Update XHCI driver to use PCI IO AllocateBuffer/Map/Unmap to do DMA operation.

Signed-off-by: Elvin Li <elvin.li@intel.com>
Reviewed-by: Feng Tian <feng.tian@intel.com>


git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@14546 6f19259b-4bc3-4df7-8a09-765794883524
This commit is contained in:
Elvin Li
2013-08-12 08:51:55 +00:00
committed by li-elvin
parent eb290d0257
commit 1847ed0bfd
7 changed files with 1358 additions and 124 deletions

View File

@ -109,7 +109,7 @@ XhcCmdTransfer (
Status = EFI_SUCCESS;
}
FreePool (Urb);
XhcFreeUrb (Xhc, Urb);
ON_EXIT:
return Status;
@ -180,6 +180,30 @@ XhcCreateUrb (
return Urb;
}
/**
Free an allocated URB.
@param Xhc The XHCI device.
@param Urb The URB to free.
**/
VOID
XhcFreeUrb (
IN USB_XHCI_INSTANCE *Xhc,
IN URB *Urb
)
{
if ((Xhc == NULL) || (Urb == NULL)) {
return;
}
if (Urb->DataMap != NULL) {
Xhc->PciIo->Unmap (Xhc->PciIo, Urb->DataMap);
}
FreePool (Urb);
}
/**
Create a transfer TRB.
@ -204,6 +228,10 @@ XhcCreateTransferTrb (
UINTN TotalLen;
UINTN Len;
UINTN TrbNum;
EFI_PCI_IO_PROTOCOL_OPERATION MapOp;
EFI_PHYSICAL_ADDRESS PhyAddr;
VOID *Map;
EFI_STATUS Status;
SlotId = XhcBusDevAddrToSlotId (Xhc, Urb->Ep.BusAddr);
if (SlotId == 0) {
@ -220,12 +248,31 @@ XhcCreateTransferTrb (
ASSERT (Dci < 32);
EPRing = (TRANSFER_RING *)(UINTN) Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1];
Urb->Ring = EPRing;
OutputContext = (VOID *)(UINTN)Xhc->DCBAA[SlotId];
OutputContext = Xhc->UsbDevContext[SlotId].OutputContext;
if (Xhc->HcCParams.Data.Csz == 0) {
EPType = (UINT8) ((DEVICE_CONTEXT *)OutputContext)->EP[Dci-1].EPType;
} else {
EPType = (UINT8) ((DEVICE_CONTEXT_64 *)OutputContext)->EP[Dci-1].EPType;
}
if (Urb->Data != NULL) {
if (((UINT8) (Urb->Ep.Direction)) == EfiUsbDataIn) {
MapOp = EfiPciIoOperationBusMasterWrite;
} else {
MapOp = EfiPciIoOperationBusMasterRead;
}
Len = Urb->DataLen;
Status = Xhc->PciIo->Map (Xhc->PciIo, MapOp, Urb->Data, &Len, &PhyAddr, &Map);
if (EFI_ERROR (Status) || (Len != Urb->DataLen)) {
DEBUG ((EFI_D_ERROR, "XhcCreateTransferTrb: Fail to map Urb->Data.\n"));
return EFI_OUT_OF_RESOURCES;
}
Urb->DataPhy = (VOID *) ((UINTN) PhyAddr);
Urb->DataMap = Map;
}
//
// Construct the TRB
@ -267,8 +314,8 @@ XhcCreateTransferTrb (
if (Urb->DataLen > 0) {
XhcSyncTrsRing (Xhc, EPRing);
TrbStart = (TRB *)(UINTN)EPRing->RingEnqueue;
TrbStart->TrbCtrData.TRBPtrLo = XHC_LOW_32BIT(Urb->Data);
TrbStart->TrbCtrData.TRBPtrHi = XHC_HIGH_32BIT(Urb->Data);
TrbStart->TrbCtrData.TRBPtrLo = XHC_LOW_32BIT(Urb->DataPhy);
TrbStart->TrbCtrData.TRBPtrHi = XHC_HIGH_32BIT(Urb->DataPhy);
TrbStart->TrbCtrData.Lenth = (UINT32) Urb->DataLen;
TrbStart->TrbCtrData.TDSize = 0;
TrbStart->TrbCtrData.IntTarget = 0;
@ -333,8 +380,8 @@ XhcCreateTransferTrb (
Len = 0x10000;
}
TrbStart = (TRB *)(UINTN)EPRing->RingEnqueue;
TrbStart->TrbNormal.TRBPtrLo = XHC_LOW_32BIT((UINT8 *) Urb->Data + TotalLen);
TrbStart->TrbNormal.TRBPtrHi = XHC_HIGH_32BIT((UINT8 *) Urb->Data + TotalLen);
TrbStart->TrbNormal.TRBPtrLo = XHC_LOW_32BIT((UINT8 *) Urb->DataPhy + TotalLen);
TrbStart->TrbNormal.TRBPtrHi = XHC_HIGH_32BIT((UINT8 *) Urb->DataPhy + TotalLen);
TrbStart->TrbNormal.Lenth = (UINT32) Len;
TrbStart->TrbNormal.TDSize = 0;
TrbStart->TrbNormal.IntTarget = 0;
@ -368,8 +415,8 @@ XhcCreateTransferTrb (
Len = 0x10000;
}
TrbStart = (TRB *)(UINTN)EPRing->RingEnqueue;
TrbStart->TrbNormal.TRBPtrLo = XHC_LOW_32BIT((UINT8 *) Urb->Data + TotalLen);
TrbStart->TrbNormal.TRBPtrHi = XHC_HIGH_32BIT((UINT8 *) Urb->Data + TotalLen);
TrbStart->TrbNormal.TRBPtrLo = XHC_LOW_32BIT((UINT8 *) Urb->DataPhy + TotalLen);
TrbStart->TrbNormal.TRBPtrHi = XHC_HIGH_32BIT((UINT8 *) Urb->DataPhy + TotalLen);
TrbStart->TrbNormal.Lenth = (UINT32) Len;
TrbStart->TrbNormal.TDSize = 0;
TrbStart->TrbNormal.IntTarget = 0;
@ -412,12 +459,24 @@ XhcInitSched (
)
{
VOID *Dcbaa;
EFI_PHYSICAL_ADDRESS DcbaaPhy;
UINT64 CmdRing;
EFI_PHYSICAL_ADDRESS CmdRingPhy;
UINTN Entries;
UINT32 MaxScratchpadBufs;
UINT64 *ScratchBuf;
UINT64 *ScratchEntryBuf;
EFI_PHYSICAL_ADDRESS ScratchPhy;
UINT64 *ScratchEntry;
EFI_PHYSICAL_ADDRESS ScratchEntryPhy;
UINT32 Index;
UINTN *ScratchEntryMap;
EFI_STATUS Status;
//
// Initialize memory management.
