AppPkg/Applications/Python: Add Python 2.7.2 sources since the release of Python 2.7.3 made them unavailable from the python.org web site.
These files are a subset of the python-2.7.2.tgz distribution from python.org. Changed files from PyMod-2.7.2 have been copied into the corresponding directories of this tree, replacing the original files in the distribution. Signed-off-by: daryl.mcdaniel@intel.com git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13197 6f19259b-4bc3-4df7-8a09-765794883524
This commit is contained in:
354
AppPkg/Applications/Python/Python-2.7.2/Include/objimpl.h
Normal file
354
AppPkg/Applications/Python/Python-2.7.2/Include/objimpl.h
Normal file
@ -0,0 +1,354 @@
|
||||
/* The PyObject_ memory family: high-level object memory interfaces.
|
||||
See pymem.h for the low-level PyMem_ family.
|
||||
*/
|
||||
|
||||
#ifndef Py_OBJIMPL_H
|
||||
#define Py_OBJIMPL_H
|
||||
|
||||
#include "pymem.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/* BEWARE:
|
||||
|
||||
Each interface exports both functions and macros. Extension modules should
|
||||
use the functions, to ensure binary compatibility across Python versions.
|
||||
Because the Python implementation is free to change internal details, and
|
||||
the macros may (or may not) expose details for speed, if you do use the
|
||||
macros you must recompile your extensions with each Python release.
|
||||
|
||||
Never mix calls to PyObject_ memory functions with calls to the platform
|
||||
malloc/realloc/ calloc/free, or with calls to PyMem_.
|
||||
*/
|
||||
|
||||
/*
|
||||
Functions and macros for modules that implement new object types.
|
||||
|
||||
- PyObject_New(type, typeobj) allocates memory for a new object of the given
|
||||
type, and initializes part of it. 'type' must be the C structure type used
|
||||
to represent the object, and 'typeobj' the address of the corresponding
|
||||
type object. Reference count and type pointer are filled in; the rest of
|
||||
the bytes of the object are *undefined*! The resulting expression type is
|
||||
'type *'. The size of the object is determined by the tp_basicsize field
|
||||
of the type object.
|
||||
|
||||
- PyObject_NewVar(type, typeobj, n) is similar but allocates a variable-size
|
||||
object with room for n items. In addition to the refcount and type pointer
|
||||
fields, this also fills in the ob_size field.
|
||||
|
||||
- PyObject_Del(op) releases the memory allocated for an object. It does not
|
||||
run a destructor -- it only frees the memory. PyObject_Free is identical.
|
||||
|
||||
- PyObject_Init(op, typeobj) and PyObject_InitVar(op, typeobj, n) don't
|
||||
allocate memory. Instead of a 'type' parameter, they take a pointer to a
|
||||
new object (allocated by an arbitrary allocator), and initialize its object
|
||||
header fields.
|
||||
|
||||
Note that objects created with PyObject_{New, NewVar} are allocated using the
|
||||
specialized Python allocator (implemented in obmalloc.c), if WITH_PYMALLOC is
|
||||
enabled. In addition, a special debugging allocator is used if PYMALLOC_DEBUG
|
||||
is also #defined.
|
||||
|
||||
In case a specific form of memory management is needed (for example, if you
|
||||
must use the platform malloc heap(s), or shared memory, or C++ local storage or
|
||||
operator new), you must first allocate the object with your custom allocator,
|
||||
then pass its pointer to PyObject_{Init, InitVar} for filling in its Python-
|
||||
specific fields: reference count, type pointer, possibly others. You should
|
||||
be aware that Python no control over these objects because they don't
|
||||
cooperate with the Python memory manager. Such objects may not be eligible
|
||||
for automatic garbage collection and you have to make sure that they are
|
||||
released accordingly whenever their destructor gets called (cf. the specific
|
||||
form of memory management you're using).
|
||||
|
||||
Unless you have specific memory management requirements, use
|
||||
PyObject_{New, NewVar, Del}.
