Cleanup SerailIO drivers to have a device path and use PCD settings for various stuff. Also clean up a few coding convention items.
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@10009 6f19259b-4bc3-4df7-8a09-765794883524
This commit is contained in:
@@ -54,15 +54,24 @@ volatile UINT32 TIER;
|
||||
volatile UINTN gVector;
|
||||
|
||||
|
||||
/**
|
||||
C Interrupt Handler calledin the interrupt context when Source interrupt is active.
|
||||
|
||||
@param Source Source of the interrupt. Hardware routing off a specific platform defines
|
||||
what source means.
|
||||
@param SystemContext Pointer to system register context. Mostly used by debuggers and will
|
||||
update the system context after the return from the interrupt if
|
||||
modified. Don't change these values unless you know what you are doing
|
||||
|
||||
/**
|
||||
|
||||
C Interrupt Handler calledin the interrupt context when Source interrupt is active.
|
||||
|
||||
|
||||
|
||||
@param Source Source of the interrupt. Hardware routing off a specific platform defines
|
||||
|
||||
what source means.
|
||||
|
||||
@param SystemContext Pointer to system register context. Mostly used by debuggers and will
|
||||
|
||||
update the system context after the return from the interrupt if
|
||||
|
||||
modified. Don't change these values unless you know what you are doing
|
||||
|
||||
|
||||
|
||||
**/
|
||||
VOID
|
||||
EFIAPI
|
||||
@@ -71,14 +80,22 @@ TimerInterruptHandler (
|
||||
IN EFI_SYSTEM_CONTEXT SystemContext
|
||||
)
|
||||
{
|
||||
EFI_TPL OriginalTPL;
|
||||
|
||||
//
|
||||
// DXE core uses this callback for the EFI timer tick. The DXE core uses locks
|
||||
// that raise to TPL_HIGH and then restore back to current level. Thus we need
|
||||
// to make sure TPL level is set to TPL_HIGH while we are handling the timer tick.
|
||||
//
|
||||
OriginalTPL = gBS->RaiseTPL (TPL_HIGH_LEVEL);
|
||||
EFI_TPL OriginalTPL;
|
||||
|
||||
|
||||
|
||||
//
|
||||
|
||||
// DXE core uses this callback for the EFI timer tick. The DXE core uses locks
|
||||
|
||||
// that raise to TPL_HIGH and then restore back to current level. Thus we need
|
||||
|
||||
// to make sure TPL level is set to TPL_HIGH while we are handling the timer tick.
|
||||
|
||||
//
|
||||
|
||||
OriginalTPL = gBS->RaiseTPL (TPL_HIGH_LEVEL);
|
||||
|
||||
|
||||
if (mTimerPeriodicCallback) {
|
||||
mTimerPeriodicCallback(SystemContext);
|
||||
@@ -89,7 +106,7 @@ TimerInterruptHandler (
|
||||
}
|
||||
|
||||
// Clear all timer interrupts
|
||||
MmioWrite32(TISR, TISR_CLEAR_ALL);
|
||||
MmioWrite32 (TISR, TISR_CLEAR_ALL);
|
||||
|
||||
// Poll interrupt status bits to ensure clearing
|
||||
while ((MmioRead32(TISR) & TISR_ALL_INTERRUPT_MASK) != TISR_NO_INTERRUPTS_PENDING);
|
||||
@@ -97,35 +114,64 @@ TimerInterruptHandler (
|
||||
gBS->RestoreTPL (OriginalTPL);
|
||||
}
|
||||
|
||||
/**
|
||||
This function registers the handler NotifyFunction so it is called every time
|
||||
the timer interrupt fires. It also passes the amount of time since the last
|
||||
handler call to the NotifyFunction. If NotifyFunction is NULL, then the
|
||||
handler is unregistered. If the handler is registered, then EFI_SUCCESS is
|
||||
returned. If the CPU does not support registering a timer interrupt handler,
|
||||
then EFI_UNSUPPORTED is returned. If an attempt is made to register a handler
|
||||
when a handler is already registered, then EFI_ALREADY_STARTED is returned.
|
||||
If an attempt is made to unregister a handler when a handler is not registered,
|
||||
then EFI_INVALID_PARAMETER is returned. If an error occurs attempting to
|
||||
register the NotifyFunction with the timer interrupt, then EFI_DEVICE_ERROR
|
||||
is returned.
|
||||
|
||||
@param This The EFI_TIMER_ARCH_PROTOCOL instance.