//
Xhc->MemPool = UsbHcInitMemPool (Xhc->PciIo);
ASSERT (Xhc->MemPool != NULL);
//
// Program the Max Device Slots Enabled (MaxSlotsEn) field in the CONFIG register (5.4.7)
@ -434,7 +493,7 @@ XhcInitSched (
// Software shall set Device Context Base Address Array entries for unallocated Device Slots to '0'.
//
Entries = (Xhc->MaxSlotsEn + 1) * sizeof(UINT64);
Dcbaa = AllocatePages (EFI_SIZE_TO_PAGES (Entries));
Dcbaa = UsbHcAllocateMem (Xhc->MemPool, Entries);
ASSERT (Dcbaa != NULL);
ZeroMem (Dcbaa, Entries);
@ -447,23 +506,57 @@ XhcInitSched (
Xhc->MaxScratchpadBufs = MaxScratchpadBufs;
ASSERT (MaxScratchpadBufs <= 1023);
if (MaxScratchpadBufs != 0) {
ScratchBuf = AllocateAlignedPages (EFI_SIZE_TO_PAGES (MaxScratchpadBufs * sizeof (UINT64)), Xhc->PageSize);
ASSERT (ScratchBuf != NULL);
//
// Allocate the buffer to record the Mapping for each scratch buffer in order to Unmap them
//
ScratchEntryMap = AllocateZeroPool (sizeof (UINTN) * MaxScratchpadBufs);
ASSERT (ScratchEntryMap != NULL);
Xhc->ScratchEntryMap = ScratchEntryMap;
//
// Allocate the buffer to record the host address for each entry
//
ScratchEntry = AllocateZeroPool (sizeof (UINT64) * MaxScratchpadBufs);
ASSERT (ScratchEntry != NULL);
Xhc->ScratchEntry = ScratchEntry;
Status = UsbHcAllocateAlignedPages (
Xhc->PciIo,
EFI_SIZE_TO_PAGES (MaxScratchpadBufs * sizeof (UINT64)),
Xhc->PageSize,
(VOID **) &ScratchBuf,
&ScratchPhy,
&Xhc->ScratchMap
);
ASSERT_EFI_ERROR (Status);
ZeroMem (ScratchBuf, MaxScratchpadBufs * sizeof (UINT64));
Xhc->ScratchBuf = ScratchBuf;
//
// Allocate each scratch buffer
//
for (Index = 0; Index < MaxScratchpadBufs; Index++) {
ScratchEntryBuf = AllocateAlignedPages (EFI_SIZE_TO_PAGES (Xhc->PageSize), Xhc->PageSize);
ASSERT (ScratchEntryBuf != NULL);
ZeroMem (ScratchEntryBuf, Xhc->PageSize);
*ScratchBuf++ = (UINT64)(UINTN)ScratchEntryBuf;
Status = UsbHcAllocateAlignedPages (
Xhc->PciIo,
EFI_SIZE_TO_PAGES (Xhc->PageSize),
Xhc->PageSize,
(VOID **) &ScratchEntry[Index],
&ScratchEntryPhy,
(VOID **) &ScratchEntryMap[Index]
);
ASSERT_EFI_ERROR (Status);
ZeroMem ((VOID *)(UINTN)ScratchEntry[Index], Xhc->PageSize);
//
// Fill with the PCI device address
//
*ScratchBuf++ = ScratchEntryPhy;
}
//
// The Scratchpad Buffer Array contains pointers to the Scratchpad Buffers. Entry 0 of the
// Device Context Base Address Array points to the Scratchpad Buffer Array.
//
*(UINT64 *)Dcbaa = (UINT64)(UINTN)Xhc->ScratchBuf;
*(UINT64 *)Dcbaa = (UINT64)(UINTN) ScratchPhy;
}
//
@ -475,8 +568,10 @@ XhcInitSched (
// Some 3rd party XHCI external cards don't support single 64-bytes width register access,
// So divide it to two 32-bytes width register access.
//
XhcWriteOpReg (Xhc, XHC_DCBAAP_OFFSET, XHC_LOW_32BIT(Xhc->DCBAA));
XhcWriteOpReg (Xhc, XHC_DCBAAP_OFFSET + 4, XHC_HIGH_32BIT (Xhc->DCBAA));
DcbaaPhy = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Dcbaa, Entries);
XhcWriteOpReg (Xhc, XHC_DCBAAP_OFFSET, XHC_LOW_32BIT(DcbaaPhy));
XhcWriteOpReg (Xhc, XHC_DCBAAP_OFFSET + 4, XHC_HIGH_32BIT (DcbaaPhy));
DEBUG ((EFI_D_INFO, "XhcInitSched:DCBAA=0x%x\n", (UINT64)(UINTN)Xhc->DCBAA));
//
@ -492,14 +587,15 @@ XhcInitSched (
// So we set RCS as inverted PCS init value to let Command Ring empty
//
CmdRing = (UINT64)(UINTN)Xhc->CmdRing.RingSeg0;
ASSERT ((CmdRing & 0x3F) == 0);
CmdRing |= XHC_CRCR_RCS;
CmdRingPhy = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, (VOID *)(UINTN) CmdRing, sizeof (TRB_TEMPLATE) * CMD_RING_TRB_NUMBER);
ASSERT ((CmdRingPhy & 0x3F) == 0);
CmdRingPhy |= XHC_CRCR_RCS;
//
// Some 3rd party XHCI external cards don't support single 64-bytes width register access,
// So divide it to two 32-bytes width register access.
