MdeModulePkg: Apply uncrustify changes

REF: https://bugzilla.tianocore.org/show_bug.cgi?id=3737

Apply uncrustify changes to .c/.h files in the MdeModulePkg package

Cc: Andrew Fish <afish@apple.com>
Cc: Leif Lindholm <leif@nuviainc.com>
Cc: Michael D Kinney <michael.d.kinney@intel.com>
Signed-off-by: Michael Kubacki <michael.kubacki@microsoft.com>
Reviewed-by: Liming Gao <gaoliming@byosoft.com.cn>
This commit is contained in:
Michael Kubacki
2021-12-05 14:54:02 -08:00
committed by mergify[bot]
parent 7c7184e201
commit 1436aea4d5
994 changed files with 107608 additions and 101311 deletions

View File

@@ -25,13 +25,13 @@ SPDX-License-Identifier: BSD-2-Clause-Patent
**/
VOID
HandOffToDxeCore (
IN EFI_PHYSICAL_ADDRESS DxeCoreEntryPoint,
IN EFI_PEI_HOB_POINTERS HobList
IN EFI_PHYSICAL_ADDRESS DxeCoreEntryPoint,
IN EFI_PEI_HOB_POINTERS HobList
)
{
VOID *BaseOfStack;
VOID *TopOfStack;
EFI_STATUS Status;
VOID *BaseOfStack;
VOID *TopOfStack;
EFI_STATUS Status;
//
// Allocate 128KB for the Stack
@@ -48,7 +48,7 @@ HandOffToDxeCore (
// Compute the top of the stack we were allocated. Pre-allocate a UINTN
// for safety.
//
TopOfStack = (VOID *) ((UINTN) BaseOfStack + EFI_SIZE_TO_PAGES (STACK_SIZE) * EFI_PAGE_SIZE - CPU_STACK_ALIGNMENT);
TopOfStack = (VOID *)((UINTN)BaseOfStack + EFI_SIZE_TO_PAGES (STACK_SIZE) * EFI_PAGE_SIZE - CPU_STACK_ALIGNMENT);
TopOfStack = ALIGN_POINTER (TopOfStack, CPU_STACK_ALIGNMENT);
//
@@ -60,7 +60,7 @@ HandOffToDxeCore (
//
// Update the contents of BSP stack HOB to reflect the real stack info passed to DxeCore.
//
UpdateStackHob ((EFI_PHYSICAL_ADDRESS)(UINTN) BaseOfStack, STACK_SIZE);
UpdateStackHob ((EFI_PHYSICAL_ADDRESS)(UINTN)BaseOfStack, STACK_SIZE);
SwitchStack (
(SWITCH_STACK_ENTRY_POINT)(UINTN)DxeCoreEntryPoint,

View File

@@ -46,11 +46,10 @@ SPDX-License-Identifier: BSD-2-Clause-Patent
#define STACK_SIZE 0x20000
#define BSP_STORE_SIZE 0x4000
//
// This PPI is installed to indicate the end of the PEI usage of memory
//
extern CONST EFI_PEI_PPI_DESCRIPTOR gEndOfPeiSignalPpi;
extern CONST EFI_PEI_PPI_DESCRIPTOR gEndOfPeiSignalPpi;
/**
This function installs the PPIs that require permanent memory.
@@ -83,7 +82,6 @@ DxeIplFindDxeCore (
VOID
);
/**
Main entry point to last PEIM
@@ -98,13 +96,11 @@ DxeIplFindDxeCore (
EFI_STATUS
EFIAPI
DxeLoadCore (
IN CONST EFI_DXE_IPL_PPI *This,
IN EFI_PEI_SERVICES **PeiServices,
IN EFI_PEI_HOB_POINTERS HobList
IN CONST EFI_DXE_IPL_PPI *This,
IN EFI_PEI_SERVICES **PeiServices,
IN EFI_PEI_HOB_POINTERS HobList
);
/**
Transfers control to DxeCore.
@@ -118,12 +114,10 @@ DxeLoadCore (
**/
VOID
HandOffToDxeCore (
IN EFI_PHYSICAL_ADDRESS DxeCoreEntryPoint,
IN EFI_PEI_HOB_POINTERS HobList
IN EFI_PHYSICAL_ADDRESS DxeCoreEntryPoint,
IN EFI_PEI_HOB_POINTERS HobList
);
/**
Updates the Stack HOB passed to DXE phase.
@@ -136,8 +130,8 @@ HandOffToDxeCore (
**/
VOID
UpdateStackHob (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
);
/**
@@ -197,14 +191,13 @@ UpdateStackHob (
EFI_STATUS
EFIAPI
CustomGuidedSectionExtract (
IN CONST EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI *This,
IN CONST VOID *InputSection,
OUT VOID **OutputBuffer,
OUT UINTN *OutputSize,
OUT UINT32 *AuthenticationStatus
IN CONST EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI *This,
IN CONST VOID *InputSection,
OUT VOID **OutputBuffer,
OUT UINTN *OutputSize,
OUT UINT32 *AuthenticationStatus
);
/**
Decompresses a section to the output buffer.
@@ -228,10 +221,10 @@ CustomGuidedSectionExtract (
EFI_STATUS
EFIAPI
Decompress (
IN CONST EFI_PEI_DECOMPRESS_PPI *This,
IN CONST EFI_COMPRESSION_SECTION *CompressionSection,
OUT VOID **OutputBuffer,
OUT UINTN *OutputSize
IN CONST EFI_PEI_DECOMPRESS_PPI *This,
IN CONST EFI_COMPRESSION_SECTION *CompressionSection,
OUT VOID **OutputBuffer,
OUT UINTN *OutputSize
);
#endif

