AppPkg/Applications/Python: Add Python 2.7.2 sources since the release of Python 2.7.3 made them unavailable from the python.org web site.

These files are a subset of the python-2.7.2.tgz distribution from python.org.  Changed files from PyMod-2.7.2 have been copied into the corresponding directories of this tree, replacing the original files in the distribution.

Signed-off-by: daryl.mcdaniel@intel.com


git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13197 6f19259b-4bc3-4df7-8a09-765794883524
This commit is contained in:
darylm503
2012-04-16 22:12:42 +00:00
parent cbc6b5e545
commit 4710c53dca
2106 changed files with 871583 additions and 0 deletions

View File

@@ -0,0 +1,40 @@
bits shared by the stringobject and unicodeobject implementations (and
possibly other modules, in a not too distant future).
the stuff in here is included into relevant places; see the individual
source files for details.
--------------------------------------------------------------------
the following defines used by the different modules:
STRINGLIB_CHAR
the type used to hold a character (char or Py_UNICODE)
STRINGLIB_EMPTY
a PyObject representing the empty string, only to be used if
STRINGLIB_MUTABLE is 0
Py_ssize_t STRINGLIB_LEN(PyObject*)
returns the length of the given string object (which must be of the
right type)
PyObject* STRINGLIB_NEW(STRINGLIB_CHAR*, Py_ssize_t)
creates a new string object
STRINGLIB_CHAR* STRINGLIB_STR(PyObject*)
returns the pointer to the character data for the given string
object (which must be of the right type)
int STRINGLIB_CHECK_EXACT(PyObject *)
returns true if the object is an instance of our type, not a subclass
STRINGLIB_MUTABLE
must be 0 or 1 to tell the cpp macros in stringlib code if the object
being operated on is mutable or not

View File

@@ -0,0 +1,30 @@
/* stringlib: count implementation */
#ifndef STRINGLIB_COUNT_H
#define STRINGLIB_COUNT_H
#ifndef STRINGLIB_FASTSEARCH_H
#error must include "stringlib/fastsearch.h" before including this module
#endif
Py_LOCAL_INLINE(Py_ssize_t)
stringlib_count(const STRINGLIB_CHAR* str, Py_ssize_t str_len,
const STRINGLIB_CHAR* sub, Py_ssize_t sub_len,
Py_ssize_t maxcount)
{
Py_ssize_t count;
if (str_len < 0)
return 0; /* start > len(str) */
if (sub_len == 0)
return (str_len < maxcount) ? str_len + 1 : maxcount;
count = fastsearch(str, str_len, sub, sub_len, maxcount, FAST_COUNT);
if (count < 0)
return 0; /* no match */
return count;
}
#endif