//
XhcWriteOpReg (Xhc, XHC_CRCR_OFFSET, XHC_LOW_32BIT(CmdRing));
XhcWriteOpReg (Xhc, XHC_CRCR_OFFSET + 4, XHC_HIGH_32BIT (CmdRing));
XhcWriteOpReg (Xhc, XHC_CRCR_OFFSET, XHC_LOW_32BIT(CmdRingPhy));
XhcWriteOpReg (Xhc, XHC_CRCR_OFFSET + 4, XHC_HIGH_32BIT (CmdRingPhy));
DEBUG ((EFI_D_INFO, "XhcInitSched:XHC_CRCR=0x%x\n", Xhc->CmdRing.RingSeg0));
@ -547,6 +643,7 @@ XhcRecoverHaltedEndpoint (
CMD_SET_TR_DEQ_POINTER CmdSetTRDeq;
UINT8 Dci;
UINT8 SlotId;
EFI_PHYSICAL_ADDRESS PhyAddr;
Status = EFI_SUCCESS;
SlotId = XhcBusDevAddrToSlotId (Xhc, Urb->Ep.BusAddr);
@ -578,8 +675,9 @@ XhcRecoverHaltedEndpoint (
// 2)Set dequeue pointer
//
ZeroMem (&CmdSetTRDeq, sizeof (CmdSetTRDeq));
CmdSetTRDeq.PtrLo = XHC_LOW_32BIT (Urb->Ring->RingEnqueue) | Urb->Ring->RingPCS;
CmdSetTRDeq.PtrHi = XHC_HIGH_32BIT (Urb->Ring->RingEnqueue);
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Urb->Ring->RingEnqueue, sizeof (CMD_SET_TR_DEQ_POINTER));
CmdSetTRDeq.PtrLo = XHC_LOW_32BIT (PhyAddr) | Urb->Ring->RingPCS;
CmdSetTRDeq.PtrHi = XHC_HIGH_32BIT (PhyAddr);
CmdSetTRDeq.CycleBit = 1;
CmdSetTRDeq.Type = TRB_TYPE_SET_TR_DEQUE;
CmdSetTRDeq.Endpoint = Dci;
@ -615,35 +713,45 @@ CreateEventRing (
{
VOID *Buf;
EVENT_RING_SEG_TABLE_ENTRY *ERSTBase;
UINTN Size;
EFI_PHYSICAL_ADDRESS ERSTPhy;
EFI_PHYSICAL_ADDRESS DequeuePhy;
ASSERT (EventRing != NULL);
Buf = AllocatePages (EFI_SIZE_TO_PAGES (sizeof (TRB_TEMPLATE) * EVENT_RING_TRB_NUMBER));
Size = sizeof (TRB_TEMPLATE) * EVENT_RING_TRB_NUMBER;
Buf = UsbHcAllocateMem (Xhc->MemPool, Size);
ASSERT (Buf != NULL);
ASSERT (((UINTN) Buf & 0x3F) == 0);
ZeroMem (Buf, sizeof (TRB_TEMPLATE) * EVENT_RING_TRB_NUMBER);
ZeroMem (Buf, Size);
EventRing->EventRingSeg0 = Buf;
EventRing->TrbNumber = EVENT_RING_TRB_NUMBER;
EventRing->EventRingDequeue = (TRB_TEMPLATE *) EventRing->EventRingSeg0;
EventRing->EventRingEnqueue = (TRB_TEMPLATE *) EventRing->EventRingSeg0;
DequeuePhy = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Buf, Size);
//
// Software maintains an Event Ring Consumer Cycle State (CCS) bit, initializing it to '1'
// and toggling it every time the Event Ring Dequeue Pointer wraps back to the beginning of the Event Ring.
//
EventRing->EventRingCCS = 1;
Buf = AllocatePages (EFI_SIZE_TO_PAGES (sizeof (EVENT_RING_SEG_TABLE_ENTRY) * ERST_NUMBER));
Size = EFI_SIZE_TO_PAGES (sizeof (EVENT_RING_SEG_TABLE_ENTRY) * ERST_NUMBER);
Buf = UsbHcAllocateMem (Xhc->MemPool, Size);
ASSERT (Buf != NULL);
ASSERT (((UINTN) Buf & 0x3F) == 0);
ZeroMem (Buf, sizeof (EVENT_RING_SEG_TABLE_ENTRY) * ERST_NUMBER);
ZeroMem (Buf, Size);
ERSTBase = (EVENT_RING_SEG_TABLE_ENTRY *) Buf;
EventRing->ERSTBase = ERSTBase;
ERSTBase->PtrLo = XHC_LOW_32BIT (EventRing->EventRingSeg0);
ERSTBase->PtrHi = XHC_HIGH_32BIT (EventRing->EventRingSeg0);
ERSTBase->PtrLo = XHC_LOW_32BIT (DequeuePhy);
ERSTBase->PtrHi = XHC_HIGH_32BIT (DequeuePhy);
ERSTBase->RingTrbSize = EVENT_RING_TRB_NUMBER;
ERSTPhy = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, ERSTBase, Size);
//
// Program the Interrupter Event Ring Segment Table Size (ERSTSZ) register (5.5.2.3.1)
//
@ -661,12 +769,12 @@ CreateEventRing (
XhcWriteRuntimeReg (
Xhc,
XHC_ERDP_OFFSET,
XHC_LOW_32BIT((UINT64)(UINTN)EventRing->EventRingDequeue)
XHC_LOW_32BIT((UINT64)(UINTN)DequeuePhy)
);
XhcWriteRuntimeReg (
Xhc,
XHC_ERDP_OFFSET + 4,
XHC_HIGH_32BIT((UINT64)(UINTN)EventRing->EventRingDequeue)
XHC_HIGH_32BIT((UINT64)(UINTN)DequeuePhy)
);
//
// Program the Interrupter Event Ring Segment Table Base Address (ERSTBA) register(5.5.2.3.2)
@ -677,12 +785,12 @@ CreateEventRing (
XhcWriteRuntimeReg (
Xhc,
XHC_ERSTBA_OFFSET,
XHC_LOW_32BIT((UINT64)(UINTN)ERSTBase)
XHC_LOW_32BIT((UINT64)(UINTN)ERSTPhy)
);
XhcWriteRuntimeReg (
Xhc,
XHC_ERSTBA_OFFSET + 4,
XHC_HIGH_32BIT((UINT64)(UINTN)ERSTBase)
XHC_HIGH_32BIT((UINT64)(UINTN)ERSTPhy)
);
//
// Need set IMAN IE bit to enble the ring interrupt
@ -707,8 +815,9 @@ CreateTransferRing (
{
VOID *Buf;
LINK_TRB *EndTrb;
EFI_PHYSICAL_ADDRESS PhyAddr;
Buf = AllocatePages (EFI_SIZE_TO_PAGES (sizeof (TRB_TEMPLATE) * TrbNum));
Buf = UsbHcAllocateMem (Xhc->MemPool, sizeof (TRB_TEMPLATE) * TrbNum);
ASSERT (Buf != NULL);
ASSERT (((UINTN) Buf & 0x3F) == 0);
ZeroMem (Buf, sizeof (TRB_TEMPLATE) * TrbNum);
@ -725,8 +834,9 @@ CreateTransferRing (
//
EndTrb = (LINK_TRB *) ((UINTN)Buf + sizeof (TRB_TEMPLATE) * (TrbNum - 1));
EndTrb->Type = TRB_TYPE_LINK;
EndTrb->PtrLo = XHC_LOW_32BIT (Buf);
EndTrb->PtrHi = XHC_HIGH_32BIT (Buf);
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Buf, sizeof (TRB_TEMPLATE) * TrbNum);
EndTrb->PtrLo = XHC_LOW_32BIT (PhyAddr);
EndTrb->PtrHi = XHC_HIGH_32BIT (PhyAddr);
//
// Toggle Cycle (TC). When set to '1', the xHC shall toggle its interpretation of the Cycle bit.
