UefiCpuPkg: Add PiSmmCpuDxeSmm module X64 files
Add module that initializes a CPU for the SMM environment and installs the first level SMI handler. This module along with the SMM IPL and SMM Core provide the services required for DXE_SMM_DRIVERS to register hardware and software SMI handlers. CPU specific features are abstracted through the SmmCpuFeaturesLib Platform specific features are abstracted through the SmmCpuPlatformHookLib Several PCDs are added to enable/disable features and configure settings for the PiSmmCpuDxeSmm module [jeff.fan@intel.com: Fix code style issues reported by ECC] Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Michael Kinney <michael.d.kinney@intel.com> Reviewed-by: Jeff Fan <jeff.fan@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@18647 6f19259b-4bc3-4df7-8a09-765794883524
This commit is contained in:
316
UefiCpuPkg/PiSmmCpuDxeSmm/X64/SmmProfileArch.c
Normal file
316
UefiCpuPkg/PiSmmCpuDxeSmm/X64/SmmProfileArch.c
Normal file
@@ -0,0 +1,316 @@
|
||||
/** @file
|
||||
X64 processor specific functions to enable SMM profile.
|
||||
|
||||
Copyright (c) 2012 - 2015, Intel Corporation. All rights reserved.<BR>
|
||||
This program and the accompanying materials
|
||||
are licensed and made available under the terms and conditions of the BSD License
|
||||
which accompanies this distribution. The full text of the license may be found at
|
||||
http://opensource.org/licenses/bsd-license.php
|
||||
|
||||
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
||||
|
||||
**/
|
||||
|
||||
#include "PiSmmCpuDxeSmm.h"
|
||||
#include "SmmProfileInternal.h"
|
||||
|
||||
//
|
||||
// Current page index.
|
||||
//
|
||||
UINTN mPFPageIndex;
|
||||
|
||||
//
|
||||
// Pool for dynamically creating page table in page fault handler.
|
||||
//
|
||||
UINT64 mPFPageBuffer;
|
||||
|
||||
//
|
||||
// Store the uplink information for each page being used.
|
||||
//
|
||||
UINT64 *mPFPageUplink[MAX_PF_PAGE_COUNT];
|
||||
|
||||
/**
|
||||
Create SMM page table for S3 path.
|
||||
|
||||
**/
|
||||
VOID
|
||||
InitSmmS3Cr3 (
|
||||
VOID
|
||||
)
|
||||
{
|
||||
EFI_PHYSICAL_ADDRESS Pages;
|
||||
UINT64 *PTEntry;
|
||||
|
||||
//
|
||||
// Generate PAE page table for the first 4GB memory space
|
||||
//
|
||||
Pages = Gen4GPageTable (1);
|
||||
|
||||
//
|
||||
// Fill Page-Table-Level4 (PML4) entry
|
||||
//
|
||||
PTEntry = (UINT64*)(UINTN)(Pages - EFI_PAGES_TO_SIZE (1));
|
||||
*PTEntry = Pages + IA32_PG_P;
|
||||
ZeroMem (PTEntry + 1, EFI_PAGE_SIZE - sizeof (*PTEntry));
|
||||
|
||||
//
|
||||
// Return the address of PML4 (to set CR3)
|
||||
//
|
||||
mSmmS3ResumeState->SmmS3Cr3 = (UINT32)(UINTN)PTEntry;
|
||||
|
||||
return ;
|
||||
}
|
||||
|
||||
/**
|
||||
Allocate pages for creating 4KB-page based on 2MB-page when page fault happens.
|
||||
|
||||
**/
|
||||
VOID
|
||||
InitPagesForPFHandler (
|
||||
VOID
|
||||
)
|
||||
{
|
||||
VOID *Address;
|
||||
|
||||
//
|
||||
// Pre-Allocate memory for page fault handler
|
||||
//
|
||||
Address = NULL;
|
||||
Address = AllocatePages (MAX_PF_PAGE_COUNT);
|
||||
ASSERT_EFI_ERROR (Address != NULL);
|
||||
|
||||
mPFPageBuffer = (UINT64)(UINTN) Address;
|
||||
mPFPageIndex = 0;
|
||||
ZeroMem ((VOID *) (UINTN) mPFPageBuffer, EFI_PAGE_SIZE * MAX_PF_PAGE_COUNT);
|
||||
ZeroMem (mPFPageUplink, sizeof (mPFPageUplink));
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
/**
|
||||
Allocate one page for creating 4KB-page based on 2MB-page.
|
||||
|
||||
@param Uplink The address of Page-Directory entry.