View File

@@ -0,0 +1,109 @@
/* NOTE: this API is -ONLY- for use with single byte character strings. */
/* Do not use it with Unicode. */
#include "bytes_methods.h"
static PyObject*
stringlib_isspace(PyObject *self)
{
return _Py_bytes_isspace(STRINGLIB_STR(self), STRINGLIB_LEN(self));
}
static PyObject*
stringlib_isalpha(PyObject *self)
{
return _Py_bytes_isalpha(STRINGLIB_STR(self), STRINGLIB_LEN(self));
}
static PyObject*
stringlib_isalnum(PyObject *self)
{
return _Py_bytes_isalnum(STRINGLIB_STR(self), STRINGLIB_LEN(self));
}
static PyObject*
stringlib_isdigit(PyObject *self)
{
return _Py_bytes_isdigit(STRINGLIB_STR(self), STRINGLIB_LEN(self));
}
static PyObject*
stringlib_islower(PyObject *self)
{
return _Py_bytes_islower(STRINGLIB_STR(self), STRINGLIB_LEN(self));
}
static PyObject*
stringlib_isupper(PyObject *self)
{
return _Py_bytes_isupper(STRINGLIB_STR(self), STRINGLIB_LEN(self));
}
static PyObject*
stringlib_istitle(PyObject *self)
{
return _Py_bytes_istitle(STRINGLIB_STR(self), STRINGLIB_LEN(self));
}
/* functions that return a new object partially translated by ctype funcs: */
static PyObject*
stringlib_lower(PyObject *self)
{
PyObject* newobj;
newobj = STRINGLIB_NEW(NULL, STRINGLIB_LEN(self));
if (!newobj)
return NULL;
_Py_bytes_lower(STRINGLIB_STR(newobj), STRINGLIB_STR(self),
STRINGLIB_LEN(self));
return newobj;
}
static PyObject*
stringlib_upper(PyObject *self)
{
PyObject* newobj;
newobj = STRINGLIB_NEW(NULL, STRINGLIB_LEN(self));
if (!newobj)
return NULL;
_Py_bytes_upper(STRINGLIB_STR(newobj), STRINGLIB_STR(self),
STRINGLIB_LEN(self));
return newobj;
}
static PyObject*
stringlib_title(PyObject *self)
{
PyObject* newobj;
newobj = STRINGLIB_NEW(NULL, STRINGLIB_LEN(self));
if (!newobj)
return NULL;
_Py_bytes_title(STRINGLIB_STR(newobj), STRINGLIB_STR(self),
STRINGLIB_LEN(self));
return newobj;
}
static PyObject*
stringlib_capitalize(PyObject *self)
{
PyObject* newobj;
newobj = STRINGLIB_NEW(NULL, STRINGLIB_LEN(self));
if (!newobj)
return NULL;
_Py_bytes_capitalize(STRINGLIB_STR(newobj), STRINGLIB_STR(self),
STRINGLIB_LEN(self));
return newobj;
}
static PyObject*
stringlib_swapcase(PyObject *self)
{
PyObject* newobj;
newobj = STRINGLIB_NEW(NULL, STRINGLIB_LEN(self));
if (!newobj)
return NULL;
_Py_bytes_swapcase(STRINGLIB_STR(newobj), STRINGLIB_STR(self),
STRINGLIB_LEN(self));
return newobj;
}

