AppPkg/Applications/Python: Add Python 2.7.2 sources since the release of Python 2.7.3 made them unavailable from the python.org web site.

These files are a subset of the python-2.7.2.tgz distribution from python.org.  Changed files from PyMod-2.7.2 have been copied into the corresponding directories of this tree, replacing the original files in the distribution.

Signed-off-by: daryl.mcdaniel@intel.com


git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13197 6f19259b-4bc3-4df7-8a09-765794883524
This commit is contained in:
darylm503
2012-04-16 22:12:42 +00:00
parent cbc6b5e545
commit 4710c53dca
2106 changed files with 871583 additions and 0 deletions

View File

@ -0,0 +1,6 @@
Demo/parser
Doc/libparser.tex
Lib/AST.py
Lib/symbol.py
Lib/token.py
Modules/parsermodule.c

View File

@ -0,0 +1,32 @@
These files are from the large example of using the `parser' module. Refer
to the Python Library Reference for more information.
It also contains examples for the AST parser.
Files:
------
FILES -- list of files associated with the parser module.
README -- this file.
docstring.py -- sample source file containing only a module docstring.
example.py -- module that uses the `parser' module to extract
information from the parse tree of Python source
code.
simple.py -- sample source containing a "short form" definition.
source.py -- sample source code used to demonstrate ability to
handle nested constructs easily using the functions
and classes in example.py.
test_parser.py program to put the parser module through its paces.
test_unparse.py tests for the unparse module
unparse.py AST (2.7) based example to recreate source code
from an AST.
Enjoy!

View File

@ -0,0 +1,2 @@
"""Some documentation.
"""

View File

@ -0,0 +1,190 @@
"""Simple code to extract class & function docstrings from a module.
This code is used as an example in the library reference manual in the
section on using the parser module. Refer to the manual for a thorough
discussion of the operation of this code.
"""
import os
import parser
import symbol
import token
import types
from types import ListType, TupleType
def get_docs(fileName):
"""Retrieve information from the parse tree of a source file.
fileName
Name of the file to read Python source code from.
"""
source = open(fileName).read()
basename = os.path.basename(os.path.splitext(fileName)[0])
ast = parser.suite(source)
return ModuleInfo(ast.totuple(), basename)
class SuiteInfoBase:
_docstring = ''
_name = ''
def __init__(self, tree = None):
self._class_info = {}
self._function_info = {}
if tree:
self._extract_info(tree)
def _extract_info(self, tree):
# extract docstring
if len(tree) == 2:
found, vars = match(DOCSTRING_STMT_PATTERN[1], tree[1])
else:
found, vars = match(DOCSTRING_STMT_PATTERN, tree[3])
if found:
self._docstring = eval(vars['docstring'])
# discover inner definitions
for node in tree[1:]:
found, vars = match(COMPOUND_STMT_PATTERN, node)
if found:
cstmt = vars['compound']
if cstmt[0] == symbol.funcdef:
name = cstmt[2][1]
self._function_info[name] = FunctionInfo(cstmt)
elif cstmt[0] == symbol.classdef:
name = cstmt[2][1]
self._class_info[name] = ClassInfo(cstmt)
def get_docstring(self):
return self._docstring
def get_name(self):
return self._name
def get_class_names(self):
return self._class_info.keys()
def get_class_info(self, name):
return self._class_info[name]
def __getitem__(self, name):
try:
return self._class_info[name]
except KeyError:
return self._function_info[name]
class SuiteFuncInfo:
# Mixin class providing access to function names and info.
def get_function_names(self):
return self._function_info.keys()
def get_function_info(self, name):
return self._function_info[name]
class FunctionInfo(SuiteInfoBase, SuiteFuncInfo):
def __init__(self, tree = None):
self._name = tree[2][1]
SuiteInfoBase.__init__(self, tree and tree[-1] or None)
class ClassInfo(SuiteInfoBase):
def __init__(self, tree = None):
self._name = tree[2][1]
SuiteInfoBase.__init__(self, tree and tree[-1] or None)
def get_method_names(self):
return self._function_info.keys()
def get_method_info(self, name):
return self._function_info[name]
class ModuleInfo(SuiteInfoBase, SuiteFuncInfo):
def __init__(self, tree = None, name = "<string>"):
self._name = name
SuiteInfoBase.__init__(self, tree)
if tree:
found, vars = match(DOCSTRING_STMT_PATTERN, tree[1])
if found:
self._docstring = vars["docstring"]
def match(pattern, data, vars=None):
"""Match `data' to `pattern', with variable extraction.
pattern
Pattern to match against, possibly containing variables.
data
Data to be checked and against which variables are extracted.
vars
Dictionary of variables which have already been found. If not
provided, an empty dictionary is created.
The `pattern' value may contain variables of the form ['varname'] which
are allowed to match anything. The value that is matched is returned as
part of a dictionary which maps 'varname' to the matched value. 'varname'
is not required to be a string object, but using strings makes patterns
and the code which uses them more readable.
This function returns two values: a boolean indicating whether a match
was found and a dictionary mapping variable names to their associated
values.
"""
if vars is None:
vars = {}
if type(pattern) is ListType: # 'variables' are ['varname']
vars[pattern[0]] = data
return 1, vars
if type(pattern) is not TupleType:
return (pattern == data), vars
if len(data) != len(pattern):
return 0, vars
for pattern, data in map(None, pattern, data):
same, vars = match(pattern, data, vars)
if not same:
break
return same, vars
# This pattern identifies compound statements, allowing them to be readily
# differentiated from simple statements.
#
COMPOUND_STMT_PATTERN = (
symbol.stmt,
(symbol.compound_stmt, ['compound'])
)
# This pattern will match a 'stmt' node which *might* represent a docstring;
# docstrings require that the statement which provides the docstring be the
# first statement in the class or function, which this pattern does not check.
#
DOCSTRING_STMT_PATTERN = (
symbol.stmt,
(symbol.simple_stmt,
(symbol.small_stmt,
(symbol.expr_stmt,
(symbol.testlist,
(symbol.test,
(symbol.and_test,
(symbol.not_test,
(symbol.comparison,
(symbol.expr,
(symbol.xor_expr,
(symbol.and_expr,
(symbol.shift_expr,
(symbol.arith_expr,
(symbol.term,
(symbol.factor,
(symbol.power,
(symbol.atom,
(token.STRING, ['docstring'])
)))))))))))))))),
(token.NEWLINE, '')
))