View File

@@ -10,42 +10,41 @@ SPDX-License-Identifier: BSD-2-Clause-Patent
#include "DxeIpl.h"
//
// Module Globals used in the DXE to PEI hand off
// These must be module globals, so the stack can be switched
//
CONST EFI_DXE_IPL_PPI mDxeIplPpi = {
CONST EFI_DXE_IPL_PPI mDxeIplPpi = {
DxeLoadCore
};
CONST EFI_PEI_PPI_DESCRIPTOR mDxeIplPpiList = {
CONST EFI_PEI_PPI_DESCRIPTOR mDxeIplPpiList = {
EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST,
&gEfiDxeIplPpiGuid,
(VOID *) &mDxeIplPpi
(VOID *)&mDxeIplPpi
};
CONST EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI mCustomGuidedSectionExtractionPpi = {
CONST EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI mCustomGuidedSectionExtractionPpi = {
CustomGuidedSectionExtract
};
CONST EFI_PEI_DECOMPRESS_PPI mDecompressPpi = {
CONST EFI_PEI_DECOMPRESS_PPI mDecompressPpi = {
Decompress
};
CONST EFI_PEI_PPI_DESCRIPTOR mDecompressPpiList = {
CONST EFI_PEI_PPI_DESCRIPTOR mDecompressPpiList = {
(EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST),
&gEfiPeiDecompressPpiGuid,
(VOID *) &mDecompressPpi
(VOID *)&mDecompressPpi
};
CONST EFI_PEI_PPI_DESCRIPTOR gEndOfPeiSignalPpi = {
CONST EFI_PEI_PPI_DESCRIPTOR gEndOfPeiSignalPpi = {
(EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST),
&gEfiEndOfPeiSignalPpiGuid,
NULL
};
CONST EFI_PEI_NOTIFY_DESCRIPTOR mMemoryDiscoveredNotifyList = {
CONST EFI_PEI_NOTIFY_DESCRIPTOR mMemoryDiscoveredNotifyList = {
(EFI_PEI_PPI_DESCRIPTOR_NOTIFY_DISPATCH | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST),
&gEfiPeiMemoryDiscoveredPpiGuid,
InstallIplPermanentMemoryPpis
@@ -71,9 +70,9 @@ PeimInitializeDxeIpl (
IN CONST EFI_PEI_SERVICES **PeiServices
)
{
EFI_STATUS Status;
EFI_BOOT_MODE BootMode;
VOID *Dummy;
EFI_STATUS Status;
EFI_BOOT_MODE BootMode;
VOID *Dummy;
BootMode = GetBootModeHob ();
@@ -98,7 +97,7 @@ PeimInitializeDxeIpl (
&gEfiPeiMemoryDiscoveredPpiGuid,
0,
NULL,
(VOID **) &Dummy
(VOID **)&Dummy
);
ASSERT_EFI_ERROR (Status);
if (EFI_ERROR (Status)) {
@@ -124,7 +123,7 @@ PeimInitializeDxeIpl (
// Install DxeIpl PPI.
//
Status = PeiServicesInstallPpi (&mDxeIplPpiList);
ASSERT_EFI_ERROR(Status);
ASSERT_EFI_ERROR (Status);
return Status;
}
@@ -148,10 +147,10 @@ InstallIplPermanentMemoryPpis (
IN VOID *Ppi
)
{
EFI_STATUS Status;
EFI_GUID *ExtractHandlerGuidTable;
UINTN ExtractHandlerNumber;
EFI_PEI_PPI_DESCRIPTOR *GuidPpi;
EFI_STATUS Status;
EFI_GUID *ExtractHandlerGuidTable;
UINTN ExtractHandlerNumber;
EFI_PEI_PPI_DESCRIPTOR *GuidPpi;
//
// Get custom extract guided section method guid list
@@ -162,14 +161,14 @@ InstallIplPermanentMemoryPpis (
// Install custom guided section extraction PPI
//
if (ExtractHandlerNumber > 0) {
GuidPpi = (EFI_PEI_PPI_DESCRIPTOR *) AllocatePool (ExtractHandlerNumber * sizeof (EFI_PEI_PPI_DESCRIPTOR));
GuidPpi = (EFI_PEI_PPI_DESCRIPTOR *)AllocatePool (ExtractHandlerNumber * sizeof (EFI_PEI_PPI_DESCRIPTOR));
ASSERT (GuidPpi != NULL);
while (ExtractHandlerNumber-- > 0) {
GuidPpi->Flags = EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST;
GuidPpi->Ppi = (VOID *) &mCustomGuidedSectionExtractionPpi;
GuidPpi->Ppi = (VOID *)&mCustomGuidedSectionExtractionPpi;
GuidPpi->Guid = &ExtractHandlerGuidTable[ExtractHandlerNumber];
Status = PeiServicesInstallPpi (GuidPpi++);
ASSERT_EFI_ERROR(Status);
Status = PeiServicesInstallPpi (GuidPpi++);
ASSERT_EFI_ERROR (Status);
}
}
@@ -177,7 +176,7 @@ InstallIplPermanentMemoryPpis (
// Install Decompress PPI.
//
Status = PeiServicesInstallPpi (&mDecompressPpiList);
ASSERT_EFI_ERROR(Status);
ASSERT_EFI_ERROR (Status);
return Status;
}
@@ -194,12 +193,12 @@ InstallIplPermanentMemoryPpis (
**/
BOOLEAN
ValidateMemoryTypeInfoVariable (
IN EFI_MEMORY_TYPE_INFORMATION *MemoryData,
IN UINTN MemoryDataSize
IN EFI_MEMORY_TYPE_INFORMATION *MemoryData,
IN UINTN MemoryDataSize
)
{
UINTN Count;
UINTN Index;
UINTN Count;
UINTN Index;
// Check the input parameter.
if (MemoryData == NULL) {
@@ -210,7 +209,7 @@ ValidateMemoryTypeInfoVariable (
Count = MemoryDataSize / sizeof (*MemoryData);
// Check Size
if (Count * sizeof(*MemoryData) != MemoryDataSize) {
if (Count * sizeof (*MemoryData) != MemoryDataSize) {
return FALSE;
}
@@ -246,28 +245,28 @@ ValidateMemoryTypeInfoVariable (
EFI_STATUS
EFIAPI
DxeLoadCore (
IN CONST EFI_DXE_IPL_PPI *This,
IN EFI_PEI_SERVICES **PeiServices,
IN EFI_PEI_HOB_POINTERS HobList
IN CONST EFI_DXE_IPL_PPI *This,
IN EFI_PEI_SERVICES **PeiServices,
IN EFI_PEI_HOB_POINTERS HobList
)
{
EFI_STATUS Status;
EFI_FV_FILE_INFO DxeCoreFileInfo;
EFI_PHYSICAL_ADDRESS DxeCoreAddress;
UINT64 DxeCoreSize;
EFI_PHYSICAL_ADDRESS DxeCoreEntryPoint;
EFI_BOOT_MODE BootMode;
EFI_PEI_FILE_HANDLE FileHandle;
EFI_PEI_READ_ONLY_VARIABLE2_PPI *Variable;
EFI_PEI_LOAD_FILE_PPI *LoadFile;
UINTN Instance;
UINT32 AuthenticationState;
UINTN DataSize;
EFI_PEI_S3_RESUME2_PPI *S3Resume;
EFI_PEI_RECOVERY_MODULE_PPI *PeiRecovery;
EDKII_PEI_CAPSULE_ON_DISK_PPI *PeiCapsuleOnDisk;
EFI_MEMORY_TYPE_INFORMATION MemoryData[EfiMaxMemoryType + 1];
VOID *CapsuleOnDiskModePpi;
EFI_STATUS Status;
EFI_FV_FILE_INFO DxeCoreFileInfo;
EFI_PHYSICAL_ADDRESS DxeCoreAddress;
UINT64 DxeCoreSize;
EFI_PHYSICAL_ADDRESS DxeCoreEntryPoint;
EFI_BOOT_MODE BootMode;
EFI_PEI_FILE_HANDLE FileHandle;
EFI_PEI_READ_ONLY_VARIABLE2_PPI *Variable;
EFI_PEI_LOAD_FILE_PPI *LoadFile;
UINTN Instance;
UINT32 AuthenticationState;
UINTN DataSize;
EFI_PEI_S3_RESUME2_PPI *S3Resume;
EFI_PEI_RECOVERY_MODULE_PPI *PeiRecovery;
EDKII_PEI_CAPSULE_ON_DISK_PPI *PeiCapsuleOnDisk;
EFI_MEMORY_TYPE_INFORMATION MemoryData[EfiMaxMemoryType + 1];
VOID *CapsuleOnDiskModePpi;
//
// if in S3 Resume, restore configure
@@ -279,7 +278,7 @@ DxeLoadCore (
&gEfiPeiS3Resume2PpiGuid,
0,
NULL,
(VOID **) &S3Resume
(VOID **)&S3Resume
);
if (EFI_ERROR (Status)) {
//
@@ -290,6 +289,7 @@ DxeLoadCore (
(EFI_SOFTWARE_PEI_MODULE | EFI_SW_PEI_EC_S3_RESUME_PPI_NOT_FOUND)
);
}
ASSERT_EFI_ERROR (Status);
Status = S3Resume->S3RestoreConfig2 (S3Resume);
@@ -300,7 +300,7 @@ DxeLoadCore (
&gEfiPeiRecoveryModulePpiGuid,
0,
NULL,
(VOID **) &PeiRecovery
(VOID **)&PeiRecovery
);
if (EFI_ERROR (Status)) {
@@ -328,6 +328,7 @@ DxeLoadCore (
);
CpuDeadLoop ();
}
REPORT_STATUS_CODE (EFI_PROGRESS_CODE, (EFI_SOFTWARE_PEI_MODULE | EFI_SW_PEI_PC_CAPSULE_START));
//
// Now should have a HOB with the DXE core
@@ -343,12 +344,12 @@ DxeLoadCore (
NULL,
&CapsuleOnDiskModePpi
);
if (!EFI_ERROR(Status)) {
if (!EFI_ERROR (Status)) {
Status = PeiServicesLocatePpi (
&gEdkiiPeiCapsuleOnDiskPpiGuid,
0,
NULL,
(VOID **) &PeiCapsuleOnDisk
(VOID **)&PeiCapsuleOnDisk
);
//
@@ -372,15 +373,15 @@ DxeLoadCore (
);
if (!EFI_ERROR (Status)) {
DataSize = sizeof (MemoryData);
Status = Variable->GetVariable (
Variable,
EFI_MEMORY_TYPE_INFORMATION_VARIABLE_NAME,
&gEfiMemoryTypeInformationGuid,
NULL,
&DataSize,
&MemoryData
);
if (!EFI_ERROR (Status) && ValidateMemoryTypeInfoVariable(MemoryData, DataSize)) {
Status = Variable->GetVariable (
Variable,
EFI_MEMORY_TYPE_INFORMATION_VARIABLE_NAME,
&gEfiMemoryTypeInformationGuid,
NULL,
&DataSize,
&MemoryData
);
if (!EFI_ERROR (Status) && ValidateMemoryTypeInfoVariable (MemoryData, DataSize)) {
//
// Build the GUID'd HOB for DXE
//
@@ -403,7 +404,7 @@ DxeLoadCore (
//
Instance = 0;
do {
Status = PeiServicesLocatePpi (&gEfiPeiLoadFilePpiGuid, Instance++, NULL, (VOID **) &LoadFile);
Status = PeiServicesLocatePpi (&gEfiPeiLoadFilePpiGuid, Instance++, NULL, (VOID **)&LoadFile);
//
// These must exist an instance of EFI_PEI_LOAD_FILE_PPI to support to load DxeCore file handle successfully.
//
@@ -457,7 +458,6 @@ DxeLoadCore (
return EFI_OUT_OF_RESOURCES;
}
/**
Searches DxeCore in all firmware Volumes and loads the first
instance that contains DxeCore.
@@ -470,12 +470,12 @@ DxeIplFindDxeCore (
VOID
)
{
EFI_STATUS Status;
UINTN Instance;
EFI_PEI_FV_HANDLE VolumeHandle;
EFI_PEI_FILE_HANDLE FileHandle;
EFI_STATUS Status;
UINTN Instance;
EFI_PEI_FV_HANDLE VolumeHandle;
EFI_PEI_FILE_HANDLE FileHandle;
Instance = 0;
Instance = 0;
while (TRUE) {
//
// Traverse all firmware volume instances
@@ -488,13 +488,14 @@ DxeIplFindDxeCore (
if (EFI_ERROR (Status)) {
REPORT_STATUS_CODE (EFI_PROGRESS_CODE, (EFI_SOFTWARE_PEI_MODULE | EFI_SW_PEI_CORE_EC_DXE_CORRUPT));
}
ASSERT_EFI_ERROR (Status);
//
// Find the DxeCore file type from the beginning in this firmware volume.
//
FileHandle = NULL;
Status = PeiServicesFfsFindNextFile (EFI_FV_FILETYPE_DXE_CORE, VolumeHandle, &FileHandle);
Status = PeiServicesFfsFindNextFile (EFI_FV_FILETYPE_DXE_CORE, VolumeHandle, &FileHandle);
if (!EFI_ERROR (Status)) {
//
// Find DxeCore FileHandle in this volume, then we skip other firmware volume and
@@ -502,6 +503,7 @@ DxeIplFindDxeCore (
//
return FileHandle;
}
//
// We cannot find DxeCore in this firmware volume, then search the next volume.
//
@@ -509,8 +511,6 @@ DxeIplFindDxeCore (
}
}
/**
The ExtractSection() function processes the input section and
returns a pointer to the section contents. If the section being
@@ -568,18 +568,18 @@ DxeIplFindDxeCore (
EFI_STATUS
EFIAPI
CustomGuidedSectionExtract (
IN CONST EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI *This,
IN CONST VOID *InputSection,
OUT VOID **OutputBuffer,
OUT UINTN *OutputSize,
OUT UINT32 *AuthenticationStatus
)
IN CONST EFI_PEI_GUIDED_SECTION_EXTRACTION_PPI *This,
IN CONST VOID *InputSection,
OUT VOID **OutputBuffer,
OUT UINTN *OutputSize,
OUT UINT32 *AuthenticationStatus
)
{
EFI_STATUS Status;
UINT8 *ScratchBuffer;
UINT32 ScratchBufferSize;
UINT32 OutputBufferSize;
UINT16 SectionAttribute;
EFI_STATUS Status;
UINT8 *ScratchBuffer;
UINT32 ScratchBufferSize;
UINT32 OutputBufferSize;
UINT16 SectionAttribute;
//
// Init local variable
@@ -611,7 +611,7 @@ CustomGuidedSectionExtract (
}
}
if (((SectionAttribute & EFI_GUIDED_SECTION_PROCESSING_REQUIRED) != 0) && OutputBufferSize > 0) {
if (((SectionAttribute & EFI_GUIDED_SECTION_PROCESSING_REQUIRED) != 0) && (OutputBufferSize > 0)) {
//
// Allocate output buffer
//
@@ -619,6 +619,7 @@ CustomGuidedSectionExtract (
if (*OutputBuffer == NULL) {
return EFI_OUT_OF_RESOURCES;
}
DEBUG ((DEBUG_INFO, "Customized Guided section Memory Size required is 0x%x and address is 0x%p\n", OutputBufferSize, *OutputBuffer));
}
@@ -636,13 +637,11 @@ CustomGuidedSectionExtract (
return Status;
}
*OutputSize = (UINTN) OutputBufferSize;
*OutputSize = (UINTN)OutputBufferSize;
return EFI_SUCCESS;
}
/**
Decompresses a section to the output buffer.
@@ -666,21 +665,21 @@ CustomGuidedSectionExtract (
EFI_STATUS
EFIAPI
Decompress (
IN CONST EFI_PEI_DECOMPRESS_PPI *This,
IN CONST EFI_COMPRESSION_SECTION *CompressionSection,
OUT VOID **OutputBuffer,
OUT UINTN *OutputSize
)
IN CONST EFI_PEI_DECOMPRESS_PPI *This,
IN CONST EFI_COMPRESSION_SECTION *CompressionSection,
OUT VOID **OutputBuffer,
OUT UINTN *OutputSize
)
{
EFI_STATUS Status;
UINT8 *DstBuffer;
UINT8 *ScratchBuffer;
UINT32 DstBufferSize;
UINT32 ScratchBufferSize;
VOID *CompressionSource;
UINT32 CompressionSourceSize;
UINT32 UncompressedLength;
UINT8 CompressionType;
EFI_STATUS Status;
UINT8 *DstBuffer;
UINT8 *ScratchBuffer;
UINT32 DstBufferSize;
UINT32 ScratchBufferSize;
VOID *CompressionSource;
UINT32 CompressionSourceSize;
UINT32 UncompressedLength;
UINT8 CompressionType;
if (CompressionSection->CommonHeader.Type != EFI_SECTION_COMPRESSION) {
ASSERT (FALSE);
@@ -688,109 +687,113 @@ Decompress (
}
if (IS_SECTION2 (CompressionSection)) {
CompressionSource = (VOID *) ((UINT8 *) CompressionSection + sizeof (EFI_COMPRESSION_SECTION2));
CompressionSourceSize = (UINT32) (SECTION2_SIZE (CompressionSection) - sizeof (EFI_COMPRESSION_SECTION2));
UncompressedLength = ((EFI_COMPRESSION_SECTION2 *) CompressionSection)->UncompressedLength;
CompressionType = ((EFI_COMPRESSION_SECTION2 *) CompressionSection)->CompressionType;
CompressionSource = (VOID *)((UINT8 *)CompressionSection + sizeof (EFI_COMPRESSION_SECTION2));
CompressionSourceSize = (UINT32)(SECTION2_SIZE (CompressionSection) - sizeof (EFI_COMPRESSION_SECTION2));
UncompressedLength = ((EFI_COMPRESSION_SECTION2 *)CompressionSection)->UncompressedLength;
CompressionType = ((EFI_COMPRESSION_SECTION2 *)CompressionSection)->CompressionType;
} else {
CompressionSource = (VOID *) ((UINT8 *) CompressionSection + sizeof (EFI_COMPRESSION_SECTION));
CompressionSourceSize = (UINT32) (SECTION_SIZE (CompressionSection) - sizeof (EFI_COMPRESSION_SECTION));
UncompressedLength = CompressionSection->UncompressedLength;
CompressionType = CompressionSection->CompressionType;
CompressionSource = (VOID *)((UINT8 *)CompressionSection + sizeof (EFI_COMPRESSION_SECTION));
CompressionSourceSize = (UINT32)(SECTION_SIZE (CompressionSection) - sizeof (EFI_COMPRESSION_SECTION));
UncompressedLength = CompressionSection->UncompressedLength;
CompressionType = CompressionSection->CompressionType;
}
//
// This is a compression set, expand it
//
switch (CompressionType) {
case EFI_STANDARD_COMPRESSION:
if (FeaturePcdGet(PcdDxeIplSupportUefiDecompress)) {
//
// Load EFI standard compression.
// For compressed data, decompress them to destination buffer.
//
Status = UefiDecompressGetInfo (
CompressionSource,
CompressionSourceSize,
&DstBufferSize,
&ScratchBufferSize
);
if (EFI_ERROR (Status)) {
case EFI_STANDARD_COMPRESSION:
if (FeaturePcdGet (PcdDxeIplSupportUefiDecompress)) {
//
// GetInfo failed
// Load EFI standard compression.
// For compressed data, decompress them to destination buffer.
//
DEBUG ((DEBUG_ERROR, "Decompress GetInfo Failed - %r\n", Status));
Status = UefiDecompressGetInfo (
CompressionSource,
CompressionSourceSize,
&DstBufferSize,
&ScratchBufferSize
);
if (EFI_ERROR (Status)) {
//
// GetInfo failed
//
DEBUG ((DEBUG_ERROR, "Decompress GetInfo Failed - %r\n", Status));
return EFI_NOT_FOUND;
}
//
// Allocate scratch buffer
//
ScratchBuffer = AllocatePages (EFI_SIZE_TO_PAGES (ScratchBufferSize));
if (ScratchBuffer == NULL) {
return EFI_OUT_OF_RESOURCES;
}
//
// Allocate destination buffer
//
DstBuffer = AllocatePages (EFI_SIZE_TO_PAGES (DstBufferSize));
if (DstBuffer == NULL) {
return EFI_OUT_OF_RESOURCES;
}
//
// Call decompress function
//
Status = UefiDecompress (
CompressionSource,
DstBuffer,
ScratchBuffer
);
if (EFI_ERROR (Status)) {
//
// Decompress failed
//
DEBUG ((DEBUG_ERROR, "Decompress Failed - %r\n", Status));
return EFI_NOT_FOUND;
}
break;
} else {
//
// PcdDxeIplSupportUefiDecompress is FALSE
// Don't support UEFI decompression algorithm.
//
ASSERT (FALSE);
return EFI_NOT_FOUND;
}
//
// Allocate scratch buffer
//
ScratchBuffer = AllocatePages (EFI_SIZE_TO_PAGES (ScratchBufferSize));
if (ScratchBuffer == NULL) {
return EFI_OUT_OF_RESOURCES;
}
case EFI_NOT_COMPRESSED:
//
// Allocate destination buffer
//
DstBuffer = AllocatePages (EFI_SIZE_TO_PAGES (DstBufferSize));
DstBufferSize = UncompressedLength;
DstBuffer = AllocatePages (EFI_SIZE_TO_PAGES (DstBufferSize));
if (DstBuffer == NULL) {
return EFI_OUT_OF_RESOURCES;
}
//
// Call decompress function
// stream is not actually compressed, just encapsulated. So just copy it.
//
Status = UefiDecompress (
CompressionSource,
DstBuffer,
ScratchBuffer
);
if (EFI_ERROR (Status)) {
//
// Decompress failed
//
DEBUG ((DEBUG_ERROR, "Decompress Failed - %r\n", Status));
return EFI_NOT_FOUND;
}
CopyMem (DstBuffer, CompressionSource, DstBufferSize);
break;
} else {
default:
//
// PcdDxeIplSupportUefiDecompress is FALSE
// Don't support UEFI decompression algorithm.
// Don't support other unknown compression type.
//
ASSERT (FALSE);
return EFI_NOT_FOUND;
}
case EFI_NOT_COMPRESSED:
//
// Allocate destination buffer
//
DstBufferSize = UncompressedLength;
DstBuffer = AllocatePages (EFI_SIZE_TO_PAGES (DstBufferSize));
if (DstBuffer == NULL) {
return EFI_OUT_OF_RESOURCES;
}
//
// stream is not actually compressed, just encapsulated. So just copy it.
//
CopyMem (DstBuffer, CompressionSource, DstBufferSize);
break;
default:
//
// Don't support other unknown compression type.
//
ASSERT (FALSE);
return EFI_NOT_FOUND;
}
*OutputSize = DstBufferSize;
*OutputSize = DstBufferSize;
*OutputBuffer = DstBuffer;
return EFI_SUCCESS;
}
/**
Updates the Stack HOB passed to DXE phase.
@@ -803,11 +806,11 @@ Decompress (
**/
VOID
UpdateStackHob (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
EFI_PEI_HOB_POINTERS Hob;
EFI_PEI_HOB_POINTERS Hob;
Hob.Raw = GetHobList ();
while ((Hob.Raw = GetNextHob (EFI_HOB_TYPE_MEMORY_ALLOCATION, Hob.Raw)) != NULL) {
@@ -826,10 +829,10 @@ UpdateStackHob (
// Update the BSP Stack Hob to reflect the new stack info.
//
Hob.MemoryAllocationStack->AllocDescriptor.MemoryBaseAddress = BaseAddress;
Hob.MemoryAllocationStack->AllocDescriptor.MemoryLength = Length;
Hob.MemoryAllocationStack->AllocDescriptor.MemoryLength = Length;
break;
}
Hob.Raw = GET_NEXT_HOB (Hob);
}
}