|
||||
*/
|
||||
|
||||
/*
|
||||
* Raw object memory interface
|
||||
* ===========================
|
||||
*/
|
||||
|
||||
/* Functions to call the same malloc/realloc/free as used by Python's
|
||||
object allocator. If WITH_PYMALLOC is enabled, these may differ from
|
||||
the platform malloc/realloc/free. The Python object allocator is
|
||||
designed for fast, cache-conscious allocation of many "small" objects,
|
||||
and with low hidden memory overhead.
|
||||
|
||||
PyObject_Malloc(0) returns a unique non-NULL pointer if possible.
|
||||
|
||||
PyObject_Realloc(NULL, n) acts like PyObject_Malloc(n).
|
||||
PyObject_Realloc(p != NULL, 0) does not return NULL, or free the memory
|
||||
at p.
|
||||
|
||||
Returned pointers must be checked for NULL explicitly; no action is
|
||||
performed on failure other than to return NULL (no warning it printed, no
|
||||
exception is set, etc).
|
||||
|
||||
For allocating objects, use PyObject_{New, NewVar} instead whenever
|
||||
possible. The PyObject_{Malloc, Realloc, Free} family is exposed
|
||||
so that you can exploit Python's small-block allocator for non-object
|
||||
uses. If you must use these routines to allocate object memory, make sure
|
||||
the object gets initialized via PyObject_{Init, InitVar} after obtaining
|
||||
the raw memory.
|
||||
*/
|
||||
PyAPI_FUNC(void *) PyObject_Malloc(size_t);
|
||||
PyAPI_FUNC(void *) PyObject_Realloc(void *, size_t);
|
||||
PyAPI_FUNC(void) PyObject_Free(void *);
|
||||
|
||||
|
||||
/* Macros */
|
||||
#ifdef WITH_PYMALLOC
|
||||
#ifdef PYMALLOC_DEBUG /* WITH_PYMALLOC && PYMALLOC_DEBUG */
|
||||
PyAPI_FUNC(void *) _PyObject_DebugMalloc(size_t nbytes);
|
||||
PyAPI_FUNC(void *) _PyObject_DebugRealloc(void *p, size_t nbytes);
|
||||
PyAPI_FUNC(void) _PyObject_DebugFree(void *p);
|
||||
PyAPI_FUNC(void) _PyObject_DebugDumpAddress(const void *p);
|
||||
PyAPI_FUNC(void) _PyObject_DebugCheckAddress(const void *p);
|
||||
PyAPI_FUNC(void) _PyObject_DebugMallocStats(void);
|
||||
PyAPI_FUNC(void *) _PyObject_DebugMallocApi(char api, size_t nbytes);
|
||||
PyAPI_FUNC(void *) _PyObject_DebugReallocApi(char api, void *p, size_t nbytes);
|
||||
PyAPI_FUNC(void) _PyObject_DebugFreeApi(char api, void *p);
|
||||
PyAPI_FUNC(void) _PyObject_DebugCheckAddressApi(char api, const void *p);
|
||||
PyAPI_FUNC(void *) _PyMem_DebugMalloc(size_t nbytes);
|
||||
PyAPI_FUNC(void *) _PyMem_DebugRealloc(void *p, size_t nbytes);
|
||||
PyAPI_FUNC(void) _PyMem_DebugFree(void *p);
|
||||
#define PyObject_MALLOC _PyObject_DebugMalloc
|
||||
#define PyObject_Malloc _PyObject_DebugMalloc
|
||||
#define PyObject_REALLOC _PyObject_DebugRealloc
|
||||
#define PyObject_Realloc _PyObject_DebugRealloc
|
||||
#define PyObject_FREE _PyObject_DebugFree
|
||||
#define PyObject_Free _PyObject_DebugFree
|
||||
|
||||
#else /* WITH_PYMALLOC && ! PYMALLOC_DEBUG */
|
||||
#define PyObject_MALLOC PyObject_Malloc
|
||||
#define PyObject_REALLOC PyObject_Realloc
|
||||
#define PyObject_FREE PyObject_Free
|
||||
#endif
|
||||
|
||||
#else /* ! WITH_PYMALLOC */
|
||||
#define PyObject_MALLOC PyMem_MALLOC
|
||||
#define PyObject_REALLOC PyMem_REALLOC