View File

@ -0,0 +1 @@
def f(): "maybe a docstring"

View File

@ -0,0 +1,27 @@
"""Exmaple file to be parsed for the parsermodule example.
The classes and functions in this module exist only to exhibit the ability
of the handling information extraction from nested definitions using parse
trees. They shouldn't interest you otherwise!
"""
class Simple:
"This class does very little."
def method(self):
"This method does almost nothing."
return 1
class Nested:
"This is a nested class."
def nested_method(self):
"Method of Nested class."
def nested_function():
"Function in method of Nested class."
pass
return nested_function
def function():
"This function lives at the module level."
return 0

View File

@ -0,0 +1,48 @@
#! /usr/bin/env python
# (Force the script to use the latest build.)
#
# test_parser.py
import parser, traceback
_numFailed = 0
def testChunk(t, fileName):
global _numFailed
print '----', fileName,
try:
st = parser.suite(t)
tup = parser.st2tuple(st)
# this discards the first ST; a huge memory savings when running
# against a large source file like Tkinter.py.
st = None
new = parser.tuple2st(tup)
except parser.ParserError, err:
print
print 'parser module raised exception on input file', fileName + ':'
traceback.print_exc()
_numFailed = _numFailed + 1
else:
if tup != parser.st2tuple(new):
print
print 'parser module failed on input file', fileName
_numFailed = _numFailed + 1
else:
print 'o.k.'
def testFile(fileName):
t = open(fileName).read()
testChunk(t, fileName)
def test():
import sys
args = sys.argv[1:]
if not args:
import glob
args = glob.glob("*.py")
args.sort()
map(testFile, args)
sys.exit(_numFailed != 0)
if __name__ == '__main__':
test()