//
@ -751,34 +861,19 @@ XhcFreeEventRing (
IN EVENT_RING *EventRing
)
{
UINT8 Index;
EVENT_RING_SEG_TABLE_ENTRY *TablePtr;
VOID *RingBuf;
EVENT_RING_SEG_TABLE_ENTRY *EventRingPtr;
if(EventRing->EventRingSeg0 == NULL) {
return EFI_SUCCESS;
}
//
// Get the Event Ring Segment Table base address
// Free EventRing Segment 0
//
TablePtr = (EVENT_RING_SEG_TABLE_ENTRY *)(EventRing->ERSTBase);
UsbHcFreeMem (Xhc->MemPool, EventRing->EventRingSeg0, sizeof (TRB_TEMPLATE) * EVENT_RING_TRB_NUMBER);
//
// Get all the TRBs Ring and release
// Free ESRT table
//
for (Index = 0; Index < ERST_NUMBER; Index++) {
EventRingPtr = TablePtr + Index;
RingBuf = (VOID *)(UINTN)(EventRingPtr->PtrLo | LShiftU64 ((UINT64)EventRingPtr->PtrHi, 32));
if(RingBuf != NULL) {
FreePages (RingBuf, EFI_SIZE_TO_PAGES (sizeof (TRB_TEMPLATE) * EVENT_RING_TRB_NUMBER));
ZeroMem (EventRingPtr, sizeof (EVENT_RING_SEG_TABLE_ENTRY));
}
}
FreePages (TablePtr, EFI_SIZE_TO_PAGES (sizeof (EVENT_RING_SEG_TABLE_ENTRY) * ERST_NUMBER));
UsbHcFreeMem (Xhc->MemPool, EventRing->ERSTBase, sizeof (EVENT_RING_SEG_TABLE_ENTRY) * ERST_NUMBER);
return EFI_SUCCESS;
}
@ -793,28 +888,44 @@ XhcFreeSched (
IN USB_XHCI_INSTANCE *Xhc
)
{
UINT32 Index;
UINT64 *ScratchBuf;
UINT32 Index;
UINT64 *ScratchEntry;
if (Xhc->ScratchBuf != NULL) {
ScratchBuf = Xhc->ScratchBuf;
ScratchEntry = Xhc->ScratchEntry;
for (Index = 0; Index < Xhc->MaxScratchpadBufs; Index++) {
FreeAlignedPages ((VOID*)(UINTN)*ScratchBuf++, EFI_SIZE_TO_PAGES (Xhc->PageSize));
//
// Free Scratchpad Buffers
//
UsbHcFreeAlignedPages (Xhc->PciIo, (VOID*)(UINTN)ScratchEntry[Index], EFI_SIZE_TO_PAGES (Xhc->PageSize), (VOID *) Xhc->ScratchEntryMap[Index]);
}
FreeAlignedPages (Xhc->ScratchBuf, EFI_SIZE_TO_PAGES (Xhc->MaxScratchpadBufs * sizeof (UINT64)));
//
// Free Scratchpad Buffer Array
//
UsbHcFreeAlignedPages (Xhc->PciIo, Xhc->ScratchBuf, EFI_SIZE_TO_PAGES (Xhc->MaxScratchpadBufs * sizeof (UINT64)), Xhc->ScratchMap);
FreePool (Xhc->ScratchEntryMap);
FreePool (Xhc->ScratchEntry);
}
if (Xhc->DCBAA != NULL) {
FreePages (Xhc->DCBAA, EFI_SIZE_TO_PAGES((Xhc->MaxSlotsEn + 1) * sizeof(UINT64)));
Xhc->DCBAA = NULL;
}
if (Xhc->CmdRing.RingSeg0 != NULL){
FreePages (Xhc->CmdRing.RingSeg0, EFI_SIZE_TO_PAGES (sizeof (TRB_TEMPLATE) * CMD_RING_TRB_NUMBER));
if (Xhc->CmdRing.RingSeg0 != NULL) {
UsbHcFreeMem (Xhc->MemPool, Xhc->CmdRing.RingSeg0, sizeof (TRB_TEMPLATE) * CMD_RING_TRB_NUMBER);
Xhc->CmdRing.RingSeg0 = NULL;
}
XhcFreeEventRing (Xhc,&Xhc->EventRing);
if (Xhc->DCBAA != NULL) {
UsbHcFreeMem (Xhc->MemPool, Xhc->DCBAA, (Xhc->MaxSlotsEn + 1) * sizeof(UINT64));
Xhc->DCBAA = NULL;
}
//
// Free memory pool at last
//
if (Xhc->MemPool != NULL) {
UsbHcFreeMemPool (Xhc->MemPool);
Xhc->MemPool = NULL;
}
}
/**
@ -918,6 +1029,7 @@ XhcCheckUrbResult (
UINT64 XhcDequeue;
UINT32 High;
UINT32 Low;
EFI_PHYSICAL_ADDRESS PhyAddr;
ASSERT ((Xhc != NULL) && (Urb != NULL));
@ -955,8 +1067,12 @@ XhcCheckUrbResult (
if ((EvtTrb->Type != TRB_TYPE_COMMAND_COMPLT_EVENT) && (EvtTrb->Type != TRB_TYPE_TRANS_EVENT)) {
continue;
}
TRBPtr = (TRB_TEMPLATE *)(UINTN)(EvtTrb->TRBPtrLo | LShiftU64 ((UINT64) EvtTrb->TRBPtrHi, 32));
//
// Need convert pci device address to host address
//
PhyAddr = (EFI_PHYSICAL_ADDRESS)(EvtTrb->TRBPtrLo | LShiftU64 ((UINT64) EvtTrb->TRBPtrHi, 32));
TRBPtr = (TRB_TEMPLATE *)(UINTN) UsbHcGetHostAddrForPciAddr (Xhc->MemPool, (VOID *)(UINTN) PhyAddr, sizeof (TRB_TEMPLATE));
//
// Update the status of Urb according to the finished event regardless of whether
@ -1048,13 +1164,15 @@ EXIT:
High = XhcReadRuntimeReg (Xhc, XHC_ERDP_OFFSET + 4);
XhcDequeue = (UINT64)(LShiftU64((UINT64)High, 32) | Low);
if ((XhcDequeue & (~0x0F)) != ((UINT64)(UINTN)Xhc->EventRing.EventRingDequeue & (~0x0F))) {
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Xhc->EventRing.EventRingDequeue, sizeof (TRB_TEMPLATE));
if ((XhcDequeue & (~0x0F)) != (PhyAddr & (~0x0F))) {
//
// Some 3rd party XHCI external cards don't support single 64-bytes width register access,
// So divide it to two 32-bytes width register access.