View File

@@ -0,0 +1,160 @@
/* stringlib: fastsearch implementation */
#ifndef STRINGLIB_FASTSEARCH_H
#define STRINGLIB_FASTSEARCH_H
/* fast search/count implementation, based on a mix between boyer-
moore and horspool, with a few more bells and whistles on the top.
for some more background, see: http://effbot.org/zone/stringlib.htm */
/* note: fastsearch may access s[n], which isn't a problem when using
Python's ordinary string types, but may cause problems if you're
using this code in other contexts. also, the count mode returns -1
if there cannot possible be a match in the target string, and 0 if
it has actually checked for matches, but didn't find any. callers
beware! */
#define FAST_COUNT 0
#define FAST_SEARCH 1
#define FAST_RSEARCH 2
#if LONG_BIT >= 128
#define STRINGLIB_BLOOM_WIDTH 128
#elif LONG_BIT >= 64
#define STRINGLIB_BLOOM_WIDTH 64
#elif LONG_BIT >= 32
#define STRINGLIB_BLOOM_WIDTH 32
#else
#error "LONG_BIT is smaller than 32"
#endif
#define STRINGLIB_BLOOM_ADD(mask, ch) \
((mask |= (1UL << ((ch) & (STRINGLIB_BLOOM_WIDTH -1)))))
#define STRINGLIB_BLOOM(mask, ch) \
((mask & (1UL << ((ch) & (STRINGLIB_BLOOM_WIDTH -1)))))
Py_LOCAL_INLINE(Py_ssize_t)
fastsearch(const STRINGLIB_CHAR* s, Py_ssize_t n,
const STRINGLIB_CHAR* p, Py_ssize_t m,
Py_ssize_t maxcount, int mode)
{
unsigned long mask;
Py_ssize_t skip, count = 0;
Py_ssize_t i, j, mlast, w;
w = n - m;
if (w < 0 || (mode == FAST_COUNT && maxcount == 0))
return -1;
/* look for special cases */
if (m <= 1) {
if (m <= 0)
return -1;
/* use special case for 1-character strings */
if (mode == FAST_COUNT) {
for (i = 0; i < n; i++)
if (s[i] == p[0]) {
count++;
if (count == maxcount)
return maxcount;
}
return count;
} else if (mode == FAST_SEARCH) {
for (i = 0; i < n; i++)
if (s[i] == p[0])
return i;
} else { /* FAST_RSEARCH */
for (i = n - 1; i > -1; i--)
if (s[i] == p[0])
return i;
}
return -1;
}
mlast = m - 1;
skip = mlast - 1;
mask = 0;
if (mode != FAST_RSEARCH) {
/* create compressed boyer-moore delta 1 table */
/* process pattern[:-1] */
for (i = 0; i < mlast; i++) {
STRINGLIB_BLOOM_ADD(mask, p[i]);
if (p[i] == p[mlast])
skip = mlast - i - 1;
}
/* process pattern[-1] outside the loop */
STRINGLIB_BLOOM_ADD(mask, p[mlast]);
for (i = 0; i <= w; i++) {
/* note: using mlast in the skip path slows things down on x86 */
if (s[i+m-1] == p[m-1]) {
/* candidate match */
for (j = 0; j < mlast; j++)
if (s[i+j] != p[j])
break;
if (j == mlast) {
/* got a match! */
if (mode != FAST_COUNT)
return i;
count++;
if (count == maxcount)
return maxcount;
i = i + mlast;
continue;
}
/* miss: check if next character is part of pattern */
if (!STRINGLIB_BLOOM(mask, s[i+m]))
i = i + m;
else
i = i + skip;
} else {
/* skip: check if next character is part of pattern */
if (!STRINGLIB_BLOOM(mask, s[i+m]))
i = i + m;
}
}
} else { /* FAST_RSEARCH */
/* create compressed boyer-moore delta 1 table */
/* process pattern[0] outside the loop */
STRINGLIB_BLOOM_ADD(mask, p[0]);
/* process pattern[:0:-1] */
for (i = mlast; i > 0; i--) {
STRINGLIB_BLOOM_ADD(mask, p[i]);
if (p[i] == p[0])
skip = i - 1;
}
for (i = w; i >= 0; i--) {
if (s[i] == p[0]) {
/* candidate match */
for (j = mlast; j > 0; j--)
if (s[i+j] != p[j])
break;
if (j == 0)
/* got a match! */
return i;
/* miss: check if previous character is part of pattern */
if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1]))
i = i - m;
else
i = i - skip;
} else {
/* skip: check if previous character is part of pattern */
if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1]))
i = i - m;
}
}
}
if (mode != FAST_COUNT)
return -1;
return count;
}
#endif

