Update XHCI driver to use PCI IO AllocateBuffer/Map/Unmap to do DMA operation.
Signed-off-by: Elvin Li <elvin.li@intel.com> Reviewed-by: Feng Tian <feng.tian@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14546 6f19259b-4bc3-4df7-8a09-765794883524
This commit is contained in:
@ -109,7 +109,7 @@ XhcCmdTransfer (
|
||||
Status = EFI_SUCCESS;
|
||||
}
|
||||
|
||||
FreePool (Urb);
|
||||
XhcFreeUrb (Xhc, Urb);
|
||||
|
||||
ON_EXIT:
|
||||
return Status;
|
||||
@ -180,6 +180,30 @@ XhcCreateUrb (
|
||||
return Urb;
|
||||
}
|
||||
|
||||
/**
|
||||
Free an allocated URB.
|
||||
|
||||
@param Xhc The XHCI device.
|
||||
@param Urb The URB to free.
|
||||
|
||||
**/
|
||||
VOID
|
||||
XhcFreeUrb (
|
||||
IN USB_XHCI_INSTANCE *Xhc,
|
||||
IN URB *Urb
|
||||
)
|
||||
{
|
||||
if ((Xhc == NULL) || (Urb == NULL)) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (Urb->DataMap != NULL) {
|
||||
Xhc->PciIo->Unmap (Xhc->PciIo, Urb->DataMap);
|
||||
}
|
||||
|
||||
FreePool (Urb);
|
||||
}
|
||||
|
||||
/**
|
||||
Create a transfer TRB.
|
||||
|
||||
@ -204,6 +228,10 @@ XhcCreateTransferTrb (
|
||||
UINTN TotalLen;
|
||||
UINTN Len;
|
||||
UINTN TrbNum;
|
||||
EFI_PCI_IO_PROTOCOL_OPERATION MapOp;
|
||||
EFI_PHYSICAL_ADDRESS PhyAddr;
|
||||
VOID *Map;
|
||||
EFI_STATUS Status;
|
||||
|
||||
SlotId = XhcBusDevAddrToSlotId (Xhc, Urb->Ep.BusAddr);
|
||||
if (SlotId == 0) {
|
||||
@ -220,12 +248,31 @@ XhcCreateTransferTrb (
|
||||
ASSERT (Dci < 32);
|
||||
EPRing = (TRANSFER_RING *)(UINTN) Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1];
|
||||
Urb->Ring = EPRing;
|
||||
OutputContext = (VOID *)(UINTN)Xhc->DCBAA[SlotId];
|
||||
OutputContext = Xhc->UsbDevContext[SlotId].OutputContext;
|
||||
if (Xhc->HcCParams.Data.Csz == 0) {
|
||||
EPType = (UINT8) ((DEVICE_CONTEXT *)OutputContext)->EP[Dci-1].EPType;
|
||||
} else {
|
||||
EPType = (UINT8) ((DEVICE_CONTEXT_64 *)OutputContext)->EP[Dci-1].EPType;
|
||||
}
|
||||
|
||||
if (Urb->Data != NULL) {
|
||||
if (((UINT8) (Urb->Ep.Direction)) == EfiUsbDataIn) {
|
||||
MapOp = EfiPciIoOperationBusMasterWrite;
|
||||
} else {
|
||||
MapOp = EfiPciIoOperationBusMasterRead;
|
||||
}
|
||||
|
||||
Len = Urb->DataLen;
|
||||
Status = Xhc->PciIo->Map (Xhc->PciIo, MapOp, Urb->Data, &Len, &PhyAddr, &Map);
|
||||
|
||||
if (EFI_ERROR (Status) || (Len != Urb->DataLen)) {
|
||||
DEBUG ((EFI_D_ERROR, "XhcCreateTransferTrb: Fail to map Urb->Data.\n"));
|
||||
return EFI_OUT_OF_RESOURCES;
|
||||
}
|
||||
|
||||
Urb->DataPhy = (VOID *) ((UINTN) PhyAddr);
|
||||
Urb->DataMap = Map;
|
||||
}
|
||||
|
||||
//
|
||||
// Construct the TRB
|
||||
@ -267,8 +314,8 @@ XhcCreateTransferTrb (
|
||||
if (Urb->DataLen > 0) {
|
||||
XhcSyncTrsRing (Xhc, EPRing);
|
||||
TrbStart = (TRB *)(UINTN)EPRing->RingEnqueue;
|
||||
TrbStart->TrbCtrData.TRBPtrLo = XHC_LOW_32BIT(Urb->Data);
|
||||
TrbStart->TrbCtrData.TRBPtrHi = XHC_HIGH_32BIT(Urb->Data);
|
||||
TrbStart->TrbCtrData.TRBPtrLo = XHC_LOW_32BIT(Urb->DataPhy);
|
||||
TrbStart->TrbCtrData.TRBPtrHi = XHC_HIGH_32BIT(Urb->DataPhy);
|
||||
TrbStart->TrbCtrData.Lenth = (UINT32) Urb->DataLen;
|
||||
TrbStart->TrbCtrData.TDSize = 0;
|
||||
TrbStart->TrbCtrData.IntTarget = 0;
|
||||
@ -333,8 +380,8 @@ XhcCreateTransferTrb (
|
||||
Len = 0x10000;
|
||||
}
|
||||
TrbStart = (TRB *)(UINTN)EPRing->RingEnqueue;
|
||||
TrbStart->TrbNormal.TRBPtrLo = XHC_LOW_32BIT((UINT8 *) Urb->Data + TotalLen);
|
||||
TrbStart->TrbNormal.TRBPtrHi = XHC_HIGH_32BIT((UINT8 *) Urb->Data + TotalLen);
|
||||
TrbStart->TrbNormal.TRBPtrLo = XHC_LOW_32BIT((UINT8 *) Urb->DataPhy + TotalLen);
|
||||
TrbStart->TrbNormal.TRBPtrHi = XHC_HIGH_32BIT((UINT8 *) Urb->DataPhy + TotalLen);
|
||||
TrbStart->TrbNormal.Lenth = (UINT32) Len;
|
||||
TrbStart->TrbNormal.TDSize = 0;
|
||||
TrbStart->TrbNormal.IntTarget = 0;
|
||||
@ -368,8 +415,8 @@ XhcCreateTransferTrb (
|
||||
Len = 0x10000;
|
||||
}
|
||||
TrbStart = (TRB *)(UINTN)EPRing->RingEnqueue;
|
||||
TrbStart->TrbNormal.TRBPtrLo = XHC_LOW_32BIT((UINT8 *) Urb->Data + TotalLen);
|
||||
TrbStart->TrbNormal.TRBPtrHi = XHC_HIGH_32BIT((UINT8 *) Urb->Data + TotalLen);
|
||||
TrbStart->TrbNormal.TRBPtrLo = XHC_LOW_32BIT((UINT8 *) Urb->DataPhy + TotalLen);
|
||||
TrbStart->TrbNormal.TRBPtrHi = XHC_HIGH_32BIT((UINT8 *) Urb->DataPhy + TotalLen);
|
||||
TrbStart->TrbNormal.Lenth = (UINT32) Len;
|
||||
TrbStart->TrbNormal.TDSize = 0;
|
||||
TrbStart->TrbNormal.IntTarget = 0;
|
||||
@ -412,12 +459,24 @@ XhcInitSched (
|
||||
)
|
||||
{
|
||||
VOID *Dcbaa;
|
||||
EFI_PHYSICAL_ADDRESS DcbaaPhy;
|
||||
UINT64 CmdRing;
|
||||
EFI_PHYSICAL_ADDRESS CmdRingPhy;
|
||||
UINTN Entries;
|
||||
UINT32 MaxScratchpadBufs;
|
||||
UINT64 *ScratchBuf;
|
||||
UINT64 *ScratchEntryBuf;
|
||||
EFI_PHYSICAL_ADDRESS ScratchPhy;
|
||||
UINT64 *ScratchEntry;
|
||||
EFI_PHYSICAL_ADDRESS ScratchEntryPhy;
|
||||
UINT32 Index;
|
||||
UINTN *ScratchEntryMap;
|
||||
EFI_STATUS Status;
|
||||
|
||||
//
|
||||
// Initialize memory management.
