Adding support for BeagleBoard.

ArmPkg - Supoprt for ARM specific things that can change as the architecture changes. Plus semihosting JTAG drivers.
EmbeddedPkg - Generic support for an embeddded platform. Including a light weight command line shell.
BeagleBoardPkg - Platform specifics for BeagleBoard. SD Card works, but USB has issues. Looks like a bug in the open source USB stack (Our internal stack works fine).


git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@9518 6f19259b-4bc3-4df7-8a09-765794883524
This commit is contained in:
AJFISH
2009-12-06 01:57:05 +00:00
parent f7753a96ba
commit 2ef2b01e07
294 changed files with 47954 additions and 0 deletions

View File

@@ -0,0 +1,288 @@
/** @file
Copyright (c) 2008-2009, Apple Inc. All rights reserved.
All rights reserved. This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include <Chipset/Cortex-A8.h>
#include <Library/ArmLib.h>
#include <Library/BaseLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/MemoryAllocationLib.h>
#include "ArmCortexALib.h"
VOID
FillTranslationTable (
IN UINT32 *TranslationTable,
IN ARM_MEMORY_REGION_DESCRIPTOR *MemoryRegion
)
{
UINT32 *Entry;
UINTN Sections;
UINTN Index;
UINT32 Attributes;
UINT32 PhysicalBase = MemoryRegion->PhysicalBase;
switch (MemoryRegion->Attributes) {
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK:
Attributes = TT_DESCRIPTOR_SECTION_WRITE_BACK;
break;
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_THROUGH:
Attributes = TT_DESCRIPTOR_SECTION_WRITE_THROUGH;
break;
case ARM_MEMORY_REGION_ATTRIBUTE_DEVICE:
Attributes = TT_DESCRIPTOR_SECTION_DEVICE;
break;
case ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED:
default:
Attributes = TT_DESCRIPTOR_SECTION_UNCACHED;
break;
}
Entry = TRANSLATION_TABLE_ENTRY_FOR_VIRTUAL_ADDRESS(TranslationTable, MemoryRegion->VirtualBase);
Sections = MemoryRegion->Length / TT_DESCRIPTOR_SECTION_SIZE;
for (Index = 0; Index < Sections; Index++)
{
*Entry++ = TT_DESCRIPTOR_SECTION_BASE_ADDRESS(PhysicalBase) | Attributes;
PhysicalBase += TT_DESCRIPTOR_SECTION_SIZE;
}
}
VOID
EFIAPI
ArmConfigureMmu (
IN ARM_MEMORY_REGION_DESCRIPTOR *MemoryTable,
OUT VOID **TranslationTableBase OPTIONAL,
OUT UINTN *TranslationTableSize OPTIONAL
)
{
VOID *TranslationTable;
// Allocate pages for translation table.
TranslationTable = AllocatePages(EFI_SIZE_TO_PAGES(TRANSLATION_TABLE_SIZE + TRANSLATION_TABLE_ALIGNMENT));
TranslationTable = (VOID *)(((UINTN)TranslationTable + TRANSLATION_TABLE_ALIGNMENT_MASK) & ~TRANSLATION_TABLE_ALIGNMENT_MASK);
if (TranslationTableBase != NULL) {
*TranslationTableBase = TranslationTable;
}
if (TranslationTableBase != NULL) {
*TranslationTableSize = TRANSLATION_TABLE_SIZE;
}
ZeroMem(TranslationTable, TRANSLATION_TABLE_SIZE);
ArmCleanInvalidateDataCache();
ArmInvalidateInstructionCache();
ArmInvalidateTlb();
