low impact and leave the major redesign for later. Also inlined some single-use one-liner functions in mmu.c that I felt confused things more than they cleared up, and fixed an (apparently harmless?) issue with forgetting to mask out the XN page attribute bit when casting a table descriptor to a pointer. BRANCH=None BUG=None TEST=Compiled Ryu and Smaug. Booted Oak. Change-Id: Iad71f97f5ec4b1fc981dbc8ff1dc88d96c8ee55a Signed-off-by: Julius Werner <jwerner@chromium.org> Reviewed-on: http://review.coreboot.org/12075 Tested-by: build bot (Jenkins) Reviewed-by: Aaron Durbin <adurbin@chromium.org>
278 lines
8.8 KiB
C
278 lines
8.8 KiB
C
/*
|
|
* This file is part of the coreboot project.
|
|
*
|
|
* Copyright 2014 Google Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <symbols.h>
|
|
|
|
#include <console/console.h>
|
|
#include <arch/mmu.h>
|
|
#include <arch/lib_helpers.h>
|
|
#include <arch/cache.h>
|
|
#include <arch/cache_helpers.h>
|
|
|
|
/* This just caches the next free table slot (okay to do since they fill up from
|
|
* bottom to top and can never be freed up again). It will reset to its initial
|
|
* value on stage transition, so we still need to check it for UNUSED_DESC. */
|
|
static uint64_t *next_free_table = (void *)_ttb;
|
|
|
|
static void print_tag(int level, uint64_t tag)
|
|
{
|
|
printk(level, tag & MA_MEM_NC ? "non-cacheable | " :
|
|
" cacheable | ");
|
|
printk(level, tag & MA_RO ? "read-only | " :
|
|
"read-write | ");
|
|
printk(level, tag & MA_NS ? "non-secure | " :
|
|
" secure | ");
|
|
printk(level, tag & MA_MEM ? "normal\n" :
|
|
"device\n");
|
|
}
|
|
|
|
/* Func : get_block_attr
|
|
* Desc : Get block descriptor attributes based on the value of tag in memrange
|
|
* region
|
|
*/
|
|
static uint64_t get_block_attr(unsigned long tag)
|
|
{
|
|
uint64_t attr;
|
|
|
|
attr = (tag & MA_NS)? BLOCK_NS : 0;
|
|
attr |= (tag & MA_RO)? BLOCK_AP_RO : BLOCK_AP_RW;
|
|
attr |= BLOCK_ACCESS;
|
|
|
|
if (tag & MA_MEM) {
|
|
attr |= BLOCK_SH_INNER_SHAREABLE;
|
|
if (tag & MA_MEM_NC)
|
|
attr |= BLOCK_INDEX_MEM_NORMAL_NC << BLOCK_INDEX_SHIFT;
|
|
else
|
|
attr |= BLOCK_INDEX_MEM_NORMAL << BLOCK_INDEX_SHIFT;
|
|
} else {
|
|
attr |= BLOCK_INDEX_MEM_DEV_NGNRNE << BLOCK_INDEX_SHIFT;
|
|
attr |= BLOCK_XN;
|
|
}
|
|
|
|
return attr;
|
|
}
|
|
|
|
/* Func : setup_new_table
|
|
* Desc : Get next free table from TTB and set it up to match old parent entry.