View File

@@ -0,0 +1,175 @@
/* stringlib: find/index implementation */
#ifndef STRINGLIB_FIND_H
#define STRINGLIB_FIND_H
#ifndef STRINGLIB_FASTSEARCH_H
#error must include "stringlib/fastsearch.h" before including this module
#endif
Py_LOCAL_INLINE(Py_ssize_t)
stringlib_find(const STRINGLIB_CHAR* str, Py_ssize_t str_len,
const STRINGLIB_CHAR* sub, Py_ssize_t sub_len,
Py_ssize_t offset)
{
Py_ssize_t pos;
if (str_len < 0)
return -1;
if (sub_len == 0)
return offset;
pos = fastsearch(str, str_len, sub, sub_len, -1, FAST_SEARCH);
if (pos >= 0)
pos += offset;
return pos;
}
Py_LOCAL_INLINE(Py_ssize_t)
stringlib_rfind(const STRINGLIB_CHAR* str, Py_ssize_t str_len,
const STRINGLIB_CHAR* sub, Py_ssize_t sub_len,
Py_ssize_t offset)
{
Py_ssize_t pos;
if (str_len < 0)
return -1;
if (sub_len == 0)
return str_len + offset;
pos = fastsearch(str, str_len, sub, sub_len, -1, FAST_RSEARCH);
if (pos >= 0)
pos += offset;
return pos;
}
/* helper macro to fixup start/end slice values */
#define ADJUST_INDICES(start, end, len) \
if (end > len) \
end = len; \
else if (end < 0) { \
end += len; \
if (end < 0) \
end = 0; \
} \
if (start < 0) { \
start += len; \
if (start < 0) \
start = 0; \
}
Py_LOCAL_INLINE(Py_ssize_t)
stringlib_find_slice(const STRINGLIB_CHAR* str, Py_ssize_t str_len,
const STRINGLIB_CHAR* sub, Py_ssize_t sub_len,
Py_ssize_t start, Py_ssize_t end)
{
ADJUST_INDICES(start, end, str_len);
return stringlib_find(str + start, end - start, sub, sub_len, start);
}
Py_LOCAL_INLINE(Py_ssize_t)
stringlib_rfind_slice(const STRINGLIB_CHAR* str, Py_ssize_t str_len,
const STRINGLIB_CHAR* sub, Py_ssize_t sub_len,
Py_ssize_t start, Py_ssize_t end)
{
ADJUST_INDICES(start, end, str_len);
return stringlib_rfind(str + start, end - start, sub, sub_len, start);
}
#ifdef STRINGLIB_WANT_CONTAINS_OBJ
Py_LOCAL_INLINE(int)
stringlib_contains_obj(PyObject* str, PyObject* sub)
{
return stringlib_find(
STRINGLIB_STR(str), STRINGLIB_LEN(str),
STRINGLIB_STR(sub), STRINGLIB_LEN(sub), 0
) != -1;
}
#endif /* STRINGLIB_WANT_CONTAINS_OBJ */
/*
This function is a helper for the "find" family (find, rfind, index,
rindex) and for count, startswith and endswith, because they all have
the same behaviour for the arguments.
It does not touch the variables received until it knows everything
is ok.
*/
#define FORMAT_BUFFER_SIZE 50
Py_LOCAL_INLINE(int)
stringlib_parse_args_finds(const char * function_name, PyObject *args,
PyObject **subobj,
Py_ssize_t *start, Py_ssize_t *end)
{
PyObject *tmp_subobj;
Py_ssize_t tmp_start = 0;
Py_ssize_t tmp_end = PY_SSIZE_T_MAX;
PyObject *obj_start=Py_None, *obj_end=Py_None;
char format[FORMAT_BUFFER_SIZE] = "O|OO:";
size_t len = strlen(format);
strncpy(format + len, function_name, FORMAT_BUFFER_SIZE - len - 1);
format[FORMAT_BUFFER_SIZE - 1] = '\0';
if (!PyArg_ParseTuple(args, format, &tmp_subobj, &obj_start, &obj_end))
return 0;
/* To support None in "start" and "end" arguments, meaning
the same as if they were not passed.
*/
if (obj_start != Py_None)
if (!_PyEval_SliceIndex(obj_start, &tmp_start))
return 0;
if (obj_end != Py_None)
if (!_PyEval_SliceIndex(obj_end, &tmp_end))
return 0;
*start = tmp_start;
*end = tmp_end;
*subobj = tmp_subobj;
return 1;
}
#undef FORMAT_BUFFER_SIZE
#if STRINGLIB_IS_UNICODE
/*
Wraps stringlib_parse_args_finds() and additionally ensures that the
first argument is a unicode object.
Note that we receive a pointer to the pointer of the substring object,
so when we create that object in this function we don't DECREF it,
because it continues living in the caller functions (those functions,
after finishing using the substring, must DECREF it).
*/
Py_LOCAL_INLINE(int)
stringlib_parse_args_finds_unicode(const char * function_name, PyObject *args,
PyUnicodeObject **substring,
Py_ssize_t *start, Py_ssize_t *end)
{
PyObject *tmp_substring;
if(stringlib_parse_args_finds(function_name, args, &tmp_substring,
start, end)) {
tmp_substring = PyUnicode_FromObject(tmp_substring);
if (!tmp_substring)
return 0;
*substring = (PyUnicodeObject *)tmp_substring;
return 1;
}
return 0;
}
#endif /* STRINGLIB_IS_UNICODE */
#endif /* STRINGLIB_FIND_H */