|
||||
#define PyObject_FREE PyMem_FREE
|
||||
|
||||
#endif /* WITH_PYMALLOC */
|
||||
|
||||
#define PyObject_Del PyObject_Free
|
||||
#define PyObject_DEL PyObject_FREE
|
||||
|
||||
/* for source compatibility with 2.2 */
|
||||
#define _PyObject_Del PyObject_Free
|
||||
|
||||
/*
|
||||
* Generic object allocator interface
|
||||
* ==================================
|
||||
*/
|
||||
|
||||
/* Functions */
|
||||
PyAPI_FUNC(PyObject *) PyObject_Init(PyObject *, PyTypeObject *);
|
||||
PyAPI_FUNC(PyVarObject *) PyObject_InitVar(PyVarObject *,
|
||||
PyTypeObject *, Py_ssize_t);
|
||||
PyAPI_FUNC(PyObject *) _PyObject_New(PyTypeObject *);
|
||||
PyAPI_FUNC(PyVarObject *) _PyObject_NewVar(PyTypeObject *, Py_ssize_t);
|
||||
|
||||
#define PyObject_New(type, typeobj) \
|
||||
( (type *) _PyObject_New(typeobj) )
|
||||
#define PyObject_NewVar(type, typeobj, n) \
|
||||
( (type *) _PyObject_NewVar((typeobj), (n)) )
|
||||
|
||||
/* Macros trading binary compatibility for speed. See also pymem.h.
|
||||
Note that these macros expect non-NULL object pointers.*/
|
||||
#define PyObject_INIT(op, typeobj) \
|
||||
( Py_TYPE(op) = (typeobj), _Py_NewReference((PyObject *)(op)), (op) )
|
||||
#define PyObject_INIT_VAR(op, typeobj, size) \
|
||||
( Py_SIZE(op) = (size), PyObject_INIT((op), (typeobj)) )
|
||||
|
||||
#define _PyObject_SIZE(typeobj) ( (typeobj)->tp_basicsize )
|
||||
|
||||
/* _PyObject_VAR_SIZE returns the number of bytes (as size_t) allocated for a
|
||||
vrbl-size object with nitems items, exclusive of gc overhead (if any). The
|
||||
value is rounded up to the closest multiple of sizeof(void *), in order to
|
||||
ensure that pointer fields at the end of the object are correctly aligned
|
||||
for the platform (this is of special importance for subclasses of, e.g.,
|
||||
str or long, so that pointers can be stored after the embedded data).
|
||||
|
||||
Note that there's no memory wastage in doing this, as malloc has to
|
||||
return (at worst) pointer-aligned memory anyway.
|
||||
*/
|
||||
#if ((SIZEOF_VOID_P - 1) & SIZEOF_VOID_P) != 0
|
||||
# error "_PyObject_VAR_SIZE requires SIZEOF_VOID_P be a power of 2"
|
||||
#endif
|
||||
|
||||
#define _PyObject_VAR_SIZE(typeobj, nitems) \
|
||||
(size_t) \
|
||||
( ( (typeobj)->tp_basicsize + \
|
||||
(nitems)*(typeobj)->tp_itemsize + \
|
||||
(SIZEOF_VOID_P - 1) \
|
||||
) & ~(SIZEOF_VOID_P - 1) \
|
||||
)
|
||||
|
||||
#define PyObject_NEW(type, typeobj) \
|
||||
( (type *) PyObject_Init( \
|
||||
(PyObject *) PyObject_MALLOC( _PyObject_SIZE(typeobj) ), (typeobj)) )
|
||||
|
||||
#define PyObject_NEW_VAR(type, typeobj, n) \
|
||||
( (type *) PyObject_InitVar( \
|
||||
(PyVarObject *) PyObject_MALLOC(_PyObject_VAR_SIZE((typeobj),(n)) ),\
|
||||
(typeobj), (n)) )
|
||||
|
||||
/* This example code implements an object constructor with a custom
|
||||
allocator, where PyObject_New is inlined, and shows the important
|
||||
distinction between two steps (at least):
|
||||
1) the actual allocation of the object storage;
|
||||
2) the initialization of the Python specific fields
|
||||
in this storage with PyObject_{Init, InitVar}.