View File

@@ -8,8 +8,6 @@ SPDX-License-Identifier: BSD-2-Clause-Patent
#include "DxeIpl.h"
/**
Transfers control to DxeCore.
@@ -23,13 +21,13 @@ SPDX-License-Identifier: BSD-2-Clause-Patent
**/
VOID
HandOffToDxeCore (
IN EFI_PHYSICAL_ADDRESS DxeCoreEntryPoint,
IN EFI_PEI_HOB_POINTERS HobList
IN EFI_PHYSICAL_ADDRESS DxeCoreEntryPoint,
IN EFI_PEI_HOB_POINTERS HobList
)
{
VOID *BaseOfStack;
VOID *TopOfStack;
EFI_STATUS Status;
VOID *BaseOfStack;
VOID *TopOfStack;
EFI_STATUS Status;
//
// Allocate 128KB for the Stack
@@ -41,7 +39,7 @@ HandOffToDxeCore (
// Compute the top of the stack we were allocated. Pre-allocate a UINTN
// for safety.
//
TopOfStack = (VOID *) ((UINTN) BaseOfStack + EFI_SIZE_TO_PAGES (STACK_SIZE) * EFI_PAGE_SIZE - CPU_STACK_ALIGNMENT);
TopOfStack = (VOID *)((UINTN)BaseOfStack + EFI_SIZE_TO_PAGES (STACK_SIZE) * EFI_PAGE_SIZE - CPU_STACK_ALIGNMENT);
TopOfStack = ALIGN_POINTER (TopOfStack, CPU_STACK_ALIGNMENT);
//
@@ -53,7 +51,7 @@ HandOffToDxeCore (
//
// Update the contents of BSP stack HOB to reflect the real stack info passed to DxeCore.
//
UpdateStackHob ((EFI_PHYSICAL_ADDRESS)(UINTN) BaseOfStack, STACK_SIZE);
UpdateStackHob ((EFI_PHYSICAL_ADDRESS)(UINTN)BaseOfStack, STACK_SIZE);
//
// Transfer the control to the entry point of DxeCore.