|
||||
@param NotifyFunction The function to call when a timer interrupt fires. This
|
||||
function executes at TPL_HIGH_LEVEL. The DXE Core will
|
||||
register a handler for the timer interrupt, so it can know
|
||||
how much time has passed. This information is used to
|
||||
signal timer based events. NULL will unregister the handler.
|
||||
|
||||
@retval EFI_SUCCESS The timer handler was registered.
|
||||
@retval EFI_UNSUPPORTED The platform does not support timer interrupts.
|
||||
@retval EFI_ALREADY_STARTED NotifyFunction is not NULL, and a handler is already
|
||||
registered.
|
||||
@retval EFI_INVALID_PARAMETER NotifyFunction is NULL, and a handler was not
|
||||
previously registered.
|
||||
@retval EFI_DEVICE_ERROR The timer handler could not be registered.
|
||||
|
||||
**/
|
||||
/**
|
||||
|
||||
This function registers the handler NotifyFunction so it is called every time
|
||||
|
||||
the timer interrupt fires. It also passes the amount of time since the last
|
||||
|
||||
handler call to the NotifyFunction. If NotifyFunction is NULL, then the
|
||||
|
||||
handler is unregistered. If the handler is registered, then EFI_SUCCESS is
|
||||
|
||||
returned. If the CPU does not support registering a timer interrupt handler,
|
||||
|
||||
then EFI_UNSUPPORTED is returned. If an attempt is made to register a handler
|
||||
|
||||
when a handler is already registered, then EFI_ALREADY_STARTED is returned.
|
||||
|
||||
If an attempt is made to unregister a handler when a handler is not registered,
|
||||
|
||||
then EFI_INVALID_PARAMETER is returned. If an error occurs attempting to
|
||||
|
||||
register the NotifyFunction with the timer interrupt, then EFI_DEVICE_ERROR
|
||||
|
||||
is returned.
|
||||
|
||||
|
||||
|
||||
@param This The EFI_TIMER_ARCH_PROTOCOL instance.
|
||||
|
||||
@param NotifyFunction The function to call when a timer interrupt fires. This
|
||||
|
||||
function executes at TPL_HIGH_LEVEL. The DXE Core will
|
||||
|
||||
register a handler for the timer interrupt, so it can know
|
||||
|
||||
how much time has passed. This information is used to
|
||||
|
||||
signal timer based events. NULL will unregister the handler.
|
||||
|
||||
|
||||
|
||||
@retval EFI_SUCCESS The timer handler was registered.
|
||||
|
||||
@retval EFI_UNSUPPORTED The platform does not support timer interrupts.
|
||||
|
||||
@retval EFI_ALREADY_STARTED NotifyFunction is not NULL, and a handler is already
|
||||
|
||||
registered.
|
||||
|
||||
@retval EFI_INVALID_PARAMETER NotifyFunction is NULL, and a handler was not
|
||||
|
||||
previously registered.
|
||||
|
||||
@retval EFI_DEVICE_ERROR The timer handler could not be registered.
|
||||
|
||||
|
||||
|
||||
**/
|
||||
|
||||
EFI_STATUS
|
||||
EFIAPI
|
||||
TimerDriverRegisterHandler (
|
||||
@@ -146,31 +192,56 @@ TimerDriverRegisterHandler (
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
This function adjusts the period of timer interrupts to the value specified
|
||||
by TimerPeriod. If the timer period is updated, then the selected timer
|
||||
period is stored in EFI_TIMER.TimerPeriod, and EFI_SUCCESS is returned. If
|
||||
the timer hardware is not programmable, then EFI_UNSUPPORTED is returned.
|
||||
If an error occurs while attempting to update the timer period, then the
|
||||
timer hardware will be put back in its state prior to this call, and
|
||||
EFI_DEVICE_ERROR is returned. If TimerPeriod is 0, then the timer interrupt
|
||||
is disabled. This is not the same as disabling the CPU's interrupts.
|
||||
Instead, it must either turn off the timer hardware, or it must adjust the
|
||||
interrupt controller so that a CPU interrupt is not generated when the timer
|
||||
interrupt fires.
|
||||
|
||||
@param This The EFI_TIMER_ARCH_PROTOCOL instance.
|
||||
@param TimerPeriod The rate to program the timer interrupt in 100 nS units. If
|
||||
the timer hardware is not programmable, then EFI_UNSUPPORTED is
|
||||
returned. If the timer is programmable, then the timer period
|
||||
will be rounded up to the nearest timer period that is supported
|
||||
by the timer hardware. If TimerPeriod is set to 0, then the
|
||||
timer interrupts will be disabled.