//
XhcWriteRuntimeReg (Xhc, XHC_ERDP_OFFSET, XHC_LOW_32BIT (Xhc->EventRing.EventRingDequeue) | BIT3);
XhcWriteRuntimeReg (Xhc, XHC_ERDP_OFFSET + 4, XHC_HIGH_32BIT (Xhc->EventRing.EventRingDequeue));
XhcWriteRuntimeReg (Xhc, XHC_ERDP_OFFSET, XHC_LOW_32BIT (PhyAddr) | BIT3);
XhcWriteRuntimeReg (Xhc, XHC_ERDP_OFFSET + 4, XHC_HIGH_32BIT (PhyAddr));
}
return Status;
@ -1159,7 +1277,7 @@ XhciDelAsyncIntTransfer (
(Urb->Ep.Direction == Direction)) {
RemoveEntryList (&Urb->UrbList);
FreePool (Urb->Data);
FreePool (Urb);
XhcFreeUrb (Xhc, Urb);
return EFI_SUCCESS;
}
}
@ -1186,7 +1304,7 @@ XhciDelAllAsyncIntTransfers (
Urb = EFI_LIST_CONTAINER (Entry, URB, UrbList);
RemoveEntryList (&Urb->UrbList);
FreePool (Urb->Data);
FreePool (Urb);
XhcFreeUrb (Xhc, Urb);
}
}
@ -1217,6 +1335,60 @@ XhcUpdateAsyncRequest (
}
}
/**
Flush data from PCI controller specific address to mapped system
memory address.
@param Xhc The XHCI device.
@param Urb The URB to unmap.
@retval EFI_SUCCESS Success to flush data to mapped system memory.
@retval EFI_DEVICE_ERROR Fail to flush data to mapped system memory.
**/
EFI_STATUS
XhcFlushAsyncIntMap (
IN USB_XHCI_INSTANCE *Xhc,
IN URB *Urb
)
{
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS PhyAddr;
EFI_PCI_IO_PROTOCOL_OPERATION MapOp;
EFI_PCI_IO_PROTOCOL *PciIo;
UINTN Len;
VOID *Map;
PciIo = Xhc->PciIo;
Len = Urb->DataLen;
if (Urb->Ep.Direction == EfiUsbDataIn) {
MapOp = EfiPciIoOperationBusMasterWrite;
} else {
MapOp = EfiPciIoOperationBusMasterRead;
}
if (Urb->DataMap != NULL) {
Status = PciIo->Unmap (PciIo, Urb->DataMap);
if (EFI_ERROR (Status)) {
goto ON_ERROR;
}
}
Urb->DataMap = NULL;
Status = PciIo->Map (PciIo, MapOp, Urb->Data, &Len, &PhyAddr, &Map);
if (EFI_ERROR (Status) || (Len != Urb->DataLen)) {
goto ON_ERROR;
}
Urb->DataPhy = (VOID *) ((UINTN) PhyAddr);
Urb->DataMap = Map;
return EFI_SUCCESS;
ON_ERROR:
return EFI_DEVICE_ERROR;
}
/**
Interrupt transfer periodic check handler.
@ -1238,6 +1410,7 @@ XhcMonitorAsyncRequests (
UINT8 *ProcBuf;
URB *Urb;
UINT8 SlotId;
EFI_STATUS Status;
EFI_TPL OldTpl;
OldTpl = gBS->RaiseTPL (XHC_TPL);
@ -1265,6 +1438,15 @@ XhcMonitorAsyncRequests (
continue;
}
//
// Flush any PCI posted write transactions from a PCI host
// bridge to system memory.
//
Status = XhcFlushAsyncIntMap (Xhc, Urb);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "XhcMonitorAsyncRequests: Fail to Flush AsyncInt Mapped Memeory\n"));
}
//
// Allocate a buffer then copy the transferred data for user.
// If failed to allocate the buffer, update the URB for next
@ -1582,7 +1764,7 @@ XhcSyncTrsRing (
// Toggle PCS maintained by software
//
TrsRing->RingPCS = (TrsRing->RingPCS & BIT0) ? 0 : 1;
TrsTrb = (TRB_TEMPLATE *)(UINTN)((TrsTrb->Parameter1 | LShiftU64 ((UINT64)TrsTrb->Parameter2, 32)) & ~0x0F);
TrsTrb = (TRB_TEMPLATE *) TrsRing->RingSeg0; // Use host address
}
}
@ -1727,6 +1909,7 @@ XhcInitializeDeviceSlot (
UINT8 SlotId;
UINT8 ParentSlotId;
DEVICE_CONTEXT *ParentDeviceContext;
EFI_PHYSICAL_ADDRESS PhyAddr;
ZeroMem (&CmdTrb, sizeof (CMD_TRB_ENABLE_SLOT));
CmdTrb.CycleBit = 1;
@ -1754,7 +1937,7 @@ XhcInitializeDeviceSlot (
// 4.3.3 Device Slot Initialization
// 1) Allocate an Input Context data structure (6.2.5) and initialize all fields to '0'.