|
||||
//
|
||||
Xhc->MemPool = UsbHcInitMemPool (Xhc->PciIo);
|
||||
ASSERT (Xhc->MemPool != NULL);
|
||||
|
||||
//
|
||||
// Program the Max Device Slots Enabled (MaxSlotsEn) field in the CONFIG register (5.4.7)
|
||||
@ -434,7 +493,7 @@ XhcInitSched (
|
||||
// Software shall set Device Context Base Address Array entries for unallocated Device Slots to '0'.
|
||||
//
|
||||
Entries = (Xhc->MaxSlotsEn + 1) * sizeof(UINT64);
|
||||
Dcbaa = AllocatePages (EFI_SIZE_TO_PAGES (Entries));
|
||||
Dcbaa = UsbHcAllocateMem (Xhc->MemPool, Entries);
|
||||
ASSERT (Dcbaa != NULL);
|
||||
ZeroMem (Dcbaa, Entries);
|
||||
|
||||
@ -447,23 +506,57 @@ XhcInitSched (
|
||||
Xhc->MaxScratchpadBufs = MaxScratchpadBufs;
|
||||
ASSERT (MaxScratchpadBufs <= 1023);
|
||||
if (MaxScratchpadBufs != 0) {
|
||||
ScratchBuf = AllocateAlignedPages (EFI_SIZE_TO_PAGES (MaxScratchpadBufs * sizeof (UINT64)), Xhc->PageSize);
|
||||
ASSERT (ScratchBuf != NULL);
|
||||
//
|
||||
// Allocate the buffer to record the Mapping for each scratch buffer in order to Unmap them
|
||||
//
|
||||
ScratchEntryMap = AllocateZeroPool (sizeof (UINTN) * MaxScratchpadBufs);
|
||||
ASSERT (ScratchEntryMap != NULL);
|
||||
Xhc->ScratchEntryMap = ScratchEntryMap;
|
||||
|
||||
//
|
||||
// Allocate the buffer to record the host address for each entry
|
||||
//
|
||||
ScratchEntry = AllocateZeroPool (sizeof (UINT64) * MaxScratchpadBufs);
|
||||
ASSERT (ScratchEntry != NULL);
|
||||
Xhc->ScratchEntry = ScratchEntry;
|
||||
|
||||
Status = UsbHcAllocateAlignedPages (
|
||||
Xhc->PciIo,
|
||||
EFI_SIZE_TO_PAGES (MaxScratchpadBufs * sizeof (UINT64)),
|
||||
Xhc->PageSize,
|
||||
(VOID **) &ScratchBuf,
|
||||
&ScratchPhy,
|
||||
&Xhc->ScratchMap
|
||||
);
|
||||
ASSERT_EFI_ERROR (Status);
|
||||
|
||||
ZeroMem (ScratchBuf, MaxScratchpadBufs * sizeof (UINT64));
|
||||
Xhc->ScratchBuf = ScratchBuf;
|
||||
|
||||
//
|
||||
// Allocate each scratch buffer
|
||||
//
|
||||
for (Index = 0; Index < MaxScratchpadBufs; Index++) {
|
||||
ScratchEntryBuf = AllocateAlignedPages (EFI_SIZE_TO_PAGES (Xhc->PageSize), Xhc->PageSize);
|
||||
ASSERT (ScratchEntryBuf != NULL);
|
||||
ZeroMem (ScratchEntryBuf, Xhc->PageSize);
|
||||
*ScratchBuf++ = (UINT64)(UINTN)ScratchEntryBuf;
|
||||
Status = UsbHcAllocateAlignedPages (
|
||||
Xhc->PciIo,
|
||||
EFI_SIZE_TO_PAGES (Xhc->PageSize),
|
||||
Xhc->PageSize,
|
||||
(VOID **) &ScratchEntry[Index],
|
||||
&ScratchEntryPhy,
|
||||
(VOID **) &ScratchEntryMap[Index]
|
||||
);
|
||||
ASSERT_EFI_ERROR (Status);
|
||||
ZeroMem ((VOID *)(UINTN)ScratchEntry[Index], Xhc->PageSize);
|
||||
//
|
||||
// Fill with the PCI device address
|
||||
//
|
||||
*ScratchBuf++ = ScratchEntryPhy;
|
||||
}
|
||||
|
||||
//
|
||||
// The Scratchpad Buffer Array contains pointers to the Scratchpad Buffers. Entry 0 of the
|
||||
// Device Context Base Address Array points to the Scratchpad Buffer Array.
|
||||
//
|
||||
*(UINT64 *)Dcbaa = (UINT64)(UINTN)Xhc->ScratchBuf;
|
||||
*(UINT64 *)Dcbaa = (UINT64)(UINTN) ScratchPhy;
|
||||
}
|
||||
|
||||
//
|
||||
@ -475,8 +568,10 @@ XhcInitSched (
|
||||
// Some 3rd party XHCI external cards don't support single 64-bytes width register access,
|
||||
// So divide it to two 32-bytes width register access.
|
||||
//
|
||||
XhcWriteOpReg (Xhc, XHC_DCBAAP_OFFSET, XHC_LOW_32BIT(Xhc->DCBAA));
|
||||
XhcWriteOpReg (Xhc, XHC_DCBAAP_OFFSET + 4, XHC_HIGH_32BIT (Xhc->DCBAA));
|
||||
DcbaaPhy = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Dcbaa, Entries);
|
||||
XhcWriteOpReg (Xhc, XHC_DCBAAP_OFFSET, XHC_LOW_32BIT(DcbaaPhy));
|
||||
XhcWriteOpReg (Xhc, XHC_DCBAAP_OFFSET + 4, XHC_HIGH_32BIT (DcbaaPhy));
|
||||
|
||||
DEBUG ((EFI_D_INFO, "XhcInitSched:DCBAA=0x%x\n", (UINT64)(UINTN)Xhc->DCBAA));
|
||||
|
||||
//
|
||||
@ -492,14 +587,15 @@ XhcInitSched (
|
||||
// So we set RCS as inverted PCS init value to let Command Ring empty
|
||||
//
|
||||
CmdRing = (UINT64)(UINTN)Xhc->CmdRing.RingSeg0;
|
||||
ASSERT ((CmdRing & 0x3F) == 0);
|
||||
CmdRing |= XHC_CRCR_RCS;
|
||||
CmdRingPhy = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, (VOID *)(UINTN) CmdRing, sizeof (TRB_TEMPLATE) * CMD_RING_TRB_NUMBER);
|
||||
ASSERT ((CmdRingPhy & 0x3F) == 0);
|
||||
CmdRingPhy |= XHC_CRCR_RCS;
|
||||
//
|
||||
// Some 3rd party XHCI external cards don't support single 64-bytes width register access,
|
||||
// So divide it to two 32-bytes width register access.
