NetworkPkg: Move Network library and drivers from MdeModulePkg to NetworkPkg

Signed-off-by: Liming Gao <liming.gao@intel.com>
Cc: Siyuan Fu <siyuan.fu@intel.com>
Cc: Jiaxin Wu <jiaxin.wu@intel.com>
Reviewed-by: Jiaxin Wu <jiaxin.wu@intel.com>
Reviewed-by: Siyuan Fu <siyuan.fu@intel.com>
This commit is contained in:
Liming Gao
2019-05-15 20:02:18 +08:00
parent c0fd7f734e
commit 4542f8b813
147 changed files with 24 additions and 24 deletions

View File

@@ -0,0 +1,811 @@
/** @file
ARP driver functions.
Copyright (c) 2006 - 2018, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "ArpDriver.h"
#include "ArpImpl.h"
EFI_DRIVER_BINDING_PROTOCOL gArpDriverBinding = {
ArpDriverBindingSupported,
ArpDriverBindingStart,
ArpDriverBindingStop,
0xa,
NULL,
NULL
};
/**
Create and initialize the arp service context data.
@param[in] ImageHandle The image handle representing the loaded driver
image.
@param[in] ControllerHandle The controller handle the driver binds to.
@param[in, out] ArpService Pointer to the buffer containing the arp service
context data.
@retval EFI_SUCCESS The arp service context is initialized.
@retval EFI_UNSUPPORTED The underlayer Snp mode type is not ethernet.
Failed to initialize the service context.
@retval other Failed to initialize the arp service context.
**/
EFI_STATUS
ArpCreateService (
IN EFI_HANDLE ImageHandle,
IN EFI_HANDLE ControllerHandle,
IN OUT ARP_SERVICE_DATA *ArpService
)
{
EFI_STATUS Status;
ASSERT (ArpService != NULL);
ArpService->Signature = ARP_SERVICE_DATA_SIGNATURE;
//
// Init the lists.
//
InitializeListHead (&ArpService->ChildrenList);
InitializeListHead (&ArpService->PendingRequestTable);
InitializeListHead (&ArpService->DeniedCacheTable);
InitializeListHead (&ArpService->ResolvedCacheTable);
//
// Init the servicebinding protocol members.
//
ArpService->ServiceBinding.CreateChild = ArpServiceBindingCreateChild;
ArpService->ServiceBinding.DestroyChild = ArpServiceBindingDestroyChild;
//
// Save the handles.
//
ArpService->ImageHandle = ImageHandle;
ArpService->ControllerHandle = ControllerHandle;
//
// Create a MNP child instance.
//
Status = NetLibCreateServiceChild (
ControllerHandle,
ImageHandle,
&gEfiManagedNetworkServiceBindingProtocolGuid,
&ArpService->MnpChildHandle
);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Open the MNP protocol.
//
Status = gBS->OpenProtocol (
ArpService->MnpChildHandle,
&gEfiManagedNetworkProtocolGuid,
(VOID **)&ArpService->Mnp,
ImageHandle,
ControllerHandle,
EFI_OPEN_PROTOCOL_BY_DRIVER
);
if (EFI_ERROR (Status)) {
goto ERROR_EXIT;
}
//
// Get the underlayer Snp mode data.
//
Status = ArpService->Mnp->GetModeData (ArpService->Mnp, NULL, &ArpService->SnpMode);
if ((Status != EFI_NOT_STARTED) && EFI_ERROR (Status)) {
goto ERROR_EXIT;
}
if (ArpService->SnpMode.IfType != NET_IFTYPE_ETHERNET) {
//
// Only support the ethernet.
//
Status = EFI_UNSUPPORTED;
goto ERROR_EXIT;
}
//
// Set the Mnp config parameters.
//
ArpService->MnpConfigData.ReceivedQueueTimeoutValue = 0;
ArpService->MnpConfigData.TransmitQueueTimeoutValue = 0;
ArpService->MnpConfigData.ProtocolTypeFilter = ARP_ETHER_PROTO_TYPE;
ArpService->MnpConfigData.EnableUnicastReceive = TRUE;
ArpService->MnpConfigData.EnableMulticastReceive = FALSE;
ArpService->MnpConfigData.EnableBroadcastReceive = TRUE;
ArpService->MnpConfigData.EnablePromiscuousReceive = FALSE;
ArpService->MnpConfigData.FlushQueuesOnReset = TRUE;
ArpService->MnpConfigData.EnableReceiveTimestamps = FALSE;
ArpService->MnpConfigData.DisableBackgroundPolling = FALSE;
//
// Configure the Mnp child.
//
Status = ArpService->Mnp->Configure (ArpService->Mnp, &ArpService->MnpConfigData);
if (EFI_ERROR (Status)) {
goto ERROR_EXIT;
}
//
// Create the event used in the RxToken.
//
Status = gBS->CreateEvent (
EVT_NOTIFY_SIGNAL,
TPL_NOTIFY,
ArpOnFrameRcvd,
ArpService,
&ArpService->RxToken.Event
);
if (EFI_ERROR (Status)) {
goto ERROR_EXIT;
}
//
// Create the Arp heartbeat timer.
//
Status = gBS->CreateEvent (
EVT_NOTIFY_SIGNAL | EVT_TIMER,
TPL_CALLBACK,
ArpTimerHandler,
ArpService,
&ArpService->PeriodicTimer
);
if (EFI_ERROR (Status)) {
goto ERROR_EXIT;
}
//
// Start the heartbeat timer.
//
Status = gBS->SetTimer (
ArpService->PeriodicTimer,
TimerPeriodic,
ARP_PERIODIC_TIMER_INTERVAL
);
ERROR_EXIT:
return Status;
}
/**
Clean the arp service context data.
@param[in, out] ArpService Pointer to the buffer containing the arp service
context data.
@return None.
**/
VOID
ArpCleanService (
IN OUT ARP_SERVICE_DATA *ArpService
)
{
NET_CHECK_SIGNATURE (ArpService, ARP_SERVICE_DATA_SIGNATURE);
if (ArpService->PeriodicTimer != NULL) {
//
// Cancle and close the PeriodicTimer.
//
gBS->SetTimer (ArpService->PeriodicTimer, TimerCancel, 0);
gBS->CloseEvent (ArpService->PeriodicTimer);
}
if (ArpService->RxToken.Event != NULL) {
//
// Cancle the RxToken and close the event in the RxToken.
//
ArpService->Mnp->Cancel (ArpService->Mnp, NULL);
gBS->CloseEvent (ArpService->RxToken.Event);
}
if (ArpService->Mnp != NULL) {
//
// Reset the Mnp child and close the Mnp protocol.
//
ArpService->Mnp->Configure (ArpService->Mnp, NULL);
gBS->CloseProtocol (
ArpService->MnpChildHandle,
&gEfiManagedNetworkProtocolGuid,
ArpService->ImageHandle,
ArpService->ControllerHandle
);
}
if (ArpService->MnpChildHandle != NULL) {
//
// Destroy the mnp child.
//
NetLibDestroyServiceChild(
ArpService->ControllerHandle,
ArpService->ImageHandle,
&gEfiManagedNetworkServiceBindingProtocolGuid,
ArpService->MnpChildHandle
);
}
}
/**
Callback function which provided by user to remove one node in NetDestroyLinkList process.
@param[in] Entry The entry to be removed.
@param[in] Context Pointer to the callback context corresponds to the Context in NetDestroyLinkList.
@retval EFI_SUCCESS The entry has been removed successfully.
@retval Others Fail to remove the entry.
**/
EFI_STATUS
EFIAPI
ArpDestroyChildEntryInHandleBuffer (
IN LIST_ENTRY *Entry,
IN VOID *Context
)
{
ARP_INSTANCE_DATA *Instance;
EFI_SERVICE_BINDING_PROTOCOL *ServiceBinding;
if (Entry == NULL || Context == NULL) {
return EFI_INVALID_PARAMETER;
}
Instance = NET_LIST_USER_STRUCT_S (Entry, ARP_INSTANCE_DATA, List, ARP_INSTANCE_DATA_SIGNATURE);
ServiceBinding = (EFI_SERVICE_BINDING_PROTOCOL *) Context;
return ServiceBinding->DestroyChild (ServiceBinding, Instance->Handle);
}
/**
Tests to see if this driver supports a given controller.
If a child device is provided, it further tests to see if this driver supports
creating a handle for the specified child device.
@param[in] This A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance.
@param[in] ControllerHandle The handle of the controller to test. This handle
must support a protocol interface that supplies
an I/O abstraction to the driver.
@param[in] RemainingDevicePath A pointer to the remaining portion of a device path.
This parameter is ignored by device drivers,
and is optional for bus drivers.
@retval EFI_SUCCESS The device specified by ControllerHandle and
RemainingDevicePath is supported by the driver
specified by This.
@retval EFI_ALREADY_STARTED The device specified by ControllerHandle and
RemainingDevicePath is already being managed
by the driver specified by This.
@retval EFI_ACCESS_DENIED The device specified by ControllerHandle and
RemainingDevicePath is already being managed by
a different driver or an application that
requires exclusive acces. Currently not implemented.
@retval EFI_UNSUPPORTED The device specified by ControllerHandle and
RemainingDevicePath is not supported by the
driver specified by This.
**/
EFI_STATUS
EFIAPI
ArpDriverBindingSupported (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL
)
{
EFI_STATUS Status;
//
// Test to see if Arp SB is already installed.
//
Status = gBS->OpenProtocol (
ControllerHandle,
&gEfiArpServiceBindingProtocolGuid,
NULL,
This->DriverBindingHandle,
ControllerHandle,
EFI_OPEN_PROTOCOL_TEST_PROTOCOL
);
if (Status == EFI_SUCCESS) {
return EFI_ALREADY_STARTED;
}
//
// Test to see if MNP SB is installed.
//
Status = gBS->OpenProtocol (
ControllerHandle,
&gEfiManagedNetworkServiceBindingProtocolGuid,
NULL,
This->DriverBindingHandle,
ControllerHandle,
EFI_OPEN_PROTOCOL_TEST_PROTOCOL
);
return Status;
}
/**
Start this driver on ControllerHandle.
The Start() function is designed to be invoked from the EFI boot service ConnectController().
As a result, much of the error checking on the parameters to Start() has been
moved into this common boot service. It is legal to call Start() from other locations,
but the following calling restrictions must be followed or the system behavior
will not be deterministic.
1. ControllerHandle must be a valid EFI_HANDLE.
2. If RemainingDevicePath is not NULL, then it must be a pointer to a naturally
aligned EFI_DEVICE_PATH_PROTOCOL.
3. Prior to calling Start(), the Supported() function for the driver specified
by This must have been called with the same calling parameters, and Supported()
must have returned EFI_SUCCESS.
@param[in] This A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance.
@param[in] ControllerHandle The handle of the controller to start. This handle
must support a protocol interface that supplies
an I/O abstraction to the driver.
@param[in] RemainingDevicePath A pointer to the remaining portion of a device path.
This parameter is ignored by device drivers,
and is optional for bus drivers.
@retval EFI_SUCCESS The device was started.
@retval EFI_DEVICE_ERROR The device could not be started due to a device error.
Currently not implemented.
@retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of
resources.
@retval Others The driver failded to start the device.
**/
EFI_STATUS
EFIAPI
ArpDriverBindingStart (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL
)
{
EFI_STATUS Status;
ARP_SERVICE_DATA *ArpService;
//
// Allocate a zero pool for ArpService.
//
ArpService = AllocateZeroPool (sizeof(ARP_SERVICE_DATA));
if (ArpService == NULL) {
return EFI_OUT_OF_RESOURCES;
}
//
// Initialize the arp service context data.
//
Status = ArpCreateService (This->DriverBindingHandle, ControllerHandle, ArpService);
if (EFI_ERROR (Status)) {
goto ERROR;
}
//
// Install the ARP service binding protocol.
//
Status = gBS->InstallMultipleProtocolInterfaces (
&ControllerHandle,
&gEfiArpServiceBindingProtocolGuid,
&ArpService->ServiceBinding,
NULL
);
if (EFI_ERROR (Status)) {
goto ERROR;
}
//
// OK, start to receive arp packets from Mnp.
//
Status = ArpService->Mnp->Receive (ArpService->Mnp, &ArpService->RxToken);
if (EFI_ERROR (Status)) {
goto ERROR;
}
return Status;
ERROR:
//
// On error, clean the arp service context data, and free the memory allocated.
//
ArpCleanService (ArpService);
FreePool (ArpService);
return Status;
}
/**
Stop this driver on ControllerHandle.
Release the control of this controller and remove the IScsi functions. The Stop()
function is designed to be invoked from the EFI boot service DisconnectController().
As a result, much of the error checking on the parameters to Stop() has been moved
into this common boot service. It is legal to call Stop() from other locations,
but the following calling restrictions must be followed or the system behavior
will not be deterministic.
1. ControllerHandle must be a valid EFI_HANDLE that was used on a previous call to this
same driver's Start() function.
2. The first NumberOfChildren handles of ChildHandleBuffer must all be a valid
EFI_HANDLE. In addition, all of these handles must have been created in this driver's
Start() function, and the Start() function must have called OpenProtocol() on
ControllerHandle with an Attribute of EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.
@param[in] This A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance.
@param[in] ControllerHandle A handle to the device being stopped. The handle must
support a bus specific I/O protocol for the driver
to use to stop the device.
@param[in] NumberOfChildren The number of child device handles in ChildHandleBuffer.
Not used.
@param[in] ChildHandleBuffer An array of child handles to be freed. May be NULL
if NumberOfChildren is 0.Not used.
@retval EFI_SUCCESS The device was stopped.
@retval EFI_DEVICE_ERROR The device could not be stopped due to a device error.
**/
EFI_STATUS
EFIAPI
ArpDriverBindingStop (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN UINTN NumberOfChildren,
IN EFI_HANDLE *ChildHandleBuffer
)
{
EFI_STATUS Status;
EFI_HANDLE NicHandle;
EFI_SERVICE_BINDING_PROTOCOL *ServiceBinding;
ARP_SERVICE_DATA *ArpService;
LIST_ENTRY *List;
//
// Get the NicHandle which the arp servicebinding is installed on.
//
NicHandle = NetLibGetNicHandle (ControllerHandle, &gEfiManagedNetworkProtocolGuid);
if (NicHandle == NULL) {
return EFI_SUCCESS;
}
//
// Try to get the arp servicebinding protocol on the NicHandle.
//
Status = gBS->OpenProtocol (
NicHandle,
&gEfiArpServiceBindingProtocolGuid,
(VOID **)&ServiceBinding,
This->DriverBindingHandle,
ControllerHandle,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "ArpDriverBindingStop: Open ArpSb failed, %r.\n", Status));
return EFI_DEVICE_ERROR;
}
ArpService = ARP_SERVICE_DATA_FROM_THIS (ServiceBinding);
if (NumberOfChildren != 0) {
//
// NumberOfChildren is not zero, destroy all the ARP children instances.
//
List = &ArpService->ChildrenList;
Status = NetDestroyLinkList (
List,
ArpDestroyChildEntryInHandleBuffer,
ServiceBinding,
NULL
);
ASSERT (IsListEmpty (&ArpService->PendingRequestTable));
ASSERT (IsListEmpty (&ArpService->DeniedCacheTable));
ASSERT (IsListEmpty (&ArpService->ResolvedCacheTable));
} else if (IsListEmpty (&ArpService->ChildrenList)) {
//
// Uninstall the ARP ServiceBinding protocol.
//
gBS->UninstallMultipleProtocolInterfaces (
NicHandle,
&gEfiArpServiceBindingProtocolGuid,
&ArpService->ServiceBinding,
NULL
);
//
// Clean the arp servicebinding context data and free the memory allocated.
//
ArpCleanService (ArpService);
FreePool (ArpService);
}
return EFI_SUCCESS;
}
/**
Creates a child handle and installs a protocol.
The CreateChild() function installs a protocol on ChildHandle.
If ChildHandle is a pointer to NULL, then a new handle is created and returned
in ChildHandle. If ChildHandle is not a pointer to NULL, then the protocol
installs on the existing ChildHandle.
@param This Pointer to the EFI_SERVICE_BINDING_PROTOCOL instance.
@param ChildHandle Pointer to the handle of the child to create. If it is NULL,
then a new handle is created. If it is a pointer to an existing
UEFI handle, then the protocol is added to the existing UEFI handle.
@retval EFI_SUCCES The protocol was added to ChildHandle.
@retval EFI_INVALID_PARAMETER ChildHandle is NULL.
@retval EFI_OUT_OF_RESOURCES There are not enough resources available to create
the child
@retval other The child handle was not created
**/
EFI_STATUS
EFIAPI
ArpServiceBindingCreateChild (
IN EFI_SERVICE_BINDING_PROTOCOL *This,
IN EFI_HANDLE *ChildHandle
)
{
EFI_STATUS Status;
ARP_SERVICE_DATA *ArpService;
ARP_INSTANCE_DATA *Instance;
VOID *Mnp;
EFI_TPL OldTpl;
if ((This == NULL) || (ChildHandle == NULL)) {
return EFI_INVALID_PARAMETER;
}
ArpService = ARP_SERVICE_DATA_FROM_THIS (This);
//
// Allocate memory for the instance context data.
//
Instance = AllocateZeroPool (sizeof(ARP_INSTANCE_DATA));
if (Instance == NULL) {
DEBUG ((EFI_D_ERROR, "ArpSBCreateChild: Failed to allocate memory for Instance.\n"));
return EFI_OUT_OF_RESOURCES;
}
//
// Init the instance context data.
//
ArpInitInstance (ArpService, Instance);
//
// Install the ARP protocol onto the ChildHandle.
//
Status = gBS->InstallMultipleProtocolInterfaces (
ChildHandle,
&gEfiArpProtocolGuid,
(VOID *)&Instance->ArpProto,
NULL
);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "ArpSBCreateChild: faild to install ARP protocol, %r.\n", Status));
FreePool (Instance);
return Status;
}
//
// Save the ChildHandle.
//
Instance->Handle = *ChildHandle;
//
// Open the Managed Network protocol BY_CHILD.
//
Status = gBS->OpenProtocol (
ArpService->MnpChildHandle,
&gEfiManagedNetworkProtocolGuid,
(VOID **) &Mnp,
gArpDriverBinding.DriverBindingHandle,
Instance->Handle,
EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER
);
if (EFI_ERROR (Status)) {
goto ERROR;
}
OldTpl = gBS->RaiseTPL (TPL_CALLBACK);
//
// Insert the instance into children list managed by the arp service context data.
//
InsertTailList (&ArpService->ChildrenList, &Instance->List);
ArpService->ChildrenNumber++;
gBS->RestoreTPL (OldTpl);
ERROR:
if (EFI_ERROR (Status)) {
gBS->CloseProtocol (
ArpService->MnpChildHandle,
&gEfiManagedNetworkProtocolGuid,
gArpDriverBinding.DriverBindingHandle,
Instance->Handle
);
gBS->UninstallMultipleProtocolInterfaces (
Instance->Handle,
&gEfiArpProtocolGuid,
&Instance->ArpProto,
NULL
);
//
// Free the allocated memory.
//
FreePool (Instance);
}
return Status;
}
/**
Destroys a child handle with a protocol installed on it.
The DestroyChild() function does the opposite of CreateChild(). It removes a protocol
that was installed by CreateChild() from ChildHandle. If the removed protocol is the
last protocol on ChildHandle, then ChildHandle is destroyed.
@param This Pointer to the EFI_SERVICE_BINDING_PROTOCOL instance.
@param ChildHandle Handle of the child to destroy
@retval EFI_SUCCES The protocol was removed from ChildHandle.
@retval EFI_UNSUPPORTED ChildHandle does not support the protocol that is
being removed.
@retval EFI_INVALID_PARAMETER Child handle is NULL.
@retval EFI_ACCESS_DENIED The protocol could not be removed from the ChildHandle
because its services are being used.
@retval other The child handle was not destroyed
**/
EFI_STATUS
EFIAPI
ArpServiceBindingDestroyChild (
IN EFI_SERVICE_BINDING_PROTOCOL *This,
IN EFI_HANDLE ChildHandle
)
{
EFI_STATUS Status;
ARP_SERVICE_DATA *ArpService;
ARP_INSTANCE_DATA *Instance;
EFI_ARP_PROTOCOL *Arp;
EFI_TPL OldTpl;
if ((This == NULL) || (ChildHandle == NULL)) {
return EFI_INVALID_PARAMETER;
}
ArpService = ARP_SERVICE_DATA_FROM_THIS (This);
//
// Get the arp protocol.
//
Status = gBS->OpenProtocol (
ChildHandle,
&gEfiArpProtocolGuid,
(VOID **)&Arp,
ArpService->ImageHandle,
ChildHandle,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
return EFI_UNSUPPORTED;
}
Instance = ARP_INSTANCE_DATA_FROM_THIS (Arp);
if (Instance->InDestroy) {
return EFI_SUCCESS;
}
//
// Use the InDestroy as a flag to avoid re-entrance.
//
Instance->InDestroy = TRUE;
//
// Close the Managed Network protocol.
//
gBS->CloseProtocol (
ArpService->MnpChildHandle,
&gEfiManagedNetworkProtocolGuid,
gArpDriverBinding.DriverBindingHandle,
ChildHandle
);
//
// Uninstall the ARP protocol.
//
Status = gBS->UninstallMultipleProtocolInterfaces (
ChildHandle,
&gEfiArpProtocolGuid,
&Instance->ArpProto,
NULL
);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "ArpSBDestroyChild: Failed to uninstall the arp protocol, %r.\n",
Status));
Instance->InDestroy = FALSE;
return Status;
}
OldTpl = gBS->RaiseTPL (TPL_CALLBACK);
if (Instance->Configured) {
//
// Delete the related cache entry.
//
ArpDeleteCacheEntry (Instance, FALSE, NULL, TRUE);
//
// Reset the instance configuration.
//
ArpConfigureInstance (Instance, NULL);
}
//
// Remove this instance from the ChildrenList.
//
RemoveEntryList (&Instance->List);
ArpService->ChildrenNumber--;
gBS->RestoreTPL (OldTpl);
FreePool (Instance);
return Status;
}
/**
The entry point for Arp driver which installs the driver binding and component name
protocol on its ImageHandle.
@param[in] ImageHandle The image handle of the driver.
@param[in] SystemTable The system table.
@retval EFI_SUCCESS if the driver binding and component name protocols
are successfully
@retval Others Failed to install the protocols.
**/
EFI_STATUS
EFIAPI
ArpDriverEntryPoint (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
return EfiLibInstallDriverBindingComponentName2 (
ImageHandle,
SystemTable,
&gArpDriverBinding,
ImageHandle,
&gArpComponentName,
&gArpComponentName2
);
}