//
InputContext = AllocatePages (EFI_SIZE_TO_PAGES (sizeof (INPUT_CONTEXT)));
InputContext = UsbHcAllocateMem (Xhc->MemPool, sizeof (INPUT_CONTEXT));
ASSERT (InputContext != NULL);
ASSERT (((UINTN) InputContext & 0x3F) == 0);
ZeroMem (InputContext, sizeof (INPUT_CONTEXT));
@ -1843,13 +2026,18 @@ XhcInitializeDeviceSlot (
//
// Init the DCS(dequeue cycle state) as the transfer ring's CCS
//
InputContext->EP[0].PtrLo = XHC_LOW_32BIT (((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[0])->RingSeg0) | BIT0;
InputContext->EP[0].PtrHi = XHC_HIGH_32BIT (((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[0])->RingSeg0);
PhyAddr = UsbHcGetPciAddrForHostAddr (
Xhc->MemPool,
((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[0])->RingSeg0,
sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER
);
InputContext->EP[0].PtrLo = XHC_LOW_32BIT (PhyAddr) | BIT0;
InputContext->EP[0].PtrHi = XHC_HIGH_32BIT (PhyAddr);
//
// 6) Allocate the Output Device Context data structure (6.2.1) and initialize it to '0'.
//
OutputContext = AllocatePages (EFI_SIZE_TO_PAGES (sizeof (DEVICE_CONTEXT)));
OutputContext = UsbHcAllocateMem (Xhc->MemPool, sizeof (DEVICE_CONTEXT));
ASSERT (OutputContext != NULL);
ASSERT (((UINTN) OutputContext & 0x3F) == 0);
ZeroMem (OutputContext, sizeof (DEVICE_CONTEXT));
@ -1859,15 +2047,20 @@ XhcInitializeDeviceSlot (
// 7) Load the appropriate (Device Slot ID) entry in the Device Context Base Address Array (5.4.6) with
// a pointer to the Output Device Context data structure (6.2.1).
//
Xhc->DCBAA[SlotId] = (UINT64) (UINTN) OutputContext;
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, OutputContext, sizeof (DEVICE_CONTEXT));
//
// Fill DCBAA with PCI device address
//
Xhc->DCBAA[SlotId] = (UINT64) (UINTN) PhyAddr;
//
// 8) Issue an Address Device Command for the Device Slot, where the command points to the Input
// Context data structure described above.
//
ZeroMem (&CmdTrbAddr, sizeof (CmdTrbAddr));
CmdTrbAddr.PtrLo = XHC_LOW_32BIT (Xhc->UsbDevContext[SlotId].InputContext);
CmdTrbAddr.PtrHi = XHC_HIGH_32BIT (Xhc->UsbDevContext[SlotId].InputContext);
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Xhc->UsbDevContext[SlotId].InputContext, sizeof (INPUT_CONTEXT));
CmdTrbAddr.PtrLo = XHC_LOW_32BIT (PhyAddr);
CmdTrbAddr.PtrHi = XHC_HIGH_32BIT (PhyAddr);
CmdTrbAddr.CycleBit = 1;
CmdTrbAddr.Type = TRB_TYPE_ADDRESS_DEV;
CmdTrbAddr.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
@ -1920,6 +2113,7 @@ XhcInitializeDeviceSlot64 (
UINT8 SlotId;
UINT8 ParentSlotId;
DEVICE_CONTEXT_64 *ParentDeviceContext;
EFI_PHYSICAL_ADDRESS PhyAddr;
ZeroMem (&CmdTrb, sizeof (CMD_TRB_ENABLE_SLOT));
CmdTrb.CycleBit = 1;
@ -1947,7 +2141,7 @@ XhcInitializeDeviceSlot64 (
// 4.3.3 Device Slot Initialization
// 1) Allocate an Input Context data structure (6.2.5) and initialize all fields to '0'.
//
InputContext = AllocatePages (EFI_SIZE_TO_PAGES (sizeof (INPUT_CONTEXT_64)));
InputContext = UsbHcAllocateMem (Xhc->MemPool, sizeof (INPUT_CONTEXT_64));
ASSERT (InputContext != NULL);
ASSERT (((UINTN) InputContext & 0x3F) == 0);
ZeroMem (InputContext, sizeof (INPUT_CONTEXT_64));
@ -2036,13 +2230,18 @@ XhcInitializeDeviceSlot64 (
//
// Init the DCS(dequeue cycle state) as the transfer ring's CCS
//
InputContext->EP[0].PtrLo = XHC_LOW_32BIT (((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[0])->RingSeg0) | BIT0;
InputContext->EP[0].PtrHi = XHC_HIGH_32BIT (((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[0])->RingSeg0);
PhyAddr = UsbHcGetPciAddrForHostAddr (
Xhc->MemPool,
((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[0])->RingSeg0,
sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER
);
InputContext->EP[0].PtrLo = XHC_LOW_32BIT (PhyAddr) | BIT0;
InputContext->EP[0].PtrHi = XHC_HIGH_32BIT (PhyAddr);
//
// 6) Allocate the Output Device Context data structure (6.2.1) and initialize it to '0'.
//
OutputContext = AllocatePages (EFI_SIZE_TO_PAGES (sizeof (DEVICE_CONTEXT_64)));
OutputContext = UsbHcAllocateMem (Xhc->MemPool, sizeof (DEVICE_CONTEXT_64));
ASSERT (OutputContext != NULL);
ASSERT (((UINTN) OutputContext & 0x3F) == 0);
ZeroMem (OutputContext, sizeof (DEVICE_CONTEXT_64));
@ -2052,15 +2251,20 @@ XhcInitializeDeviceSlot64 (
// 7) Load the appropriate (Device Slot ID) entry in the Device Context Base Address Array (5.4.6) with
// a pointer to the Output Device Context data structure (6.2.1).
//
Xhc->DCBAA[SlotId] = (UINT64) (UINTN) OutputContext;
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, OutputContext, sizeof (DEVICE_CONTEXT_64));
//
// Fill DCBAA with PCI device address
//
Xhc->DCBAA[SlotId] = (UINT64) (UINTN) PhyAddr;
//
// 8) Issue an Address Device Command for the Device Slot, where the command points to the Input
// Context data structure described above.