View File

@@ -11,43 +11,61 @@ SPDX-License-Identifier: BSD-2-Clause-Patent
#include "DxeIpl.h"
#include "VirtualMemory.h"
#define IDT_ENTRY_COUNT 32
#define IDT_ENTRY_COUNT 32
typedef struct _X64_IDT_TABLE {
//
// Reserved 4 bytes preceding PeiService and IdtTable,
// since IDT base address should be 8-byte alignment.
//
UINT32 Reserved;
CONST EFI_PEI_SERVICES **PeiService;
X64_IDT_GATE_DESCRIPTOR IdtTable[IDT_ENTRY_COUNT];
UINT32 Reserved;
CONST EFI_PEI_SERVICES **PeiService;
X64_IDT_GATE_DESCRIPTOR IdtTable[IDT_ENTRY_COUNT];
} X64_IDT_TABLE;
//
// Global Descriptor Table (GDT)
//
GLOBAL_REMOVE_IF_UNREFERENCED IA32_GDT gGdtEntries[] = {
/* selector { Global Segment Descriptor } */
/* 0x00 */ {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, //null descriptor
/* 0x08 */ {{0xffff, 0, 0, 0x2, 1, 0, 1, 0xf, 0, 0, 1, 1, 0}}, //linear data segment descriptor
/* 0x10 */ {{0xffff, 0, 0, 0xf, 1, 0, 1, 0xf, 0, 0, 1, 1, 0}}, //linear code segment descriptor
/* 0x18 */ {{0xffff, 0, 0, 0x3, 1, 0, 1, 0xf, 0, 0, 1, 1, 0}}, //system data segment descriptor
/* 0x20 */ {{0xffff, 0, 0, 0xa, 1, 0, 1, 0xf, 0, 0, 1, 1, 0}}, //system code segment descriptor
/* 0x28 */ {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, //spare segment descriptor
/* 0x30 */ {{0xffff, 0, 0, 0x2, 1, 0, 1, 0xf, 0, 0, 1, 1, 0}}, //system data segment descriptor
/* 0x38 */ {{0xffff, 0, 0, 0xa, 1, 0, 1, 0xf, 0, 1, 0, 1, 0}}, //system code segment descriptor
/* 0x40 */ {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, //spare segment descriptor
GLOBAL_REMOVE_IF_UNREFERENCED IA32_GDT gGdtEntries[] = {
/* selector { Global Segment Descriptor } */
/* 0x00 */ {
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
}, // null descriptor
/* 0x08 */ {
{ 0xffff, 0, 0, 0x2, 1, 0, 1, 0xf, 0, 0, 1, 1, 0 }
}, // linear data segment descriptor
/* 0x10 */ {
{ 0xffff, 0, 0, 0xf, 1, 0, 1, 0xf, 0, 0, 1, 1, 0 }
}, // linear code segment descriptor
/* 0x18 */ {
{ 0xffff, 0, 0, 0x3, 1, 0, 1, 0xf, 0, 0, 1, 1, 0 }
}, // system data segment descriptor
/* 0x20 */ {
{ 0xffff, 0, 0, 0xa, 1, 0, 1, 0xf, 0, 0, 1, 1, 0 }
}, // system code segment descriptor
/* 0x28 */ {
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
}, // spare segment descriptor
/* 0x30 */ {
{ 0xffff, 0, 0, 0x2, 1, 0, 1, 0xf, 0, 0, 1, 1, 0 }
}, // system data segment descriptor
/* 0x38 */ {
{ 0xffff, 0, 0, 0xa, 1, 0, 1, 0xf, 0, 1, 0, 1, 0 }
}, // system code segment descriptor
/* 0x40 */ {
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
}, // spare segment descriptor
};
//
// IA32 Gdt register
//
GLOBAL_REMOVE_IF_UNREFERENCED CONST IA32_DESCRIPTOR gGdt = {
GLOBAL_REMOVE_IF_UNREFERENCED CONST IA32_DESCRIPTOR gGdt = {
sizeof (gGdtEntries) - 1,
(UINTN) gGdtEntries
};
(UINTN)gGdtEntries
};
GLOBAL_REMOVE_IF_UNREFERENCED IA32_DESCRIPTOR gLidtDescriptor = {
GLOBAL_REMOVE_IF_UNREFERENCED IA32_DESCRIPTOR gLidtDescriptor = {
sizeof (X64_IDT_GATE_DESCRIPTOR) * IDT_ENTRY_COUNT - 1,
0
};
@@ -64,21 +82,21 @@ GLOBAL_REMOVE_IF_UNREFERENCED IA32_DESCRIPTOR gLidtDescriptor = {
**/
UINTN
Create4GPageTablesIa32Pae (
IN EFI_PHYSICAL_ADDRESS StackBase,
IN UINTN StackSize
IN EFI_PHYSICAL_ADDRESS StackBase,
IN UINTN StackSize
)
{
UINT8 PhysicalAddressBits;
EFI_PHYSICAL_ADDRESS PhysicalAddress;
UINTN IndexOfPdpEntries;
UINTN IndexOfPageDirectoryEntries;
UINT32 NumberOfPdpEntriesNeeded;
PAGE_MAP_AND_DIRECTORY_POINTER *PageMap;
PAGE_MAP_AND_DIRECTORY_POINTER *PageDirectoryPointerEntry;
PAGE_TABLE_ENTRY *PageDirectoryEntry;
UINTN TotalPagesNum;
UINTN PageAddress;
UINT64 AddressEncMask;
UINT8 PhysicalAddressBits;
EFI_PHYSICAL_ADDRESS PhysicalAddress;
UINTN IndexOfPdpEntries;
UINTN IndexOfPageDirectoryEntries;
UINT32 NumberOfPdpEntriesNeeded;
PAGE_MAP_AND_DIRECTORY_POINTER *PageMap;
PAGE_MAP_AND_DIRECTORY_POINTER *PageDirectoryPointerEntry;
PAGE_TABLE_ENTRY *PageDirectoryEntry;
UINTN TotalPagesNum;
UINTN PageAddress;
UINT64 AddressEncMask;
//
// Make sure AddressEncMask is contained to smallest supported address field
@@ -90,53 +108,54 @@ Create4GPageTablesIa32Pae (
//
// Calculate the table entries needed.
//
NumberOfPdpEntriesNeeded = (UINT32) LShiftU64 (1, (PhysicalAddressBits - 30));
NumberOfPdpEntriesNeeded = (UINT32)LShiftU64 (1, (PhysicalAddressBits - 30));
TotalPagesNum = NumberOfPdpEntriesNeeded + 1;
PageAddress = (UINTN) AllocatePageTableMemory (TotalPagesNum);
PageAddress = (UINTN)AllocatePageTableMemory (TotalPagesNum);
ASSERT (PageAddress != 0);
PageMap = (VOID *) PageAddress;
PageMap = (VOID *)PageAddress;
PageAddress += SIZE_4KB;
PageDirectoryPointerEntry = PageMap;
PhysicalAddress = 0;
PhysicalAddress = 0;
for (IndexOfPdpEntries = 0; IndexOfPdpEntries < NumberOfPdpEntriesNeeded; IndexOfPdpEntries++, PageDirectoryPointerEntry++) {
//
// Each Directory Pointer entries points to a page of Page Directory entires.
// So allocate space for them and fill them in in the IndexOfPageDirectoryEntries loop.
//
PageDirectoryEntry = (VOID *) PageAddress;
PageAddress += SIZE_4KB;
PageDirectoryEntry = (VOID *)PageAddress;
PageAddress += SIZE_4KB;
//
// Fill in a Page Directory Pointer Entries
//
PageDirectoryPointerEntry->Uint64 = (UINT64) (UINTN) PageDirectoryEntry | AddressEncMask;
PageDirectoryPointerEntry->Uint64 = (UINT64)(UINTN)PageDirectoryEntry | AddressEncMask;
PageDirectoryPointerEntry->Bits.Present = 1;
for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectoryEntry++, PhysicalAddress += SIZE_2MB) {
if ((IsNullDetectionEnabled () && PhysicalAddress == 0)
|| ((PhysicalAddress < StackBase + StackSize)
&& ((PhysicalAddress + SIZE_2MB) > StackBase))) {
if ( (IsNullDetectionEnabled () && (PhysicalAddress == 0))
|| ( (PhysicalAddress < StackBase + StackSize)
&& ((PhysicalAddress + SIZE_2MB) > StackBase)))
{
//
// Need to split this 2M page that covers stack range.
//
Split2MPageTo4K (PhysicalAddress, (UINT64 *) PageDirectoryEntry, StackBase, StackSize, 0, 0);
Split2MPageTo4K (PhysicalAddress, (UINT64 *)PageDirectoryEntry, StackBase, StackSize, 0, 0);
} else {
//
// Fill in the Page Directory entries
//
PageDirectoryEntry->Uint64 = (UINT64) PhysicalAddress | AddressEncMask;
PageDirectoryEntry->Uint64 = (UINT64)PhysicalAddress | AddressEncMask;
PageDirectoryEntry->Bits.ReadWrite = 1;
PageDirectoryEntry->Bits.Present = 1;
PageDirectoryEntry->Bits.MustBe1 = 1;
PageDirectoryEntry->Bits.Present = 1;
PageDirectoryEntry->Bits.MustBe1 = 1;
}
}
}
for (; IndexOfPdpEntries < 512; IndexOfPdpEntries++, PageDirectoryPointerEntry++) {
for ( ; IndexOfPdpEntries < 512; IndexOfPdpEntries++, PageDirectoryPointerEntry++) {
ZeroMem (
PageDirectoryPointerEntry,
sizeof (PAGE_MAP_AND_DIRECTORY_POINTER)
@@ -149,7 +168,7 @@ Create4GPageTablesIa32Pae (
//
EnablePageTableProtection ((UINTN)PageMap, FALSE);
return (UINTN) PageMap;
return (UINTN)PageMap;
}
/**
@@ -164,9 +183,9 @@ IsIa32PaeSupport (
VOID
)
{
UINT32 RegEax;
UINT32 RegEdx;
BOOLEAN Ia32PaeSupport;
UINT32 RegEax;
UINT32 RegEdx;
BOOLEAN Ia32PaeSupport;
Ia32PaeSupport = FALSE;
AsmCpuid (0x0, &RegEax, NULL, NULL, NULL);
@@ -228,23 +247,23 @@ ToBuildPageTable (
**/
VOID
HandOffToDxeCore (
IN EFI_PHYSICAL_ADDRESS DxeCoreEntryPoint,
IN EFI_PEI_HOB_POINTERS HobList
IN EFI_PHYSICAL_ADDRESS DxeCoreEntryPoint,
IN EFI_PEI_HOB_POINTERS HobList
)
{
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS BaseOfStack;
EFI_PHYSICAL_ADDRESS TopOfStack;
UINTN PageTables;
X64_IDT_GATE_DESCRIPTOR *IdtTable;
UINTN SizeOfTemplate;
VOID *TemplateBase;
EFI_PHYSICAL_ADDRESS VectorAddress;
UINT32 Index;
X64_IDT_TABLE *IdtTableForX64;
EFI_VECTOR_HANDOFF_INFO *VectorInfo;
EFI_PEI_VECTOR_HANDOFF_INFO_PPI *VectorHandoffInfoPpi;
BOOLEAN BuildPageTablesIa32Pae;
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS BaseOfStack;
EFI_PHYSICAL_ADDRESS TopOfStack;
UINTN PageTables;
X64_IDT_GATE_DESCRIPTOR *IdtTable;
UINTN SizeOfTemplate;
VOID *TemplateBase;
EFI_PHYSICAL_ADDRESS VectorAddress;
UINT32 Index;
X64_IDT_TABLE *IdtTableForX64;
EFI_VECTOR_HANDOFF_INFO *VectorInfo;
EFI_PEI_VECTOR_HANDOFF_INFO_PPI *VectorHandoffInfoPpi;
BOOLEAN BuildPageTablesIa32Pae;
//
// Clear page 0 and mark it as allocated if NULL pointer detection is enabled.
@@ -257,7 +276,7 @@ HandOffToDxeCore (
Status = PeiServicesAllocatePages (EfiBootServicesData, EFI_SIZE_TO_PAGES (STACK_SIZE), &BaseOfStack);
ASSERT_EFI_ERROR (Status);
if (FeaturePcdGet(PcdDxeIplSwitchToLongMode)) {
if (FeaturePcdGet (PcdDxeIplSwitchToLongMode)) {
//
// Compute the top of the stack we were allocated, which is used to load X64 dxe core.
// Pre-allocate a 32 bytes which confroms to x64 calling convention.
@@ -272,7 +291,7 @@ HandOffToDxeCore (
//
// x64 Calling Conventions requires that the stack must be aligned to 16 bytes
//
TopOfStack = (EFI_PHYSICAL_ADDRESS) (UINTN) ALIGN_POINTER (TopOfStack, 16);
TopOfStack = (EFI_PHYSICAL_ADDRESS)(UINTN)ALIGN_POINTER (TopOfStack, 16);
//
// Load the GDT of Go64. Since the GDT of 32-bit Tiano locates in the BS_DATA
@@ -308,7 +327,7 @@ HandOffToDxeCore (
Status = PeiServicesAllocatePages (
EfiBootServicesData,
EFI_SIZE_TO_PAGES(sizeof (X64_IDT_TABLE) + SizeOfTemplate * IDT_ENTRY_COUNT),
EFI_SIZE_TO_PAGES (sizeof (X64_IDT_TABLE) + SizeOfTemplate * IDT_ENTRY_COUNT),
&VectorAddress
);
ASSERT_EFI_ERROR (Status);
@@ -317,28 +336,28 @@ HandOffToDxeCore (
// Store EFI_PEI_SERVICES** in the 4 bytes immediately preceding IDT to avoid that
// it may not be gotten correctly after IDT register is re-written.
//
IdtTableForX64 = (X64_IDT_TABLE *) (UINTN) VectorAddress;
IdtTableForX64 = (X64_IDT_TABLE *)(UINTN)VectorAddress;
IdtTableForX64->PeiService = GetPeiServicesTablePointer ();
VectorAddress = (EFI_PHYSICAL_ADDRESS) (UINTN) (IdtTableForX64 + 1);
VectorAddress = (EFI_PHYSICAL_ADDRESS)(UINTN)(IdtTableForX64 + 1);
IdtTable = IdtTableForX64->IdtTable;
for (Index = 0; Index < IDT_ENTRY_COUNT; Index++) {
IdtTable[Index].Ia32IdtEntry.Bits.GateType = 0x8e;
IdtTable[Index].Ia32IdtEntry.Bits.Reserved_0 = 0;
IdtTable[Index].Ia32IdtEntry.Bits.Selector = SYS_CODE64_SEL;
IdtTable[Index].Ia32IdtEntry.Bits.GateType = 0x8e;
IdtTable[Index].Ia32IdtEntry.Bits.Reserved_0 = 0;
IdtTable[Index].Ia32IdtEntry.Bits.Selector = SYS_CODE64_SEL;
IdtTable[Index].Ia32IdtEntry.Bits.OffsetLow = (UINT16) VectorAddress;
IdtTable[Index].Ia32IdtEntry.Bits.OffsetHigh = (UINT16) (RShiftU64 (VectorAddress, 16));
IdtTable[Index].Offset32To63 = (UINT32) (RShiftU64 (VectorAddress, 32));
IdtTable[Index].Reserved = 0;
IdtTable[Index].Ia32IdtEntry.Bits.OffsetLow = (UINT16)VectorAddress;
IdtTable[Index].Ia32IdtEntry.Bits.OffsetHigh = (UINT16)(RShiftU64 (VectorAddress, 16));
IdtTable[Index].Offset32To63 = (UINT32)(RShiftU64 (VectorAddress, 32));
IdtTable[Index].Reserved = 0;
CopyMem ((VOID *) (UINTN) VectorAddress, TemplateBase, SizeOfTemplate);
AsmVectorFixup ((VOID *) (UINTN) VectorAddress, (UINT8) Index);
CopyMem ((VOID *)(UINTN)VectorAddress, TemplateBase, SizeOfTemplate);
AsmVectorFixup ((VOID *)(UINTN)VectorAddress, (UINT8)Index);
VectorAddress += SizeOfTemplate;
}
gLidtDescriptor.Base = (UINTN) IdtTable;
gLidtDescriptor.Base = (UINTN)IdtTable;
//
// Disable interrupt of Debug timer, since new IDT table cannot handle it.
@@ -380,11 +399,12 @@ HandOffToDxeCore (
if (Status == EFI_SUCCESS) {
DEBUG ((DEBUG_INFO, "Vector Hand-off Info PPI is gotten, GUIDed HOB is created!\n"));
VectorInfo = VectorHandoffInfoPpi->Info;
Index = 1;
Index = 1;
while (VectorInfo->Attribute != EFI_VECTOR_HANDOFF_LAST_ENTRY) {
VectorInfo ++;
Index ++;
VectorInfo++;
Index++;
}
BuildGuidDataHob (
&gEfiVectorHandoffInfoPpiGuid,
VectorHandoffInfoPpi->Info,
@@ -397,14 +417,14 @@ HandOffToDxeCore (
// for safety.
//
TopOfStack = BaseOfStack + EFI_SIZE_TO_PAGES (STACK_SIZE) * EFI_PAGE_SIZE - CPU_STACK_ALIGNMENT;
TopOfStack = (EFI_PHYSICAL_ADDRESS) (UINTN) ALIGN_POINTER (TopOfStack, CPU_STACK_ALIGNMENT);
TopOfStack = (EFI_PHYSICAL_ADDRESS)(UINTN)ALIGN_POINTER (TopOfStack, CPU_STACK_ALIGNMENT);
PageTables = 0;
PageTables = 0;
BuildPageTablesIa32Pae = ToBuildPageTable ();
if (BuildPageTablesIa32Pae) {
PageTables = Create4GPageTablesIa32Pae (BaseOfStack, STACK_SIZE);
if (IsEnableNonExecNeeded ()) {
EnableExecuteDisableBit();
EnableExecuteDisableBit ();
}
}
@@ -450,14 +470,14 @@ HandOffToDxeCore (
(SWITCH_STACK_ENTRY_POINT)(UINTN)DxeCoreEntryPoint,
HobList.Raw,
NULL,
(VOID *) (UINTN) TopOfStack
(VOID *)(UINTN)TopOfStack
);
} else {
SwitchStack (
(SWITCH_STACK_ENTRY_POINT)(UINTN)DxeCoreEntryPoint,
HobList.Raw,
NULL,
(VOID *) (UINTN) TopOfStack
(VOID *)(UINTN)TopOfStack
);
}
}

View File

@@ -22,28 +22,29 @@
**/
VOID
HandOffToDxeCore (
IN EFI_PHYSICAL_ADDRESS DxeCoreEntryPoint,
IN EFI_PEI_HOB_POINTERS HobList
IN EFI_PHYSICAL_ADDRESS DxeCoreEntryPoint,
IN EFI_PEI_HOB_POINTERS HobList
)
{
VOID *BaseOfStack;
VOID *TopOfStack;
EFI_STATUS Status;
VOID *BaseOfStack;
VOID *TopOfStack;
EFI_STATUS Status;
//
//
// Allocate 128KB for the Stack
//
BaseOfStack = AllocatePages (EFI_SIZE_TO_PAGES (STACK_SIZE));
if (BaseOfStack == NULL) {
DEBUG((DEBUG_ERROR, "%a: Can't allocate memory for stack.", __FUNCTION__));
ASSERT(FALSE);
DEBUG ((DEBUG_ERROR, "%a: Can't allocate memory for stack.", __FUNCTION__));
ASSERT (FALSE);
}
//
// Compute the top of the stack we were allocated. Pre-allocate a UINTN
// for safety.
//
TopOfStack = (VOID *)((UINTN) BaseOfStack + EFI_SIZE_TO_PAGES (STACK_SIZE) * EFI_PAGE_SIZE - CPU_STACK_ALIGNMENT);
TopOfStack = (VOID *)((UINTN)BaseOfStack + EFI_SIZE_TO_PAGES (STACK_SIZE) * EFI_PAGE_SIZE - CPU_STACK_ALIGNMENT);
TopOfStack = ALIGN_POINTER (TopOfStack, CPU_STACK_ALIGNMENT);
//
@@ -51,13 +52,14 @@ HandOffToDxeCore (
//
Status = PeiServicesInstallPpi (&gEndOfPeiSignalPpi);
if (EFI_ERROR (Status)) {
DEBUG((DEBUG_ERROR, "%a: Fail to signal End of PEI event.", __FUNCTION__));
ASSERT(FALSE);
DEBUG ((DEBUG_ERROR, "%a: Fail to signal End of PEI event.", __FUNCTION__));
ASSERT (FALSE);
}
//
// Update the contents of BSP stack HOB to reflect the real stack info passed to DxeCore.
//
UpdateStackHob ((EFI_PHYSICAL_ADDRESS)(UINTN) BaseOfStack, STACK_SIZE);
UpdateStackHob ((EFI_PHYSICAL_ADDRESS)(UINTN)BaseOfStack, STACK_SIZE);
DEBUG ((DEBUG_INFO, "DXE Core new stack at %x, stack pointer at %x\n", BaseOfStack, TopOfStack));
@@ -71,4 +73,3 @@ HandOffToDxeCore (
TopOfStack
);
}