View File

@@ -0,0 +1,334 @@
/** @file
ARP driver header file.
Copyright (c) 2006 - 2018, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#ifndef _ARP_DRIVER_H_
#define _ARP_DRIVER_H_
#include <Uefi.h>
#include <Protocol/Arp.h>
#include <Protocol/ManagedNetwork.h>
#include <Protocol/ServiceBinding.h>
#include <Library/DebugLib.h>
#include <Library/UefiDriverEntryPoint.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/UefiLib.h>
//
// Global variables
//
extern EFI_DRIVER_BINDING_PROTOCOL gArpDriverBinding;
extern EFI_COMPONENT_NAME_PROTOCOL gArpComponentName;
extern EFI_COMPONENT_NAME2_PROTOCOL gArpComponentName2;
//
// Function prototypes for the Drivr Binding Protocol
//
/**
Tests to see if this driver supports a given controller.
If a child device is provided, it further tests to see if this driver supports
creating a handle for the specified child device.
@param[in] This A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance.
@param[in] ControllerHandle The handle of the controller to test. This handle
must support a protocol interface that supplies
an I/O abstraction to the driver.
@param[in] RemainingDevicePath A pointer to the remaining portion of a device path.
This parameter is ignored by device drivers,
and is optional for bus drivers.
@retval EFI_SUCCESS The device specified by ControllerHandle and
RemainingDevicePath is supported by the driver
specified by This.
@retval EFI_ALREADY_STARTED The device specified by ControllerHandle and
RemainingDevicePath is already being managed
by the driver specified by This.
@retval EFI_ACCESS_DENIED The device specified by ControllerHandle and
RemainingDevicePath is already being managed by
a different driver or an application that
requires exclusive acces. Currently not implemented.
@retval EFI_UNSUPPORTED The device specified by ControllerHandle and
RemainingDevicePath is not supported by the
driver specified by This.
**/
EFI_STATUS
EFIAPI
ArpDriverBindingSupported (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL
);
/**
Start this driver on ControllerHandle.
The Start() function is designed to be invoked from the EFI boot service ConnectController().
As a result, much of the error checking on the parameters to Start() has been
moved into this common boot service. It is legal to call Start() from other locations,
but the following calling restrictions must be followed or the system behavior
will not be deterministic.
1. ControllerHandle must be a valid EFI_HANDLE.
2. If RemainingDevicePath is not NULL, then it must be a pointer to a naturally
aligned EFI_DEVICE_PATH_PROTOCOL.
3. Prior to calling Start(), the Supported() function for the driver specified
by This must have been called with the same calling parameters, and Supported()
must have returned EFI_SUCCESS.
@param[in] This A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance.
@param[in] ControllerHandle The handle of the controller to start. This handle
must support a protocol interface that supplies
an I/O abstraction to the driver.
@param[in] RemainingDevicePath A pointer to the remaining portion of a device path.
This parameter is ignored by device drivers,
and is optional for bus drivers.
@retval EFI_SUCCESS The device was started.
@retval EFI_DEVICE_ERROR The device could not be started due to a device error.
Currently not implemented.
@retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of
resources.
@retval Others The driver failded to start the device.
**/
EFI_STATUS
EFIAPI
ArpDriverBindingStart (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL
);
/**
Stop this driver on ControllerHandle.
Release the control of this controller and remove the IScsi functions. The Stop()
function is designed to be invoked from the EFI boot service DisconnectController().
As a result, much of the error checking on the parameters to Stop() has been moved
into this common boot service. It is legal to call Stop() from other locations,
but the following calling restrictions must be followed or the system behavior
will not be deterministic.
1. ControllerHandle must be a valid EFI_HANDLE that was used on a previous call to this
same driver's Start() function.
2. The first NumberOfChildren handles of ChildHandleBuffer must all be a valid
EFI_HANDLE. In addition, all of these handles must have been created in this driver's
Start() function, and the Start() function must have called OpenProtocol() on
ControllerHandle with an Attribute of EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.
@param[in] This A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance.
@param[in] ControllerHandle A handle to the device being stopped. The handle must
support a bus specific I/O protocol for the driver
to use to stop the device.
@param[in] NumberOfChildren The number of child device handles in ChildHandleBuffer.
Not used.
@param[in] ChildHandleBuffer An array of child handles to be freed. May be NULL
if NumberOfChildren is 0.Not used.
@retval EFI_SUCCESS The device was stopped.
@retval EFI_DEVICE_ERROR The device could not be stopped due to a device error.
**/
EFI_STATUS
EFIAPI
ArpDriverBindingStop (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN UINTN NumberOfChildren,
IN EFI_HANDLE *ChildHandleBuffer
);
/**
Creates a child handle and installs a protocol.
The CreateChild() function installs a protocol on ChildHandle.
If ChildHandle is a pointer to NULL, then a new handle is created and returned
in ChildHandle. If ChildHandle is not a pointer to NULL, then the protocol
installs on the existing ChildHandle.
@param This Pointer to the EFI_SERVICE_BINDING_PROTOCOL instance.
@param ChildHandle Pointer to the handle of the child to create. If it is NULL,
then a new handle is created. If it is a pointer to an existing
UEFI handle, then the protocol is added to the existing UEFI handle.
@retval EFI_SUCCES The protocol was added to ChildHandle.
@retval EFI_INVALID_PARAMETER ChildHandle is NULL.
@retval EFI_OUT_OF_RESOURCES There are not enough resources available to create
the child
@retval other The child handle was not created
**/
EFI_STATUS
EFIAPI
ArpServiceBindingCreateChild (
IN EFI_SERVICE_BINDING_PROTOCOL *This,
IN EFI_HANDLE *ChildHandle
);
/**
Destroys a child handle with a protocol installed on it.
The DestroyChild() function does the opposite of CreateChild(). It removes a protocol
that was installed by CreateChild() from ChildHandle. If the removed protocol is the
last protocol on ChildHandle, then ChildHandle is destroyed.
@param This Pointer to the EFI_SERVICE_BINDING_PROTOCOL instance.
@param ChildHandle Handle of the child to destroy
@retval EFI_SUCCES The protocol was removed from ChildHandle.
@retval EFI_UNSUPPORTED ChildHandle does not support the protocol that is
being removed.
@retval EFI_INVALID_PARAMETER Child handle is NULL.
@retval EFI_ACCESS_DENIED The protocol could not be removed from the ChildHandle
because its services are being used.
@retval other The child handle was not destroyed
**/
EFI_STATUS
EFIAPI
ArpServiceBindingDestroyChild (
IN EFI_SERVICE_BINDING_PROTOCOL *This,
IN EFI_HANDLE ChildHandle
);
//
// EFI Component Name Functions
//
/**
Retrieves a Unicode string that is the user readable name of the driver.
This function retrieves the user readable name of a driver in the form of a
Unicode string. If the driver specified by This has a user readable name in
the language specified by Language, then a pointer to the driver name is
returned in DriverName, and EFI_SUCCESS is returned. If the driver specified
by This does not support the language specified by Language,
then EFI_UNSUPPORTED is returned.
@param[in] This A pointer to the EFI_COMPONENT_NAME2_PROTOCOL or
EFI_COMPONENT_NAME_PROTOCOL instance.
@param[in] Language A pointer to a Null-terminated ASCII string
array indicating the language. This is the
language of the driver name that the caller is
requesting, and it must match one of the
languages specified in SupportedLanguages. The
number of languages supported by a driver is up
to the driver writer. Language is specified
in RFC 4646 or ISO 639-2 language code format.
@param[out] DriverName A pointer to the Unicode string to return.
This Unicode string is the name of the
driver specified by This in the language
specified by Language.
@retval EFI_SUCCESS The Unicode string for the Driver specified by
This and the language specified by Language was
returned in DriverName.
@retval EFI_INVALID_PARAMETER Language is NULL.
@retval EFI_INVALID_PARAMETER DriverName is NULL.
@retval EFI_UNSUPPORTED The driver specified by This does not support
the language specified by Language.
**/
EFI_STATUS
EFIAPI
ArpComponentNameGetDriverName (
IN EFI_COMPONENT_NAME_PROTOCOL *This,
IN CHAR8 *Language,
OUT CHAR16 **DriverName
);
/**
Retrieves a Unicode string that is the user readable name of the controller
that is being managed by a driver.
This function retrieves the user readable name of the controller specified by
ControllerHandle and ChildHandle in the form of a Unicode string. If the
driver specified by This has a user readable name in the language specified by
Language, then a pointer to the controller name is returned in ControllerName,
and EFI_SUCCESS is returned. If the driver specified by This is not currently
managing the controller specified by ControllerHandle and ChildHandle,
then EFI_UNSUPPORTED is returned. If the driver specified by This does not
support the language specified by Language, then EFI_UNSUPPORTED is returned.
@param[in] This A pointer to the EFI_COMPONENT_NAME2_PROTOCOL or
EFI_COMPONENT_NAME_PROTOCOL instance.
@param[in] ControllerHandle The handle of a controller that the driver
specified by This is managing. This handle
specifies the controller whose name is to be
returned.
@param[in] ChildHandle The handle of the child controller to retrieve
the name of. This is an optional parameter that
may be NULL. It will be NULL for device
drivers. It will also be NULL for a bus drivers
that wish to retrieve the name of the bus
controller. It will not be NULL for a bus
driver that wishes to retrieve the name of a
child controller.
@param[in] Language A pointer to a Null-terminated ASCII string
array indicating the language. This is the
language of the driver name that the caller is
requesting, and it must match one of the
languages specified in SupportedLanguages. The
number of languages supported by a driver is up
to the driver writer. Language is specified in
RFC 4646 or ISO 639-2 language code format.
@param[out] ControllerName A pointer to the Unicode string to return.
This Unicode string is the name of the
controller specified by ControllerHandle and
ChildHandle in the language specified by
Language from the point of view of the driver
specified by This.
@retval EFI_SUCCESS The Unicode string for the user readable name in
the language specified by Language for the
driver specified by This was returned in
DriverName.
@retval EFI_INVALID_PARAMETER ControllerHandle is NULL.
@retval EFI_INVALID_PARAMETER ChildHandle is not NULL and it is not a valid
EFI_HANDLE.
@retval EFI_INVALID_PARAMETER Language is NULL.
@retval EFI_INVALID_PARAMETER ControllerName is NULL.
@retval EFI_UNSUPPORTED The driver specified by This is not currently
managing the controller specified by
ControllerHandle and ChildHandle.
@retval EFI_UNSUPPORTED The driver specified by This does not support
the language specified by Language.
**/
EFI_STATUS
EFIAPI
ArpComponentNameGetControllerName (
IN EFI_COMPONENT_NAME_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN EFI_HANDLE ChildHandle OPTIONAL,
IN CHAR8 *Language,
OUT CHAR16 **ControllerName
);
#endif