//
ZeroMem (&CmdTrbAddr, sizeof (CmdTrbAddr));
CmdTrbAddr.PtrLo = XHC_LOW_32BIT (Xhc->UsbDevContext[SlotId].InputContext);
CmdTrbAddr.PtrHi = XHC_HIGH_32BIT (Xhc->UsbDevContext[SlotId].InputContext);
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, Xhc->UsbDevContext[SlotId].InputContext, sizeof (INPUT_CONTEXT_64));
CmdTrbAddr.PtrLo = XHC_LOW_32BIT (PhyAddr);
CmdTrbAddr.PtrHi = XHC_HIGH_32BIT (PhyAddr);
CmdTrbAddr.CycleBit = 1;
CmdTrbAddr.Type = TRB_TYPE_ADDRESS_DEV;
CmdTrbAddr.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
@ -2150,9 +2354,10 @@ XhcDisableSlotCmd (
if (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index] != NULL) {
RingSeg = ((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index])->RingSeg0;
if (RingSeg != NULL) {
FreePages (RingSeg, EFI_SIZE_TO_PAGES (sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER));
UsbHcFreeMem (Xhc->MemPool, RingSeg, sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER);
}
FreePool (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index]);
Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index] = NULL;
}
}
@ -2163,11 +2368,11 @@ XhcDisableSlotCmd (
}
if (Xhc->UsbDevContext[SlotId].InputContext != NULL) {
FreePages (Xhc->UsbDevContext[SlotId].InputContext, EFI_SIZE_TO_PAGES (sizeof (INPUT_CONTEXT)));
UsbHcFreeMem (Xhc->MemPool, Xhc->UsbDevContext[SlotId].InputContext, sizeof (INPUT_CONTEXT));
}
if (Xhc->UsbDevContext[SlotId].OutputContext != NULL) {
FreePages (Xhc->UsbDevContext[SlotId].OutputContext, EFI_SIZE_TO_PAGES (sizeof (DEVICE_CONTEXT)));
UsbHcFreeMem (Xhc->MemPool, Xhc->UsbDevContext[SlotId].OutputContext, sizeof (DEVICE_CONTEXT));
}
//
// Doesn't zero the entry because XhcAsyncInterruptTransfer() may be invoked to remove the established
@ -2249,9 +2454,10 @@ XhcDisableSlotCmd64 (
if (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index] != NULL) {
RingSeg = ((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index])->RingSeg0;
if (RingSeg != NULL) {
FreePages (RingSeg, EFI_SIZE_TO_PAGES (sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER));
UsbHcFreeMem (Xhc->MemPool, RingSeg, sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER);
}
FreePool (Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index]);
Xhc->UsbDevContext[SlotId].EndpointTransferRing[Index] = NULL;
}
}
@ -2262,11 +2468,11 @@ XhcDisableSlotCmd64 (
}
if (Xhc->UsbDevContext[SlotId].InputContext != NULL) {
FreePages (Xhc->UsbDevContext[SlotId].InputContext, EFI_SIZE_TO_PAGES (sizeof (INPUT_CONTEXT_64)));
UsbHcFreeMem (Xhc->MemPool, Xhc->UsbDevContext[SlotId].InputContext, sizeof (INPUT_CONTEXT_64));
}
if (Xhc->UsbDevContext[SlotId].OutputContext != NULL) {
FreePages (Xhc->UsbDevContext[SlotId].OutputContext, EFI_SIZE_TO_PAGES (sizeof (DEVICE_CONTEXT_64)));
UsbHcFreeMem (Xhc->MemPool, Xhc->UsbDevContext[SlotId].OutputContext, sizeof (DEVICE_CONTEXT_64));
}
//
// Doesn't zero the entry because XhcAsyncInterruptTransfer() may be invoked to remove the established
@ -2311,7 +2517,7 @@ XhcSetConfigCmd (
UINT8 Direction;
UINT8 Dci;
UINT8 MaxDci;
UINT32 PhyAddr;
EFI_PHYSICAL_ADDRESS PhyAddr;
UINT8 Interval;
TRANSFER_RING *EndpointTransferRing;
@ -2438,11 +2644,15 @@ XhcSetConfigCmd (
break;
}
PhyAddr = XHC_LOW_32BIT (((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingSeg0);
PhyAddr = UsbHcGetPciAddrForHostAddr (
Xhc->MemPool,
((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingSeg0,
sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER
);
PhyAddr &= ~(0x0F);
PhyAddr |= ((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingPCS;
InputContext->EP[Dci-1].PtrLo = PhyAddr;
InputContext->EP[Dci-1].PtrHi = XHC_HIGH_32BIT (((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingSeg0);
InputContext->EP[Dci-1].PtrLo = XHC_LOW_32BIT (PhyAddr);
InputContext->EP[Dci-1].PtrHi = XHC_HIGH_32BIT (PhyAddr);
EpDesc = (USB_ENDPOINT_DESCRIPTOR *)((UINTN)EpDesc + EpDesc->Length);
}
@ -2455,8 +2665,9 @@ XhcSetConfigCmd (
// configure endpoint
//
ZeroMem (&CmdTrbCfgEP, sizeof (CmdTrbCfgEP));
CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (InputContext);
CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (InputContext);
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, InputContext, sizeof (INPUT_CONTEXT));
CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (PhyAddr);
CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (PhyAddr);
CmdTrbCfgEP.CycleBit = 1;
CmdTrbCfgEP.Type = TRB_TYPE_CON_ENDPOINT;
CmdTrbCfgEP.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
@ -2503,7 +2714,7 @@ XhcSetConfigCmd64 (
UINT8 Direction;
UINT8 Dci;
UINT8 MaxDci;
UINT32 PhyAddr;
EFI_PHYSICAL_ADDRESS PhyAddr;
UINT8 Interval;
TRANSFER_RING *EndpointTransferRing;