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,227 @@
/** @file
stringlib: locale related helpers implementation.
Copyright (c) 2011, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials are licensed and made available under
the terms and conditions of the BSD License that accompanies this distribution.
The full text of the license may be found at
http://opensource.org/licenses/bsd-license.
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#ifndef STRINGLIB_LOCALEUTIL_H
#define STRINGLIB_LOCALEUTIL_H
#include <locale.h>
// Prevent conflicts with EFI
#undef MAX
#undef MIN
#define MAX(x, y) ((x) < (y) ? (y) : (x))
#define MIN(x, y) ((x) < (y) ? (x) : (y))
typedef struct {
const char *grouping;
char previous;
Py_ssize_t i; /* Where we're currently pointing in grouping. */
} GroupGenerator;
static void
_GroupGenerator_init(GroupGenerator *self, const char *grouping)
{
self->grouping = grouping;
self->i = 0;
self->previous = 0;
}
/* Returns the next grouping, or 0 to signify end. */
static Py_ssize_t
_GroupGenerator_next(GroupGenerator *self)
{
/* Note that we don't really do much error checking here. If a
grouping string contains just CHAR_MAX, for example, then just
terminate the generator. That shouldn't happen, but at least we
fail gracefully. */
switch (self->grouping[self->i]) {
case 0:
return self->previous;
case CHAR_MAX:
/* Stop the generator. */
return 0;
default: {
char ch = self->grouping[self->i];
self->previous = ch;
self->i++;
return (Py_ssize_t)ch;
}
}
}
/* Fill in some digits, leading zeros, and thousands separator. All
are optional, depending on when we're called. */
static void
fill(STRINGLIB_CHAR **digits_end, STRINGLIB_CHAR **buffer_end,
Py_ssize_t n_chars, Py_ssize_t n_zeros, const char* thousands_sep,
Py_ssize_t thousands_sep_len)
{
#if STRINGLIB_IS_UNICODE
Py_ssize_t i;
#endif
if (thousands_sep) {
*buffer_end -= thousands_sep_len;
/* Copy the thousands_sep chars into the buffer. */
#if STRINGLIB_IS_UNICODE
/* Convert from the char's of the thousands_sep from
the locale into unicode. */
for (i = 0; i < thousands_sep_len; ++i)
(*buffer_end)[i] = thousands_sep[i];
#else
/* No conversion, just memcpy the thousands_sep. */
memcpy(*buffer_end, thousands_sep, thousands_sep_len);
#endif
}
*buffer_end -= n_chars;
*digits_end -= n_chars;
memcpy(*buffer_end, *digits_end, n_chars * sizeof(STRINGLIB_CHAR));
*buffer_end -= n_zeros;
STRINGLIB_FILL(*buffer_end, '0', n_zeros);
}
/**
* _Py_InsertThousandsGrouping:
* @buffer: A pointer to the start of a string.
* @n_buffer: Number of characters in @buffer.
* @digits: A pointer to the digits we're reading from. If count
* is non-NULL, this is unused.
* @n_digits: The number of digits in the string, in which we want
* to put the grouping chars.
* @min_width: The minimum width of the digits in the output string.
* Output will be zero-padded on the left to fill.
* @grouping: see definition in localeconv().
* @thousands_sep: see definition in localeconv().
*
* There are 2 modes: counting and filling. If @buffer is NULL,
* we are in counting mode, else filling mode.
* If counting, the required buffer size is returned.
* If filling, we know the buffer will be large enough, so we don't