View File

@ -0,0 +1,213 @@
import unittest
from test import test_support
import cStringIO
import sys
import os
import tokenize
import ast
import unparse
def read_pyfile(filename):
"""Read and return the contents of a Python source file (as a
string), taking into account the file encoding."""
with open(filename, "r") as pyfile:
source = pyfile.read()
return source
for_else = """\
def f():
for x in range(10):
break
else:
y = 2
z = 3
"""
while_else = """\
def g():
while True:
break
else:
y = 2
z = 3
"""
relative_import = """\
from . import fred
from .. import barney
from .australia import shrimp as prawns
"""
class_decorator = """\
@f1(arg)
@f2
class Foo: pass
"""
elif1 = """\
if cond1:
suite1
elif cond2:
suite2
else:
suite3
"""
elif2 = """\
if cond1:
suite1
elif cond2:
suite2
"""
try_except_finally = """\
try:
suite1
except ex1:
suite2
except ex2:
suite3
else:
suite4
finally:
suite5
"""
class ASTTestCase(unittest.TestCase):
def assertASTEqual(self, ast1, ast2):
dump1 = ast.dump(ast1)
dump2 = ast.dump(ast2)
self.assertEqual(ast.dump(ast1), ast.dump(ast2))
def check_roundtrip(self, code1, filename="internal"):
ast1 = compile(code1, filename, "exec", ast.PyCF_ONLY_AST)
unparse_buffer = cStringIO.StringIO()
unparse.Unparser(ast1, unparse_buffer)
code2 = unparse_buffer.getvalue()
ast2 = compile(code2, filename, "exec", ast.PyCF_ONLY_AST)
self.assertASTEqual(ast1, ast2)
class UnparseTestCase(ASTTestCase):
# Tests for specific bugs found in earlier versions of unparse
def test_del_statement(self):
self.check_roundtrip("del x, y, z")
def test_shifts(self):
self.check_roundtrip("45 << 2")
self.check_roundtrip("13 >> 7")
def test_for_else(self):
self.check_roundtrip(for_else)
def test_while_else(self):
self.check_roundtrip(while_else)
def test_unary_parens(self):
self.check_roundtrip("(-1)**7")
self.check_roundtrip("(-1.)**8")
self.check_roundtrip("(-1j)**6")
self.check_roundtrip("not True or False")
self.check_roundtrip("True or not False")
def test_integer_parens(self):
self.check_roundtrip("3 .__abs__()")
def test_huge_float(self):
self.check_roundtrip("1e1000")
self.check_roundtrip("-1e1000")
self.check_roundtrip("1e1000j")
self.check_roundtrip("-1e1000j")
def test_min_int(self):
self.check_roundtrip(str(-sys.maxint-1))
self.check_roundtrip("-(%s)" % (sys.maxint + 1))
def test_imaginary_literals(self):
self.check_roundtrip("7j")
self.check_roundtrip("-7j")
self.check_roundtrip("-(7j)")
self.check_roundtrip("0j")
self.check_roundtrip("-0j")
self.check_roundtrip("-(0j)")
def test_negative_zero(self):
self.check_roundtrip("-0")
self.check_roundtrip("-(0)")
self.check_roundtrip("-0b0")
self.check_roundtrip("-(0b0)")
self.check_roundtrip("-0o0")
self.check_roundtrip("-(0o0)")
self.check_roundtrip("-0x0")
self.check_roundtrip("-(0x0)")
def test_lambda_parentheses(self):
self.check_roundtrip("(lambda: int)()")
def test_chained_comparisons(self):
self.check_roundtrip("1 < 4 <= 5")
self.check_roundtrip("a is b is c is not d")
def test_function_arguments(self):
self.check_roundtrip("def f(): pass")
self.check_roundtrip("def f(a): pass")
self.check_roundtrip("def f(b = 2): pass")
self.check_roundtrip("def f(a, b): pass")
self.check_roundtrip("def f(a, b = 2): pass")
self.check_roundtrip("def f(a = 5, b = 2): pass")
self.check_roundtrip("def f(*args, **kwargs): pass")
def test_relative_import(self):
self.check_roundtrip(relative_import)
def test_bytes(self):
self.check_roundtrip("b'123'")
def test_set_literal(self):
self.check_roundtrip("{'a', 'b', 'c'}")
def test_set_comprehension(self):
self.check_roundtrip("{x for x in range(5)}")
def test_dict_comprehension(self):
self.check_roundtrip("{x: x*x for x in range(10)}")
def test_class_decorators(self):
self.check_roundtrip(class_decorator)
def test_elifs(self):
self.check_roundtrip(elif1)
self.check_roundtrip(elif2)
def test_try_except_finally(self):
self.check_roundtrip(try_except_finally)
class DirectoryTestCase(ASTTestCase):
"""Test roundtrip behaviour on all files in Lib and Lib/test."""
# test directories, relative to the root of the distribution
test_directories = 'Lib', os.path.join('Lib', 'test')
def test_files(self):
# get names of files to test
dist_dir = os.path.join(os.path.dirname(__file__), os.pardir, os.pardir)
names = []
for d in self.test_directories:
test_dir = os.path.join(dist_dir, d)
for n in os.listdir(test_dir):
if n.endswith('.py') and not n.startswith('bad'):
names.append(os.path.join(test_dir, n))
for filename in names:
if test_support.verbose:
print('Testing %s' % filename)
source = read_pyfile(filename)
self.check_roundtrip(source)
def test_main():
test_support.run_unittest(UnparseTestCase, DirectoryTestCase)
if __name__ == '__main__':
test_main()