View File

@@ -9,8 +9,6 @@ SPDX-License-Identifier: BSD-2-Clause-Patent
#include "DxeIpl.h"
#include "X64/VirtualMemory.h"
/**
Transfers control to DxeCore.
@@ -24,19 +22,19 @@ SPDX-License-Identifier: BSD-2-Clause-Patent
**/
VOID
HandOffToDxeCore (
IN EFI_PHYSICAL_ADDRESS DxeCoreEntryPoint,
IN EFI_PEI_HOB_POINTERS HobList
IN EFI_PHYSICAL_ADDRESS DxeCoreEntryPoint,
IN EFI_PEI_HOB_POINTERS HobList
)
{
VOID *BaseOfStack;
VOID *TopOfStack;
EFI_STATUS Status;
UINTN PageTables;
UINT32 Index;
EFI_VECTOR_HANDOFF_INFO *VectorInfo;
EFI_PEI_VECTOR_HANDOFF_INFO_PPI *VectorHandoffInfoPpi;
VOID *GhcbBase;
UINTN GhcbSize;
VOID *BaseOfStack;
VOID *TopOfStack;
EFI_STATUS Status;
UINTN PageTables;
UINT32 Index;
EFI_VECTOR_HANDOFF_INFO *VectorInfo;
EFI_PEI_VECTOR_HANDOFF_INFO_PPI *VectorHandoffInfoPpi;
VOID *GhcbBase;
UINTN GhcbSize;
//
// Clear page 0 and mark it as allocated if NULL pointer detection is enabled.
@@ -58,11 +56,12 @@ HandOffToDxeCore (
if (Status == EFI_SUCCESS) {
DEBUG ((DEBUG_INFO, "Vector Hand-off Info PPI is gotten, GUIDed HOB is created!\n"));
VectorInfo = VectorHandoffInfoPpi->Info;
Index = 1;
Index = 1;
while (VectorInfo->Attribute != EFI_VECTOR_HANDOFF_LAST_ENTRY) {
VectorInfo ++;
Index ++;
VectorInfo++;
Index++;
}
BuildGuidDataHob (
&gEfiVectorHandoffInfoPpiGuid,
VectorHandoffInfoPpi->Info,
@@ -80,13 +79,13 @@ HandOffToDxeCore (
// Compute the top of the stack we were allocated. Pre-allocate a UINTN
// for safety.
//
TopOfStack = (VOID *) ((UINTN) BaseOfStack + EFI_SIZE_TO_PAGES (STACK_SIZE) * EFI_PAGE_SIZE - CPU_STACK_ALIGNMENT);
TopOfStack = (VOID *)((UINTN)BaseOfStack + EFI_SIZE_TO_PAGES (STACK_SIZE) * EFI_PAGE_SIZE - CPU_STACK_ALIGNMENT);
TopOfStack = ALIGN_POINTER (TopOfStack, CPU_STACK_ALIGNMENT);
//
// Get the address and size of the GHCB pages
//
GhcbBase = (VOID *) PcdGet64 (PcdGhcbBase);
GhcbBase = (VOID *)PcdGet64 (PcdGhcbBase);
GhcbSize = PcdGet64 (PcdGhcbSize);
PageTables = 0;
@@ -94,8 +93,12 @@ HandOffToDxeCore (
//
// Create page table and save PageMapLevel4 to CR3
//
PageTables = CreateIdentityMappingPageTables ((EFI_PHYSICAL_ADDRESS) (UINTN) BaseOfStack, STACK_SIZE,
(EFI_PHYSICAL_ADDRESS) (UINTN) GhcbBase, GhcbSize);
PageTables = CreateIdentityMappingPageTables (
(EFI_PHYSICAL_ADDRESS)(UINTN)BaseOfStack,
STACK_SIZE,
(EFI_PHYSICAL_ADDRESS)(UINTN)GhcbBase,
GhcbSize
);
} else {
//
// Set NX for stack feature also require PcdDxeIplBuildPageTables be TRUE
@@ -118,7 +121,7 @@ HandOffToDxeCore (
//
// Update the contents of BSP stack HOB to reflect the real stack info passed to DxeCore.
//
UpdateStackHob ((EFI_PHYSICAL_ADDRESS)(UINTN) BaseOfStack, STACK_SIZE);
UpdateStackHob ((EFI_PHYSICAL_ADDRESS)(UINTN)BaseOfStack, STACK_SIZE);
//
// Transfer the control to the entry point of DxeCore.