* need to pass in the buffer size.
* Inserts thousand grouping characters (as defined by grouping and
* thousands_sep) into the string between buffer and buffer+n_digits.
*
* Return value: 0 on error, else 1. Note that no error can occur if
* count is non-NULL.
*
* This name won't be used, the includer of this file should define
* it to be the actual function name, based on unicode or string.
*
* As closely as possible, this code mimics the logic in decimal.py's
_insert_thousands_sep().
**/
Py_ssize_t
_Py_InsertThousandsGrouping(STRINGLIB_CHAR *buffer,
Py_ssize_t n_buffer,
STRINGLIB_CHAR *digits,
Py_ssize_t n_digits,
Py_ssize_t min_width,
const char *grouping,
const char *thousands_sep)
{
Py_ssize_t count = 0;
Py_ssize_t n_zeros;
int loop_broken = 0;
int use_separator = 0; /* First time through, don't append the
separator. They only go between
groups. */
STRINGLIB_CHAR *buffer_end = NULL;
STRINGLIB_CHAR *digits_end = NULL;
Py_ssize_t l;
Py_ssize_t n_chars;
Py_ssize_t thousands_sep_len = strlen(thousands_sep);
Py_ssize_t remaining = n_digits; /* Number of chars remaining to
be looked at */
/* A generator that returns all of the grouping widths, until it
returns 0. */
GroupGenerator groupgen;
_GroupGenerator_init(&groupgen, grouping);
if (buffer) {
buffer_end = buffer + n_buffer;
digits_end = digits + n_digits;
}
while ((l = _GroupGenerator_next(&groupgen)) > 0) {
l = MIN(l, MAX(MAX(remaining, min_width), 1));
n_zeros = MAX(0, l - remaining);
n_chars = MAX(0, MIN(remaining, l));
/* Use n_zero zero's and n_chars chars */
/* Count only, don't do anything. */
count += (use_separator ? thousands_sep_len : 0) + n_zeros + n_chars;
if (buffer) {
/* Copy into the output buffer. */
fill(&digits_end, &buffer_end, n_chars, n_zeros,
use_separator ? thousands_sep : NULL, thousands_sep_len);
}
/* Use a separator next time. */
use_separator = 1;
remaining -= n_chars;
min_width -= l;
if (remaining <= 0 && min_width <= 0) {
loop_broken = 1;
break;
}
min_width -= thousands_sep_len;
}
if (!loop_broken) {
/* We left the loop without using a break statement. */
l = MAX(MAX(remaining, min_width), 1);
n_zeros = MAX(0, l - remaining);
n_chars = MAX(0, MIN(remaining, l));
/* Use n_zero zero's and n_chars chars */
count += (use_separator ? thousands_sep_len : 0) + n_zeros + n_chars;
if (buffer) {
/* Copy into the output buffer. */
fill(&digits_end, &buffer_end, n_chars, n_zeros,
use_separator ? thousands_sep : NULL, thousands_sep_len);
}
}
return count;
}
/**
* _Py_InsertThousandsGroupingLocale:
* @buffer: A pointer to the start of a string.
* @n_digits: The number of digits in the string, in which we want
* to put the grouping chars.
*
* Reads thee current locale and calls _Py_InsertThousandsGrouping().
**/
Py_ssize_t
_Py_InsertThousandsGroupingLocale(STRINGLIB_CHAR *buffer,
Py_ssize_t n_buffer,
STRINGLIB_CHAR *digits,
Py_ssize_t n_digits,
Py_ssize_t min_width)
{
struct lconv *locale_data = localeconv();
const char *grouping = locale_data->grouping;
const char *thousands_sep = locale_data->thousands_sep;
return _Py_InsertThousandsGrouping(buffer, n_buffer, digits, n_digits,
min_width, grouping, thousands_sep);
}
#endif /* STRINGLIB_LOCALEUTIL_H */