|
|
*/
|
|
static uint64_t *setup_new_table(uint64_t desc, size_t xlat_size)
|
|
{
|
|
while (next_free_table[0] != UNUSED_DESC) {
|
|
next_free_table += GRANULE_SIZE/sizeof(*next_free_table);
|
|
if (_ettb - (u8 *)next_free_table <= 0)
|
|
die("Ran out of page table space!");
|
|
}
|
|
|
|
void *frame_base = (void *)(desc & XLAT_ADDR_MASK);
|
|
printk(BIOS_DEBUG, "Backing address range [%p:%p) with new page"
|
|
" table @%p\n", frame_base, frame_base +
|
|
(xlat_size << BITS_RESOLVED_PER_LVL), next_free_table);
|
|
|
|
if (!desc) {
|
|
memset(next_free_table, 0, GRANULE_SIZE);
|
|
} else {
|
|
/* Can reuse old parent entry, but may need to adjust type. */
|
|
if (xlat_size == L3_XLAT_SIZE)
|
|
desc |= PAGE_DESC;
|
|
|
|
int i = 0;
|
|
for (; i < GRANULE_SIZE/sizeof(*next_free_table); i++) {
|
|
next_free_table[i] = desc;
|
|
desc += xlat_size;
|
|
}
|
|
}
|
|
|
|
return next_free_table;
|
|
}
|
|
|
|
/* Func: get_next_level_table
|
|
* Desc: Check if the table entry is a valid descriptor. If not, initialize new
|
|
* table, update the entry and return the table addr. If valid, return the addr
|
|
*/
|
|
static uint64_t *get_next_level_table(uint64_t *ptr, size_t xlat_size)
|
|
{
|
|
uint64_t desc = *ptr;
|
|
|
|
if ((desc & DESC_MASK) != TABLE_DESC) {
|
|
uint64_t *new_table = setup_new_table(desc, xlat_size);
|
|
desc = ((uint64_t)new_table) | TABLE_DESC;
|
|
*ptr = desc;
|
|
}
|
|
return (uint64_t *)(desc & XLAT_ADDR_MASK);
|
|
}
|
|
|
|
/* Func : init_xlat_table
|
|
* Desc : Given a base address and size, it identifies the indices within
|
|
* different level XLAT tables which map the given base addr. Similar to table
|
|
* walk, except that all invalid entries during the walk are updated
|
|
* accordingly. On success, it returns the size of the block/page addressed by
|
|
* the final table.
|
|
*/
|
|
static uint64_t init_xlat_table(uint64_t base_addr,
|
|
uint64_t size,
|
|
uint64_t tag)
|
|
{
|
|
uint64_t l1_index = (base_addr & L1_ADDR_MASK) >> L1_ADDR_SHIFT;
|
|
uint64_t l2_index = (base_addr & L2_ADDR_MASK) >> L2_ADDR_SHIFT;
|
|
uint64_t l3_index = (base_addr & L3_ADDR_MASK) >> L3_ADDR_SHIFT;
|
|
uint64_t *table = (uint64_t *)_ttb;
|
|
uint64_t desc;
|
|
uint64_t attr = get_block_attr(tag);
|
|
|
|
/* L1 table lookup
|
|
* If VA has bits more than L2 can resolve, lookup starts at L1
|
|
* Assumption: we don't need L0 table in coreboot */
|
|
if (BITS_PER_VA > L1_ADDR_SHIFT) {
|
|
if ((size >= L1_XLAT_SIZE) &&
|
|
IS_ALIGNED(base_addr, (1UL << L1_ADDR_SHIFT))) {
|
|
/* If block address is aligned and size is greater than
|
|
* or equal to size addressed by each L1 entry, we can
|
|
* directly store a block desc */
|
|
desc = base_addr | BLOCK_DESC | attr;
|
|
table[l1_index] = desc;
|
|
/* L2 lookup is not required */
|
|
return L1_XLAT_SIZE;
|
|
}
|
|
table = get_next_level_table(&table[l1_index], L2_XLAT_SIZE);
|
|
}
|
|
|
|
/* L2 table lookup
|
|
* If lookup was performed at L1, L2 table addr is obtained from L1 desc
|
|
* else, lookup starts at ttbr address */
|
|
if ((size >= L2_XLAT_SIZE) &&
|
|
IS_ALIGNED(base_addr, (1UL << L2_ADDR_SHIFT))) {
|
|
/* If block address is aligned and size is greater than
|
|
* or equal to size addressed by each L2 entry, we can
|
|
* directly store a block desc */
|
|
desc = base_addr | BLOCK_DESC | attr;
|
|
table[l2_index] = desc;
|
|
/* L3 lookup is not required */
|
|
return L2_XLAT_SIZE;
|
|
}
|
|
|
|
/* L2 entry stores a table descriptor */
|
|
table = get_next_level_table(&table[l2_index], L3_XLAT_SIZE);
|
|
|
|
/* L3 table lookup */
|
|
desc = base_addr | PAGE_DESC | attr;
|
|
table[l3_index] = desc;
|
|
return L3_XLAT_SIZE;
|
|
}
|
|
|
|
/* Func : sanity_check
|
|
* Desc : Check address/size alignment of a table or page.