@ -2630,11 +2841,17 @@ XhcSetConfigCmd64 (
break;
}
PhyAddr = XHC_LOW_32BIT (((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingSeg0);
PhyAddr = UsbHcGetPciAddrForHostAddr (
Xhc->MemPool,
((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingSeg0,
sizeof (TRB_TEMPLATE) * TR_RING_TRB_NUMBER
);
PhyAddr &= ~(0x0F);
PhyAddr |= ((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingPCS;
InputContext->EP[Dci-1].PtrLo = PhyAddr;
InputContext->EP[Dci-1].PtrHi = XHC_HIGH_32BIT (((TRANSFER_RING *)(UINTN)Xhc->UsbDevContext[SlotId].EndpointTransferRing[Dci-1])->RingSeg0);
InputContext->EP[Dci-1].PtrLo = XHC_LOW_32BIT (PhyAddr);
InputContext->EP[Dci-1].PtrHi = XHC_HIGH_32BIT (PhyAddr);
EpDesc = (USB_ENDPOINT_DESCRIPTOR *)((UINTN)EpDesc + EpDesc->Length);
}
@ -2647,8 +2864,9 @@ XhcSetConfigCmd64 (
// configure endpoint
//
ZeroMem (&CmdTrbCfgEP, sizeof (CmdTrbCfgEP));
CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (InputContext);
CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (InputContext);
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, InputContext, sizeof (INPUT_CONTEXT_64));
CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (PhyAddr);
CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (PhyAddr);
CmdTrbCfgEP.CycleBit = 1;
CmdTrbCfgEP.Type = TRB_TYPE_CON_ENDPOINT;
CmdTrbCfgEP.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
@ -2687,6 +2905,7 @@ XhcEvaluateContext (
CMD_TRB_EVALUATE_CONTEXT CmdTrbEvalu;
EVT_TRB_COMMAND_COMPLETION *EvtTrb;
INPUT_CONTEXT *InputContext;
EFI_PHYSICAL_ADDRESS PhyAddr;
ASSERT (Xhc->UsbDevContext[SlotId].SlotId != 0);
@ -2700,8 +2919,9 @@ XhcEvaluateContext (
InputContext->EP[0].MaxPacketSize = MaxPacketSize;
ZeroMem (&CmdTrbEvalu, sizeof (CmdTrbEvalu));
CmdTrbEvalu.PtrLo = XHC_LOW_32BIT (InputContext);
CmdTrbEvalu.PtrHi = XHC_HIGH_32BIT (InputContext);
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, InputContext, sizeof (INPUT_CONTEXT));
CmdTrbEvalu.PtrLo = XHC_LOW_32BIT (PhyAddr);
CmdTrbEvalu.PtrHi = XHC_HIGH_32BIT (PhyAddr);
CmdTrbEvalu.CycleBit = 1;
CmdTrbEvalu.Type = TRB_TYPE_EVALU_CONTXT;
CmdTrbEvalu.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
@ -2739,6 +2959,7 @@ XhcEvaluateContext64 (
CMD_TRB_EVALUATE_CONTEXT CmdTrbEvalu;
EVT_TRB_COMMAND_COMPLETION *EvtTrb;
INPUT_CONTEXT_64 *InputContext;
EFI_PHYSICAL_ADDRESS PhyAddr;
ASSERT (Xhc->UsbDevContext[SlotId].SlotId != 0);
@ -2752,8 +2973,9 @@ XhcEvaluateContext64 (
InputContext->EP[0].MaxPacketSize = MaxPacketSize;
ZeroMem (&CmdTrbEvalu, sizeof (CmdTrbEvalu));
CmdTrbEvalu.PtrLo = XHC_LOW_32BIT (InputContext);
CmdTrbEvalu.PtrHi = XHC_HIGH_32BIT (InputContext);
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, InputContext, sizeof (INPUT_CONTEXT_64));
CmdTrbEvalu.PtrLo = XHC_LOW_32BIT (PhyAddr);
CmdTrbEvalu.PtrHi = XHC_HIGH_32BIT (PhyAddr);
CmdTrbEvalu.CycleBit = 1;
CmdTrbEvalu.Type = TRB_TYPE_EVALU_CONTXT;
CmdTrbEvalu.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
@ -2797,6 +3019,7 @@ XhcConfigHubContext (
INPUT_CONTEXT *InputContext;
DEVICE_CONTEXT *OutputContext;
CMD_TRB_CONFIG_ENDPOINT CmdTrbCfgEP;
EFI_PHYSICAL_ADDRESS PhyAddr;
ASSERT (Xhc->UsbDevContext[SlotId].SlotId != 0);
InputContext = Xhc->UsbDevContext[SlotId].InputContext;
@ -2819,8 +3042,9 @@ XhcConfigHubContext (
InputContext->Slot.MTT = MTT;
ZeroMem (&CmdTrbCfgEP, sizeof (CmdTrbCfgEP));
CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (InputContext);
CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (InputContext);
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, InputContext, sizeof (INPUT_CONTEXT));
CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (PhyAddr);
CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (PhyAddr);
CmdTrbCfgEP.CycleBit = 1;
CmdTrbCfgEP.Type = TRB_TYPE_CON_ENDPOINT;
CmdTrbCfgEP.SlotId = Xhc->UsbDevContext[SlotId].SlotId;
@ -2863,6 +3087,7 @@ XhcConfigHubContext64 (
INPUT_CONTEXT_64 *InputContext;
DEVICE_CONTEXT_64 *OutputContext;
CMD_TRB_CONFIG_ENDPOINT CmdTrbCfgEP;
EFI_PHYSICAL_ADDRESS PhyAddr;
ASSERT (Xhc->UsbDevContext[SlotId].SlotId != 0);
InputContext = Xhc->UsbDevContext[SlotId].InputContext;
@ -2885,8 +3110,9 @@ XhcConfigHubContext64 (
InputContext->Slot.MTT = MTT;
ZeroMem (&CmdTrbCfgEP, sizeof (CmdTrbCfgEP));
CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (InputContext);
CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (InputContext);
PhyAddr = UsbHcGetPciAddrForHostAddr (Xhc->MemPool, InputContext, sizeof (INPUT_CONTEXT_64));
CmdTrbCfgEP.PtrLo = XHC_LOW_32BIT (PhyAddr);
CmdTrbCfgEP.PtrHi = XHC_HIGH_32BIT (PhyAddr);
CmdTrbCfgEP.CycleBit = 1;
CmdTrbCfgEP.Type = TRB_TYPE_CON_ENDPOINT;
CmdTrbCfgEP.SlotId = Xhc->UsbDevContext[SlotId].SlotId;