|
||||
|
||||
PyObject *
|
||||
YourObject_New(...)
|
||||
{
|
||||
PyObject *op;
|
||||
|
||||
op = (PyObject *) Your_Allocator(_PyObject_SIZE(YourTypeStruct));
|
||||
if (op == NULL)
|
||||
return PyErr_NoMemory();
|
||||
|
||||
PyObject_Init(op, &YourTypeStruct);
|
||||
|
||||
op->ob_field = value;
|
||||
...
|
||||
return op;
|
||||
}
|
||||
|
||||
Note that in C++, the use of the new operator usually implies that
|
||||
the 1st step is performed automatically for you, so in a C++ class
|
||||
constructor you would start directly with PyObject_Init/InitVar
|
||||
*/
|
||||
|
||||
/*
|
||||
* Garbage Collection Support
|
||||
* ==========================
|
||||
*/
|
||||
|
||||
/* C equivalent of gc.collect(). */
|
||||
PyAPI_FUNC(Py_ssize_t) PyGC_Collect(void);
|
||||
|
||||
/* Test if a type has a GC head */
|
||||
#define PyType_IS_GC(t) PyType_HasFeature((t), Py_TPFLAGS_HAVE_GC)
|
||||
|
||||
/* Test if an object has a GC head */
|
||||
#define PyObject_IS_GC(o) (PyType_IS_GC(Py_TYPE(o)) && \
|
||||
(Py_TYPE(o)->tp_is_gc == NULL || Py_TYPE(o)->tp_is_gc(o)))
|
||||
|
||||
PyAPI_FUNC(PyVarObject *) _PyObject_GC_Resize(PyVarObject *, Py_ssize_t);
|
||||
#define PyObject_GC_Resize(type, op, n) \
|
||||
( (type *) _PyObject_GC_Resize((PyVarObject *)(op), (n)) )
|
||||
|
||||
/* for source compatibility with 2.2 */
|
||||
#define _PyObject_GC_Del PyObject_GC_Del
|
||||
|
||||
/* GC information is stored BEFORE the object structure. */
|
||||
typedef union _gc_head {
|
||||
struct {
|
||||
union _gc_head *gc_next;
|
||||
union _gc_head *gc_prev;
|
||||
Py_ssize_t gc_refs;
|
||||
} gc;
|
||||
long double dummy; /* force worst-case alignment */
|
||||
} PyGC_Head;
|
||||
|
||||
extern PyGC_Head *_PyGC_generation0;
|
||||
|
||||
#define _Py_AS_GC(o) ((PyGC_Head *)(o)-1)
|
||||
|
||||
#define _PyGC_REFS_UNTRACKED (-2)
|
||||
#define _PyGC_REFS_REACHABLE (-3)
|
||||
#define _PyGC_REFS_TENTATIVELY_UNREACHABLE (-4)
|
||||
|
||||
/* Tell the GC to track this object. NB: While the object is tracked the
|
||||
* collector it must be safe to call the ob_traverse method. */
|
||||
#define _PyObject_GC_TRACK(o) do { \
|
||||
PyGC_Head *g = _Py_AS_GC(o); \
|
||||
if (g->gc.gc_refs != _PyGC_REFS_UNTRACKED) \
|
||||
Py_FatalError("GC object already tracked"); \
|
||||
g->gc.gc_refs = _PyGC_REFS_REACHABLE; \
|
||||
g->gc.gc_next = _PyGC_generation0; \
|
||||
g->gc.gc_prev = _PyGC_generation0->gc.gc_prev; \
|
||||
g->gc.gc_prev->gc.gc_next = g; \
|
||||
_PyGC_generation0->gc.gc_prev = g; \
|
||||
} while (0);
|
||||
|
||||
/* Tell the GC to stop tracking this object.