|
|
*/
|
|
static void sanity_check(uint64_t addr, uint64_t size)
|
|
{
|
|
assert(!(addr & GRANULE_SIZE_MASK) &&
|
|
!(size & GRANULE_SIZE_MASK) &&
|
|
size >= GRANULE_SIZE);
|
|
}
|
|
|
|
/* Func : mmu_config_range
|
|
* Desc : This function repeatedly calls init_xlat_table with the base
|
|
* address. Based on size returned from init_xlat_table, base_addr is updated
|
|
* and subsequent calls are made for initializing the xlat table until the whole
|
|
* region is initialized.
|
|
*/
|
|
void mmu_config_range(void *start, size_t size, uint64_t tag)
|
|
{
|
|
uint64_t base_addr = (uintptr_t)start;
|
|
uint64_t temp_size = size;
|
|
|
|
printk(BIOS_INFO, "Mapping address range [%p:%p) as ",
|
|
start, start + size);
|
|
print_tag(BIOS_INFO, tag);
|
|
|
|
sanity_check(base_addr, temp_size);
|
|
|
|
while (temp_size)
|
|
temp_size -= init_xlat_table(base_addr + (size - temp_size),
|
|
temp_size, tag);
|
|
|
|
/* ARMv8 MMUs snoop L1 data cache, no need to flush it. */
|
|
dsb();
|
|
tlbiall_current();
|
|
dsb();
|
|
isb();
|
|
}
|
|
|
|
/* Func : mmu_init
|
|
* Desc : Initialize MMU registers and page table memory region. This must be
|
|
* called exactly ONCE PER BOOT before trying to configure any mappings.
|
|
*/
|
|
void mmu_init(void)
|
|
{
|
|
/* Initially mark all table slots unused (first PTE == UNUSED_DESC). */
|
|
uint64_t *table = (uint64_t *)_ttb;
|
|
for (; _ettb - (u8 *)table > 0; table += GRANULE_SIZE/sizeof(*table))
|
|
table[0] = UNUSED_DESC;
|
|
|
|
/* Initialize the root table (L1) to be completely unmapped. */
|
|
uint64_t *root = setup_new_table(INVALID_DESC, L1_XLAT_SIZE);
|
|
assert((u8 *)root == _ttb);
|
|
|
|
/* Initialize TTBR */
|
|
raw_write_ttbr0_el3((uintptr_t)root);
|
|
|
|
/* Initialize MAIR indices */
|
|
raw_write_mair_el3(MAIR_ATTRIBUTES);
|
|
|
|
/* Initialize TCR flags */
|
|
raw_write_tcr_el3(TCR_TOSZ | TCR_IRGN0_NM_WBWAC | TCR_ORGN0_NM_WBWAC |
|
|
TCR_SH0_IS | TCR_TG0_4KB | TCR_PS_64GB |
|
|
TCR_TBI_USED);
|
|
}
|
|
|
|
void mmu_enable(void)
|
|
{
|
|
uint32_t sctlr = raw_read_sctlr_el3();
|
|
sctlr |= SCTLR_C | SCTLR_M | SCTLR_I;
|
|
raw_write_sctlr_el3(sctlr);
|
|
isb();
|
|
}
|
|
|
|
/*
|
|
* CAUTION: This implementation assumes that coreboot never uses non-identity
|
|
* page tables for pages containing executed code. If you ever want to violate
|
|
* this assumption, have fun figuring out the associated problems on your own.
|
|
*/
|
|
void mmu_disable(void)
|
|
{
|
|
flush_dcache_all(DCCISW);
|
|
uint32_t sctlr = raw_read_sctlr_el3();
|
|
sctlr &= ~(SCTLR_C | SCTLR_M);
|
|
raw_write_sctlr_el3(sctlr);
|
|
isb();
|
|
}
|