View File

@@ -29,7 +29,7 @@ SPDX-License-Identifier: BSD-2-Clause-Patent
//
// Global variable to keep track current available memory used as page table.
//
PAGE_TABLE_POOL *mPageTablePool = NULL;
PAGE_TABLE_POOL *mPageTablePool = NULL;
/**
Clear legacy memory located at the first 4K-page, if available.
@@ -42,39 +42,50 @@ PAGE_TABLE_POOL *mPageTablePool = NULL;
**/
VOID
ClearFirst4KPage (
IN VOID *HobStart
IN VOID *HobStart
)
{
EFI_PEI_HOB_POINTERS RscHob;
EFI_PEI_HOB_POINTERS MemHob;
BOOLEAN DoClear;
EFI_PEI_HOB_POINTERS RscHob;
EFI_PEI_HOB_POINTERS MemHob;
BOOLEAN DoClear;
RscHob.Raw = HobStart;
MemHob.Raw = HobStart;
DoClear = FALSE;
DoClear = FALSE;
//
// Check if page 0 exists and free
//
while ((RscHob.Raw = GetNextHob (EFI_HOB_TYPE_RESOURCE_DESCRIPTOR,
RscHob.Raw)) != NULL) {
if (RscHob.ResourceDescriptor->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY &&
RscHob.ResourceDescriptor->PhysicalStart == 0) {
while ((RscHob.Raw = GetNextHob (
EFI_HOB_TYPE_RESOURCE_DESCRIPTOR,
RscHob.Raw
)) != NULL)
{
if ((RscHob.ResourceDescriptor->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY) &&
(RscHob.ResourceDescriptor->PhysicalStart == 0))
{
DoClear = TRUE;
//
// Make sure memory at 0-4095 has not been allocated.
//
while ((MemHob.Raw = GetNextHob (EFI_HOB_TYPE_MEMORY_ALLOCATION,
MemHob.Raw)) != NULL) {
while ((MemHob.Raw = GetNextHob (
EFI_HOB_TYPE_MEMORY_ALLOCATION,
MemHob.Raw
)) != NULL)
{
if (MemHob.MemoryAllocation->AllocDescriptor.MemoryBaseAddress
< EFI_PAGE_SIZE) {
< EFI_PAGE_SIZE)
{
DoClear = FALSE;
break;
}
MemHob.Raw = GET_NEXT_HOB (MemHob);
}
break;
}
RscHob.Raw = GET_NEXT_HOB (RscHob);
}
@@ -113,9 +124,9 @@ IsExecuteDisableBitAvailable (
VOID
)
{
UINT32 RegEax;
UINT32 RegEdx;
BOOLEAN Available;
UINT32 RegEax;
UINT32 RegEdx;
BOOLEAN Available;
Available = FALSE;
AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
@@ -166,9 +177,9 @@ EnableExecuteDisableBit (
VOID
)
{
UINT64 MsrRegisters;
UINT64 MsrRegisters;
MsrRegisters = AsmReadMsr64 (0xC0000080);
MsrRegisters = AsmReadMsr64 (0xC0000080);
MsrRegisters |= BIT11;
AsmWriteMsr64 (0xC0000080, MsrRegisters);
}
@@ -189,20 +200,20 @@ EnableExecuteDisableBit (
**/
BOOLEAN
ToSplitPageTable (
IN EFI_PHYSICAL_ADDRESS Address,
IN UINTN Size,
IN EFI_PHYSICAL_ADDRESS StackBase,
IN UINTN StackSize,
IN EFI_PHYSICAL_ADDRESS GhcbBase,
IN UINTN GhcbSize
IN EFI_PHYSICAL_ADDRESS Address,
IN UINTN Size,
IN EFI_PHYSICAL_ADDRESS StackBase,
IN UINTN StackSize,
IN EFI_PHYSICAL_ADDRESS GhcbBase,
IN UINTN GhcbSize
)
{
if (IsNullDetectionEnabled () && Address == 0) {
if (IsNullDetectionEnabled () && (Address == 0)) {
return TRUE;
}
if (PcdGetBool (PcdCpuStackGuard)) {
if (StackBase >= Address && StackBase < (Address + Size)) {
if ((StackBase >= Address) && (StackBase < (Address + Size))) {
return TRUE;
}
}
@@ -221,6 +232,7 @@ ToSplitPageTable (
return FALSE;
}
/**
Initialize a buffer pool for page table use only.
@@ -240,18 +252,18 @@ ToSplitPageTable (
**/
BOOLEAN
InitializePageTablePool (
IN UINTN PoolPages
IN UINTN PoolPages
)
{
VOID *Buffer;
VOID *Buffer;
//
// Always reserve at least PAGE_TABLE_POOL_UNIT_PAGES, including one page for
// header.
//
PoolPages += 1; // Add one page for header.
PoolPages = ((PoolPages - 1) / PAGE_TABLE_POOL_UNIT_PAGES + 1) *
PAGE_TABLE_POOL_UNIT_PAGES;
PoolPages = ((PoolPages - 1) / PAGE_TABLE_POOL_UNIT_PAGES + 1) *
PAGE_TABLE_POOL_UNIT_PAGES;
Buffer = AllocateAlignedPages (PoolPages, PAGE_TABLE_POOL_ALIGNMENT);
if (Buffer == NULL) {
DEBUG ((DEBUG_ERROR, "ERROR: Out of aligned pages\r\n"));
@@ -262,19 +274,19 @@ InitializePageTablePool (
// Link all pools into a list for easier track later.
//
if (mPageTablePool == NULL) {
mPageTablePool = Buffer;
mPageTablePool = Buffer;
mPageTablePool->NextPool = mPageTablePool;
} else {
((PAGE_TABLE_POOL *)Buffer)->NextPool = mPageTablePool->NextPool;
mPageTablePool->NextPool = Buffer;
mPageTablePool = Buffer;
mPageTablePool->NextPool = Buffer;
mPageTablePool = Buffer;
}
//
// Reserve one page for pool header.
//
mPageTablePool->FreePages = PoolPages - 1;
mPageTablePool->Offset = EFI_PAGES_TO_SIZE (1);
mPageTablePool->FreePages = PoolPages - 1;
mPageTablePool->Offset = EFI_PAGES_TO_SIZE (1);
return TRUE;
}
@@ -298,10 +310,10 @@ InitializePageTablePool (
**/
VOID *
AllocatePageTableMemory (
IN UINTN Pages
IN UINTN Pages
)
{
VOID *Buffer;
VOID *Buffer;
if (Pages == 0) {
return NULL;
@@ -310,8 +322,9 @@ AllocatePageTableMemory (
//
// Renew the pool if necessary.
//
if (mPageTablePool == NULL ||
Pages > mPageTablePool->FreePages) {
if ((mPageTablePool == NULL) ||
(Pages > mPageTablePool->FreePages))
{
if (!InitializePageTablePool (Pages)) {
return NULL;
}
@@ -319,8 +332,8 @@ AllocatePageTableMemory (
Buffer = (UINT8 *)mPageTablePool + mPageTablePool->Offset;
mPageTablePool->Offset += EFI_PAGES_TO_SIZE (Pages);
mPageTablePool->FreePages -= Pages;
mPageTablePool->Offset += EFI_PAGES_TO_SIZE (Pages);
mPageTablePool->FreePages -= Pages;
return Buffer;
}
@@ -338,18 +351,18 @@ AllocatePageTableMemory (
**/
VOID
Split2MPageTo4K (
IN EFI_PHYSICAL_ADDRESS PhysicalAddress,
IN OUT UINT64 *PageEntry2M,
IN EFI_PHYSICAL_ADDRESS StackBase,
IN UINTN StackSize,
IN EFI_PHYSICAL_ADDRESS GhcbBase,
IN UINTN GhcbSize
IN EFI_PHYSICAL_ADDRESS PhysicalAddress,
IN OUT UINT64 *PageEntry2M,
IN EFI_PHYSICAL_ADDRESS StackBase,
IN UINTN StackSize,
IN EFI_PHYSICAL_ADDRESS GhcbBase,
IN UINTN GhcbSize
)
{
EFI_PHYSICAL_ADDRESS PhysicalAddress4K;
UINTN IndexOfPageTableEntries;
PAGE_TABLE_4K_ENTRY *PageTableEntry;
UINT64 AddressEncMask;
EFI_PHYSICAL_ADDRESS PhysicalAddress4K;
UINTN IndexOfPageTableEntries;
PAGE_TABLE_4K_ENTRY *PageTableEntry;
UINT64 AddressEncMask;
//
// Make sure AddressEncMask is contained to smallest supported address field
@@ -362,14 +375,14 @@ Split2MPageTo4K (
//
// Fill in 2M page entry.
//
*PageEntry2M = (UINT64) (UINTN) PageTableEntry | AddressEncMask | IA32_PG_P | IA32_PG_RW;
*PageEntry2M = (UINT64)(UINTN)PageTableEntry | AddressEncMask | IA32_PG_P | IA32_PG_RW;
PhysicalAddress4K = PhysicalAddress;
for (IndexOfPageTableEntries = 0; IndexOfPageTableEntries < 512; IndexOfPageTableEntries++, PageTableEntry++, PhysicalAddress4K += SIZE_4KB) {
//
// Fill in the Page Table entries
//
PageTableEntry->Uint64 = (UINT64) PhysicalAddress4K;
PageTableEntry->Uint64 = (UINT64)PhysicalAddress4K;
//
// The GHCB range consists of two pages per CPU, the GHCB and a
@@ -377,24 +390,28 @@ Split2MPageTo4K (
// unencrypted page while the per-CPU variable page needs to be
// mapped encrypted. These pages alternate in assignment.
//
if ((GhcbBase == 0)
|| (PhysicalAddress4K < GhcbBase)
|| (PhysicalAddress4K >= GhcbBase + GhcbSize)
|| (((PhysicalAddress4K - GhcbBase) & SIZE_4KB) != 0)) {
if ( (GhcbBase == 0)
|| (PhysicalAddress4K < GhcbBase)
|| (PhysicalAddress4K >= GhcbBase + GhcbSize)
|| (((PhysicalAddress4K - GhcbBase) & SIZE_4KB) != 0))
{
PageTableEntry->Uint64 |= AddressEncMask;
}
PageTableEntry->Bits.ReadWrite = 1;
if ((IsNullDetectionEnabled () && PhysicalAddress4K == 0) ||
(PcdGetBool (PcdCpuStackGuard) && PhysicalAddress4K == StackBase)) {
if ((IsNullDetectionEnabled () && (PhysicalAddress4K == 0)) ||
(PcdGetBool (PcdCpuStackGuard) && (PhysicalAddress4K == StackBase)))
{
PageTableEntry->Bits.Present = 0;
} else {
PageTableEntry->Bits.Present = 1;
}
if (PcdGetBool (PcdSetNxForStack)
&& (PhysicalAddress4K >= StackBase)
&& (PhysicalAddress4K < StackBase + StackSize)) {
if ( PcdGetBool (PcdSetNxForStack)
&& (PhysicalAddress4K >= StackBase)
&& (PhysicalAddress4K < StackBase + StackSize))
{
//
// Set Nx bit for stack.
//
@@ -416,18 +433,18 @@ Split2MPageTo4K (
**/
VOID
Split1GPageTo2M (
IN EFI_PHYSICAL_ADDRESS PhysicalAddress,
IN OUT UINT64 *PageEntry1G,
IN EFI_PHYSICAL_ADDRESS StackBase,
IN UINTN StackSize,
IN EFI_PHYSICAL_ADDRESS GhcbBase,
IN UINTN GhcbSize
IN EFI_PHYSICAL_ADDRESS PhysicalAddress,
IN OUT UINT64 *PageEntry1G,
IN EFI_PHYSICAL_ADDRESS StackBase,
IN UINTN StackSize,
IN EFI_PHYSICAL_ADDRESS GhcbBase,
IN UINTN GhcbSize
)
{
EFI_PHYSICAL_ADDRESS PhysicalAddress2M;
UINTN IndexOfPageDirectoryEntries;
PAGE_TABLE_ENTRY *PageDirectoryEntry;
UINT64 AddressEncMask;
EFI_PHYSICAL_ADDRESS PhysicalAddress2M;
UINTN IndexOfPageDirectoryEntries;
PAGE_TABLE_ENTRY *PageDirectoryEntry;
UINT64 AddressEncMask;
//
// Make sure AddressEncMask is contained to smallest supported address field
@@ -440,7 +457,7 @@ Split1GPageTo2M (
//
// Fill in 1G page entry.
//
*PageEntry1G = (UINT64) (UINTN) PageDirectoryEntry | AddressEncMask | IA32_PG_P | IA32_PG_RW;
*PageEntry1G = (UINT64)(UINTN)PageDirectoryEntry | AddressEncMask | IA32_PG_P | IA32_PG_RW;
PhysicalAddress2M = PhysicalAddress;
for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectoryEntry++, PhysicalAddress2M += SIZE_2MB) {
@@ -448,15 +465,15 @@ Split1GPageTo2M (
//
// Need to split this 2M page that covers NULL or stack range.
//
Split2MPageTo4K (PhysicalAddress2M, (UINT64 *) PageDirectoryEntry, StackBase, StackSize, GhcbBase, GhcbSize);
Split2MPageTo4K (PhysicalAddress2M, (UINT64 *)PageDirectoryEntry, StackBase, StackSize, GhcbBase, GhcbSize);
} else {
//
// Fill in the Page Directory entries
//
PageDirectoryEntry->Uint64 = (UINT64) PhysicalAddress2M | AddressEncMask;
PageDirectoryEntry->Uint64 = (UINT64)PhysicalAddress2M | AddressEncMask;
PageDirectoryEntry->Bits.ReadWrite = 1;
PageDirectoryEntry->Bits.Present = 1;
PageDirectoryEntry->Bits.MustBe1 = 1;
PageDirectoryEntry->Bits.Present = 1;
PageDirectoryEntry->Bits.MustBe1 = 1;
}
}
}
@@ -471,9 +488,9 @@ Split1GPageTo2M (
**/
VOID
SetPageTablePoolReadOnly (
IN UINTN PageTableBase,
IN EFI_PHYSICAL_ADDRESS Address,
IN BOOLEAN Level4Paging
IN UINTN PageTableBase,
IN EFI_PHYSICAL_ADDRESS Address,
IN BOOLEAN Level4Paging
)
{
UINTN Index;
@@ -513,13 +530,13 @@ SetPageTablePoolReadOnly (
LevelSize[3] = SIZE_1GB;
LevelSize[4] = SIZE_512GB;
AddressEncMask = PcdGet64 (PcdPteMemoryEncryptionAddressOrMask) &
PAGING_1G_ADDRESS_MASK_64;
PageTable = (UINT64 *)(UINTN)PageTableBase;
PoolUnitSize = PAGE_TABLE_POOL_UNIT_SIZE;
AddressEncMask = PcdGet64 (PcdPteMemoryEncryptionAddressOrMask) &
PAGING_1G_ADDRESS_MASK_64;
PageTable = (UINT64 *)(UINTN)PageTableBase;
PoolUnitSize = PAGE_TABLE_POOL_UNIT_SIZE;
for (Level = (Level4Paging) ? 4 : 3; Level > 0; --Level) {
Index = ((UINTN)RShiftU64 (Address, LevelShift[Level]));
Index = ((UINTN)RShiftU64 (Address, LevelShift[Level]));
Index &= PAGING_PAE_INDEX_MASK;
PageAttr = PageTable[Index];
@@ -547,14 +564,13 @@ SetPageTablePoolReadOnly (
ASSERT (Index < EFI_PAGE_SIZE/sizeof (UINT64));
PageTable[Index] &= ~(UINT64)IA32_PG_RW;
PoolUnitSize -= LevelSize[Level];
PoolUnitSize -= LevelSize[Level];
++Index;
}
}
break;
} else {
//
// The smaller granularity of page must be needed.
@@ -566,18 +582,20 @@ SetPageTablePoolReadOnly (
PhysicalAddress = PageAttr & LevelMask[Level];
for (EntryIndex = 0;
EntryIndex < EFI_PAGE_SIZE/sizeof (UINT64);
++EntryIndex) {
EntryIndex < EFI_PAGE_SIZE/sizeof (UINT64);
++EntryIndex)
{
NewPageTable[EntryIndex] = PhysicalAddress | AddressEncMask |
IA32_PG_P | IA32_PG_RW;
if (Level > 2) {
NewPageTable[EntryIndex] |= IA32_PG_PS;
}
PhysicalAddress += LevelSize[Level - 1];
}
PageTable[Index] = (UINT64)(UINTN)NewPageTable | AddressEncMask |
IA32_PG_P | IA32_PG_RW;
IA32_PG_P | IA32_PG_RW;
PageTable = NewPageTable;
}
}
@@ -592,14 +610,14 @@ SetPageTablePoolReadOnly (
**/
VOID
EnablePageTableProtection (
IN UINTN PageTableBase,
IN BOOLEAN Level4Paging
IN UINTN PageTableBase,
IN BOOLEAN Level4Paging
)
{
PAGE_TABLE_POOL *HeadPool;
PAGE_TABLE_POOL *Pool;
UINT64 PoolSize;
EFI_PHYSICAL_ADDRESS Address;
PAGE_TABLE_POOL *HeadPool;
PAGE_TABLE_POOL *Pool;
UINT64 PoolSize;
EFI_PHYSICAL_ADDRESS Address;
if (mPageTablePool == NULL) {
return;
@@ -609,14 +627,14 @@ EnablePageTableProtection (