View File

@@ -0,0 +1,62 @@
## @file
# This module produces EFI ARP Protocol and EFI ARP Service Binding Protocol.
#
# This module produces EFI ARP Protocol upon EFI MNP Protocol, to provide a generic
# implementation of the Address Resolution Protocol that is described in RFCs 826
# and 1122.
#
# Copyright (c) 2006 - 2018, Intel Corporation. All rights reserved.<BR>
# SPDX-License-Identifier: BSD-2-Clause-Patent
#
#
##
[Defines]
INF_VERSION = 0x00010005
BASE_NAME = ArpDxe
MODULE_UNI_FILE = ArpDxe.uni
FILE_GUID = 529D3F93-E8E9-4e73-B1E1-BDF6A9D50113
MODULE_TYPE = UEFI_DRIVER
VERSION_STRING = 1.0
ENTRY_POINT = ArpDriverEntryPoint
UNLOAD_IMAGE = NetLibDefaultUnload
#
# The following information is for reference only and not required by the build tools.
#
# VALID_ARCHITECTURES = IA32 X64 EBC
#
# DRIVER_BINDING = gArpDriverBinding
# COMPONENT_NAME = gArpComponentName
# COMPONENT_NAME2 = gArpComponentName2
#
[Sources]
ArpMain.c
ArpDriver.h
ComponentName.c
ArpImpl.h
ArpImpl.c
ArpDriver.c
[Packages]
MdePkg/MdePkg.dec
MdeModulePkg/MdeModulePkg.dec
[LibraryClasses]
UefiLib
UefiBootServicesTableLib
UefiDriverEntryPoint
DebugLib
NetLib
DpcLib
[Protocols]
gEfiArpServiceBindingProtocolGuid ## BY_START
gEfiManagedNetworkServiceBindingProtocolGuid ## TO_START
gEfiArpProtocolGuid ## BY_START
gEfiManagedNetworkProtocolGuid ## TO_START
[UserExtensions.TianoCore."ExtraFiles"]
ArpDxeExtra.uni

View File

@@ -0,0 +1,18 @@
// /** @file
// This module produces EFI ARP Protocol and EFI ARP Service Binding Protocol.
//
// This module produces EFI ARP Protocol upon EFI MNP Protocol, to provide a generic
// implementation of the Address Resolution Protocol that is described in RFCs 826
// and 1122.
//
// Copyright (c) 2006 - 2018, Intel Corporation. All rights reserved.<BR>
//
// SPDX-License-Identifier: BSD-2-Clause-Patent
//
// **/
#string STR_MODULE_ABSTRACT #language en-US "EFI Address Resolution Protocol"
#string STR_MODULE_DESCRIPTION #language en-US "This module produces EFI ARP Protocol using the EFI MNP Protocol to provide a generic implementation of the Address Resolution Protocol that is described in RFCs 826 and 1122."

View File

@@ -0,0 +1,14 @@
// /** @file
// ArpDxe Localized Strings and Content
//
// Copyright (c) 2013 - 2018, Intel Corporation. All rights reserved.<BR>
//
// SPDX-License-Identifier: BSD-2-Clause-Patent
//
// **/
#string STR_PROPERTIES_MODULE_NAME
#language en-US
"ARP DXE Driver"