|
||||
|
||||
@retval EFI_SUCCESS The timer period was changed.
|
||||
@retval EFI_UNSUPPORTED The platform cannot change the period of the timer interrupt.
|
||||
@retval EFI_DEVICE_ERROR The timer period could not be changed due to a device error.
|
||||
|
||||
/**
|
||||
|
||||
This function adjusts the period of timer interrupts to the value specified
|
||||
|
||||
by TimerPeriod. If the timer period is updated, then the selected timer
|
||||
|
||||
period is stored in EFI_TIMER.TimerPeriod, and EFI_SUCCESS is returned. If
|
||||
|
||||
the timer hardware is not programmable, then EFI_UNSUPPORTED is returned.
|
||||
|
||||
If an error occurs while attempting to update the timer period, then the
|
||||
|
||||
timer hardware will be put back in its state prior to this call, and
|
||||
|
||||
EFI_DEVICE_ERROR is returned. If TimerPeriod is 0, then the timer interrupt
|
||||
|
||||
is disabled. This is not the same as disabling the CPU's interrupts.
|
||||
|
||||
Instead, it must either turn off the timer hardware, or it must adjust the
|
||||
|
||||
interrupt controller so that a CPU interrupt is not generated when the timer
|
||||
|
||||
interrupt fires.
|
||||
|
||||
|
||||
|
||||
@param This The EFI_TIMER_ARCH_PROTOCOL instance.
|
||||
|
||||
@param TimerPeriod The rate to program the timer interrupt in 100 nS units. If
|
||||
|
||||
the timer hardware is not programmable, then EFI_UNSUPPORTED is
|
||||
|
||||
returned. If the timer is programmable, then the timer period
|
||||
|
||||
will be rounded up to the nearest timer period that is supported
|
||||
|
||||
by the timer hardware. If TimerPeriod is set to 0, then the
|
||||
|
||||
timer interrupts will be disabled.
|
||||
|
||||
|
||||
|
||||
@retval EFI_SUCCESS The timer period was changed.
|
||||
|
||||
@retval EFI_UNSUPPORTED The platform cannot change the period of the timer interrupt.
|
||||
|
||||
@retval EFI_DEVICE_ERROR The timer period could not be changed due to a device error.
|
||||
|
||||
|
||||
|
||||
**/
|
||||
EFI_STATUS
|
||||
EFIAPI
|
||||
@@ -185,7 +256,7 @@ TimerDriverSetTimerPeriod (
|
||||
|
||||
if (TimerPeriod == 0) {
|
||||
// Turn off GPTIMER3
|
||||
MmioWrite32(TCLR, TCLR_ST_OFF);
|
||||
MmioWrite32 (TCLR, TCLR_ST_OFF);
|
||||
|
||||
Status = gInterrupt->DisableInterruptSource(gInterrupt, gVector);
|
||||
} else {
|
||||
@@ -194,14 +265,14 @@ TimerDriverSetTimerPeriod (
|
||||
|
||||
// Set GPTIMER3 Load register
|
||||
LoadValue = (INT32) -TimerCount;
|
||||
MmioWrite32(TLDR, LoadValue);
|
||||
MmioWrite32(TCRR, LoadValue);
|
||||
MmioWrite32 (TLDR, LoadValue);
|
||||
MmioWrite32 (TCRR, LoadValue);
|
||||
|
||||
// Enable Overflow interrupt
|
||||
MmioWrite32(TIER, TIER_TCAR_IT_DISABLE | TIER_OVF_IT_ENABLE | TIER_MAT_IT_DISABLE);
|
||||
MmioWrite32 (TIER, TIER_TCAR_IT_DISABLE | TIER_OVF_IT_ENABLE | TIER_MAT_IT_DISABLE);
|
||||
|
||||
// Turn on GPTIMER3, it will reload at overflow
|
||||
MmioWrite32(TCLR, TCLR_AR_AUTORELOAD | TCLR_ST_ON);
|
||||
MmioWrite32 (TCLR, TCLR_AR_AUTORELOAD | TCLR_ST_ON);
|
||||
|
||||
Status = gInterrupt->EnableInterruptSource(gInterrupt, gVector);
|
||||
}
|
||||
@@ -214,19 +285,32 @@ TimerDriverSetTimerPeriod (
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
This function retrieves the period of timer interrupts in 100 ns units,
|
||||
returns that value in TimerPeriod, and returns EFI_SUCCESS. If TimerPeriod
|
||||
is NULL, then EFI_INVALID_PARAMETER is returned. If a TimerPeriod of 0 is
|
||||
returned, then the timer is currently disabled.