View File

@ -0,0 +1,606 @@
"Usage: unparse.py <path to source file>"
import sys
import ast
import cStringIO
import os
# Large float and imaginary literals get turned into infinities in the AST.
# We unparse those infinities to INFSTR.
INFSTR = "1e" + repr(sys.float_info.max_10_exp + 1)
def interleave(inter, f, seq):
"""Call f on each item in seq, calling inter() in between.
"""
seq = iter(seq)
try:
f(next(seq))
except StopIteration:
pass
else:
for x in seq:
inter()
f(x)
class Unparser:
"""Methods in this class recursively traverse an AST and
output source code for the abstract syntax; original formatting
is disregarded. """
def __init__(self, tree, file = sys.stdout):
"""Unparser(tree, file=sys.stdout) -> None.
Print the source for tree to file."""
self.f = file
self.future_imports = []
self._indent = 0
self.dispatch(tree)
self.f.write("")
self.f.flush()
def fill(self, text = ""):
"Indent a piece of text, according to the current indentation level"
self.f.write("\n"+" "*self._indent + text)
def write(self, text):
"Append a piece of text to the current line."
self.f.write(text)
def enter(self):
"Print ':', and increase the indentation."
self.write(":")
self._indent += 1
def leave(self):
"Decrease the indentation level."
self._indent -= 1
def dispatch(self, tree):
"Dispatcher function, dispatching tree type T to method _T."
if isinstance(tree, list):
for t in tree:
self.dispatch(t)
return
meth = getattr(self, "_"+tree.__class__.__name__)
meth(tree)
############### Unparsing methods ######################
# There should be one method per concrete grammar type #
# Constructors should be grouped by sum type. Ideally, #
# this would follow the order in the grammar, but #
# currently doesn't. #
########################################################
def _Module(self, tree):
for stmt in tree.body:
self.dispatch(stmt)
# stmt
def _Expr(self, tree):
self.fill()
self.dispatch(tree.value)
def _Import(self, t):
self.fill("import ")
interleave(lambda: self.write(", "), self.dispatch, t.names)
def _ImportFrom(self, t):
# A from __future__ import may affect unparsing, so record it.
if t.module and t.module == '__future__':
self.future_imports.extend(n.name for n in t.names)
self.fill("from ")
self.write("." * t.level)
if t.module:
self.write(t.module)
self.write(" import ")
interleave(lambda: self.write(", "), self.dispatch, t.names)
def _Assign(self, t):
self.fill()
for target in t.targets:
self.dispatch(target)
self.write(" = ")
self.dispatch(t.value)
def _AugAssign(self, t):
self.fill()
self.dispatch(t.target)
self.write(" "+self.binop[t.op.__class__.__name__]+"= ")
self.dispatch(t.value)
def _Return(self, t):
self.fill("return")
if t.value:
self.write(" ")
self.dispatch(t.value)
def _Pass(self, t):
self.fill("pass")
def _Break(self, t):
self.fill("break")
def _Continue(self, t):
self.fill("continue")
def _Delete(self, t):
self.fill("del ")
interleave(lambda: self.write(", "), self.dispatch, t.targets)
def _Assert(self, t):
self.fill("assert ")
self.dispatch(t.test)
if t.msg:
self.write(", ")
self.dispatch(t.msg)
def _Exec(self, t):
self.fill("exec ")
self.dispatch(t.body)
if t.globals:
self.write(" in ")
self.dispatch(t.globals)