1667
NetworkPkg/ArpDxe/ArpImpl.c Normal file

File diff suppressed because it is too large Load Diff

770
NetworkPkg/ArpDxe/ArpImpl.h Normal file
View File

@@ -0,0 +1,770 @@
/** @file
EFI Address Resolution Protocol (ARP) Protocol interface header file.
Copyright (c) 2006 - 2018, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#ifndef _ARP_IMPL_H_
#define _ARP_IMPL_H_
#include <Uefi.h>
#include <Protocol/Arp.h>
#include <Protocol/ManagedNetwork.h>
#include <Protocol/ServiceBinding.h>
#include <Library/DebugLib.h>
#include <Library/UefiDriverEntryPoint.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/UefiLib.h>
#include <Library/NetLib.h>
#include <Library/BaseLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/DpcLib.h>
//
// Ethernet protocol type definitions.
//
#define ARP_ETHER_PROTO_TYPE 0x0806
#define IPV4_ETHER_PROTO_TYPE 0x0800
#define IPV6_ETHER_PROTO_TYPE 0x86DD
//
// ARP opcode definitions.
//
#define ARP_OPCODE_REQUEST 0x0001
#define ARP_OPCODE_REPLY 0x0002
//
// ARP timeout, retry count and interval definitions.
//
#define ARP_DEFAULT_TIMEOUT_VALUE (400 * TICKS_PER_SECOND)
#define ARP_DEFAULT_RETRY_COUNT 2
#define ARP_DEFAULT_RETRY_INTERVAL (5 * TICKS_PER_MS)
#define ARP_PERIODIC_TIMER_INTERVAL (500 * TICKS_PER_MS)
//
// ARP packet head definition.
//
#pragma pack(1)
typedef struct {
UINT16 HwType;
UINT16 ProtoType;
UINT8 HwAddrLen;
UINT8 ProtoAddrLen;
UINT16 OpCode;
} ARP_HEAD;
#pragma pack()
//
// ARP Address definition for internal use.
//
typedef struct {
UINT8 *SenderHwAddr;
UINT8 *SenderProtoAddr;
UINT8 *TargetHwAddr;
UINT8 *TargetProtoAddr;
} ARP_ADDRESS;
#define MATCH_SW_ADDRESS 0x1
#define MATCH_HW_ADDRESS 0x2
//
// Enumeration for the search type. A search type is specified as the keyword to find
// a cache entry in the cache table.
//
typedef enum {
ByNone = 0,
ByProtoAddress = MATCH_SW_ADDRESS,
ByHwAddress = MATCH_HW_ADDRESS,
ByBoth = MATCH_SW_ADDRESS | MATCH_HW_ADDRESS
} FIND_OPTYPE;
#define ARP_INSTANCE_DATA_SIGNATURE SIGNATURE_32('A', 'R', 'P', 'I')
/**
Returns a pointer to the ARP_INSTANCE_DATA structure from the input a.
If the signatures matches, then a pointer to the data structure that contains
a specified field of that data structure is returned.
@param a Pointer to the field specified by ArpProto within a data
structure of type ARP_INSTANCE_DATA.
**/
#define ARP_INSTANCE_DATA_FROM_THIS(a) \
CR ( \
(a), \
ARP_INSTANCE_DATA, \
ArpProto, \
ARP_INSTANCE_DATA_SIGNATURE \
)
typedef struct _ARP_SERVICE_DATA ARP_SERVICE_DATA;
//
// ARP instance context data structure.
//
typedef struct {
UINT32 Signature;
ARP_SERVICE_DATA *ArpService;
EFI_HANDLE Handle;
EFI_ARP_PROTOCOL ArpProto;
LIST_ENTRY List;
EFI_ARP_CONFIG_DATA ConfigData;
BOOLEAN Configured;
BOOLEAN InDestroy;
} ARP_INSTANCE_DATA;
#define ARP_SERVICE_DATA_SIGNATURE SIGNATURE_32('A', 'R', 'P', 'S')
/**
Returns a pointer to the ARP_SERVICE_DATA structure from the input a.
If the signatures matches, then a pointer to the data structure that contains
a specified field of that data structure is returned.
@param a Pointer to the field specified by ServiceBinding within
a data structure of type ARP_SERVICE_DATA.
**/
#define ARP_SERVICE_DATA_FROM_THIS(a) \
CR ( \
(a), \
ARP_SERVICE_DATA, \
ServiceBinding, \
ARP_SERVICE_DATA_SIGNATURE \
)
//
// ARP service data structure.
//
struct _ARP_SERVICE_DATA {
UINT32 Signature;
EFI_SERVICE_BINDING_PROTOCOL ServiceBinding;
EFI_HANDLE MnpChildHandle;
EFI_HANDLE ImageHandle;
EFI_HANDLE ControllerHandle;
EFI_MANAGED_NETWORK_PROTOCOL *Mnp;
EFI_MANAGED_NETWORK_CONFIG_DATA MnpConfigData;
EFI_MANAGED_NETWORK_COMPLETION_TOKEN RxToken;
EFI_SIMPLE_NETWORK_MODE SnpMode;
UINTN ChildrenNumber;
LIST_ENTRY ChildrenList;
LIST_ENTRY PendingRequestTable;
LIST_ENTRY DeniedCacheTable;
LIST_ENTRY ResolvedCacheTable;
EFI_EVENT PeriodicTimer;
};
//
// User request context structure.
//
typedef struct {
LIST_ENTRY List;
ARP_INSTANCE_DATA *Instance;
EFI_EVENT UserRequestEvent;
VOID *UserHwAddrBuffer;
} USER_REQUEST_CONTEXT;
#define ARP_MAX_PROTOCOL_ADDRESS_LEN sizeof(EFI_IP_ADDRESS)
#define ARP_MAX_HARDWARE_ADDRESS_LEN sizeof(EFI_MAC_ADDRESS)
typedef union {
UINT8 ProtoAddress[ARP_MAX_PROTOCOL_ADDRESS_LEN];
UINT8 HwAddress[ARP_MAX_HARDWARE_ADDRESS_LEN];
} NET_ARP_ADDRESS_UNION;
//
// ARP address structure in an ARP packet.
//
typedef struct {
UINT16 Type;
UINT8 Length;
UINT8 *AddressPtr;
NET_ARP_ADDRESS_UNION Buffer;
} NET_ARP_ADDRESS;
//
// Enumeration for ARP address type.
//
typedef enum {
Hardware,
Protocol
} ARP_ADDRESS_TYPE;
//
// ARP cache entry definition.
//
typedef struct {
LIST_ENTRY List;
UINT32 RetryCount;
UINT32 DefaultDecayTime;
UINT32 DecayTime;
UINT32 NextRetryTime;
NET_ARP_ADDRESS Addresses[2];
LIST_ENTRY UserRequestList;
} ARP_CACHE_ENTRY;
/**
This function is used to assign a station address to the ARP cache for this instance
of the ARP driver.
Each ARP instance has one station address. The EFI_ARP_PROTOCOL driver will
respond to ARP requests that match this registered station address. A call to
this function with the ConfigData field set to NULL will reset this ARP instance.
Once a protocol type and station address have been assigned to this ARP instance,
all the following ARP functions will use this information. Attempting to change
the protocol type or station address to a configured ARP instance will result in errors.
@param This Pointer to the EFI_ARP_PROTOCOL instance.
@param ConfigData Pointer to the EFI_ARP_CONFIG_DATA structure.
@retval EFI_SUCCESS The new station address was successfully
registered.
@retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
This is NULL. SwAddressLength is zero when
ConfigData is not NULL. StationAddress is NULL
when ConfigData is not NULL.
@retval EFI_ACCESS_DENIED The SwAddressType, SwAddressLength, or
StationAddress is different from the one that is
already registered.
@retval EFI_OUT_OF_RESOURCES Storage for the new StationAddress could not be
allocated.
**/
EFI_STATUS
EFIAPI
ArpConfigure (
IN EFI_ARP_PROTOCOL *This,
IN EFI_ARP_CONFIG_DATA *ConfigData OPTIONAL
);
/**
This function is used to insert entries into the ARP cache.
ARP cache entries are typically inserted and updated by network protocol drivers
as network traffic is processed. Most ARP cache entries will time out and be
deleted if the network traffic stops. ARP cache entries that were inserted
by the Add() function may be static (will not time out) or dynamic (will time out).
Default ARP cache timeout values are not covered in most network protocol
specifications (although RFC 1122 comes pretty close) and will only be
discussed in general in this specification. The timeout values that are
used in the EFI Sample Implementation should be used only as a guideline.
Final product implementations of the EFI network stack should be tuned for
their expected network environments.
@param This Pointer to the EFI_ARP_PROTOCOL instance.
@param DenyFlag Set to TRUE if this entry is a deny entry. Set to
FALSE if this entry is a normal entry.
@param TargetSwAddress Pointer to a protocol address to add (or deny).
May be set to NULL if DenyFlag is TRUE.
@param TargetHwAddress Pointer to a hardware address to add (or deny).
May be set to NULL if DenyFlag is TRUE.
@param TimeoutValue Time in 100-ns units that this entry will remain
in the ARP cache. A value of zero means that the
entry is permanent. A nonzero value will override
the one given by Configure() if the entry to be
added is a dynamic entry.
@param Overwrite If TRUE, the matching cache entry will be
overwritten with the supplied parameters. If
FALSE, EFI_ACCESS_DENIED is returned if the
corresponding cache entry already exists.
@retval EFI_SUCCESS The entry has been added or updated.
@retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
This is NULL. DenyFlag is FALSE and
TargetHwAddress is NULL. DenyFlag is FALSE and
TargetSwAddress is NULL. TargetHwAddress is NULL
and TargetSwAddress is NULL. Both TargetSwAddress
and TargetHwAddress are not NULL when DenyFlag is
TRUE.
@retval EFI_OUT_OF_RESOURCES The new ARP cache entry could not be allocated.
@retval EFI_ACCESS_DENIED The ARP cache entry already exists and Overwrite
is not true.
@retval EFI_NOT_STARTED The ARP driver instance has not been configured.
**/
EFI_STATUS
EFIAPI
ArpAdd (
IN EFI_ARP_PROTOCOL *This,
IN BOOLEAN DenyFlag,
IN VOID *TargetSwAddress OPTIONAL,
IN VOID *TargetHwAddress OPTIONAL,
IN UINT32 TimeoutValue,
IN BOOLEAN Overwrite
);
/**
This function searches the ARP cache for matching entries and allocates a buffer into
which those entries are copied.
The first part of the allocated buffer is EFI_ARP_FIND_DATA, following which
are protocol address pairs and hardware address pairs.
When finding a specific protocol address (BySwAddress is TRUE and AddressBuffer
is not NULL), the ARP cache timeout for the found entry is reset if Refresh is
set to TRUE. If the found ARP cache entry is a permanent entry, it is not
affected by Refresh.
@param This Pointer to the EFI_ARP_PROTOCOL instance.
@param BySwAddress Set to TRUE to look for matching software protocol
addresses. Set to FALSE to look for matching
hardware protocol addresses.
@param AddressBuffer Pointer to address buffer. Set to NULL to match
all addresses.
@param EntryLength The size of an entry in the entries buffer.
@param EntryCount The number of ARP cache entries that are found by
the specified criteria.
@param Entries Pointer to the buffer that will receive the ARP
cache entries.
@param Refresh Set to TRUE to refresh the timeout value of the
matching ARP cache entry.
@retval EFI_SUCCESS The requested ARP cache entries were copied into
the buffer.
@retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
This is NULL. Both EntryCount and EntryLength are
NULL, when Refresh is FALSE.
@retval EFI_NOT_FOUND No matching entries were found.
@retval EFI_NOT_STARTED The ARP driver instance has not been configured.
**/
EFI_STATUS
EFIAPI
ArpFind (
IN EFI_ARP_PROTOCOL *This,
IN BOOLEAN BySwAddress,
IN VOID *AddressBuffer OPTIONAL,
OUT UINT32 *EntryLength OPTIONAL,
OUT UINT32 *EntryCount OPTIONAL,
OUT EFI_ARP_FIND_DATA **Entries OPTIONAL,
IN BOOLEAN Refresh
);
/**
This function removes specified ARP cache entries.
@param This Pointer to the EFI_ARP_PROTOCOL instance.
@param BySwAddress Set to TRUE to delete matching protocol addresses.
Set to FALSE to delete matching hardware
addresses.
@param AddressBuffer Pointer to the address buffer that is used as a
key to look for the cache entry. Set to NULL to
delete all entries.