|
||||
|
||||
**/
|
||||
VOID
|
||||
AcquirePage (
|
||||
UINT64 *Uplink
|
||||
)
|
||||
{
|
||||
UINT64 Address;
|
||||
|
||||
//
|
||||
// Get the buffer
|
||||
//
|
||||
Address = mPFPageBuffer + EFI_PAGES_TO_SIZE (mPFPageIndex);
|
||||
ZeroMem ((VOID *) (UINTN) Address, EFI_PAGE_SIZE);
|
||||
|
||||
//
|
||||
// Cut the previous uplink if it exists and wasn't overwritten
|
||||
//
|
||||
if ((mPFPageUplink[mPFPageIndex] != NULL) && ((*mPFPageUplink[mPFPageIndex] & PHYSICAL_ADDRESS_MASK) == Address)) {
|
||||
*mPFPageUplink[mPFPageIndex] = 0;
|
||||
}
|
||||
|
||||
//
|
||||
// Link & Record the current uplink
|
||||
//
|
||||
*Uplink = Address | IA32_PG_P | IA32_PG_RW;
|
||||
mPFPageUplink[mPFPageIndex] = Uplink;
|
||||
|
||||
mPFPageIndex = (mPFPageIndex + 1) % MAX_PF_PAGE_COUNT;
|
||||
}
|
||||
|
||||
/**
|
||||
Update page table to map the memory correctly in order to make the instruction
|
||||
which caused page fault execute successfully. And it also save the original page
|
||||
table to be restored in single-step exception.
|
||||
|
||||
@param PageTable PageTable Address.
|
||||
@param PFAddress The memory address which caused page fault exception.
|
||||
@param CpuIndex The index of the processor.
|
||||
@param ErrorCode The Error code of exception.
|
||||
@param IsValidPFAddress The flag indicates if SMM profile data need be added.
|
||||
|
||||
**/
|
||||
VOID
|
||||
RestorePageTableAbove4G (
|
||||
UINT64 *PageTable,
|
||||
UINT64 PFAddress,
|
||||
UINTN CpuIndex,
|
||||
UINTN ErrorCode,
|
||||
BOOLEAN *IsValidPFAddress
|
||||
)
|
||||
{
|
||||
UINTN PTIndex;
|
||||
UINT64 Address;
|
||||
BOOLEAN Nx;
|
||||
BOOLEAN Existed;
|
||||
UINTN Index;
|
||||
UINTN PFIndex;
|
||||
|
||||
ASSERT ((PageTable != NULL) && (IsValidPFAddress != NULL));
|
||||
|
||||
//
|
||||
// If page fault address is 4GB above.
|
||||
//
|
||||
|
||||
//
|
||||
// Check if page fault address has existed in page table.
|
||||
// If it exists in page table but page fault is generated,
|
||||
// there are 2 possible reasons: 1. present flag is set to 0; 2. instruction fetch in protected memory range.
|
||||
//
|
||||
Existed = FALSE;
|
||||
PageTable = (UINT64*)(AsmReadCr3 () & PHYSICAL_ADDRESS_MASK);
|
||||
PTIndex = BitFieldRead64 (PFAddress, 39, 47);
|
||||
if ((PageTable[PTIndex] & IA32_PG_P) != 0) {
|
||||
// PML4E
|
||||
PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK);
|
||||
PTIndex = BitFieldRead64 (PFAddress, 30, 38);
|
||||
if ((PageTable[PTIndex] & IA32_PG_P) != 0) {
|
||||
// PDPTE
|
||||
PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK);
|
||||
PTIndex = BitFieldRead64 (PFAddress, 21, 29);
|
||||
// PD
|
||||
if ((PageTable[PTIndex] & IA32_PG_PS) != 0) {
|
||||
//
|
||||
// 2MB page
|
||||
//
|
||||
Address = (UINT64)(PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK);
|
||||
if ((Address & PHYSICAL_ADDRESS_MASK & ~((1ull << 21) - 1)) == ((PFAddress & PHYSICAL_ADDRESS_MASK & ~((1ull << 21) - 1)))) {
|
||||
Existed = TRUE;
|
||||
}
|
||||
} else {
|
||||
//
|
||||
// 4KB page
|
||||
//
|
||||
PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK);
|
||||
if (PageTable != 0) {
|
||||
//
|
||||
// When there is a valid entry to map to 4KB page, need not create a new entry to map 2MB.
|
||||
//
|
||||
PTIndex = BitFieldRead64 (PFAddress, 12, 20);
|
||||
Address = (UINT64)(PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK);
|
||||
if ((Address & PHYSICAL_ADDRESS_MASK & ~((1ull << 12) - 1)) == (PFAddress & PHYSICAL_ADDRESS_MASK & ~((1ull << 12) - 1))) {
|
||||
Existed = TRUE;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// If page entry does not existed in page table at all, create a new entry.