if t.locals:
self.write(", ")
self.dispatch(t.locals)
def _Print(self, t):
self.fill("print ")
do_comma = False
if t.dest:
self.write(">>")
self.dispatch(t.dest)
do_comma = True
for e in t.values:
if do_comma:self.write(", ")
else:do_comma=True
self.dispatch(e)
if not t.nl:
self.write(",")
def _Global(self, t):
self.fill("global ")
interleave(lambda: self.write(", "), self.write, t.names)
def _Yield(self, t):
self.write("(")
self.write("yield")
if t.value:
self.write(" ")
self.dispatch(t.value)
self.write(")")
def _Raise(self, t):
self.fill('raise ')
if t.type:
self.dispatch(t.type)
if t.inst:
self.write(", ")
self.dispatch(t.inst)
if t.tback:
self.write(", ")
self.dispatch(t.tback)
def _TryExcept(self, t):
self.fill("try")
self.enter()
self.dispatch(t.body)
self.leave()
for ex in t.handlers:
self.dispatch(ex)
if t.orelse:
self.fill("else")
self.enter()
self.dispatch(t.orelse)
self.leave()
def _TryFinally(self, t):
if len(t.body) == 1 and isinstance(t.body[0], ast.TryExcept):
# try-except-finally
self.dispatch(t.body)
else:
self.fill("try")
self.enter()
self.dispatch(t.body)
self.leave()
self.fill("finally")
self.enter()
self.dispatch(t.finalbody)
self.leave()
def _ExceptHandler(self, t):
self.fill("except")
if t.type:
self.write(" ")
self.dispatch(t.type)
if t.name:
self.write(" as ")
self.dispatch(t.name)
self.enter()
self.dispatch(t.body)
self.leave()
def _ClassDef(self, t):
self.write("\n")
for deco in t.decorator_list:
self.fill("@")
self.dispatch(deco)
self.fill("class "+t.name)
if t.bases:
self.write("(")
for a in t.bases:
self.dispatch(a)
self.write(", ")
self.write(")")
self.enter()
self.dispatch(t.body)
self.leave()
def _FunctionDef(self, t):
self.write("\n")
for deco in t.decorator_list:
self.fill("@")
self.dispatch(deco)
self.fill("def "+t.name + "(")
self.dispatch(t.args)
self.write(")")
self.enter()
self.dispatch(t.body)
self.leave()
def _For(self, t):
self.fill("for ")
self.dispatch(t.target)
self.write(" in ")
self.dispatch(t.iter)
self.enter()
self.dispatch(t.body)
self.leave()
if t.orelse:
self.fill("else")
self.enter()
self.dispatch(t.orelse)
self.leave()
def _If(self, t):
self.fill("if ")
self.dispatch(t.test)
self.enter()
self.dispatch(t.body)
self.leave()
# collapse nested ifs into equivalent elifs.
while (t.orelse and len(t.orelse) == 1 and
isinstance(t.orelse[0], ast.If)):
t = t.orelse[0]
self.fill("elif ")
self.dispatch(t.test)
self.enter()
self.dispatch(t.body)
self.leave()
# final else
if t.orelse:
self.fill("else")
self.enter()
self.dispatch(t.orelse)
self.leave()
def _While(self, t):
self.fill("while ")
self.dispatch(t.test)
self.enter()
self.dispatch(t.body)
self.leave()
if t.orelse:
self.fill("else")
self.enter()
self.dispatch(t.orelse)
self.leave()
def _With(self, t):
self.fill("with ")
self.dispatch(t.context_expr)
if t.optional_vars:
self.write(" as ")
self.dispatch(t.optional_vars)
self.enter()
self.dispatch(t.body)
self.leave()
# expr
def _Str(self, tree):
# if from __future__ import unicode_literals is in effect,
# then we want to output string literals using a 'b' prefix
# and unicode literals with no prefix.
if "unicode_literals" not in self.future_imports:
self.write(repr(tree.s))