|
||||
//
|
||||
XhcWriteOpReg (Xhc, XHC_CRCR_OFFSET, XHC_LOW_32BIT(CmdRing));
|
||||
XhcWriteOpReg (Xhc, XHC_CRCR_OFFSET + 4, XHC_HIGH_32BIT (CmdRing));
|
||||
XhcWriteOpReg (Xhc, XHC_CRCR_OFFSET, XHC_LOW_32BIT(CmdRingPhy));
|
||||
XhcWriteOpReg (Xhc, XHC_CRCR_OFFSET + 4, XHC_HIGH_32BIT (CmdRingPhy));
|
||||
|
||||
DEBUG ((EFI_D_INFO, "XhcInitSched:XHC_CRCR=0x%x\n", Xhc->CmdRing.RingSeg0));
|
||||
|
||||
@ -547,6 +643,7 @@ XhcRecoverHaltedEndpoint (
|
||||
CMD_SET_TR_DEQ_POINTER CmdSetTRDeq;
|
||||
UINT8 Dci;
|
||||
UINT8 SlotId;
|
||||
EFI_PHYSICAL_ADDRESS PhyAddr;
|
||||
|
||||
Status = EFI_SUCCESS;
|
||||
SlotId = XhcBusDevAddrToSlotId (Xhc, Urb->Ep.BusAddr);
|
||||
@ -578,8 +675,9 @@ XhcRecoverHaltedEndpoint (
|
||||
// 2)Set dequeue pointer
|
||||
//
|
||||
ZeroMem (&CmdSetTRDeq, sizeof (CmdSetTRDeq));
|
||||
CmdSetTRDeq.PtrLo = XHC_LOW_32BIT (Urb->Ring->RingEnqueue) | Urb->Ring->RingPCS;
|
||||
CmdSetTRDeq.PtrHi = XHC_HIGH_32BIT (Urb->Ring->RingEnqueue);
|
||||
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Urb->Ring->RingEnqueue, sizeof (CMD_SET_TR_DEQ_POINTER));
|
||||
CmdSetTRDeq.PtrLo = XHC_LOW_32BIT (PhyAddr) | Urb->Ring->RingPCS;
|
||||
CmdSetTRDeq.PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
||||
CmdSetTRDeq.CycleBit = 1;
|
||||
CmdSetTRDeq.Type = TRB_TYPE_SET_TR_DEQUE;
|
||||
CmdSetTRDeq.Endpoint = Dci;
|
||||
@ -615,35 +713,45 @@ CreateEventRing (
|
||||
{
|
||||
VOID *Buf;
|
||||
EVENT_RING_SEG_TABLE_ENTRY *ERSTBase;
|
||||
UINTN Size;
|
||||
EFI_PHYSICAL_ADDRESS ERSTPhy;
|
||||
EFI_PHYSICAL_ADDRESS DequeuePhy;
|
||||
|
||||
ASSERT (EventRing != NULL);
|
||||
|
||||
Buf = AllocatePages (EFI_SIZE_TO_PAGES (sizeof (TRB_TEMPLATE) * EVENT_RING_TRB_NUMBER));
|
||||
Size = sizeof (TRB_TEMPLATE) * EVENT_RING_TRB_NUMBER;
|
||||
Buf = UsbHcAllocateMem (Xhc->MemPool, Size);
|
||||
ASSERT (Buf != NULL);
|
||||
ASSERT (((UINTN) Buf & 0x3F) == 0);
|
||||
ZeroMem (Buf, sizeof (TRB_TEMPLATE) * EVENT_RING_TRB_NUMBER);
|
||||
ZeroMem (Buf, Size);
|
||||
|
||||
EventRing->EventRingSeg0 = Buf;
|
||||
EventRing->TrbNumber = EVENT_RING_TRB_NUMBER;
|
||||
EventRing->EventRingDequeue = (TRB_TEMPLATE *) EventRing->EventRingSeg0;
|
||||
EventRing->EventRingEnqueue = (TRB_TEMPLATE *) EventRing->EventRingSeg0;
|
||||
|
||||
DequeuePhy = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Buf, Size);
|
||||
|
||||
//
|
||||
// Software maintains an Event Ring Consumer Cycle State (CCS) bit, initializing it to '1'
|
||||
// and toggling it every time the Event Ring Dequeue Pointer wraps back to the beginning of the Event Ring.
|
||||
//
|
||||
EventRing->EventRingCCS = 1;
|
||||
|
||||
Buf = AllocatePages (EFI_SIZE_TO_PAGES (sizeof (EVENT_RING_SEG_TABLE_ENTRY) * ERST_NUMBER));
|
||||
Size = EFI_SIZE_TO_PAGES (sizeof (EVENT_RING_SEG_TABLE_ENTRY) * ERST_NUMBER);
|
||||
Buf = UsbHcAllocateMem (Xhc->MemPool, Size);
|
||||
ASSERT (Buf != NULL);
|
||||
ASSERT (((UINTN) Buf & 0x3F) == 0);
|
||||
ZeroMem (Buf, sizeof (EVENT_RING_SEG_TABLE_ENTRY) * ERST_NUMBER);
|
||||
ZeroMem (Buf, Size);
|
||||
|
||||
ERSTBase = (EVENT_RING_SEG_TABLE_ENTRY *) Buf;
|
||||
EventRing->ERSTBase = ERSTBase;
|
||||
ERSTBase->PtrLo = XHC_LOW_32BIT (EventRing->EventRingSeg0);
|
||||
ERSTBase->PtrHi = XHC_HIGH_32BIT (EventRing->EventRingSeg0);
|
||||
ERSTBase->PtrLo = XHC_LOW_32BIT (DequeuePhy);
|
||||
ERSTBase->PtrHi = XHC_HIGH_32BIT (DequeuePhy);
|
||||
ERSTBase->RingTrbSize = EVENT_RING_TRB_NUMBER;
|
||||
|
||||
ERSTPhy = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, ERSTBase, Size);
|
||||
|
||||
//
|
||||
// Program the Interrupter Event Ring Segment Table Size (ERSTSZ) register (5.5.2.3.1)
|
||||
//
|
||||
@ -661,12 +769,12 @@ CreateEventRing (
|
||||
XhcWriteRuntimeReg (
|
||||
Xhc,
|
||||
XHC_ERDP_OFFSET,
|
||||
XHC_LOW_32BIT((UINT64)(UINTN)EventRing->EventRingDequeue)
|
||||
XHC_LOW_32BIT((UINT64)(UINTN)DequeuePhy)
|
||||
);
|
||||
XhcWriteRuntimeReg (
|
||||
Xhc,
|
||||
XHC_ERDP_OFFSET + 4,
|
||||
XHC_HIGH_32BIT((UINT64)(UINTN)EventRing->EventRingDequeue)
|
||||
XHC_HIGH_32BIT((UINT64)(UINTN)DequeuePhy)
|
||||
);
|
||||
//
|
||||
// Program the Interrupter Event Ring Segment Table Base Address (ERSTBA) register(5.5.2.3.2)
|
||||
@ -677,12 +785,12 @@ CreateEventRing (
|
||||
XhcWriteRuntimeReg (
|
||||
Xhc,
|
||||
XHC_ERSTBA_OFFSET,
|
||||
XHC_LOW_32BIT((UINT64)(UINTN)ERSTBase)
|
||||
XHC_LOW_32BIT((UINT64)(UINTN)ERSTPhy)
|
||||
);
|
||||
XhcWriteRuntimeReg (
|
||||
Xhc,
|
||||
XHC_ERSTBA_OFFSET + 4,
|
||||
XHC_HIGH_32BIT((UINT64)(UINTN)ERSTBase)
|
||||
XHC_HIGH_32BIT((UINT64)(UINTN)ERSTPhy)
|
||||
);
|
||||
//
|
||||
// Need set IMAN IE bit to enble the ring interrupt
|
||||
@ -707,8 +815,9 @@ CreateTransferRing (
|
||||
{
|
||||
VOID *Buf;
|
||||
LINK_TRB *EndTrb;
|
||||
EFI_PHYSICAL_ADDRESS PhyAddr;
|
||||
|
||||
Buf = AllocatePages (EFI_SIZE_TO_PAGES (sizeof (TRB_TEMPLATE) * TrbNum));
|
||||
Buf = UsbHcAllocateMem (Xhc->MemPool, sizeof (TRB_TEMPLATE) * TrbNum);
|
||||
ASSERT (Buf != NULL);
|
||||
ASSERT (((UINTN) Buf & 0x3F) == 0);
|
||||
ZeroMem (Buf, sizeof (TRB_TEMPLATE) * TrbNum);
|
||||
@ -725,8 +834,9 @@ CreateTransferRing (
|
||||
//
|
||||
EndTrb = (LINK_TRB *) ((UINTN)Buf + sizeof (TRB_TEMPLATE) * (TrbNum - 1));
|
||||
EndTrb->Type = TRB_TYPE_LINK;
|
||||
EndTrb->PtrLo = XHC_LOW_32BIT (Buf);
|
||||
EndTrb->PtrHi = XHC_HIGH_32BIT (Buf);
|
||||
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Buf, sizeof (TRB_TEMPLATE) * TrbNum);
|
||||
EndTrb->PtrLo = XHC_LOW_32BIT (PhyAddr);
|
||||
EndTrb->PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
||||
//
|
||||
// Toggle Cycle (TC). When set to '1', the xHC shall toggle its interpretation of the Cycle bit.