|
||||
//
|
||||
if (!Existed) {
|
||||
|
||||
if (IsAddressValid (PFAddress, &Nx)) {
|
||||
//
|
||||
// If page fault address above 4GB is in protected range but it causes a page fault exception,
|
||||
// Will create a page entry for this page fault address, make page table entry as present/rw and execution-disable.
|
||||
// this access is not saved into SMM profile data.
|
||||
//
|
||||
*IsValidPFAddress = TRUE;
|
||||
}
|
||||
|
||||
//
|
||||
// Create one entry in page table for page fault address.
|
||||
//
|
||||
SmiDefaultPFHandler ();
|
||||
//
|
||||
// Find the page table entry created just now.
|
||||
//
|
||||
PageTable = (UINT64*)(AsmReadCr3 () & PHYSICAL_ADDRESS_MASK);
|
||||
PFAddress = AsmReadCr2 ();
|
||||
// PML4E
|
||||
PTIndex = BitFieldRead64 (PFAddress, 39, 47);
|
||||
PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK);
|
||||
// PDPTE
|
||||
PTIndex = BitFieldRead64 (PFAddress, 30, 38);
|
||||
PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK);
|
||||
// PD
|
||||
PTIndex = BitFieldRead64 (PFAddress, 21, 29);
|
||||
Address = PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK;
|
||||
//
|
||||
// Check if 2MB-page entry need be changed to 4KB-page entry.
|
||||
//
|
||||
if (IsAddressSplit (Address)) {
|
||||
AcquirePage (&PageTable[PTIndex]);
|
||||
|
||||
// PTE
|
||||
PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK);
|
||||
for (Index = 0; Index < 512; Index++) {
|
||||
PageTable[Index] = Address | IA32_PG_RW | IA32_PG_P;
|
||||
if (!IsAddressValid (Address, &Nx)) {
|
||||
PageTable[Index] = PageTable[Index] & (INTN)(INT32)(~(IA32_PG_RW | IA32_PG_P));
|
||||
}
|
||||
if (Nx && mXdSupported) {
|
||||
PageTable[Index] = PageTable[Index] | IA32_PG_NX;
|
||||
}
|
||||
if (Address == (PFAddress & PHYSICAL_ADDRESS_MASK & ~((1ull << 12) - 1))) {
|
||||
PTIndex = Index;
|
||||
}
|
||||
Address += SIZE_4KB;
|
||||
} // end for PT
|
||||
} else {
|
||||
//
|
||||
// Update 2MB page entry.
|
||||
//
|
||||
if (!IsAddressValid (Address, &Nx)) {
|
||||
//
|
||||
// Patch to remove present flag and rw flag.
|
||||
//
|
||||
PageTable[PTIndex] = PageTable[PTIndex] & (INTN)(INT32)(~(IA32_PG_RW | IA32_PG_P));
|
||||
}
|
||||
//
|
||||
// Set XD bit to 1
|
||||
//
|
||||
if (Nx && mXdSupported) {
|
||||
PageTable[PTIndex] = PageTable[PTIndex] | IA32_PG_NX;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// Record old entries with non-present status
|
||||
// Old entries include the memory which instruction is at and the memory which instruction access.
|
||||
//
|
||||
//
|
||||
ASSERT (mPFEntryCount[CpuIndex] < MAX_PF_ENTRY_COUNT);
|
||||
if (mPFEntryCount[CpuIndex] < MAX_PF_ENTRY_COUNT) {
|
||||
PFIndex = mPFEntryCount[CpuIndex];
|
||||
mLastPFEntryValue[CpuIndex][PFIndex] = PageTable[PTIndex];
|
||||
mLastPFEntryPointer[CpuIndex][PFIndex] = &PageTable[PTIndex];
|
||||
mPFEntryCount[CpuIndex]++;
|
||||
}
|
||||
|
||||
//
|
||||
// Add present flag or clear XD flag to make page fault handler succeed.
|
||||
//
|
||||
PageTable[PTIndex] |= (UINT64)(IA32_PG_RW | IA32_PG_P);
|
||||
if ((ErrorCode & IA32_PF_EC_ID) != 0) {
|
||||
//
|
||||
// If page fault is caused by instruction fetch, clear XD bit in the entry.
|
||||
//
|
||||
PageTable[PTIndex] &= ~IA32_PG_NX;
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
/**
|
||||
Clear TF in FLAGS.
|
||||
|
||||
@param SystemContext A pointer to the processor context when
|
||||
the interrupt occurred on the processor.
|
||||
|
||||
**/
|
||||
VOID
|
||||
ClearTrapFlag (
|
||||
IN OUT EFI_SYSTEM_CONTEXT SystemContext
|
||||
)
|
||||
{
|
||||
SystemContext.SystemContextX64->Rflags &= (UINTN) ~BIT8;
|
||||
}
|
Reference in New Issue
Block a user