elif isinstance(tree.s, str):
self.write("b" + repr(tree.s))
elif isinstance(tree.s, unicode):
self.write(repr(tree.s).lstrip("u"))
else:
assert False, "shouldn't get here"
def _Name(self, t):
self.write(t.id)
def _Repr(self, t):
self.write("`")
self.dispatch(t.value)
self.write("`")
def _Num(self, t):
repr_n = repr(t.n)
# Parenthesize negative numbers, to avoid turning (-1)**2 into -1**2.
if repr_n.startswith("-"):
self.write("(")
# Substitute overflowing decimal literal for AST infinities.
self.write(repr_n.replace("inf", INFSTR))
if repr_n.startswith("-"):
self.write(")")
def _List(self, t):
self.write("[")
interleave(lambda: self.write(", "), self.dispatch, t.elts)
self.write("]")
def _ListComp(self, t):
self.write("[")
self.dispatch(t.elt)
for gen in t.generators:
self.dispatch(gen)
self.write("]")
def _GeneratorExp(self, t):
self.write("(")
self.dispatch(t.elt)
for gen in t.generators:
self.dispatch(gen)
self.write(")")
def _SetComp(self, t):
self.write("{")
self.dispatch(t.elt)
for gen in t.generators:
self.dispatch(gen)
self.write("}")
def _DictComp(self, t):
self.write("{")
self.dispatch(t.key)
self.write(": ")
self.dispatch(t.value)
for gen in t.generators:
self.dispatch(gen)
self.write("}")
def _comprehension(self, t):
self.write(" for ")
self.dispatch(t.target)
self.write(" in ")
self.dispatch(t.iter)
for if_clause in t.ifs:
self.write(" if ")
self.dispatch(if_clause)
def _IfExp(self, t):
self.write("(")
self.dispatch(t.body)
self.write(" if ")
self.dispatch(t.test)
self.write(" else ")
self.dispatch(t.orelse)
self.write(")")
def _Set(self, t):
assert(t.elts) # should be at least one element
self.write("{")
interleave(lambda: self.write(", "), self.dispatch, t.elts)
self.write("}")
def _Dict(self, t):
self.write("{")
def write_pair(pair):
(k, v) = pair
self.dispatch(k)
self.write(": ")
self.dispatch(v)
interleave(lambda: self.write(", "), write_pair, zip(t.keys, t.values))
self.write("}")
def _Tuple(self, t):
self.write("(")
if len(t.elts) == 1:
(elt,) = t.elts
self.dispatch(elt)
self.write(",")
else:
interleave(lambda: self.write(", "), self.dispatch, t.elts)
self.write(")")
unop = {"Invert":"~", "Not": "not", "UAdd":"+", "USub":"-"}
def _UnaryOp(self, t):
self.write("(")
self.write(self.unop[t.op.__class__.__name__])
self.write(" ")
# If we're applying unary minus to a number, parenthesize the number.
# This is necessary: -2147483648 is different from -(2147483648) on
# a 32-bit machine (the first is an int, the second a long), and
# -7j is different from -(7j). (The first has real part 0.0, the second
# has real part -0.0.)
if isinstance(t.op, ast.USub) and isinstance(t.operand, ast.Num):
self.write("(")
self.dispatch(t.operand)
self.write(")")
else:
self.dispatch(t.operand)
self.write(")")
binop = { "Add":"+", "Sub":"-", "Mult":"*", "Div":"/", "Mod":"%",
"LShift":"<<", "RShift":">>", "BitOr":"|", "BitXor":"^", "BitAnd":"&",
"FloorDiv":"//", "Pow": "**"}
def _BinOp(self, t):
self.write("(")
self.dispatch(t.left)
self.write(" " + self.binop[t.op.__class__.__name__] + " ")
self.dispatch(t.right)
self.write(")")
cmpops = {"Eq":"==", "NotEq":"!=", "Lt":"<", "LtE":"<=", "Gt":">", "GtE":">=",
"Is":"is", "IsNot":"is not", "In":"in", "NotIn":"not in"}