|
||||
//
|
||||
@ -751,34 +861,19 @@ XhcFreeEventRing (
|
||||
IN EVENT_RING *EventRing
|
||||
)
|
||||
{
|
||||
UINT8 Index;
|
||||
EVENT_RING_SEG_TABLE_ENTRY *TablePtr;
|
||||
VOID *RingBuf;
|
||||
EVENT_RING_SEG_TABLE_ENTRY *EventRingPtr;
|
||||
|
||||
if(EventRing->EventRingSeg0 == NULL) {
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
|
||||
//
|
||||
// Get the Event Ring Segment Table base address
|
||||
// Free EventRing Segment 0
|
||||
//
|
||||
TablePtr = (EVENT_RING_SEG_TABLE_ENTRY *)(EventRing->ERSTBase);
|
||||
UsbHcFreeMem (Xhc->MemPool, EventRing->EventRingSeg0, sizeof (TRB_TEMPLATE) * EVENT_RING_TRB_NUMBER);
|
||||
|
||||
//
|
||||
// Get all the TRBs Ring and release
|
||||
// Free ESRT table
|
||||
//
|
||||
for (Index = 0; Index < ERST_NUMBER; Index++) {
|
||||
EventRingPtr = TablePtr + Index;
|
||||
RingBuf = (VOID *)(UINTN)(EventRingPtr->PtrLo | LShiftU64 ((UINT64)EventRingPtr->PtrHi, 32));
|
||||
|
||||
if(RingBuf != NULL) {
|
||||
FreePages (RingBuf, EFI_SIZE_TO_PAGES (sizeof (TRB_TEMPLATE) * EVENT_RING_TRB_NUMBER));
|
||||
ZeroMem (EventRingPtr, sizeof (EVENT_RING_SEG_TABLE_ENTRY));
|
||||
}
|
||||
}
|
||||
|
||||
FreePages (TablePtr, EFI_SIZE_TO_PAGES (sizeof (EVENT_RING_SEG_TABLE_ENTRY) * ERST_NUMBER));
|
||||
UsbHcFreeMem (Xhc->MemPool, EventRing->ERSTBase, sizeof (EVENT_RING_SEG_TABLE_ENTRY) * ERST_NUMBER);
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
|
||||
@ -793,28 +888,44 @@ XhcFreeSched (
|
||||
IN USB_XHCI_INSTANCE *Xhc
|
||||
)
|
||||
{
|
||||
UINT32 Index;
|
||||
UINT64 *ScratchBuf;
|
||||
|
||||
UINT32 Index;
|
||||
UINT64 *ScratchEntry;
|
||||
|
||||
if (Xhc->ScratchBuf != NULL) {
|
||||
ScratchBuf = Xhc->ScratchBuf;
|
||||
ScratchEntry = Xhc->ScratchEntry;
|
||||
for (Index = 0; Index < Xhc->MaxScratchpadBufs; Index++) {
|
||||
FreeAlignedPages ((VOID*)(UINTN)*ScratchBuf++, EFI_SIZE_TO_PAGES (Xhc->PageSize));
|
||||
//
|
||||
// Free Scratchpad Buffers
|
||||
//
|
||||
UsbHcFreeAlignedPages (Xhc->PciIo, (VOID*)(UINTN)ScratchEntry[Index], EFI_SIZE_TO_PAGES (Xhc->PageSize), (VOID *) Xhc->ScratchEntryMap[Index]);
|
||||
}
|
||||
FreeAlignedPages (Xhc->ScratchBuf, EFI_SIZE_TO_PAGES (Xhc->MaxScratchpadBufs * sizeof (UINT64)));
|
||||
//
|
||||
// Free Scratchpad Buffer Array
|
||||
//
|
||||
UsbHcFreeAlignedPages (Xhc->PciIo, Xhc->ScratchBuf, EFI_SIZE_TO_PAGES (Xhc->MaxScratchpadBufs * sizeof (UINT64)), Xhc->ScratchMap);
|
||||
FreePool (Xhc->ScratchEntryMap);
|
||||
FreePool (Xhc->ScratchEntry);
|
||||
}
|
||||
|
||||
if (Xhc->DCBAA != NULL) {
|
||||
FreePages (Xhc->DCBAA, EFI_SIZE_TO_PAGES((Xhc->MaxSlotsEn + 1) * sizeof(UINT64)));
|
||||
Xhc->DCBAA = NULL;
|
||||
}
|
||||
|
||||
if (Xhc->CmdRing.RingSeg0 != NULL){
|
||||
FreePages (Xhc->CmdRing.RingSeg0, EFI_SIZE_TO_PAGES (sizeof (TRB_TEMPLATE) * CMD_RING_TRB_NUMBER));
|
||||
if (Xhc->CmdRing.RingSeg0 != NULL) {
|
||||
UsbHcFreeMem (Xhc->MemPool, Xhc->CmdRing.RingSeg0, sizeof (TRB_TEMPLATE) * CMD_RING_TRB_NUMBER);
|
||||
Xhc->CmdRing.RingSeg0 = NULL;
|
||||
}
|
||||
|
||||
|
||||
XhcFreeEventRing (Xhc,&Xhc->EventRing);
|
||||
|
||||
if (Xhc->DCBAA != NULL) {
|
||||
UsbHcFreeMem (Xhc->MemPool, Xhc->DCBAA, (Xhc->MaxSlotsEn + 1) * sizeof(UINT64));
|
||||
Xhc->DCBAA = NULL;
|
||||
}
|
||||
|
||||
//
|
||||
// Free memory pool at last
|
||||
//
|
||||
if (Xhc->MemPool != NULL) {
|
||||
UsbHcFreeMemPool (Xhc->MemPool);
|
||||
Xhc->MemPool = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
@ -918,6 +1029,7 @@ XhcCheckUrbResult (
|
||||
UINT64 XhcDequeue;
|
||||
UINT32 High;
|
||||
UINT32 Low;
|
||||
EFI_PHYSICAL_ADDRESS PhyAddr;
|
||||
|
||||
ASSERT ((Xhc != NULL) && (Urb != NULL));
|
||||
|
||||
@ -955,8 +1067,12 @@ XhcCheckUrbResult (
|
||||
if ((EvtTrb->Type != TRB_TYPE_COMMAND_COMPLT_EVENT) && (EvtTrb->Type != TRB_TYPE_TRANS_EVENT)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
TRBPtr = (TRB_TEMPLATE *)(UINTN)(EvtTrb->TRBPtrLo | LShiftU64 ((UINT64) EvtTrb->TRBPtrHi, 32));
|
||||
|
||||
//
|
||||
// Need convert pci device address to host address
|
||||
//
|
||||
PhyAddr = (EFI_PHYSICAL_ADDRESS)(EvtTrb->TRBPtrLo | LShiftU64 ((UINT64) EvtTrb->TRBPtrHi, 32));
|
||||
TRBPtr = (TRB_TEMPLATE *)(UINTN) UsbHcGetHostAddrForPciAddr (Xhc->MemPool, (VOID *)(UINTN) PhyAddr, sizeof (TRB_TEMPLATE));
|
||||
|
||||
//
|
||||
// Update the status of Urb according to the finished event regardless of whether
|
||||
@ -1048,13 +1164,15 @@ EXIT:
|
||||
High = XhcReadRuntimeReg (Xhc, XHC_ERDP_OFFSET + 4);
|
||||
XhcDequeue = (UINT64)(LShiftU64((UINT64)High, 32) | Low);
|
||||
|
||||
if ((XhcDequeue & (~0x0F)) != ((UINT64)(UINTN)Xhc->EventRing.EventRingDequeue & (~0x0F))) {
|
||||
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Xhc->EventRing.EventRingDequeue, sizeof (TRB_TEMPLATE));
|
||||
|
||||
if ((XhcDequeue & (~0x0F)) != (PhyAddr & (~0x0F))) {
|
||||
//
|
||||
// Some 3rd party XHCI external cards don't support single 64-bytes width register access,
|
||||
// So divide it to two 32-bytes width register access.