|
||||
* gc_next doesn't need to be set to NULL, but doing so is a good
|
||||
* way to provoke memory errors if calling code is confused.
|
||||
*/
|
||||
#define _PyObject_GC_UNTRACK(o) do { \
|
||||
PyGC_Head *g = _Py_AS_GC(o); \
|
||||
assert(g->gc.gc_refs != _PyGC_REFS_UNTRACKED); \
|
||||
g->gc.gc_refs = _PyGC_REFS_UNTRACKED; \
|
||||
g->gc.gc_prev->gc.gc_next = g->gc.gc_next; \
|
||||
g->gc.gc_next->gc.gc_prev = g->gc.gc_prev; \
|
||||
g->gc.gc_next = NULL; \
|
||||
} while (0);
|
||||
|
||||
/* True if the object is currently tracked by the GC. */
|
||||
#define _PyObject_GC_IS_TRACKED(o) \
|
||||
((_Py_AS_GC(o))->gc.gc_refs != _PyGC_REFS_UNTRACKED)
|
||||
|
||||
/* True if the object may be tracked by the GC in the future, or already is.
|
||||
This can be useful to implement some optimizations. */
|
||||
#define _PyObject_GC_MAY_BE_TRACKED(obj) \
|
||||
(PyObject_IS_GC(obj) && \
|
||||
(!PyTuple_CheckExact(obj) || _PyObject_GC_IS_TRACKED(obj)))
|
||||
|
||||
|
||||
PyAPI_FUNC(PyObject *) _PyObject_GC_Malloc(size_t);
|
||||
PyAPI_FUNC(PyObject *) _PyObject_GC_New(PyTypeObject *);
|
||||
PyAPI_FUNC(PyVarObject *) _PyObject_GC_NewVar(PyTypeObject *, Py_ssize_t);
|
||||
PyAPI_FUNC(void) PyObject_GC_Track(void *);
|
||||
PyAPI_FUNC(void) PyObject_GC_UnTrack(void *);
|
||||
PyAPI_FUNC(void) PyObject_GC_Del(void *);
|
||||
|
||||
#define PyObject_GC_New(type, typeobj) \
|
||||
( (type *) _PyObject_GC_New(typeobj) )
|
||||
#define PyObject_GC_NewVar(type, typeobj, n) \
|
||||
( (type *) _PyObject_GC_NewVar((typeobj), (n)) )
|
||||
|
||||
|
||||
/* Utility macro to help write tp_traverse functions.
|
||||
* To use this macro, the tp_traverse function must name its arguments
|
||||
* "visit" and "arg". This is intended to keep tp_traverse functions
|
||||
* looking as much alike as possible.
|
||||
*/
|
||||
#define Py_VISIT(op) \
|
||||
do { \
|
||||
if (op) { \
|
||||
int vret = visit((PyObject *)(op), arg); \
|
||||
if (vret) \
|
||||
return vret; \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
/* This is here for the sake of backwards compatibility. Extensions that
|
||||
* use the old GC API will still compile but the objects will not be
|
||||
* tracked by the GC. */
|
||||
#define PyGC_HEAD_SIZE 0
|
||||
#define PyObject_GC_Init(op)
|
||||
#define PyObject_GC_Fini(op)
|
||||
#define PyObject_AS_GC(op) (op)
|
||||
#define PyObject_FROM_GC(op) (op)
|
||||
|
||||
|
||||
/* Test if a type supports weak references */
|
||||
#define PyType_SUPPORTS_WEAKREFS(t) \
|
||||
(PyType_HasFeature((t), Py_TPFLAGS_HAVE_WEAKREFS) \
|
||||
&& ((t)->tp_weaklistoffset > 0))
|
||||
|
||||
#define PyObject_GET_WEAKREFS_LISTPTR(o) \
|
||||
((PyObject **) (((char *) (o)) + Py_TYPE(o)->tp_weaklistoffset))
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
#endif /* !Py_OBJIMPL_H */
|
Reference in New Issue
Block a user