View File

@@ -0,0 +1,110 @@
/* stringlib: partition implementation */
#ifndef STRINGLIB_PARTITION_H
#define STRINGLIB_PARTITION_H
#ifndef STRINGLIB_FASTSEARCH_H
#error must include "stringlib/fastsearch.h" before including this module
#endif
Py_LOCAL_INLINE(PyObject*)
stringlib_partition(PyObject* str_obj,
const STRINGLIB_CHAR* str, Py_ssize_t str_len,
PyObject* sep_obj,
const STRINGLIB_CHAR* sep, Py_ssize_t sep_len)
{
PyObject* out;
Py_ssize_t pos;
if (sep_len == 0) {
PyErr_SetString(PyExc_ValueError, "empty separator");
return NULL;
}
out = PyTuple_New(3);
if (!out)
return NULL;
pos = fastsearch(str, str_len, sep, sep_len, -1, FAST_SEARCH);
if (pos < 0) {
#if STRINGLIB_MUTABLE
PyTuple_SET_ITEM(out, 0, STRINGLIB_NEW(str, str_len));
PyTuple_SET_ITEM(out, 1, STRINGLIB_NEW(NULL, 0));
PyTuple_SET_ITEM(out, 2, STRINGLIB_NEW(NULL, 0));
#else
Py_INCREF(str_obj);
PyTuple_SET_ITEM(out, 0, (PyObject*) str_obj);
Py_INCREF(STRINGLIB_EMPTY);
PyTuple_SET_ITEM(out, 1, (PyObject*) STRINGLIB_EMPTY);
Py_INCREF(STRINGLIB_EMPTY);
PyTuple_SET_ITEM(out, 2, (PyObject*) STRINGLIB_EMPTY);
#endif
return out;
}
PyTuple_SET_ITEM(out, 0, STRINGLIB_NEW(str, pos));
Py_INCREF(sep_obj);
PyTuple_SET_ITEM(out, 1, sep_obj);
pos += sep_len;
PyTuple_SET_ITEM(out, 2, STRINGLIB_NEW(str + pos, str_len - pos));
if (PyErr_Occurred()) {
Py_DECREF(out);
return NULL;
}
return out;
}
Py_LOCAL_INLINE(PyObject*)
stringlib_rpartition(PyObject* str_obj,
const STRINGLIB_CHAR* str, Py_ssize_t str_len,
PyObject* sep_obj,
const STRINGLIB_CHAR* sep, Py_ssize_t sep_len)
{
PyObject* out;
Py_ssize_t pos;
if (sep_len == 0) {
PyErr_SetString(PyExc_ValueError, "empty separator");
return NULL;
}
out = PyTuple_New(3);
if (!out)
return NULL;
pos = fastsearch(str, str_len, sep, sep_len, -1, FAST_RSEARCH);
if (pos < 0) {
#if STRINGLIB_MUTABLE
PyTuple_SET_ITEM(out, 0, STRINGLIB_NEW(NULL, 0));
PyTuple_SET_ITEM(out, 1, STRINGLIB_NEW(NULL, 0));
PyTuple_SET_ITEM(out, 2, STRINGLIB_NEW(str, str_len));
#else
Py_INCREF(STRINGLIB_EMPTY);
PyTuple_SET_ITEM(out, 0, (PyObject*) STRINGLIB_EMPTY);
Py_INCREF(STRINGLIB_EMPTY);
PyTuple_SET_ITEM(out, 1, (PyObject*) STRINGLIB_EMPTY);
Py_INCREF(str_obj);
PyTuple_SET_ITEM(out, 2, (PyObject*) str_obj);
#endif
return out;
}
PyTuple_SET_ITEM(out, 0, STRINGLIB_NEW(str, pos));
Py_INCREF(sep_obj);
PyTuple_SET_ITEM(out, 1, sep_obj);
pos += sep_len;
PyTuple_SET_ITEM(out, 2, STRINGLIB_NEW(str + pos, str_len - pos));
if (PyErr_Occurred()) {
Py_DECREF(out);
return NULL;
}
return out;
}
#endif