// Disable write protection, because we need to mark page table to be write
// protected.
//
AsmWriteCr0 (AsmReadCr0() & ~CR0_WP);
AsmWriteCr0 (AsmReadCr0 () & ~CR0_WP);
//
// SetPageTablePoolReadOnly might update mPageTablePool. It's safer to
// remember original one in advance.
//
HeadPool = mPageTablePool;
Pool = HeadPool;
Pool = HeadPool;
do {
Address = (EFI_PHYSICAL_ADDRESS)(UINTN)Pool;
PoolSize = Pool->Offset + EFI_PAGES_TO_SIZE (Pool->FreePages);
@@ -627,9 +645,9 @@ EnablePageTableProtection (
// protection to them one by one.
//
while (PoolSize > 0) {
SetPageTablePoolReadOnly(PageTableBase, Address, Level4Paging);
Address += PAGE_TABLE_POOL_UNIT_SIZE;
PoolSize -= PAGE_TABLE_POOL_UNIT_SIZE;
SetPageTablePoolReadOnly (PageTableBase, Address, Level4Paging);
Address += PAGE_TABLE_POOL_UNIT_SIZE;
PoolSize -= PAGE_TABLE_POOL_UNIT_SIZE;
}
Pool = Pool->NextPool;
@@ -638,7 +656,7 @@ EnablePageTableProtection (
//
// Enable write protection, after page table attribute updated.
//
AsmWriteCr0 (AsmReadCr0() | CR0_WP);
AsmWriteCr0 (AsmReadCr0 () | CR0_WP);
}
/**
@@ -655,37 +673,37 @@ EnablePageTableProtection (
**/
UINTN
CreateIdentityMappingPageTables (
IN EFI_PHYSICAL_ADDRESS StackBase,
IN UINTN StackSize,
IN EFI_PHYSICAL_ADDRESS GhcbBase,
IN UINTN GhcbSize
IN EFI_PHYSICAL_ADDRESS StackBase,
IN UINTN StackSize,
IN EFI_PHYSICAL_ADDRESS GhcbBase,
IN UINTN GhcbSize
)
{
UINT32 RegEax;
CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_ECX EcxFlags;
UINT32 RegEdx;
UINT8 PhysicalAddressBits;
EFI_PHYSICAL_ADDRESS PageAddress;
UINTN IndexOfPml5Entries;
UINTN IndexOfPml4Entries;
UINTN IndexOfPdpEntries;
UINTN IndexOfPageDirectoryEntries;
UINT32 NumberOfPml5EntriesNeeded;
UINT32 NumberOfPml4EntriesNeeded;
UINT32 NumberOfPdpEntriesNeeded;
PAGE_MAP_AND_DIRECTORY_POINTER *PageMapLevel5Entry;
PAGE_MAP_AND_DIRECTORY_POINTER *PageMapLevel4Entry;
PAGE_MAP_AND_DIRECTORY_POINTER *PageMap;
PAGE_MAP_AND_DIRECTORY_POINTER *PageDirectoryPointerEntry;
PAGE_TABLE_ENTRY *PageDirectoryEntry;
UINTN TotalPagesNum;
UINTN BigPageAddress;
VOID *Hob;
BOOLEAN Page5LevelSupport;
BOOLEAN Page1GSupport;
PAGE_TABLE_1G_ENTRY *PageDirectory1GEntry;
UINT64 AddressEncMask;
IA32_CR4 Cr4;
UINT32 RegEax;
CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_ECX EcxFlags;
UINT32 RegEdx;
UINT8 PhysicalAddressBits;
EFI_PHYSICAL_ADDRESS PageAddress;
UINTN IndexOfPml5Entries;
UINTN IndexOfPml4Entries;
UINTN IndexOfPdpEntries;
UINTN IndexOfPageDirectoryEntries;
UINT32 NumberOfPml5EntriesNeeded;
UINT32 NumberOfPml4EntriesNeeded;
UINT32 NumberOfPdpEntriesNeeded;
PAGE_MAP_AND_DIRECTORY_POINTER *PageMapLevel5Entry;
PAGE_MAP_AND_DIRECTORY_POINTER *PageMapLevel4Entry;
PAGE_MAP_AND_DIRECTORY_POINTER *PageMap;
PAGE_MAP_AND_DIRECTORY_POINTER *PageDirectoryPointerEntry;
PAGE_TABLE_ENTRY *PageDirectoryEntry;
UINTN TotalPagesNum;
UINTN BigPageAddress;
VOID *Hob;
BOOLEAN Page5LevelSupport;
BOOLEAN Page1GSupport;
PAGE_TABLE_1G_ENTRY *PageDirectory1GEntry;
UINT64 AddressEncMask;
IA32_CR4 Cr4;
//
// Set PageMapLevel5Entry to suppress incorrect compiler/analyzer warnings
@@ -698,7 +716,7 @@ CreateIdentityMappingPageTables (
AddressEncMask = PcdGet64 (PcdPteMemoryEncryptionAddressOrMask) & PAGING_1G_ADDRESS_MASK_64;
Page1GSupport = FALSE;
if (PcdGetBool(PcdUse1GPageTable)) {
if (PcdGetBool (PcdUse1GPageTable)) {
AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
if (RegEax >= 0x80000001) {
AsmCpuid (0x80000001, NULL, NULL, NULL, &RegEdx);
@@ -713,12 +731,12 @@ CreateIdentityMappingPageTables (
//
Hob = GetFirstHob (EFI_HOB_TYPE_CPU);
if (Hob != NULL) {
PhysicalAddressBits = ((EFI_HOB_CPU *) Hob)->SizeOfMemorySpace;
PhysicalAddressBits = ((EFI_HOB_CPU *)Hob)->SizeOfMemorySpace;
} else {
AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
if (RegEax >= 0x80000008) {
AsmCpuid (0x80000008, &RegEax, NULL, NULL, NULL);
PhysicalAddressBits = (UINT8) RegEax;
PhysicalAddressBits = (UINT8)RegEax;
} else {
PhysicalAddressBits = 36;
}
@@ -727,8 +745,12 @@ CreateIdentityMappingPageTables (
Page5LevelSupport = FALSE;
if (PcdGetBool (PcdUse5LevelPageTable)) {
AsmCpuidEx (
CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS, CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_SUB_LEAF_INFO, NULL,
&EcxFlags.Uint32, NULL, NULL
CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS,
CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_SUB_LEAF_INFO,
NULL,
&EcxFlags.Uint32,
NULL,
NULL
);
if (EcxFlags.Bits.FiveLevelPage != 0) {
Page5LevelSupport = TRUE;
@@ -743,7 +765,7 @@ CreateIdentityMappingPageTables (
// due to either unsupported by HW, or disabled by PCD.
//
ASSERT (PhysicalAddressBits <= 52);
if (!Page5LevelSupport && PhysicalAddressBits > 48) {
if (!Page5LevelSupport && (PhysicalAddressBits > 48)) {
PhysicalAddressBits = 48;
}
@@ -752,19 +774,19 @@ CreateIdentityMappingPageTables (
//
NumberOfPml5EntriesNeeded = 1;
if (PhysicalAddressBits > 48) {
NumberOfPml5EntriesNeeded = (UINT32) LShiftU64 (1, PhysicalAddressBits - 48);
PhysicalAddressBits = 48;
NumberOfPml5EntriesNeeded = (UINT32)LShiftU64 (1, PhysicalAddressBits - 48);
PhysicalAddressBits = 48;
}
NumberOfPml4EntriesNeeded = 1;
if (PhysicalAddressBits > 39) {
NumberOfPml4EntriesNeeded = (UINT32) LShiftU64 (1, PhysicalAddressBits - 39);
PhysicalAddressBits = 39;
NumberOfPml4EntriesNeeded = (UINT32)LShiftU64 (1, PhysicalAddressBits - 39);
PhysicalAddressBits = 39;
}
NumberOfPdpEntriesNeeded = 1;
ASSERT (PhysicalAddressBits > 30);
NumberOfPdpEntriesNeeded = (UINT32) LShiftU64 (1, PhysicalAddressBits - 30);
NumberOfPdpEntriesNeeded = (UINT32)LShiftU64 (1, PhysicalAddressBits - 30);
//
// Pre-allocate big pages to avoid later allocations.
@@ -782,17 +804,22 @@ CreateIdentityMappingPageTables (
TotalPagesNum--;
}
DEBUG ((DEBUG_INFO, "Pml5=%u Pml4=%u Pdp=%u TotalPage=%Lu\n",
NumberOfPml5EntriesNeeded, NumberOfPml4EntriesNeeded,
NumberOfPdpEntriesNeeded, (UINT64)TotalPagesNum));
DEBUG ((
DEBUG_INFO,
"Pml5=%u Pml4=%u Pdp=%u TotalPage=%Lu\n",
NumberOfPml5EntriesNeeded,
NumberOfPml4EntriesNeeded,
NumberOfPdpEntriesNeeded,
(UINT64)TotalPagesNum
));
BigPageAddress = (UINTN) AllocatePageTableMemory (TotalPagesNum);
BigPageAddress = (UINTN)AllocatePageTableMemory (TotalPagesNum);
ASSERT (BigPageAddress != 0);
//
// By architecture only one PageMapLevel4 exists - so lets allocate storage for it.
//
PageMap = (VOID *) BigPageAddress;
PageMap = (VOID *)BigPageAddress;
if (Page5LevelSupport) {
//
// By architecture only one PageMapLevel5 exists - so lets allocate storage for it.
@@ -800,94 +827,98 @@ CreateIdentityMappingPageTables (
PageMapLevel5Entry = PageMap;
BigPageAddress += SIZE_4KB;
}
PageAddress = 0;
PageAddress = 0;
for ( IndexOfPml5Entries = 0
; IndexOfPml5Entries < NumberOfPml5EntriesNeeded
; IndexOfPml5Entries++) {
; IndexOfPml5Entries < NumberOfPml5EntriesNeeded
; IndexOfPml5Entries++)
{
//
// Each PML5 entry points to a page of PML4 entires.
// So lets allocate space for them and fill them in in the IndexOfPml4Entries loop.
// When 5-Level Paging is disabled, below allocation happens only once.
//
PageMapLevel4Entry = (VOID *) BigPageAddress;
PageMapLevel4Entry = (VOID *)BigPageAddress;
BigPageAddress += SIZE_4KB;
if (Page5LevelSupport) {
//
// Make a PML5 Entry
//
PageMapLevel5Entry->Uint64 = (UINT64) (UINTN) PageMapLevel4Entry | AddressEncMask;
PageMapLevel5Entry->Uint64 = (UINT64)(UINTN)PageMapLevel4Entry | AddressEncMask;
PageMapLevel5Entry->Bits.ReadWrite = 1;
PageMapLevel5Entry->Bits.Present = 1;
PageMapLevel5Entry++;
}
for ( IndexOfPml4Entries = 0
; IndexOfPml4Entries < (NumberOfPml5EntriesNeeded == 1 ? NumberOfPml4EntriesNeeded : 512)
; IndexOfPml4Entries++, PageMapLevel4Entry++) {
; IndexOfPml4Entries < (NumberOfPml5EntriesNeeded == 1 ? NumberOfPml4EntriesNeeded : 512)
; IndexOfPml4Entries++, PageMapLevel4Entry++)
{
//
// Each PML4 entry points to a page of Page Directory Pointer entires.
// So lets allocate space for them and fill them in in the IndexOfPdpEntries loop.
//
PageDirectoryPointerEntry = (VOID *) BigPageAddress;
BigPageAddress += SIZE_4KB;
PageDirectoryPointerEntry = (VOID *)BigPageAddress;
BigPageAddress += SIZE_4KB;
//
// Make a PML4 Entry
//
PageMapLevel4Entry->Uint64 = (UINT64)(UINTN)PageDirectoryPointerEntry | AddressEncMask;
PageMapLevel4Entry->Uint64 = (UINT64)(UINTN)PageDirectoryPointerEntry | AddressEncMask;
PageMapLevel4Entry->Bits.ReadWrite = 1;
PageMapLevel4Entry->Bits.Present = 1;
PageMapLevel4Entry->Bits.Present = 1;
if (Page1GSupport) {
PageDirectory1GEntry = (VOID *) PageDirectoryPointerEntry;
PageDirectory1GEntry = (VOID *)PageDirectoryPointerEntry;
for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectory1GEntry++, PageAddress += SIZE_1GB) {
if (ToSplitPageTable (PageAddress, SIZE_1GB, StackBase, StackSize, GhcbBase, GhcbSize)) {
Split1GPageTo2M (PageAddress, (UINT64 *) PageDirectory1GEntry, StackBase, StackSize, GhcbBase, GhcbSize);
Split1GPageTo2M (PageAddress, (UINT64 *)PageDirectory1GEntry, StackBase, StackSize, GhcbBase, GhcbSize);
} else {
//
// Fill in the Page Directory entries
//
PageDirectory1GEntry->Uint64 = (UINT64)PageAddress | AddressEncMask;
PageDirectory1GEntry->Uint64 = (UINT64)PageAddress | AddressEncMask;
PageDirectory1GEntry->Bits.ReadWrite = 1;
PageDirectory1GEntry->Bits.Present = 1;
PageDirectory1GEntry->Bits.MustBe1 = 1;
PageDirectory1GEntry->Bits.Present = 1;
PageDirectory1GEntry->Bits.MustBe1 = 1;
}
}
} else {
for ( IndexOfPdpEntries = 0
; IndexOfPdpEntries < (NumberOfPml4EntriesNeeded == 1 ? NumberOfPdpEntriesNeeded : 512)
; IndexOfPdpEntries++, PageDirectoryPointerEntry++) {
; IndexOfPdpEntries < (NumberOfPml4EntriesNeeded == 1 ? NumberOfPdpEntriesNeeded : 512)
; IndexOfPdpEntries++, PageDirectoryPointerEntry++)
{
//
// Each Directory Pointer entries points to a page of Page Directory entires.
// So allocate space for them and fill them in in the IndexOfPageDirectoryEntries loop.
//
PageDirectoryEntry = (VOID *) BigPageAddress;
BigPageAddress += SIZE_4KB;
PageDirectoryEntry = (VOID *)BigPageAddress;
BigPageAddress += SIZE_4KB;
//
// Fill in a Page Directory Pointer Entries
//
PageDirectoryPointerEntry->Uint64 = (UINT64)(UINTN)PageDirectoryEntry | AddressEncMask;
PageDirectoryPointerEntry->Uint64 = (UINT64)(UINTN)PageDirectoryEntry | AddressEncMask;
PageDirectoryPointerEntry->Bits.ReadWrite = 1;
PageDirectoryPointerEntry->Bits.Present = 1;
PageDirectoryPointerEntry->Bits.Present = 1;
for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectoryEntry++, PageAddress += SIZE_2MB) {
if (ToSplitPageTable (PageAddress, SIZE_2MB, StackBase, StackSize, GhcbBase, GhcbSize)) {
//
// Need to split this 2M page that covers NULL or stack range.
//
Split2MPageTo4K (PageAddress, (UINT64 *) PageDirectoryEntry, StackBase, StackSize, GhcbBase, GhcbSize);
Split2MPageTo4K (PageAddress, (UINT64 *)PageDirectoryEntry, StackBase, StackSize, GhcbBase, GhcbSize);
} else {
//
// Fill in the Page Directory entries
//
PageDirectoryEntry->Uint64 = (UINT64)PageAddress | AddressEncMask;
PageDirectoryEntry->Uint64 = (UINT64)PageAddress | AddressEncMask;
PageDirectoryEntry->Bits.ReadWrite = 1;
PageDirectoryEntry->Bits.Present = 1;
PageDirectoryEntry->Bits.MustBe1 = 1;
PageDirectoryEntry->Bits.Present = 1;
PageDirectoryEntry->Bits.MustBe1 = 1;
}
}
}
@@ -895,7 +926,7 @@ CreateIdentityMappingPageTables (
//
// Fill with null entry for unused PDPTE
//
ZeroMem (PageDirectoryPointerEntry, (512 - IndexOfPdpEntries) * sizeof(PAGE_MAP_AND_DIRECTORY_POINTER));
ZeroMem (PageDirectoryPointerEntry, (512 - IndexOfPdpEntries) * sizeof (PAGE_MAP_AND_DIRECTORY_POINTER));
}
}
@@ -906,7 +937,7 @@ CreateIdentityMappingPageTables (
}
if (Page5LevelSupport) {
Cr4.UintN = AsmReadCr4 ();
Cr4.UintN = AsmReadCr4 ();
Cr4.Bits.LA57 = 1;
AsmWriteCr4 (Cr4.UintN);
//
@@ -930,4 +961,3 @@ CreateIdentityMappingPageTables (
return (UINTN)PageMap;
}