ArmDisableDataCache();
ArmDisableInstructionCache();
ArmDisableMmu();
// Make sure nothing sneaked into the cache
ArmCleanInvalidateDataCache();
ArmInvalidateInstructionCache();
while (MemoryTable->Length != 0) {
FillTranslationTable(TranslationTable, MemoryTable);
MemoryTable++;
}
ArmSetTranslationTableBaseAddress(TranslationTable);
ArmSetDomainAccessControl(DOMAIN_ACCESS_CONTROL_NONE(15) |
DOMAIN_ACCESS_CONTROL_NONE(14) |
DOMAIN_ACCESS_CONTROL_NONE(13) |
DOMAIN_ACCESS_CONTROL_NONE(12) |
DOMAIN_ACCESS_CONTROL_NONE(11) |
DOMAIN_ACCESS_CONTROL_NONE(10) |
DOMAIN_ACCESS_CONTROL_NONE( 9) |
DOMAIN_ACCESS_CONTROL_NONE( 8) |
DOMAIN_ACCESS_CONTROL_NONE( 7) |
DOMAIN_ACCESS_CONTROL_NONE( 6) |
DOMAIN_ACCESS_CONTROL_NONE( 5) |
DOMAIN_ACCESS_CONTROL_NONE( 4) |
DOMAIN_ACCESS_CONTROL_NONE( 3) |
DOMAIN_ACCESS_CONTROL_NONE( 2) |
DOMAIN_ACCESS_CONTROL_NONE( 1) |
DOMAIN_ACCESS_CONTROL_MANAGER(0));
ArmEnableInstructionCache();
ArmEnableDataCache();
ArmEnableMmu();
}
ARM_CACHE_TYPE
EFIAPI
ArmCacheType (
VOID
)
{
return ARM_CACHE_TYPE_WRITE_BACK;
}
ARM_CACHE_ARCHITECTURE
EFIAPI
ArmCacheArchitecture (
VOID
)
{
return ARM_CACHE_ARCHITECTURE_SEPARATE;
}
BOOLEAN
EFIAPI
ArmDataCachePresent (
VOID
)
{
return TRUE;
}
UINTN
EFIAPI
ArmDataCacheSize (
VOID
)
{
return 16 * 1024;
}
UINTN
EFIAPI
ArmDataCacheAssociativity (
VOID
)
{
return 4;
}
UINTN
ArmDataCacheSets (
VOID
)
{
return 64;
}
UINTN
EFIAPI
ArmDataCacheLineLength (
VOID
)
{
return 64;
}
BOOLEAN
EFIAPI
ArmInstructionCachePresent (
VOID
)
{
return TRUE;
}
UINTN
EFIAPI
ArmInstructionCacheSize (
VOID
)
{
return 16 * 1024;
}
UINTN
EFIAPI
ArmInstructionCacheAssociativity (
VOID
)
{
return 4;
}
UINTN
EFIAPI
ArmInstructionCacheLineLength (
VOID
)
{
return 64;
}
VOID
ArmCortexADataCacheOperation (
IN ARM_CORTEX_A_CACHE_OPERATION DataCacheOperation
)
{
UINTN Set;
UINTN SetCount;
UINTN SetShift;
UINTN Way;
UINTN WayCount;
UINTN WayShift;
UINT32 SetWayFormat;
UINTN SavedInterruptState;
SetCount = ArmDataCacheSets();
WayCount = ArmDataCacheAssociativity();
// Cortex-A8 Manual, System Control Coprocessor chapter
SetShift = 6;
WayShift = 32 - LowBitSet32 ((UINT32)WayCount);
SavedInterruptState = ArmDisableInterrupts();
for (Way = 0; Way < WayCount; Way++) {
for (Set = 0; Set < SetCount; Set++) {
// Build the format that the CP15 instruction can understand
SetWayFormat = (Way << WayShift) | (Set << SetShift);
// Pass it through
(*DataCacheOperation)(SetWayFormat);
}
}
ArmDrainWriteBuffer();
if (SavedInterruptState) {
ArmEnableInterrupts();
}
}
VOID
EFIAPI
ArmInvalidateDataCache (
VOID
)
{
ArmCortexADataCacheOperation(ArmInvalidateDataCacheEntryBySetWay);
}
VOID
EFIAPI
ArmCleanInvalidateDataCache (
VOID
)
{
ArmCortexADataCacheOperation(ArmCleanInvalidateDataCacheEntryBySetWay);
}
VOID
EFIAPI
ArmCleanDataCache (
VOID
)
{
ArmCortexADataCacheOperation(ArmCleanDataCacheEntryBySetWay);
}