|
||||
//
|
||||
XhcWriteRuntimeReg (Xhc, XHC_ERDP_OFFSET, XHC_LOW_32BIT (Xhc->EventRing.EventRingDequeue) | BIT3);
|
||||
XhcWriteRuntimeReg (Xhc, XHC_ERDP_OFFSET + 4, XHC_HIGH_32BIT (Xhc->EventRing.EventRingDequeue));
|
||||
XhcWriteRuntimeReg (Xhc, XHC_ERDP_OFFSET, XHC_LOW_32BIT (PhyAddr) | BIT3);
|
||||
XhcWriteRuntimeReg (Xhc, XHC_ERDP_OFFSET + 4, XHC_HIGH_32BIT (PhyAddr));
|
||||
}
|
||||
|
||||
return Status;
|
||||
@ -1159,7 +1277,7 @@ XhciDelAsyncIntTransfer (
|
||||
(Urb->Ep.Direction == Direction)) {
|
||||
RemoveEntryList (&Urb->UrbList);
|
||||
FreePool (Urb->Data);
|
||||
FreePool (Urb);
|
||||
XhcFreeUrb (Xhc, Urb);
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
}
|
||||
@ -1186,7 +1304,7 @@ XhciDelAllAsyncIntTransfers (
|
||||
Urb = EFI_LIST_CONTAINER (Entry, URB, UrbList);
|
||||
RemoveEntryList (&Urb->UrbList);
|
||||
FreePool (Urb->Data);
|
||||
FreePool (Urb);
|
||||
XhcFreeUrb (Xhc, Urb);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1217,6 +1335,60 @@ XhcUpdateAsyncRequest (
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
Flush data from PCI controller specific address to mapped system
|
||||
memory address.
|
||||
|
||||
@param Xhc The XHCI device.
|
||||
@param Urb The URB to unmap.
|
||||
|
||||
@retval EFI_SUCCESS Success to flush data to mapped system memory.
|
||||
@retval EFI_DEVICE_ERROR Fail to flush data to mapped system memory.
|
||||
|
||||
**/
|
||||
EFI_STATUS
|
||||
XhcFlushAsyncIntMap (
|
||||
IN USB_XHCI_INSTANCE *Xhc,
|
||||
IN URB *Urb
|
||||
)
|
||||
{
|
||||
EFI_STATUS Status;
|
||||
EFI_PHYSICAL_ADDRESS PhyAddr;
|
||||
EFI_PCI_IO_PROTOCOL_OPERATION MapOp;
|
||||
EFI_PCI_IO_PROTOCOL *PciIo;
|
||||
UINTN Len;
|
||||
VOID *Map;
|
||||
|
||||
PciIo = Xhc->PciIo;
|
||||
Len = Urb->DataLen;
|
||||
|
||||
if (Urb->Ep.Direction == EfiUsbDataIn) {
|
||||
MapOp = EfiPciIoOperationBusMasterWrite;
|
||||
} else {
|
||||
MapOp = EfiPciIoOperationBusMasterRead;
|
||||
}
|
||||
|
||||
if (Urb->DataMap != NULL) {
|
||||
Status = PciIo->Unmap (PciIo, Urb->DataMap);
|
||||
if (EFI_ERROR (Status)) {
|
||||
goto ON_ERROR;
|
||||
}
|
||||
}
|
||||
|
||||
Urb->DataMap = NULL;
|
||||
|
||||
Status = PciIo->Map (PciIo, MapOp, Urb->Data, &Len, &PhyAddr, &Map);
|
||||
if (EFI_ERROR (Status) || (Len != Urb->DataLen)) {
|
||||
goto ON_ERROR;
|
||||
}
|
||||
|
||||
Urb->DataPhy = (VOID *) ((UINTN) PhyAddr);
|
||||
Urb->DataMap = Map;
|
||||
return EFI_SUCCESS;
|
||||
|
||||
ON_ERROR:
|
||||
return EFI_DEVICE_ERROR;
|
||||
}
|
||||
|
||||
/**
|
||||
Interrupt transfer periodic check handler.
|
||||
@ -1238,6 +1410,7 @@ XhcMonitorAsyncRequests (
|
||||
UINT8 *ProcBuf;
|
||||
URB *Urb;
|
||||
UINT8 SlotId;
|
||||
EFI_STATUS Status;
|
||||
EFI_TPL OldTpl;
|
||||
|
||||
OldTpl = gBS->RaiseTPL (XHC_TPL);
|
||||
@ -1265,6 +1438,15 @@ XhcMonitorAsyncRequests (
|
||||
continue;
|
||||
}
|
||||
|
||||
//
|
||||
// Flush any PCI posted write transactions from a PCI host
|
||||
// bridge to system memory.
|
||||
//
|
||||
Status = XhcFlushAsyncIntMap (Xhc, Urb);
|
||||
if (EFI_ERROR (Status)) {
|
||||
DEBUG ((EFI_D_ERROR, "XhcMonitorAsyncRequests: Fail to Flush AsyncInt Mapped Memeory\n"));
|
||||
}
|
||||
|
||||
//
|
||||
// Allocate a buffer then copy the transferred data for user.