@retval EFI_SUCCESS The entry was removed from the ARP cache.
@retval EFI_INVALID_PARAMETER This is NULL.
@retval EFI_NOT_FOUND The specified deletion key was not found.
@retval EFI_NOT_STARTED The ARP driver instance has not been configured.
**/
EFI_STATUS
EFIAPI
ArpDelete (
IN EFI_ARP_PROTOCOL *This,
IN BOOLEAN BySwAddress,
IN VOID *AddressBuffer OPTIONAL
);
/**
This function delete all dynamic entries from the ARP cache that match the specified
software protocol type.
@param This Pointer to the EFI_ARP_PROTOCOL instance.
@retval EFI_SUCCESS The cache has been flushed.
@retval EFI_INVALID_PARAMETER This is NULL.
@retval EFI_NOT_FOUND There are no matching dynamic cache entries.
@retval EFI_NOT_STARTED The ARP driver instance has not been configured.
**/
EFI_STATUS
EFIAPI
ArpFlush (
IN EFI_ARP_PROTOCOL *This
);
/**
This function tries to resolve the TargetSwAddress and optionally returns a
TargetHwAddress if it already exists in the ARP cache.
@param This Pointer to the EFI_ARP_PROTOCOL instance.
@param TargetSwAddress Pointer to the protocol address to resolve.
@param ResolvedEvent Pointer to the event that will be signaled when
the address is resolved or some error occurs.
@param TargetHwAddress Pointer to the buffer for the resolved hardware
address in network byte order.
@retval EFI_SUCCESS The data is copied from the ARP cache into the
TargetHwAddress buffer.
@retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
This is NULL. TargetHwAddress is NULL.
@retval EFI_ACCESS_DENIED The requested address is not present in the normal
ARP cache but is present in the deny address list.
Outgoing traffic to that address is forbidden.
@retval EFI_NOT_STARTED The ARP driver instance has not been configured.
@retval EFI_NOT_READY The request has been started and is not finished.
**/
EFI_STATUS
EFIAPI
ArpRequest (
IN EFI_ARP_PROTOCOL *This,
IN VOID *TargetSwAddress OPTIONAL,
IN EFI_EVENT ResolvedEvent OPTIONAL,
OUT VOID *TargetHwAddress
);
/**
This function aborts the previous ARP request (identified by This, TargetSwAddress
and ResolvedEvent) that is issued by EFI_ARP_PROTOCOL.Request().
If the request is in the internal ARP request queue, the request is aborted
immediately and its ResolvedEvent is signaled. Only an asynchronous address
request needs to be canceled. If TargeSwAddress and ResolveEvent are both
NULL, all the pending asynchronous requests that have been issued by This
instance will be cancelled and their corresponding events will be signaled.
@param This Pointer to the EFI_ARP_PROTOCOL instance.
@param TargetSwAddress Pointer to the protocol address in previous
request session.
@param ResolvedEvent Pointer to the event that is used as the
notification event in previous request session.
@retval EFI_SUCCESS The pending request session(s) is/are aborted and
corresponding event(s) is/are signaled.
@retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
This is NULL. TargetSwAddress is not NULL and
ResolvedEvent is NULL. TargetSwAddress is NULL and
ResolvedEvent is not NULL.
@retval EFI_NOT_STARTED The ARP driver instance has not been configured.
@retval EFI_NOT_FOUND The request is not issued by
EFI_ARP_PROTOCOL.Request().
**/
EFI_STATUS
EFIAPI
ArpCancel (
IN EFI_ARP_PROTOCOL *This,
IN VOID *TargetSwAddress OPTIONAL,
IN EFI_EVENT ResolvedEvent OPTIONAL
);
/**
Configure the instance using the ConfigData. ConfigData is already validated.
@param[in] Instance Pointer to the instance context data to be
configured.
@param[in] ConfigData Pointer to the configuration data used to
configure the instance.
@retval EFI_SUCCESS The instance is configured with the ConfigData.
@retval EFI_ACCESS_DENIED The instance is already configured and the
ConfigData tries to reset some unchangeable
fields.
@retval EFI_INVALID_PARAMETER The ConfigData provides a non-unicast IPv4 address
when the SwAddressType is IPv4.
@retval EFI_OUT_OF_RESOURCES The instance fails to configure due to memory
limitation.
**/
EFI_STATUS
ArpConfigureInstance (
IN ARP_INSTANCE_DATA *Instance,
IN EFI_ARP_CONFIG_DATA *ConfigData OPTIONAL
);
/**
Find the CacheEntry, using ProtocolAddress or HardwareAddress or both, as the keyword,
in the DeniedCacheTable.
@param[in] ArpService Pointer to the arp service context data.
@param[in] ProtocolAddress Pointer to the protocol address.
@param[in] HardwareAddress Pointer to the hardware address.
@return Pointer to the matched cache entry, if NULL no match is found.
**/
ARP_CACHE_ENTRY *
ArpFindDeniedCacheEntry (
IN ARP_SERVICE_DATA *ArpService,
IN NET_ARP_ADDRESS *ProtocolAddress OPTIONAL,
IN NET_ARP_ADDRESS *HardwareAddress OPTIONAL
);
/**
Find the CacheEntry which matches the requirements in the specified CacheTable.
@param[in] CacheTable Pointer to the arp cache table.
@param[in] StartEntry Pointer to the start entry this search begins with
in the cache table.
@param[in] FindOpType The search type.
@param[in] ProtocolAddress Pointer to the protocol address to match.
@param[in] HardwareAddress Pointer to the hardware address to match.
@return Pointer to the matched arp cache entry, if NULL, no match is found.
**/
ARP_CACHE_ENTRY *
ArpFindNextCacheEntryInTable (
IN LIST_ENTRY *CacheTable,
IN LIST_ENTRY *StartEntry,
IN FIND_OPTYPE FindOpType,
IN NET_ARP_ADDRESS *ProtocolAddress OPTIONAL,
IN NET_ARP_ADDRESS *HardwareAddress OPTIONAL
);
/**
Allocate a cache entry and initialize it.
@param[in] Instance Pointer to the instance context data.
@return Pointer to the new created cache entry.
**/
ARP_CACHE_ENTRY *
ArpAllocCacheEntry (
IN ARP_INSTANCE_DATA *Instance
);
/**
Fill the addresses in the CacheEntry using the information passed in by
HwAddr and SwAddr.
@param[in] CacheEntry Pointer to the cache entry.
@param[in] HwAddr Pointer to the software address.
@param[in] SwAddr Pointer to the hardware address.
@return None.
**/
VOID
ArpFillAddressInCacheEntry (
IN ARP_CACHE_ENTRY *CacheEntry,
IN NET_ARP_ADDRESS *HwAddr OPTIONAL,
IN NET_ARP_ADDRESS *SwAddr OPTIONAL
);
/**
Turn the CacheEntry into the resolved status.
@param[in] CacheEntry Pointer to the resolved cache entry.
@param[in] Instance Pointer to the instance context data.
@param[in] UserEvent Pointer to the UserEvent to notify.
@return The count of notifications sent to the instance.
**/
UINTN
ArpAddressResolved (
IN ARP_CACHE_ENTRY *CacheEntry,
IN ARP_INSTANCE_DATA *Instance OPTIONAL,
IN EFI_EVENT UserEvent OPTIONAL
);
/**
Delete cache entries in all the cache tables.
@param[in] Instance Pointer to the instance context data.
@param[in] BySwAddress Delete the cache entry by software address or by
hardware address.
@param[in] AddressBuffer Pointer to the buffer containing the address to
match for the deletion.
@param[in] Force This deletion is forced or not.
@return The count of the deleted cache entries.
**/
UINTN
ArpDeleteCacheEntry (
IN ARP_INSTANCE_DATA *Instance,
IN BOOLEAN BySwAddress,
IN UINT8 *AddressBuffer OPTIONAL,
IN BOOLEAN Force
);
/**
Send out an arp frame using the CachEntry and the ArpOpCode.
@param[in] Instance Pointer to the instance context data.
@param[in] CacheEntry Pointer to the configuration data used to
configure the instance.
@param[in] ArpOpCode The opcode used to send out this Arp frame, either
request or reply.
@return None.
**/
VOID
ArpSendFrame (
IN ARP_INSTANCE_DATA *Instance,
IN ARP_CACHE_ENTRY *CacheEntry,
IN UINT16 ArpOpCode
);
/**
Initialize the instance context data.
@param[in] ArpService Pointer to the arp service context data this
instance belongs to.
@param[out] Instance Pointer to the instance context data.
@return None.
**/
VOID
ArpInitInstance (
IN ARP_SERVICE_DATA *ArpService,
OUT ARP_INSTANCE_DATA *Instance
);
/**
Process the Arp packets received from Mnp, the procedure conforms to RFC826.
@param[in] Context Pointer to the context data registerd to the
Event.
@return None.
**/
VOID
EFIAPI
ArpOnFrameRcvdDpc (
IN VOID *Context
);
/**
Queue ArpOnFrameRcvdDpc as a DPC at TPL_CALLBACK.
@param[in] Event The Event this notify function registered to.
@param[in] Context Pointer to the context data registerd to the
Event.
@return None.
**/
VOID
EFIAPI
ArpOnFrameRcvd (
IN EFI_EVENT Event,
IN VOID *Context
);
/**
Process the already sent arp packets.
@param[in] Context Pointer to the context data registerd to the
Event.
@return None.
**/
VOID
EFIAPI
ArpOnFrameSentDpc (
IN VOID *Context
);
/**
Request ArpOnFrameSentDpc as a DPC at TPL_CALLBACK.
@param[in] Event The Event this notify function registered to.
@param[in] Context Pointer to the context data registerd to the
Event.
@return None.
**/
VOID
EFIAPI
ArpOnFrameSent (
IN EFI_EVENT Event,
IN VOID *Context
);
/**
Process the arp cache olding and drive the retrying arp requests.
@param[in] Event The Event this notify function registered to.
@param[in] Context Pointer to the context data registerd to the
Event.
@return None.
**/
VOID
EFIAPI
ArpTimerHandler (
IN EFI_EVENT Event,
IN VOID *Context
);
/**
Cancel the arp request.
@param[in] Instance Pointer to the instance context data.
@param[in] TargetSwAddress Pointer to the buffer containing the target
software address to match the arp request.
@param[in] UserEvent The user event used to notify this request
cancellation.
@return The count of the cancelled requests.
**/
UINTN
ArpCancelRequest (
IN ARP_INSTANCE_DATA *Instance,
IN VOID *TargetSwAddress OPTIONAL,
IN EFI_EVENT UserEvent OPTIONAL
);
/**
Find the cache entry in the cache table.
@param[in] Instance Pointer to the instance context data.
@param[in] BySwAddress Set to TRUE to look for matching software protocol
addresses. Set to FALSE to look for matching
hardware protocol addresses.
@param[in] AddressBuffer Pointer to address buffer. Set to NULL to match
all addresses.
@param[out] EntryLength The size of an entry in the entries buffer.
@param[out] EntryCount The number of ARP cache entries that are found by
the specified criteria.
@param[out] Entries Pointer to the buffer that will receive the ARP
cache entries.
@param[in] Refresh Set to TRUE to refresh the timeout value of the
matching ARP cache entry.
@retval EFI_SUCCESS The requested ARP cache entries are copied into
the buffer.
@retval EFI_NOT_FOUND No matching entries found.
@retval EFI_OUT_OF_RESOURCE There is a memory allocation failure.
**/
EFI_STATUS
ArpFindCacheEntry (
IN ARP_INSTANCE_DATA *Instance,
IN BOOLEAN BySwAddress,
IN VOID *AddressBuffer OPTIONAL,
OUT UINT32 *EntryLength OPTIONAL,
OUT UINT32 *EntryCount OPTIONAL,
OUT EFI_ARP_FIND_DATA **Entries OPTIONAL,
IN BOOLEAN Refresh
);
#endif