View File

@@ -13,38 +13,37 @@ Copyright (c) 2017, AMD Incorporated. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#ifndef _VIRTUAL_MEMORY_H_
#define _VIRTUAL_MEMORY_H_
#define SYS_CODE64_SEL 0x38
#define SYS_CODE64_SEL 0x38
#pragma pack(1)
typedef union {
struct {
UINT32 LimitLow : 16;
UINT32 BaseLow : 16;
UINT32 BaseMid : 8;
UINT32 Type : 4;
UINT32 System : 1;
UINT32 Dpl : 2;
UINT32 Present : 1;
UINT32 LimitHigh : 4;
UINT32 Software : 1;
UINT32 Reserved : 1;
UINT32 DefaultSize : 1;
UINT32 Granularity : 1;
UINT32 BaseHigh : 8;
UINT32 LimitLow : 16;
UINT32 BaseLow : 16;
UINT32 BaseMid : 8;
UINT32 Type : 4;
UINT32 System : 1;
UINT32 Dpl : 2;
UINT32 Present : 1;
UINT32 LimitHigh : 4;
UINT32 Software : 1;
UINT32 Reserved : 1;
UINT32 DefaultSize : 1;
UINT32 Granularity : 1;
UINT32 BaseHigh : 8;
} Bits;
UINT64 Uint64;
UINT64 Uint64;
} IA32_GDT;
typedef struct {
IA32_IDT_GATE_DESCRIPTOR Ia32IdtEntry;
UINT32 Offset32To63;
UINT32 Reserved;
IA32_IDT_GATE_DESCRIPTOR Ia32IdtEntry;
UINT32 Offset32To63;
UINT32 Reserved;
} X64_IDT_GATE_DESCRIPTOR;
//
@@ -54,18 +53,18 @@ typedef struct {
typedef union {
struct {
UINT64 Present:1; // 0 = Not present in memory, 1 = Present in memory
UINT64 ReadWrite:1; // 0 = Read-Only, 1= Read/Write
UINT64 UserSupervisor:1; // 0 = Supervisor, 1=User
UINT64 WriteThrough:1; // 0 = Write-Back caching, 1=Write-Through caching
UINT64 CacheDisabled:1; // 0 = Cached, 1=Non-Cached
UINT64 Accessed:1; // 0 = Not accessed, 1 = Accessed (set by CPU)
UINT64 Reserved:1; // Reserved
UINT64 MustBeZero:2; // Must Be Zero
UINT64 Available:3; // Available for use by system software
UINT64 PageTableBaseAddress:40; // Page Table Base Address
UINT64 AvabilableHigh:11; // Available for use by system software
UINT64 Nx:1; // No Execute bit
UINT64 Present : 1; // 0 = Not present in memory, 1 = Present in memory
UINT64 ReadWrite : 1; // 0 = Read-Only, 1= Read/Write
UINT64 UserSupervisor : 1; // 0 = Supervisor, 1=User
UINT64 WriteThrough : 1; // 0 = Write-Back caching, 1=Write-Through caching
UINT64 CacheDisabled : 1; // 0 = Cached, 1=Non-Cached
UINT64 Accessed : 1; // 0 = Not accessed, 1 = Accessed (set by CPU)
UINT64 Reserved : 1; // Reserved
UINT64 MustBeZero : 2; // Must Be Zero
UINT64 Available : 3; // Available for use by system software
UINT64 PageTableBaseAddress : 40; // Page Table Base Address
UINT64 AvabilableHigh : 11; // Available for use by system software
UINT64 Nx : 1; // No Execute bit
} Bits;
UINT64 Uint64;
} PAGE_MAP_AND_DIRECTORY_POINTER;
@@ -75,19 +74,19 @@ typedef union {
//
typedef union {
struct {
UINT64 Present:1; // 0 = Not present in memory, 1 = Present in memory
UINT64 ReadWrite:1; // 0 = Read-Only, 1= Read/Write
UINT64 UserSupervisor:1; // 0 = Supervisor, 1=User
UINT64 WriteThrough:1; // 0 = Write-Back caching, 1=Write-Through caching
UINT64 CacheDisabled:1; // 0 = Cached, 1=Non-Cached
UINT64 Accessed:1; // 0 = Not accessed, 1 = Accessed (set by CPU)
UINT64 Dirty:1; // 0 = Not Dirty, 1 = written by processor on access to page
UINT64 PAT:1; //
UINT64 Global:1; // 0 = Not global page, 1 = global page TLB not cleared on CR3 write
UINT64 Available:3; // Available for use by system software
UINT64 PageTableBaseAddress:40; // Page Table Base Address
UINT64 AvabilableHigh:11; // Available for use by system software
UINT64 Nx:1; // 0 = Execute Code, 1 = No Code Execution
UINT64 Present : 1; // 0 = Not present in memory, 1 = Present in memory
UINT64 ReadWrite : 1; // 0 = Read-Only, 1= Read/Write
UINT64 UserSupervisor : 1; // 0 = Supervisor, 1=User
UINT64 WriteThrough : 1; // 0 = Write-Back caching, 1=Write-Through caching
UINT64 CacheDisabled : 1; // 0 = Cached, 1=Non-Cached
UINT64 Accessed : 1; // 0 = Not accessed, 1 = Accessed (set by CPU)
UINT64 Dirty : 1; // 0 = Not Dirty, 1 = written by processor on access to page
UINT64 PAT : 1; //
UINT64 Global : 1; // 0 = Not global page, 1 = global page TLB not cleared on CR3 write
UINT64 Available : 3; // Available for use by system software
UINT64 PageTableBaseAddress : 40; // Page Table Base Address
UINT64 AvabilableHigh : 11; // Available for use by system software
UINT64 Nx : 1; // 0 = Execute Code, 1 = No Code Execution
} Bits;
UINT64 Uint64;
} PAGE_TABLE_4K_ENTRY;
@@ -97,21 +96,21 @@ typedef union {
//
typedef union {
struct {
UINT64 Present:1; // 0 = Not present in memory, 1 = Present in memory
UINT64 ReadWrite:1; // 0 = Read-Only, 1= Read/Write
UINT64 UserSupervisor:1; // 0 = Supervisor, 1=User
UINT64 WriteThrough:1; // 0 = Write-Back caching, 1=Write-Through caching
UINT64 CacheDisabled:1; // 0 = Cached, 1=Non-Cached
UINT64 Accessed:1; // 0 = Not accessed, 1 = Accessed (set by CPU)
UINT64 Dirty:1; // 0 = Not Dirty, 1 = written by processor on access to page
UINT64 MustBe1:1; // Must be 1
UINT64 Global:1; // 0 = Not global page, 1 = global page TLB not cleared on CR3 write
UINT64 Available:3; // Available for use by system software
UINT64 PAT:1; //
UINT64 MustBeZero:8; // Must be zero;
UINT64 PageTableBaseAddress:31; // Page Table Base Address
UINT64 AvabilableHigh:11; // Available for use by system software
UINT64 Nx:1; // 0 = Execute Code, 1 = No Code Execution
UINT64 Present : 1; // 0 = Not present in memory, 1 = Present in memory
UINT64 ReadWrite : 1; // 0 = Read-Only, 1= Read/Write
UINT64 UserSupervisor : 1; // 0 = Supervisor, 1=User
UINT64 WriteThrough : 1; // 0 = Write-Back caching, 1=Write-Through caching
UINT64 CacheDisabled : 1; // 0 = Cached, 1=Non-Cached
UINT64 Accessed : 1; // 0 = Not accessed, 1 = Accessed (set by CPU)
UINT64 Dirty : 1; // 0 = Not Dirty, 1 = written by processor on access to page
UINT64 MustBe1 : 1; // Must be 1
UINT64 Global : 1; // 0 = Not global page, 1 = global page TLB not cleared on CR3 write
UINT64 Available : 3; // Available for use by system software
UINT64 PAT : 1; //
UINT64 MustBeZero : 8; // Must be zero;
UINT64 PageTableBaseAddress : 31; // Page Table Base Address
UINT64 AvabilableHigh : 11; // Available for use by system software
UINT64 Nx : 1; // 0 = Execute Code, 1 = No Code Execution
} Bits;
UINT64 Uint64;
} PAGE_TABLE_ENTRY;
@@ -121,45 +120,45 @@ typedef union {
//
typedef union {
struct {
UINT64 Present:1; // 0 = Not present in memory, 1 = Present in memory
UINT64 ReadWrite:1; // 0 = Read-Only, 1= Read/Write
UINT64 UserSupervisor:1; // 0 = Supervisor, 1=User
UINT64 WriteThrough:1; // 0 = Write-Back caching, 1=Write-Through caching
UINT64 CacheDisabled:1; // 0 = Cached, 1=Non-Cached
UINT64 Accessed:1; // 0 = Not accessed, 1 = Accessed (set by CPU)
UINT64 Dirty:1; // 0 = Not Dirty, 1 = written by processor on access to page
UINT64 MustBe1:1; // Must be 1
UINT64 Global:1; // 0 = Not global page, 1 = global page TLB not cleared on CR3 write
UINT64 Available:3; // Available for use by system software
UINT64 PAT:1; //
UINT64 MustBeZero:17; // Must be zero;
UINT64 PageTableBaseAddress:22; // Page Table Base Address
UINT64 AvabilableHigh:11; // Available for use by system software
UINT64 Nx:1; // 0 = Execute Code, 1 = No Code Execution
UINT64 Present : 1; // 0 = Not present in memory, 1 = Present in memory
UINT64 ReadWrite : 1; // 0 = Read-Only, 1= Read/Write
UINT64 UserSupervisor : 1; // 0 = Supervisor, 1=User
UINT64 WriteThrough : 1; // 0 = Write-Back caching, 1=Write-Through caching
UINT64 CacheDisabled : 1; // 0 = Cached, 1=Non-Cached
UINT64 Accessed : 1; // 0 = Not accessed, 1 = Accessed (set by CPU)
UINT64 Dirty : 1; // 0 = Not Dirty, 1 = written by processor on access to page
UINT64 MustBe1 : 1; // Must be 1
UINT64 Global : 1; // 0 = Not global page, 1 = global page TLB not cleared on CR3 write
UINT64 Available : 3; // Available for use by system software
UINT64 PAT : 1; //
UINT64 MustBeZero : 17; // Must be zero;
UINT64 PageTableBaseAddress : 22; // Page Table Base Address
UINT64 AvabilableHigh : 11; // Available for use by system software
UINT64 Nx : 1; // 0 = Execute Code, 1 = No Code Execution
} Bits;
UINT64 Uint64;
} PAGE_TABLE_1G_ENTRY;
#pragma pack()
#define CR0_WP BIT16
#define CR0_WP BIT16
#define IA32_PG_P BIT0
#define IA32_PG_RW BIT1
#define IA32_PG_PS BIT7
#define IA32_PG_P BIT0
#define IA32_PG_RW BIT1
#define IA32_PG_PS BIT7
#define PAGING_PAE_INDEX_MASK 0x1FF
#define PAGING_PAE_INDEX_MASK 0x1FF
#define PAGING_4K_ADDRESS_MASK_64 0x000FFFFFFFFFF000ull
#define PAGING_2M_ADDRESS_MASK_64 0x000FFFFFFFE00000ull
#define PAGING_1G_ADDRESS_MASK_64 0x000FFFFFC0000000ull
#define PAGING_4K_ADDRESS_MASK_64 0x000FFFFFFFFFF000ull
#define PAGING_2M_ADDRESS_MASK_64 0x000FFFFFFFE00000ull
#define PAGING_1G_ADDRESS_MASK_64 0x000FFFFFC0000000ull
#define PAGING_L1_ADDRESS_SHIFT 12
#define PAGING_L2_ADDRESS_SHIFT 21
#define PAGING_L3_ADDRESS_SHIFT 30
#define PAGING_L4_ADDRESS_SHIFT 39
#define PAGING_L1_ADDRESS_SHIFT 12
#define PAGING_L2_ADDRESS_SHIFT 21
#define PAGING_L3_ADDRESS_SHIFT 30
#define PAGING_L4_ADDRESS_SHIFT 39
#define PAGING_PML4E_NUMBER 4
#define PAGING_PML4E_NUMBER 4
#define PAGE_TABLE_POOL_ALIGNMENT BASE_2MB
#define PAGE_TABLE_POOL_UNIT_SIZE SIZE_2MB
@@ -168,9 +167,9 @@ typedef union {
(~(EFI_PHYSICAL_ADDRESS)(PAGE_TABLE_POOL_ALIGNMENT - 1))
typedef struct {
VOID *NextPool;
UINTN Offset;
UINTN FreePages;
VOID *NextPool;
UINTN Offset;
UINTN FreePages;
} PAGE_TABLE_POOL;
/**
@@ -207,12 +206,12 @@ EnableExecuteDisableBit (
**/
VOID
Split2MPageTo4K (
IN EFI_PHYSICAL_ADDRESS PhysicalAddress,
IN OUT UINT64 *PageEntry2M,
IN EFI_PHYSICAL_ADDRESS StackBase,
IN UINTN StackSize,
IN EFI_PHYSICAL_ADDRESS GhcbBase,
IN UINTN GhcbSize
IN EFI_PHYSICAL_ADDRESS PhysicalAddress,
IN OUT UINT64 *PageEntry2M,
IN EFI_PHYSICAL_ADDRESS StackBase,
IN UINTN StackSize,
IN EFI_PHYSICAL_ADDRESS GhcbBase,
IN UINTN GhcbSize
);
/**
@@ -229,13 +228,12 @@ Split2MPageTo4K (
**/
UINTN
CreateIdentityMappingPageTables (
IN EFI_PHYSICAL_ADDRESS StackBase,
IN UINTN StackSize,
IN EFI_PHYSICAL_ADDRESS GhcbBase,
IN UINTN GhcbkSize
IN EFI_PHYSICAL_ADDRESS StackBase,
IN UINTN StackSize,
IN EFI_PHYSICAL_ADDRESS GhcbBase,
IN UINTN GhcbkSize
);
/**
Fix up the vector number in the vector code.
@@ -247,11 +245,10 @@ CreateIdentityMappingPageTables (
VOID
EFIAPI
AsmVectorFixup (
VOID *VectorBase,
UINT8 VectorNum
VOID *VectorBase,
UINT8 VectorNum
);
/**
Get the information of vector template.
@@ -278,7 +275,7 @@ AsmGetVectorTemplatInfo (
**/
VOID
ClearFirst4KPage (
IN VOID *HobStart
IN VOID *HobStart
);
/**
@@ -301,8 +298,8 @@ IsNullDetectionEnabled (
**/
VOID
EnablePageTableProtection (
IN UINTN PageTableBase,
IN BOOLEAN Level4Paging
IN UINTN PageTableBase,
IN BOOLEAN Level4Paging
);
/**
@@ -324,7 +321,7 @@ EnablePageTableProtection (
**/
VOID *
AllocatePageTableMemory (
IN UINTN Pages
IN UINTN Pages
);
#endif