|
||||
// If failed to allocate the buffer, update the URB for next
|
||||
@ -1582,7 +1764,7 @@ XhcSyncTrsRing (
|
||||
// Toggle PCS maintained by software
|
||||
//
|
||||
TrsRing->RingPCS = (TrsRing->RingPCS & BIT0) ? 0 : 1;
|
||||
TrsTrb = (TRB_TEMPLATE *)(UINTN)((TrsTrb->Parameter1 | LShiftU64 ((UINT64)TrsTrb->Parameter2, 32)) & ~0x0F);
|
||||
TrsTrb = (TRB_TEMPLATE *) TrsRing->RingSeg0; // Use host address
|
||||
}
|
||||
}
|
||||
|
||||
@ -1727,6 +1909,7 @@ XhcInitializeDeviceSlot (
|
||||
UINT8 SlotId;
|
||||
UINT8 ParentSlotId;
|
||||
DEVICE_CONTEXT *ParentDeviceContext;
|
||||
EFI_PHYSICAL_ADDRESS PhyAddr;
|
||||
|
||||
ZeroMem (&CmdTrb, sizeof (CMD_TRB_ENABLE_SLOT));
|
||||
CmdTrb.CycleBit = 1;
|
||||
@ -1754,7 +1937,7 @@ XhcInitializeDeviceSlot (
|
||||
// 4.3.3 Device Slot Initialization
|
||||
// 1) Allocate an Input Context data structure (6.2.5) and initialize all fields to '0'.
|
||||
//
|
||||
InputContext = AllocatePages (EFI_SIZE_TO_PAGES (sizeof (INPUT_CONTEXT)));
|
||||
InputContext = UsbHcAllocateMem (Xhc->MemPool, sizeof (INPUT_CONTEXT));
|
||||
ASSERT (InputContext != NULL);
|
||||
ASSERT (((UINTN) InputContext & 0x3F) == 0);
|
||||
ZeroMem (InputContext, sizeof (INPUT_CONTEXT));
|
||||
@ -1843,13 +2026,18 @@ XhcInitializeDeviceSlot (
|
||||
//
|
||||
// Init the DCS(dequeue cycle state) as the transfer ring's CCS
|
||||
//
|
||||
InputContext->EP[0].PtrLo = XHC_LOW_32BIT (((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[0])->RingSeg0) | BIT0;
|
||||
InputContext->EP[0].PtrHi = XHC_HIGH_32BIT (((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[0])->RingSeg0);
|
||||
PhyAddr = UsbHcGetPciAddrForHostAddr (
|
||||
Xhc->MemPool,
|
||||
((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[0])->RingSeg0,
|
||||
sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER
|
||||
);
|
||||
InputContext->EP[0].PtrLo = XHC_LOW_32BIT (PhyAddr) | BIT0;
|
||||
InputContext->EP[0].PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
||||
|
||||
//
|
||||
// 6) Allocate the Output Device Context data structure (6.2.1) and initialize it to '0'.
|
||||
//
|
||||
OutputContext = AllocatePages (EFI_SIZE_TO_PAGES (sizeof (DEVICE_CONTEXT)));
|
||||
OutputContext = UsbHcAllocateMem (Xhc->MemPool, sizeof (DEVICE_CONTEXT));
|
||||
ASSERT (OutputContext != NULL);
|
||||
ASSERT (((UINTN) OutputContext & 0x3F) == 0);
|
||||
ZeroMem (OutputContext, sizeof (DEVICE_CONTEXT));
|
||||
@ -1859,15 +2047,20 @@ XhcInitializeDeviceSlot (
|
||||
// 7) Load the appropriate (Device Slot ID) entry in the Device Context Base Address Array (5.4.6) with
|
||||
// a pointer to the Output Device Context data structure (6.2.1).
|
||||
//
|
||||
Xhc->DCBAA[SlotId] = (UINT64) (UINTN) OutputContext;
|
||||
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, OutputContext, sizeof (DEVICE_CONTEXT));
|
||||
//
|
||||
// Fill DCBAA with PCI device address
|
||||
//
|
||||
Xhc->DCBAA[SlotId] = (UINT64) (UINTN) PhyAddr;
|
||||
|
||||
//
|
||||
// 8) Issue an Address Device Command for the Device Slot, where the command points to the Input
|
||||
// Context data structure described above.
|
||||
//
|
||||
ZeroMem (&CmdTrbAddr, sizeof (CmdTrbAddr));
|
||||
CmdTrbAddr.PtrLo = XHC_LOW_32BIT (Xhc->UsbDevContext[SlotId].InputContext);
|
||||
CmdTrbAddr.PtrHi = XHC_HIGH_32BIT (Xhc->UsbDevContext[SlotId].InputContext);
|
||||
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Xhc->UsbDevContext[SlotId].InputContext, sizeof (INPUT_CONTEXT));
|
||||
CmdTrbAddr.PtrLo = XHC_LOW_32BIT (PhyAddr);
|
||||
CmdTrbAddr.PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
||||
CmdTrbAddr.CycleBit = 1;
|
||||
CmdTrbAddr.Type = TRB_TYPE_ADDRESS_DEV;
|
||||
CmdTrbAddr.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
|
||||
@ -1920,6 +2113,7 @@ XhcInitializeDeviceSlot64 (
|
||||
UINT8 SlotId;
|
||||
UINT8 ParentSlotId;
|
||||
DEVICE_CONTEXT_64 *ParentDeviceContext;
|
||||
EFI_PHYSICAL_ADDRESS PhyAddr;
|
||||
|
||||
ZeroMem (&CmdTrb, sizeof (CMD_TRB_ENABLE_SLOT));
|
||||
CmdTrb.CycleBit = 1;
|
||||
@ -1947,7 +2141,7 @@ XhcInitializeDeviceSlot64 (
|
||||
// 4.3.3 Device Slot Initialization
|
||||
// 1) Allocate an Input Context data structure (6.2.5) and initialize all fields to '0'.
|
||||
//
|
||||
InputContext = AllocatePages (EFI_SIZE_TO_PAGES (sizeof (INPUT_CONTEXT_64)));
|
||||
InputContext = UsbHcAllocateMem (Xhc->MemPool, sizeof (INPUT_CONTEXT_64));
|
||||
ASSERT (InputContext != NULL);
|
||||
ASSERT (((UINTN) InputContext & 0x3F) == 0);
|
||||
ZeroMem (InputContext, sizeof (INPUT_CONTEXT_64));
|
||||
@ -2036,13 +2230,18 @@ XhcInitializeDeviceSlot64 (
|
||||
//
|
||||
// Init the DCS(dequeue cycle state) as the transfer ring's CCS
|
||||
//
|
||||
InputContext->EP[0].PtrLo = XHC_LOW_32BIT (((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[0])->RingSeg0) | BIT0;
|
||||
InputContext->EP[0].PtrHi = XHC_HIGH_32BIT (((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[0])->RingSeg0);
|
||||
PhyAddr = UsbHcGetPciAddrForHostAddr (
|
||||
Xhc->MemPool,
|
||||
((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[0])->RingSeg0,
|
||||
sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER
|
||||
);
|
||||
InputContext->EP[0].PtrLo = XHC_LOW_32BIT (PhyAddr) | BIT0;
|
||||
InputContext->EP[0].PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
||||
|
||||
//
|
||||
// 6) Allocate the Output Device Context data structure (6.2.1) and initialize it to '0'.