739
NetworkPkg/ArpDxe/ArpMain.c Normal file
View File

@@ -0,0 +1,739 @@
/** @file
Implementation of EFI Address Resolution Protocol (ARP) Protocol interface functions.
Copyright (c) 2006 - 2018, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "ArpImpl.h"
/**
This function is used to assign a station address to the ARP cache for this instance
of the ARP driver.
Each ARP instance has one station address. The EFI_ARP_PROTOCOL driver will
respond to ARP requests that match this registered station address. A call to
this function with the ConfigData field set to NULL will reset this ARP instance.
Once a protocol type and station address have been assigned to this ARP instance,
all the following ARP functions will use this information. Attempting to change
the protocol type or station address to a configured ARP instance will result in errors.
@param This Pointer to the EFI_ARP_PROTOCOL instance.
@param ConfigData Pointer to the EFI_ARP_CONFIG_DATA structure.
@retval EFI_SUCCESS The new station address was successfully
registered.
@retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
This is NULL. SwAddressLength is zero when
ConfigData is not NULL. StationAddress is NULL
when ConfigData is not NULL.
@retval EFI_ACCESS_DENIED The SwAddressType, SwAddressLength, or
StationAddress is different from the one that is
already registered.
@retval EFI_OUT_OF_RESOURCES Storage for the new StationAddress could not be
allocated.
**/
EFI_STATUS
EFIAPI
ArpConfigure (
IN EFI_ARP_PROTOCOL *This,
IN EFI_ARP_CONFIG_DATA *ConfigData OPTIONAL
)
{
EFI_STATUS Status;
ARP_INSTANCE_DATA *Instance;
EFI_TPL OldTpl;
if (This == NULL) {
return EFI_INVALID_PARAMETER;
}
if ((ConfigData != NULL) &&
((ConfigData->SwAddressLength == 0) ||
(ConfigData->StationAddress == NULL) ||
(ConfigData->SwAddressType <= 1500))) {
return EFI_INVALID_PARAMETER;
}
Instance = ARP_INSTANCE_DATA_FROM_THIS (This);
OldTpl = gBS->RaiseTPL (TPL_CALLBACK);
//
// Configure this instance, the ConfigData has already passed the basic checks.
//
Status = ArpConfigureInstance (Instance, ConfigData);
gBS->RestoreTPL (OldTpl);
return Status;
}
/**
This function is used to insert entries into the ARP cache.
ARP cache entries are typically inserted and updated by network protocol drivers
as network traffic is processed. Most ARP cache entries will time out and be
deleted if the network traffic stops. ARP cache entries that were inserted
by the Add() function may be static (will not time out) or dynamic (will time out).
Default ARP cache timeout values are not covered in most network protocol
specifications (although RFC 1122 comes pretty close) and will only be
discussed in general in this specification. The timeout values that are
used in the EFI Sample Implementation should be used only as a guideline.
Final product implementations of the EFI network stack should be tuned for
their expected network environments.
@param This Pointer to the EFI_ARP_PROTOCOL instance.
@param DenyFlag Set to TRUE if this entry is a deny entry. Set to
FALSE if this entry is a normal entry.
@param TargetSwAddress Pointer to a protocol address to add (or deny).
May be set to NULL if DenyFlag is TRUE.
@param TargetHwAddress Pointer to a hardware address to add (or deny).
May be set to NULL if DenyFlag is TRUE.
@param TimeoutValue Time in 100-ns units that this entry will remain
in the ARP cache. A value of zero means that the
entry is permanent. A nonzero value will override
the one given by Configure() if the entry to be
added is a dynamic entry.
@param Overwrite If TRUE, the matching cache entry will be
overwritten with the supplied parameters. If
FALSE, EFI_ACCESS_DENIED is returned if the
corresponding cache entry already exists.
@retval EFI_SUCCESS The entry has been added or updated.
@retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
This is NULL. DenyFlag is FALSE and
TargetHwAddress is NULL. DenyFlag is FALSE and
TargetSwAddress is NULL. TargetHwAddress is NULL
and TargetSwAddress is NULL. Both TargetSwAddress
and TargetHwAddress are not NULL when DenyFlag is
TRUE.
@retval EFI_OUT_OF_RESOURCES The new ARP cache entry could not be allocated.
@retval EFI_ACCESS_DENIED The ARP cache entry already exists and Overwrite
is not true.
@retval EFI_NOT_STARTED The ARP driver instance has not been configured.
**/
EFI_STATUS
EFIAPI
ArpAdd (
IN EFI_ARP_PROTOCOL *This,
IN BOOLEAN DenyFlag,
IN VOID *TargetSwAddress OPTIONAL,
IN VOID *TargetHwAddress OPTIONAL,
IN UINT32 TimeoutValue,
IN BOOLEAN Overwrite
)
{
EFI_STATUS Status;
ARP_INSTANCE_DATA *Instance;
ARP_SERVICE_DATA *ArpService;
ARP_CACHE_ENTRY *CacheEntry;
EFI_SIMPLE_NETWORK_MODE *SnpMode;
NET_ARP_ADDRESS MatchAddress[2];
EFI_TPL OldTpl;
if (This == NULL) {
return EFI_INVALID_PARAMETER;
}
if (((!DenyFlag) && ((TargetHwAddress == NULL) || (TargetSwAddress == NULL))) ||
(DenyFlag && (TargetHwAddress != NULL) && (TargetSwAddress != NULL)) ||
((TargetHwAddress == NULL) && (TargetSwAddress == NULL))) {
return EFI_INVALID_PARAMETER;
}
Instance = ARP_INSTANCE_DATA_FROM_THIS (This);
if (!Instance->Configured) {
return EFI_NOT_STARTED;
}
Status = EFI_SUCCESS;
ArpService = Instance->ArpService;
SnpMode = &Instance->ArpService->SnpMode;
//
// Fill the hardware address part in the MatchAddress.
//
MatchAddress[Hardware].Type = SnpMode->IfType;
MatchAddress[Hardware].Length = (UINT8) SnpMode->HwAddressSize;
MatchAddress[Hardware].AddressPtr = TargetHwAddress;
//
// Fill the software address part in the MatchAddress.
//
MatchAddress[Protocol].Type = Instance->ConfigData.SwAddressType;
MatchAddress[Protocol].Length = Instance->ConfigData.SwAddressLength;
MatchAddress[Protocol].AddressPtr = TargetSwAddress;
OldTpl = gBS->RaiseTPL (TPL_CALLBACK);
//
// See whether the entry to add exists. Check the DeinedCacheTable first.
//
CacheEntry = ArpFindDeniedCacheEntry (
ArpService,
&MatchAddress[Protocol],
&MatchAddress[Hardware]
);
if (CacheEntry == NULL) {
//
// Check the ResolvedCacheTable
//
CacheEntry = ArpFindNextCacheEntryInTable (
&ArpService->ResolvedCacheTable,
NULL,
ByBoth,
&MatchAddress[Protocol],
&MatchAddress[Hardware]
);
}
if ((CacheEntry != NULL) && !Overwrite) {
//
// The entry to add exists, if not Overwirte, deny this add request.
//
Status = EFI_ACCESS_DENIED;
goto UNLOCK_EXIT;
}
if ((CacheEntry == NULL) && (TargetSwAddress != NULL)) {
//
// Check whether there are pending requests matching the entry to be added.
//
CacheEntry = ArpFindNextCacheEntryInTable (
&ArpService->PendingRequestTable,
NULL,
ByProtoAddress,
&MatchAddress[Protocol],
NULL
);
}
if (CacheEntry != NULL) {
//
// Remove it from the Table.
//
RemoveEntryList (&CacheEntry->List);
} else {
//
// It's a new entry, allocate memory for the entry.
//
CacheEntry = ArpAllocCacheEntry (Instance);
if (CacheEntry == NULL) {
DEBUG ((EFI_D_ERROR, "ArpAdd: Failed to allocate pool for CacheEntry.\n"));
Status = EFI_OUT_OF_RESOURCES;
goto UNLOCK_EXIT;
}
}
//
// Overwrite these parameters.
//
CacheEntry->DefaultDecayTime = TimeoutValue;
CacheEntry->DecayTime = TimeoutValue;
//
// Fill in the addresses.
//
ArpFillAddressInCacheEntry (
CacheEntry,
&MatchAddress[Hardware],
&MatchAddress[Protocol]
);
//
// Inform the user if there is any.
//
ArpAddressResolved (CacheEntry, NULL, NULL);
//
// Add this CacheEntry to the corresponding CacheTable.
//
if (DenyFlag) {
InsertHeadList (&ArpService->DeniedCacheTable, &CacheEntry->List);
} else {
InsertHeadList (&ArpService->ResolvedCacheTable, &CacheEntry->List);
}
UNLOCK_EXIT:
gBS->RestoreTPL (OldTpl);
return Status;
}
/**
This function searches the ARP cache for matching entries and allocates a buffer into
which those entries are copied.
The first part of the allocated buffer is EFI_ARP_FIND_DATA, following which
are protocol address pairs and hardware address pairs.
When finding a specific protocol address (BySwAddress is TRUE and AddressBuffer
is not NULL), the ARP cache timeout for the found entry is reset if Refresh is
set to TRUE. If the found ARP cache entry is a permanent entry, it is not
affected by Refresh.
@param This Pointer to the EFI_ARP_PROTOCOL instance.
@param BySwAddress Set to TRUE to look for matching software protocol
addresses. Set to FALSE to look for matching
hardware protocol addresses.
@param AddressBuffer Pointer to address buffer. Set to NULL to match
all addresses.
@param EntryLength The size of an entry in the entries buffer.
@param EntryCount The number of ARP cache entries that are found by
the specified criteria.
@param Entries Pointer to the buffer that will receive the ARP
cache entries.
@param Refresh Set to TRUE to refresh the timeout value of the
matching ARP cache entry.
@retval EFI_SUCCESS The requested ARP cache entries were copied into
the buffer.
@retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
This is NULL. Both EntryCount and EntryLength are
NULL, when Refresh is FALSE.
@retval EFI_NOT_FOUND No matching entries were found.
@retval EFI_NOT_STARTED The ARP driver instance has not been configured.
**/
EFI_STATUS
EFIAPI
ArpFind (
IN EFI_ARP_PROTOCOL *This,
IN BOOLEAN BySwAddress,
IN VOID *AddressBuffer OPTIONAL,
OUT UINT32 *EntryLength OPTIONAL,
OUT UINT32 *EntryCount OPTIONAL,
OUT EFI_ARP_FIND_DATA **Entries OPTIONAL,
IN BOOLEAN Refresh
)
{
EFI_STATUS Status;
ARP_INSTANCE_DATA *Instance;
EFI_TPL OldTpl;
if ((This == NULL) ||
(!Refresh && (EntryCount == NULL) && (EntryLength == NULL)) ||
((Entries != NULL) && ((EntryLength == NULL) || (EntryCount == NULL)))) {
return EFI_INVALID_PARAMETER;
}
Instance = ARP_INSTANCE_DATA_FROM_THIS (This);
if (!Instance->Configured) {
return EFI_NOT_STARTED;
}
OldTpl = gBS->RaiseTPL (TPL_CALLBACK);
//