|
||||
|
||||
@param This The EFI_TIMER_ARCH_PROTOCOL instance.
|
||||
@param TimerPeriod A pointer to the timer period to retrieve in 100 ns units. If
|
||||
0 is returned, then the timer is currently disabled.
|
||||
|
||||
@retval EFI_SUCCESS The timer period was returned in TimerPeriod.
|
||||
@retval EFI_INVALID_PARAMETER TimerPeriod is NULL.
|
||||
|
||||
/**
|
||||
|
||||
This function retrieves the period of timer interrupts in 100 ns units,
|
||||
|
||||
returns that value in TimerPeriod, and returns EFI_SUCCESS. If TimerPeriod
|
||||
|
||||
is NULL, then EFI_INVALID_PARAMETER is returned. If a TimerPeriod of 0 is
|
||||
|
||||
returned, then the timer is currently disabled.
|
||||
|
||||
|
||||
|
||||
@param This The EFI_TIMER_ARCH_PROTOCOL instance.
|
||||
|
||||
@param TimerPeriod A pointer to the timer period to retrieve in 100 ns units. If
|
||||
|
||||
0 is returned, then the timer is currently disabled.
|
||||
|
||||
|
||||
|
||||
@retval EFI_SUCCESS The timer period was returned in TimerPeriod.
|
||||
|
||||
@retval EFI_INVALID_PARAMETER TimerPeriod is NULL.
|
||||
|
||||
|
||||
|
||||
**/
|
||||
EFI_STATUS
|
||||
EFIAPI
|
||||
@@ -243,20 +327,34 @@ TimerDriverGetTimerPeriod (
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
This function generates a soft timer interrupt. If the platform does not support soft
|
||||
timer interrupts, then EFI_UNSUPPORTED is returned. Otherwise, EFI_SUCCESS is returned.
|
||||
If a handler has been registered through the EFI_TIMER_ARCH_PROTOCOL.RegisterHandler()
|
||||
service, then a soft timer interrupt will be generated. If the timer interrupt is
|
||||
enabled when this service is called, then the registered handler will be invoked. The
|
||||
registered handler should not be able to distinguish a hardware-generated timer
|
||||
interrupt from a software-generated timer interrupt.
|
||||
|
||||
@param This The EFI_TIMER_ARCH_PROTOCOL instance.
|
||||
|
||||
@retval EFI_SUCCESS The soft timer interrupt was generated.
|
||||
@retval EFI_UNSUPPORTED The platform does not support the generation of soft timer interrupts.
|
||||
|
||||
/**
|
||||
|
||||
This function generates a soft timer interrupt. If the platform does not support soft
|
||||
|
||||
timer interrupts, then EFI_UNSUPPORTED is returned. Otherwise, EFI_SUCCESS is returned.
|
||||
|
||||
If a handler has been registered through the EFI_TIMER_ARCH_PROTOCOL.RegisterHandler()
|
||||
|
||||
service, then a soft timer interrupt will be generated. If the timer interrupt is
|
||||
|
||||
enabled when this service is called, then the registered handler will be invoked. The
|
||||
|
||||
registered handler should not be able to distinguish a hardware-generated timer
|
||||
|
||||
interrupt from a software-generated timer interrupt.
|
||||
|
||||
|
||||
|
||||
@param This The EFI_TIMER_ARCH_PROTOCOL instance.
|
||||
|
||||
|
||||
|
||||
@retval EFI_SUCCESS The soft timer interrupt was generated.
|
||||
|
||||
@retval EFI_UNSUPPORTED The platform does not support the generation of soft timer interrupts.
|
||||
|
||||
|
||||
|
||||
**/
|
||||
EFI_STATUS
|
||||
EFIAPI
|
||||
@@ -289,39 +387,72 @@ TimerDriverRegisterPeriodicCallback (
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Interface stucture for the Timer Architectural Protocol.
|
||||
|
||||
@par Protocol Description:
|
||||
This protocol provides the services to initialize a periodic timer
|
||||
interrupt, and to register a handler that is called each time the timer
|
||||
interrupt fires. It may also provide a service to adjust the rate of the
|
||||
periodic timer interrupt. When a timer interrupt occurs, the handler is
|
||||
passed the amount of time that has passed since the previous timer
|
||||
interrupt.