|
||||
//
|
||||
OutputContext = AllocatePages (EFI_SIZE_TO_PAGES (sizeof (DEVICE_CONTEXT_64)));
|
||||
OutputContext = UsbHcAllocateMem (Xhc->MemPool, sizeof (DEVICE_CONTEXT_64));
|
||||
ASSERT (OutputContext != NULL);
|
||||
ASSERT (((UINTN) OutputContext & 0x3F) == 0);
|
||||
ZeroMem (OutputContext, sizeof (DEVICE_CONTEXT_64));
|
||||
@ -2052,15 +2251,20 @@ XhcInitializeDeviceSlot64 (
|
||||
// 7) Load the appropriate (Device Slot ID) entry in the Device Context Base Address Array (5.4.6) with
|
||||
// a pointer to the Output Device Context data structure (6.2.1).
|
||||
//
|
||||
Xhc->DCBAA[SlotId] = (UINT64) (UINTN) OutputContext;
|
||||
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, OutputContext, sizeof (DEVICE_CONTEXT_64));
|
||||
//
|
||||
// Fill DCBAA with PCI device address
|
||||
//
|
||||
Xhc->DCBAA[SlotId] = (UINT64) (UINTN) PhyAddr;
|
||||
|
||||
//
|
||||
// 8) Issue an Address Device Command for the Device Slot, where the command points to the Input
|
||||
// Context data structure described above.
|
||||
//
|
||||
ZeroMem (&CmdTrbAddr, sizeof (CmdTrbAddr));
|
||||
CmdTrbAddr.PtrLo = XHC_LOW_32BIT (Xhc->UsbDevContext[SlotId].InputContext);
|
||||
CmdTrbAddr.PtrHi = XHC_HIGH_32BIT (Xhc->UsbDevContext[SlotId].InputContext);
|
||||
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Xhc->UsbDevContext[SlotId].InputContext, sizeof (INPUT_CONTEXT_64));
|
||||
CmdTrbAddr.PtrLo = XHC_LOW_32BIT (PhyAddr);
|
||||
CmdTrbAddr.PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
||||
CmdTrbAddr.CycleBit = 1;
|
||||
CmdTrbAddr.Type = TRB_TYPE_ADDRESS_DEV;
|
||||
CmdTrbAddr.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
|
||||
@ -2150,9 +2354,10 @@ XhcDisableSlotCmd (
|
||||
if (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index] != NULL) {
|
||||
RingSeg = ((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index])->RingSeg0;
|
||||
if (RingSeg != NULL) {
|
||||
FreePages (RingSeg, EFI_SIZE_TO_PAGES (sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER));
|
||||
UsbHcFreeMem (Xhc->MemPool, RingSeg, sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER);
|
||||
}
|
||||
FreePool (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index]);
|
||||
Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index] = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
@ -2163,11 +2368,11 @@ XhcDisableSlotCmd (
|
||||
}
|
||||
|
||||
if (Xhc->UsbDevContext[SlotId].InputContext != NULL) {
|
||||
FreePages (Xhc->UsbDevContext[SlotId].InputContext, EFI_SIZE_TO_PAGES (sizeof (INPUT_CONTEXT)));
|
||||
UsbHcFreeMem (Xhc->MemPool, Xhc->UsbDevContext[SlotId].InputContext, sizeof (INPUT_CONTEXT));
|
||||
}
|
||||
|
||||
if (Xhc->UsbDevContext[SlotId].OutputContext != NULL) {
|
||||
FreePages (Xhc->UsbDevContext[SlotId].OutputContext, EFI_SIZE_TO_PAGES (sizeof (DEVICE_CONTEXT)));
|
||||
UsbHcFreeMem (Xhc->MemPool, Xhc->UsbDevContext[SlotId].OutputContext, sizeof (DEVICE_CONTEXT));
|
||||
}
|
||||
//
|
||||
// Doesn't zero the entry because XhcAsyncInterruptTransfer() may be invoked to remove the established
|
||||
@ -2249,9 +2454,10 @@ XhcDisableSlotCmd64 (
|
||||
if (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index] != NULL) {
|
||||
RingSeg = ((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index])->RingSeg0;
|
||||
if (RingSeg != NULL) {
|
||||
FreePages (RingSeg, EFI_SIZE_TO_PAGES (sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER));
|
||||
UsbHcFreeMem (Xhc->MemPool, RingSeg, sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER);
|
||||
}
|
||||
FreePool (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index]);
|
||||
Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index] = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
@ -2262,11 +2468,11 @@ XhcDisableSlotCmd64 (
|
||||
}
|
||||
|
||||
if (Xhc->UsbDevContext[SlotId].InputContext != NULL) {
|
||||
FreePages (Xhc->UsbDevContext[SlotId].InputContext, EFI_SIZE_TO_PAGES (sizeof (INPUT_CONTEXT_64)));
|
||||
UsbHcFreeMem (Xhc->MemPool, Xhc->UsbDevContext[SlotId].InputContext, sizeof (INPUT_CONTEXT_64));
|
||||
}
|
||||
|
||||
if (Xhc->UsbDevContext[SlotId].OutputContext != NULL) {
|
||||
FreePages (Xhc->UsbDevContext[SlotId].OutputContext, EFI_SIZE_TO_PAGES (sizeof (DEVICE_CONTEXT_64)));
|
||||
UsbHcFreeMem (Xhc->MemPool, Xhc->UsbDevContext[SlotId].OutputContext, sizeof (DEVICE_CONTEXT_64));
|
||||
}
|
||||
//
|
||||
// Doesn't zero the entry because XhcAsyncInterruptTransfer() may be invoked to remove the established
|
||||
@ -2311,7 +2517,7 @@ XhcSetConfigCmd (
|
||||
UINT8 Direction;
|
||||
UINT8 Dci;
|
||||
UINT8 MaxDci;
|
||||
UINT32 PhyAddr;
|
||||
EFI_PHYSICAL_ADDRESS PhyAddr;
|
||||
UINT8 Interval;
|
||||
|
||||
TRANSFER_RING *EndpointTransferRing;
|
||||
@ -2438,11 +2644,15 @@ XhcSetConfigCmd (
|
||||
break;
|
||||
}
|
||||
|
||||
PhyAddr = XHC_LOW_32BIT (((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingSeg0);
|
||||
PhyAddr = UsbHcGetPciAddrForHostAddr (
|
||||
Xhc->MemPool,
|
||||
((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingSeg0,
|
||||
sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER
|
||||
);
|
||||
PhyAddr &= ~(0x0F);
|
||||
PhyAddr |= ((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingPCS;
|
||||
InputContext->EP[Dci-1].PtrLo = PhyAddr;
|
||||
InputContext->EP[Dci-1].PtrHi = XHC_HIGH_32BIT (((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingSeg0);
|
||||
InputContext->EP[Dci-1].PtrLo = XHC_LOW_32BIT (PhyAddr);
|
||||
InputContext->EP[Dci-1].PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
||||
|
||||
EpDesc = (USB_ENDPOINT_DESCRIPTOR *)((UINTN)EpDesc + EpDesc->Length);
|
||||
}
|
||||
@ -2455,8 +2665,9 @@ XhcSetConfigCmd (
|
||||
// configure endpoint
|
||||
//
|
||||
ZeroMem (&CmdTrbCfgEP, sizeof (CmdTrbCfgEP));
|
||||
CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (InputContext);
|
||||
CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (InputContext);
|
||||
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, InputContext, sizeof (INPUT_CONTEXT));
|
||||
CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (PhyAddr);