// All the check passed, find the cache entries now.
//
Status = ArpFindCacheEntry (
Instance,
BySwAddress,
AddressBuffer,
EntryLength,
EntryCount,
Entries,
Refresh
);
gBS->RestoreTPL (OldTpl);
return Status;
}
/**
This function removes specified ARP cache entries.
@param This Pointer to the EFI_ARP_PROTOCOL instance.
@param BySwAddress Set to TRUE to delete matching protocol addresses.
Set to FALSE to delete matching hardware
addresses.
@param AddressBuffer Pointer to the address buffer that is used as a
key to look for the cache entry. Set to NULL to
delete all entries.
@retval EFI_SUCCESS The entry was removed from the ARP cache.
@retval EFI_INVALID_PARAMETER This is NULL.
@retval EFI_NOT_FOUND The specified deletion key was not found.
@retval EFI_NOT_STARTED The ARP driver instance has not been configured.
**/
EFI_STATUS
EFIAPI
ArpDelete (
IN EFI_ARP_PROTOCOL *This,
IN BOOLEAN BySwAddress,
IN VOID *AddressBuffer OPTIONAL
)
{
ARP_INSTANCE_DATA *Instance;
UINTN Count;
EFI_TPL OldTpl;
if (This == NULL) {
return EFI_INVALID_PARAMETER;
}
Instance = ARP_INSTANCE_DATA_FROM_THIS (This);
if (!Instance->Configured) {
return EFI_NOT_STARTED;
}
OldTpl = gBS->RaiseTPL (TPL_CALLBACK);
//
// Delete the specified cache entries.
//
Count = ArpDeleteCacheEntry (Instance, BySwAddress, AddressBuffer, TRUE);
gBS->RestoreTPL (OldTpl);
return (Count == 0) ? EFI_NOT_FOUND : EFI_SUCCESS;
}
/**
This function delete all dynamic entries from the ARP cache that match the specified
software protocol type.
@param This Pointer to the EFI_ARP_PROTOCOL instance.
@retval EFI_SUCCESS The cache has been flushed.
@retval EFI_INVALID_PARAMETER This is NULL.
@retval EFI_NOT_FOUND There are no matching dynamic cache entries.
@retval EFI_NOT_STARTED The ARP driver instance has not been configured.
**/
EFI_STATUS
EFIAPI
ArpFlush (
IN EFI_ARP_PROTOCOL *This
)
{
ARP_INSTANCE_DATA *Instance;
UINTN Count;
EFI_TPL OldTpl;
if (This == NULL) {
return EFI_INVALID_PARAMETER;
}
Instance = ARP_INSTANCE_DATA_FROM_THIS (This);
if (!Instance->Configured) {
return EFI_NOT_STARTED;
}
OldTpl = gBS->RaiseTPL (TPL_CALLBACK);
//
// Delete the dynamic entries from the cache table.
//
Count = ArpDeleteCacheEntry (Instance, FALSE, NULL, FALSE);
gBS->RestoreTPL (OldTpl);
return (Count == 0) ? EFI_NOT_FOUND : EFI_SUCCESS;
}
/**
This function tries to resolve the TargetSwAddress and optionally returns a
TargetHwAddress if it already exists in the ARP cache.
@param This Pointer to the EFI_ARP_PROTOCOL instance.
@param TargetSwAddress Pointer to the protocol address to resolve.
@param ResolvedEvent Pointer to the event that will be signaled when
the address is resolved or some error occurs.
@param TargetHwAddress Pointer to the buffer for the resolved hardware
address in network byte order.
@retval EFI_SUCCESS The data is copied from the ARP cache into the
TargetHwAddress buffer.
@retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
This is NULL. TargetHwAddress is NULL.
@retval EFI_ACCESS_DENIED The requested address is not present in the normal
ARP cache but is present in the deny address list.
Outgoing traffic to that address is forbidden.
@retval EFI_NOT_STARTED The ARP driver instance has not been configured.
@retval EFI_NOT_READY The request has been started and is not finished.
**/
EFI_STATUS
EFIAPI
ArpRequest (
IN EFI_ARP_PROTOCOL *This,
IN VOID *TargetSwAddress OPTIONAL,
IN EFI_EVENT ResolvedEvent OPTIONAL,
OUT VOID *TargetHwAddress
)
{
EFI_STATUS Status;
ARP_INSTANCE_DATA *Instance;
ARP_SERVICE_DATA *ArpService;
EFI_SIMPLE_NETWORK_MODE *SnpMode;
ARP_CACHE_ENTRY *CacheEntry;
NET_ARP_ADDRESS HardwareAddress;
NET_ARP_ADDRESS ProtocolAddress;
USER_REQUEST_CONTEXT *RequestContext;
EFI_TPL OldTpl;
if ((This == NULL) || (TargetHwAddress == NULL)) {
return EFI_INVALID_PARAMETER;
}
Instance = ARP_INSTANCE_DATA_FROM_THIS (This);
if (!Instance->Configured) {
return EFI_NOT_STARTED;
}
Status = EFI_SUCCESS;
ArpService = Instance->ArpService;
SnpMode = &ArpService->SnpMode;
if ((TargetSwAddress == NULL) ||
((Instance->ConfigData.SwAddressType == IPV4_ETHER_PROTO_TYPE) &&
IP4_IS_LOCAL_BROADCAST (*((UINT32 *)TargetSwAddress)))) {
//
// Return the hardware broadcast address.
//
CopyMem (TargetHwAddress, &SnpMode->BroadcastAddress, SnpMode->HwAddressSize);
goto SIGNAL_USER;
}
if ((Instance->ConfigData.SwAddressType == IPV4_ETHER_PROTO_TYPE) &&
IP4_IS_MULTICAST (NTOHL (*((UINT32 *)TargetSwAddress)))) {
//
// If the software address is an IPv4 multicast address, invoke Mnp to
// resolve the address.
//
Status = ArpService->Mnp->McastIpToMac (
ArpService->Mnp,
FALSE,
TargetSwAddress,
TargetHwAddress
);
goto SIGNAL_USER;
}
HardwareAddress.Type = SnpMode->IfType;
HardwareAddress.Length = (UINT8)SnpMode->HwAddressSize;
HardwareAddress.AddressPtr = NULL;
ProtocolAddress.Type = Instance->ConfigData.SwAddressType;
ProtocolAddress.Length = Instance->ConfigData.SwAddressLength;
ProtocolAddress.AddressPtr = TargetSwAddress;
//
// Initialize the TargetHwAddrss to a zero address.
//
ZeroMem (TargetHwAddress, SnpMode->HwAddressSize);
OldTpl = gBS->RaiseTPL (TPL_CALLBACK);
//
// Check whether the software address is in the denied table.
//
CacheEntry = ArpFindDeniedCacheEntry (ArpService, &ProtocolAddress, NULL);
if (CacheEntry != NULL) {
Status = EFI_ACCESS_DENIED;
goto UNLOCK_EXIT;
}
//
// Check whether the software address is already resolved.
//
CacheEntry = ArpFindNextCacheEntryInTable (
&ArpService->ResolvedCacheTable,
NULL,
ByProtoAddress,
&ProtocolAddress,
NULL
);
if (CacheEntry != NULL) {
//
// Resolved, copy the address into the user buffer.
//
CopyMem (
TargetHwAddress,
CacheEntry->Addresses[Hardware].AddressPtr,
CacheEntry->Addresses[Hardware].Length
);
goto UNLOCK_EXIT;
}
if (ResolvedEvent == NULL) {
Status = EFI_NOT_READY;
goto UNLOCK_EXIT;
}
//
// Create a request context for this arp request.
//
RequestContext = AllocatePool (sizeof(USER_REQUEST_CONTEXT));
if (RequestContext == NULL) {
DEBUG ((EFI_D_ERROR, "ArpRequest: Allocate memory for RequestContext failed.\n"));
Status = EFI_OUT_OF_RESOURCES;
goto UNLOCK_EXIT;
}
RequestContext->Instance = Instance;
RequestContext->UserRequestEvent = ResolvedEvent;
RequestContext->UserHwAddrBuffer = TargetHwAddress;
InitializeListHead (&RequestContext->List);
//
// Check whether there is a same request.
//
CacheEntry = ArpFindNextCacheEntryInTable (
&ArpService->PendingRequestTable,
NULL,
ByProtoAddress,
&ProtocolAddress,
NULL
);
if (CacheEntry != NULL) {
CacheEntry->NextRetryTime = Instance->ConfigData.RetryTimeOut;
CacheEntry->RetryCount = Instance->ConfigData.RetryCount;
} else {
//
// Allocate a cache entry for this request.
//
CacheEntry = ArpAllocCacheEntry (Instance);
if (CacheEntry == NULL) {
DEBUG ((EFI_D_ERROR, "ArpRequest: Allocate memory for CacheEntry failed.\n"));
FreePool (RequestContext);
Status = EFI_OUT_OF_RESOURCES;
goto UNLOCK_EXIT;
}
//
// Fill the software address.
//
ArpFillAddressInCacheEntry (CacheEntry, &HardwareAddress, &ProtocolAddress);
//
// Add this entry into the PendingRequestTable.
//
InsertTailList (&ArpService->PendingRequestTable, &CacheEntry->List);
}
//
// Link this request context into the cache entry.
//
InsertHeadList (&CacheEntry->UserRequestList, &RequestContext->List);
//
// Send out the ARP Request frame.
//
ArpSendFrame (Instance, CacheEntry, ARP_OPCODE_REQUEST);
Status = EFI_NOT_READY;
UNLOCK_EXIT:
gBS->RestoreTPL (OldTpl);
SIGNAL_USER:
if ((ResolvedEvent != NULL) && (Status == EFI_SUCCESS)) {
gBS->SignalEvent (ResolvedEvent);
//
// Dispatch the DPC queued by the NotifyFunction of ResolvedEvent.
//
DispatchDpc ();
}
return Status;
}
/**
This function aborts the previous ARP request (identified by This, TargetSwAddress
and ResolvedEvent) that is issued by EFI_ARP_PROTOCOL.Request().
If the request is in the internal ARP request queue, the request is aborted
immediately and its ResolvedEvent is signaled. Only an asynchronous address
request needs to be canceled. If TargeSwAddress and ResolveEvent are both
NULL, all the pending asynchronous requests that have been issued by This
instance will be cancelled and their corresponding events will be signaled.
@param This Pointer to the EFI_ARP_PROTOCOL instance.
@param TargetSwAddress Pointer to the protocol address in previous
request session.
@param ResolvedEvent Pointer to the event that is used as the
notification event in previous request session.
@retval EFI_SUCCESS The pending request session(s) is/are aborted and
corresponding event(s) is/are signaled.
@retval EFI_INVALID_PARAMETER One or more of the following conditions is TRUE:
This is NULL. TargetSwAddress is not NULL and
ResolvedEvent is NULL. TargetSwAddress is NULL and
ResolvedEvent is not NULL.
@retval EFI_NOT_STARTED The ARP driver instance has not been configured.
@retval EFI_NOT_FOUND The request is not issued by
EFI_ARP_PROTOCOL.Request().
**/
EFI_STATUS
EFIAPI
ArpCancel (
IN EFI_ARP_PROTOCOL *This,
IN VOID *TargetSwAddress OPTIONAL,
IN EFI_EVENT ResolvedEvent OPTIONAL
)
{
ARP_INSTANCE_DATA *Instance;
UINTN Count;
EFI_TPL OldTpl;
if ((This == NULL) ||
((TargetSwAddress != NULL) && (ResolvedEvent == NULL)) ||
((TargetSwAddress == NULL) && (ResolvedEvent != NULL))) {
return EFI_INVALID_PARAMETER;
}
Instance = ARP_INSTANCE_DATA_FROM_THIS (This);
if (!Instance->Configured) {
return EFI_NOT_STARTED;
}
OldTpl = gBS->RaiseTPL (TPL_CALLBACK);
//
// Cancel the specified request.
//
Count = ArpCancelRequest (Instance, TargetSwAddress, ResolvedEvent);
//
// Dispatch the DPCs queued by the NotifyFunction of the events signaled
// by ArpCancleRequest.
//
DispatchDpc ();
gBS->RestoreTPL (OldTpl);
return (Count == 0) ? EFI_NOT_FOUND : EFI_SUCCESS;
}