def _Compare(self, t):
self.write("(")
self.dispatch(t.left)
for o, e in zip(t.ops, t.comparators):
self.write(" " + self.cmpops[o.__class__.__name__] + " ")
self.dispatch(e)
self.write(")")
boolops = {ast.And: 'and', ast.Or: 'or'}
def _BoolOp(self, t):
self.write("(")
s = " %s " % self.boolops[t.op.__class__]
interleave(lambda: self.write(s), self.dispatch, t.values)
self.write(")")
def _Attribute(self,t):
self.dispatch(t.value)
# Special case: 3.__abs__() is a syntax error, so if t.value
# is an integer literal then we need to either parenthesize
# it or add an extra space to get 3 .__abs__().
if isinstance(t.value, ast.Num) and isinstance(t.value.n, int):
self.write(" ")
self.write(".")
self.write(t.attr)
def _Call(self, t):
self.dispatch(t.func)
self.write("(")
comma = False
for e in t.args:
if comma: self.write(", ")
else: comma = True
self.dispatch(e)
for e in t.keywords:
if comma: self.write(", ")
else: comma = True
self.dispatch(e)
if t.starargs:
if comma: self.write(", ")
else: comma = True
self.write("*")
self.dispatch(t.starargs)
if t.kwargs:
if comma: self.write(", ")
else: comma = True
self.write("**")
self.dispatch(t.kwargs)
self.write(")")
def _Subscript(self, t):
self.dispatch(t.value)
self.write("[")
self.dispatch(t.slice)
self.write("]")
# slice
def _Ellipsis(self, t):
self.write("...")
def _Index(self, t):
self.dispatch(t.value)
def _Slice(self, t):
if t.lower:
self.dispatch(t.lower)
self.write(":")
if t.upper:
self.dispatch(t.upper)
if t.step:
self.write(":")
self.dispatch(t.step)
def _ExtSlice(self, t):
interleave(lambda: self.write(', '), self.dispatch, t.dims)
# others
def _arguments(self, t):
first = True
# normal arguments
defaults = [None] * (len(t.args) - len(t.defaults)) + t.defaults
for a,d in zip(t.args, defaults):
if first:first = False
else: self.write(", ")
self.dispatch(a),
if d:
self.write("=")
self.dispatch(d)
# varargs
if t.vararg:
if first:first = False
else: self.write(", ")
self.write("*")
self.write(t.vararg)
# kwargs
if t.kwarg:
if first:first = False
else: self.write(", ")
self.write("**"+t.kwarg)
def _keyword(self, t):
self.write(t.arg)
self.write("=")
self.dispatch(t.value)
def _Lambda(self, t):
self.write("(")
self.write("lambda ")
self.dispatch(t.args)
self.write(": ")
self.dispatch(t.body)
self.write(")")
def _alias(self, t):
self.write(t.name)
if t.asname:
self.write(" as "+t.asname)
def roundtrip(filename, output=sys.stdout):
with open(filename, "r") as pyfile:
source = pyfile.read()
tree = compile(source, filename, "exec", ast.PyCF_ONLY_AST)
Unparser(tree, output)
def testdir(a):
try:
names = [n for n in os.listdir(a) if n.endswith('.py')]
except OSError:
sys.stderr.write("Directory not readable: %s" % a)
else:
for n in names:
fullname = os.path.join(a, n)
if os.path.isfile(fullname):
output = cStringIO.StringIO()
print 'Testing %s' % fullname
try:
roundtrip(fullname, output)
except Exception as e:
print ' Failed to compile, exception is %s' % repr(e)
elif os.path.isdir(fullname):
testdir(fullname)
def main(args):
if args[0] == '--testdir':
for a in args[1:]:
testdir(a)
else:
for a in args:
roundtrip(a)
if __name__=='__main__':
main(sys.argv[1:])