|
||||
CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
||||
CmdTrbCfgEP.CycleBit = 1;
|
||||
CmdTrbCfgEP.Type = TRB_TYPE_CON_ENDPOINT;
|
||||
CmdTrbCfgEP.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
|
||||
@ -2503,7 +2714,7 @@ XhcSetConfigCmd64 (
|
||||
UINT8 Direction;
|
||||
UINT8 Dci;
|
||||
UINT8 MaxDci;
|
||||
UINT32 PhyAddr;
|
||||
EFI_PHYSICAL_ADDRESS PhyAddr;
|
||||
UINT8 Interval;
|
||||
|
||||
TRANSFER_RING *EndpointTransferRing;
|
||||
@ -2630,11 +2841,17 @@ XhcSetConfigCmd64 (
|
||||
break;
|
||||
}
|
||||
|
||||
PhyAddr = XHC_LOW_32BIT (((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingSeg0);
|
||||
PhyAddr = UsbHcGetPciAddrForHostAddr (
|
||||
Xhc->MemPool,
|
||||
((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingSeg0,
|
||||
sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER
|
||||
);
|
||||
|
||||
PhyAddr &= ~(0x0F);
|
||||
PhyAddr |= ((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingPCS;
|
||||
InputContext->EP[Dci-1].PtrLo = PhyAddr;
|
||||
InputContext->EP[Dci-1].PtrHi = XHC_HIGH_32BIT (((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingSeg0);
|
||||
|
||||
InputContext->EP[Dci-1].PtrLo = XHC_LOW_32BIT (PhyAddr);
|
||||
InputContext->EP[Dci-1].PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
||||
|
||||
EpDesc = (USB_ENDPOINT_DESCRIPTOR *)((UINTN)EpDesc + EpDesc->Length);
|
||||
}
|
||||
@ -2647,8 +2864,9 @@ XhcSetConfigCmd64 (
|
||||
// configure endpoint
|
||||
//
|
||||
ZeroMem (&CmdTrbCfgEP, sizeof (CmdTrbCfgEP));
|
||||
CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (InputContext);
|
||||
CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (InputContext);
|
||||
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, InputContext, sizeof (INPUT_CONTEXT_64));
|
||||
CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (PhyAddr);
|
||||
CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
||||
CmdTrbCfgEP.CycleBit = 1;
|
||||
CmdTrbCfgEP.Type = TRB_TYPE_CON_ENDPOINT;
|
||||
CmdTrbCfgEP.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
|
||||
@ -2687,6 +2905,7 @@ XhcEvaluateContext (
|
||||
CMD_TRB_EVALUATE_CONTEXT CmdTrbEvalu;
|
||||
EVT_TRB_COMMAND_COMPLETION *EvtTrb;
|
||||
INPUT_CONTEXT *InputContext;
|
||||
EFI_PHYSICAL_ADDRESS PhyAddr;
|
||||
|
||||
ASSERT (Xhc->UsbDevContext[SlotId].SlotId != 0);
|
||||
|
||||
@ -2700,8 +2919,9 @@ XhcEvaluateContext (
|
||||
InputContext->EP[0].MaxPacketSize = MaxPacketSize;
|
||||
|
||||
ZeroMem (&CmdTrbEvalu, sizeof (CmdTrbEvalu));
|
||||
CmdTrbEvalu.PtrLo = XHC_LOW_32BIT (InputContext);
|
||||
CmdTrbEvalu.PtrHi = XHC_HIGH_32BIT (InputContext);
|
||||
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, InputContext, sizeof (INPUT_CONTEXT));
|
||||
CmdTrbEvalu.PtrLo = XHC_LOW_32BIT (PhyAddr);
|
||||
CmdTrbEvalu.PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
||||
CmdTrbEvalu.CycleBit = 1;
|
||||
CmdTrbEvalu.Type = TRB_TYPE_EVALU_CONTXT;
|
||||
CmdTrbEvalu.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
|
||||
@ -2739,6 +2959,7 @@ XhcEvaluateContext64 (
|
||||
CMD_TRB_EVALUATE_CONTEXT CmdTrbEvalu;
|
||||
EVT_TRB_COMMAND_COMPLETION *EvtTrb;
|
||||
INPUT_CONTEXT_64 *InputContext;
|
||||
EFI_PHYSICAL_ADDRESS PhyAddr;
|
||||
|
||||
ASSERT (Xhc->UsbDevContext[SlotId].SlotId != 0);
|
||||
|
||||
@ -2752,8 +2973,9 @@ XhcEvaluateContext64 (
|
||||
InputContext->EP[0].MaxPacketSize = MaxPacketSize;
|
||||
|
||||
ZeroMem (&CmdTrbEvalu, sizeof (CmdTrbEvalu));
|
||||
CmdTrbEvalu.PtrLo = XHC_LOW_32BIT (InputContext);
|
||||
CmdTrbEvalu.PtrHi = XHC_HIGH_32BIT (InputContext);
|
||||
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, InputContext, sizeof (INPUT_CONTEXT_64));
|
||||
CmdTrbEvalu.PtrLo = XHC_LOW_32BIT (PhyAddr);
|
||||
CmdTrbEvalu.PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
||||
CmdTrbEvalu.CycleBit = 1;
|
||||
CmdTrbEvalu.Type = TRB_TYPE_EVALU_CONTXT;
|
||||
CmdTrbEvalu.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
|
||||
@ -2797,6 +3019,7 @@ XhcConfigHubContext (
|
||||
INPUT_CONTEXT *InputContext;
|
||||
DEVICE_CONTEXT *OutputContext;
|
||||
CMD_TRB_CONFIG_ENDPOINT CmdTrbCfgEP;
|
||||
EFI_PHYSICAL_ADDRESS PhyAddr;
|
||||
|
||||
ASSERT (Xhc->UsbDevContext[SlotId].SlotId != 0);
|
||||
InputContext = Xhc->UsbDevContext[SlotId].InputContext;
|
||||
@ -2819,8 +3042,9 @@ XhcConfigHubContext (
|
||||
InputContext->Slot.MTT = MTT;
|
||||
|
||||
ZeroMem (&CmdTrbCfgEP, sizeof (CmdTrbCfgEP));
|
||||
CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (InputContext);
|
||||
CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (InputContext);
|
||||
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, InputContext, sizeof (INPUT_CONTEXT));
|
||||
CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (PhyAddr);
|
||||
CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
||||
CmdTrbCfgEP.CycleBit = 1;
|
||||
CmdTrbCfgEP.Type = TRB_TYPE_CON_ENDPOINT;
|
||||
CmdTrbCfgEP.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
|
||||
@ -2863,6 +3087,7 @@ XhcConfigHubContext64 (
|
||||
INPUT_CONTEXT_64 *InputContext;
|
||||
DEVICE_CONTEXT_64 *OutputContext;
|
||||
CMD_TRB_CONFIG_ENDPOINT CmdTrbCfgEP;
|
||||
EFI_PHYSICAL_ADDRESS PhyAddr;
|
||||
|
||||
ASSERT (Xhc->UsbDevContext[SlotId].SlotId != 0);
|
||||
InputContext = Xhc->UsbDevContext[SlotId].InputContext;
|
||||
@ -2885,8 +3110,9 @@ XhcConfigHubContext64 (
|
||||
InputContext->Slot.MTT = MTT;
|
||||
|
||||
ZeroMem (&CmdTrbCfgEP, sizeof (CmdTrbCfgEP));
|
||||
CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (InputContext);
|
||||
CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (InputContext);
|
||||
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, InputContext, sizeof (INPUT_CONTEXT_64));
|
||||
CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (PhyAddr);
|
||||
CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (PhyAddr);
|
||||
CmdTrbCfgEP.CycleBit = 1;
|
||||
CmdTrbCfgEP.Type = TRB_TYPE_CON_ENDPOINT;
|
||||
CmdTrbCfgEP.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
|
||||
|
Reference in New Issue
Block a user