View File

@@ -0,0 +1,219 @@
/** @file
UEFI Component Name(2) protocol implementation for ArpDxe driver.
Copyright (c) 2006 - 2018, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "ArpDriver.h"
//
// EFI Component Name Protocol
//
GLOBAL_REMOVE_IF_UNREFERENCED EFI_COMPONENT_NAME_PROTOCOL gArpComponentName = {
ArpComponentNameGetDriverName,
ArpComponentNameGetControllerName,
"eng"
};
//
// EFI Component Name 2 Protocol
//
GLOBAL_REMOVE_IF_UNREFERENCED EFI_COMPONENT_NAME2_PROTOCOL gArpComponentName2 = {
(EFI_COMPONENT_NAME2_GET_DRIVER_NAME) ArpComponentNameGetDriverName,
(EFI_COMPONENT_NAME2_GET_CONTROLLER_NAME) ArpComponentNameGetControllerName,
"en"
};
GLOBAL_REMOVE_IF_UNREFERENCED EFI_UNICODE_STRING_TABLE mArpDriverNameTable[] = {
{ "eng;en", L"ARP Network Service Driver" },
{ NULL, NULL }
};
GLOBAL_REMOVE_IF_UNREFERENCED EFI_UNICODE_STRING_TABLE mArpControllerNameTable[] = {
{ "eng;en", L"ARP Controller" },
{ NULL, NULL }
};
/**
Retrieves a Unicode string that is the user readable name of the driver.
This function retrieves the user readable name of a driver in the form of a
Unicode string. If the driver specified by This has a user readable name in
the language specified by Language, then a pointer to the driver name is
returned in DriverName, and EFI_SUCCESS is returned. If the driver specified
by This does not support the language specified by Language,
then EFI_UNSUPPORTED is returned.
@param[in] This A pointer to the EFI_COMPONENT_NAME2_PROTOCOL or
EFI_COMPONENT_NAME_PROTOCOL instance.
@param[in] Language A pointer to a Null-terminated ASCII string
array indicating the language. This is the
language of the driver name that the caller is
requesting, and it must match one of the
languages specified in SupportedLanguages. The
number of languages supported by a driver is up
to the driver writer. Language is specified
in RFC 4646 or ISO 639-2 language code format.
@param[out] DriverName A pointer to the Unicode string to return.
This Unicode string is the name of the
driver specified by This in the language
specified by Language.
@retval EFI_SUCCESS The Unicode string for the Driver specified by
This and the language specified by Language was
returned in DriverName.
@retval EFI_INVALID_PARAMETER Language is NULL.
@retval EFI_INVALID_PARAMETER DriverName is NULL.
@retval EFI_UNSUPPORTED The driver specified by This does not support
the language specified by Language.
**/
EFI_STATUS
EFIAPI
ArpComponentNameGetDriverName (
IN EFI_COMPONENT_NAME_PROTOCOL *This,
IN CHAR8 *Language,
OUT CHAR16 **DriverName
)
{
return LookupUnicodeString2 (
Language,
This->SupportedLanguages,
mArpDriverNameTable,
DriverName,
(BOOLEAN)(This == &gArpComponentName)
);
}
/**
Retrieves a Unicode string that is the user readable name of the controller
that is being managed by a driver.
This function retrieves the user readable name of the controller specified by
ControllerHandle and ChildHandle in the form of a Unicode string. If the
driver specified by This has a user readable name in the language specified by
Language, then a pointer to the controller name is returned in ControllerName,
and EFI_SUCCESS is returned. If the driver specified by This is not currently
managing the controller specified by ControllerHandle and ChildHandle,
then EFI_UNSUPPORTED is returned. If the driver specified by This does not
support the language specified by Language, then EFI_UNSUPPORTED is returned.
@param[in] This A pointer to the EFI_COMPONENT_NAME2_PROTOCOL or
EFI_COMPONENT_NAME_PROTOCOL instance.
@param[in] ControllerHandle The handle of a controller that the driver
specified by This is managing. This handle
specifies the controller whose name is to be
returned.
@param[in] ChildHandle The handle of the child controller to retrieve
the name of. This is an optional parameter that
may be NULL. It will be NULL for device
drivers. It will also be NULL for a bus drivers
that wish to retrieve the name of the bus
controller. It will not be NULL for a bus
driver that wishes to retrieve the name of a
child controller.
@param[in] Language A pointer to a Null-terminated ASCII string
array indicating the language. This is the
language of the driver name that the caller is
requesting, and it must match one of the
languages specified in SupportedLanguages. The
number of languages supported by a driver is up
to the driver writer. Language is specified in
RFC 4646 or ISO 639-2 language code format.
@param[out] ControllerName A pointer to the Unicode string to return.
This Unicode string is the name of the
controller specified by ControllerHandle and
ChildHandle in the language specified by
Language from the point of view of the driver
specified by This.
@retval EFI_SUCCESS The Unicode string for the user readable name in
the language specified by Language for the
driver specified by This was returned in
DriverName.
@retval EFI_INVALID_PARAMETER ControllerHandle is NULL.
@retval EFI_INVALID_PARAMETER ChildHandle is not NULL and it is not a valid
EFI_HANDLE.
@retval EFI_INVALID_PARAMETER Language is NULL.
@retval EFI_INVALID_PARAMETER ControllerName is NULL.
@retval EFI_UNSUPPORTED The driver specified by This is not currently
managing the controller specified by
ControllerHandle and ChildHandle.
@retval EFI_UNSUPPORTED The driver specified by This does not support
the language specified by Language.
**/
EFI_STATUS
EFIAPI
ArpComponentNameGetControllerName (
IN EFI_COMPONENT_NAME_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN EFI_HANDLE ChildHandle OPTIONAL,
IN CHAR8 *Language,
OUT CHAR16 **ControllerName
)
{
EFI_STATUS Status;
EFI_ARP_PROTOCOL *Arp;
//
// Only provide names for child handles.
//
if (ChildHandle == NULL) {
return EFI_UNSUPPORTED;
}
//
// Make sure this driver produced ChildHandle
//
Status = EfiTestChildHandle (
ControllerHandle,
ChildHandle,
&gEfiManagedNetworkProtocolGuid
);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Retrieve an instance of a produced protocol from ChildHandle
//
Status = gBS->OpenProtocol (
ChildHandle,
&gEfiArpProtocolGuid,
(VOID **)&Arp,
NULL,
NULL,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
return Status;
}
return LookupUnicodeString2 (
Language,
This->SupportedLanguages,
mArpControllerNameTable,
ControllerName,
(BOOLEAN)(This == &gArpComponentName)
);
}