|
||||
|
||||
@param RegisterHandler
|
||||
Registers a handler that will be called each time the
|
||||
timer interrupt fires. TimerPeriod defines the minimum
|
||||
time between timer interrupts, so TimerPeriod will also
|
||||
be the minimum time between calls to the registered
|
||||
handler.
|
||||
|
||||
@param SetTimerPeriod
|
||||
Sets the period of the timer interrupt in 100 nS units.
|
||||
This function is optional, and may return EFI_UNSUPPORTED.
|
||||
If this function is supported, then the timer period will
|
||||
be rounded up to the nearest supported timer period.
|
||||
|
||||
@param GetTimerPeriod
|
||||
Retrieves the period of the timer interrupt in 100 nS units.
|
||||
|
||||
@param GenerateSoftInterrupt
|
||||
Generates a soft timer interrupt that simulates the firing of
|
||||
the timer interrupt. This service can be used to invoke the
|
||||
registered handler if the timer interrupt has been masked for
|
||||
a period of time.
|
||||
|
||||
/**
|
||||
|
||||
Interface stucture for the Timer Architectural Protocol.
|
||||
|
||||
|
||||
|
||||
@par Protocol Description:
|
||||
|
||||
This protocol provides the services to initialize a periodic timer
|
||||
|
||||
interrupt, and to register a handler that is called each time the timer
|
||||
|
||||
interrupt fires. It may also provide a service to adjust the rate of the
|
||||
|
||||
periodic timer interrupt. When a timer interrupt occurs, the handler is
|
||||
|
||||
passed the amount of time that has passed since the previous timer
|
||||
|
||||
interrupt.
|
||||
|
||||
|
||||
|
||||
@param RegisterHandler
|
||||
|
||||
Registers a handler that will be called each time the
|
||||
|
||||
timer interrupt fires. TimerPeriod defines the minimum
|
||||
|
||||
time between timer interrupts, so TimerPeriod will also
|
||||
|
||||
be the minimum time between calls to the registered
|
||||
|
||||
handler.
|
||||
|
||||
|
||||
|
||||
@param SetTimerPeriod
|
||||
|
||||
Sets the period of the timer interrupt in 100 nS units.
|
||||
|
||||
This function is optional, and may return EFI_UNSUPPORTED.
|
||||
|
||||
If this function is supported, then the timer period will
|
||||
|
||||
be rounded up to the nearest supported timer period.
|
||||
|
||||
|
||||
|
||||
@param GetTimerPeriod
|
||||
|
||||
Retrieves the period of the timer interrupt in 100 nS units.
|
||||
|
||||
|
||||
|
||||
@param GenerateSoftInterrupt
|
||||
|
||||
Generates a soft timer interrupt that simulates the firing of
|
||||
|
||||
the timer interrupt. This service can be used to invoke the
|
||||
|
||||
registered handler if the timer interrupt has been masked for
|
||||
|
||||
a period of time.
|
||||
|
||||
|
||||
|
||||
**/
|
||||
EFI_TIMER_ARCH_PROTOCOL gTimer = {
|
||||
TimerDriverRegisterHandler,
|
||||
@@ -335,18 +466,30 @@ TIMER_DEBUG_SUPPORT_PROTOCOL gTimerDebugSupport = {
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
Initialize the state information for the Timer Architectural Protocol and
|
||||
the Timer Debug support protocol that allows the debugger to break into a
|
||||
running program.
|
||||
|
||||
@param ImageHandle of the loaded driver
|
||||
@param SystemTable Pointer to the System Table
|
||||
|
||||
@retval EFI_SUCCESS Protocol registered
|
||||
@retval EFI_OUT_OF_RESOURCES Cannot allocate protocol data structure
|
||||
@retval EFI_DEVICE_ERROR Hardware problems
|
||||
|
||||
/**
|
||||
|
||||
Initialize the state information for the Timer Architectural Protocol and
|
||||
|
||||
the Timer Debug support protocol that allows the debugger to break into a
|
||||
|
||||
running program.
|
||||
|
||||
|
||||
|
||||
@param ImageHandle of the loaded driver
|
||||
|
||||
@param SystemTable Pointer to the System Table
|
||||
|
||||
|
||||
|
||||
@retval EFI_SUCCESS Protocol registered
|
||||
|
||||
@retval EFI_OUT_OF_RESOURCES Cannot allocate protocol data structure
|
||||
|
||||
@retval EFI_DEVICE_ERROR Hardware problems
|
||||
|
||||
|
||||
|
||||
**/
|
||||
EFI_STATUS
|
||||
EFIAPI
|
||||
|
Reference in New Issue
Block a user