View File

@@ -0,0 +1,394 @@
/* stringlib: split implementation */
#ifndef STRINGLIB_SPLIT_H
#define STRINGLIB_SPLIT_H
#ifndef STRINGLIB_FASTSEARCH_H
#error must include "stringlib/fastsearch.h" before including this module
#endif
/* Overallocate the initial list to reduce the number of reallocs for small
split sizes. Eg, "A A A A A A A A A A".split() (10 elements) has three
resizes, to sizes 4, 8, then 16. Most observed string splits are for human
text (roughly 11 words per line) and field delimited data (usually 1-10
fields). For large strings the split algorithms are bandwidth limited
so increasing the preallocation likely will not improve things.*/
#define MAX_PREALLOC 12
/* 5 splits gives 6 elements */
#define PREALLOC_SIZE(maxsplit) \
(maxsplit >= MAX_PREALLOC ? MAX_PREALLOC : maxsplit+1)
#define SPLIT_APPEND(data, left, right) \
sub = STRINGLIB_NEW((data) + (left), \
(right) - (left)); \
if (sub == NULL) \
goto onError; \
if (PyList_Append(list, sub)) { \
Py_DECREF(sub); \
goto onError; \
} \
else \
Py_DECREF(sub);
#define SPLIT_ADD(data, left, right) { \
sub = STRINGLIB_NEW((data) + (left), \
(right) - (left)); \
if (sub == NULL) \
goto onError; \
if (count < MAX_PREALLOC) { \
PyList_SET_ITEM(list, count, sub); \
} else { \
if (PyList_Append(list, sub)) { \
Py_DECREF(sub); \
goto onError; \
} \
else \
Py_DECREF(sub); \
} \
count++; }
/* Always force the list to the expected size. */
#define FIX_PREALLOC_SIZE(list) Py_SIZE(list) = count
Py_LOCAL_INLINE(PyObject *)
stringlib_split_whitespace(PyObject* str_obj,
const STRINGLIB_CHAR* str, Py_ssize_t str_len,
Py_ssize_t maxcount)
{
Py_ssize_t i, j, count=0;
PyObject *list = PyList_New(PREALLOC_SIZE(maxcount));
PyObject *sub;
if (list == NULL)
return NULL;
i = j = 0;
while (maxcount-- > 0) {
while (i < str_len && STRINGLIB_ISSPACE(str[i]))
i++;
if (i == str_len) break;
j = i; i++;
while (i < str_len && !STRINGLIB_ISSPACE(str[i]))
i++;
#ifndef STRINGLIB_MUTABLE
if (j == 0 && i == str_len && STRINGLIB_CHECK_EXACT(str_obj)) {
/* No whitespace in str_obj, so just use it as list[0] */
Py_INCREF(str_obj);
PyList_SET_ITEM(list, 0, (PyObject *)str_obj);
count++;
break;
}
#endif
SPLIT_ADD(str, j, i);
}
if (i < str_len) {
/* Only occurs when maxcount was reached */
/* Skip any remaining whitespace and copy to end of string */
while (i < str_len && STRINGLIB_ISSPACE(str[i]))
i++;
if (i != str_len)
SPLIT_ADD(str, i, str_len);
}
FIX_PREALLOC_SIZE(list);
return list;
onError:
Py_DECREF(list);
return NULL;
}
Py_LOCAL_INLINE(PyObject *)
stringlib_split_char(PyObject* str_obj,
const STRINGLIB_CHAR* str, Py_ssize_t str_len,
const STRINGLIB_CHAR ch,
Py_ssize_t maxcount)
{
Py_ssize_t i, j, count=0;
PyObject *list = PyList_New(PREALLOC_SIZE(maxcount));
PyObject *sub;
if (list == NULL)
return NULL;
i = j = 0;
while ((j < str_len) && (maxcount-- > 0)) {
for(; j < str_len; j++) {
/* I found that using memchr makes no difference */
if (str[j] == ch) {
SPLIT_ADD(str, i, j);
i = j = j + 1;
break;
}
}
}
#ifndef STRINGLIB_MUTABLE
if (count == 0 && STRINGLIB_CHECK_EXACT(str_obj)) {
/* ch not in str_obj, so just use str_obj as list[0] */
Py_INCREF(str_obj);
PyList_SET_ITEM(list, 0, (PyObject *)str_obj);
count++;
} else
#endif
if (i <= str_len) {
SPLIT_ADD(str, i, str_len);
}
FIX_PREALLOC_SIZE(list);
return list;
onError:
Py_DECREF(list);
return NULL;
}
Py_LOCAL_INLINE(PyObject *)
stringlib_split(PyObject* str_obj,
const STRINGLIB_CHAR* str, Py_ssize_t str_len,
const STRINGLIB_CHAR* sep, Py_ssize_t sep_len,
Py_ssize_t maxcount)
{
Py_ssize_t i, j, pos, count=0;
PyObject *list, *sub;
if (sep_len == 0) {
PyErr_SetString(PyExc_ValueError, "empty separator");
return NULL;
}
else if (sep_len == 1)
return stringlib_split_char(str_obj, str, str_len, sep[0], maxcount);
list = PyList_New(PREALLOC_SIZE(maxcount));
if (list == NULL)
return NULL;
i = j = 0;
while (maxcount-- > 0) {
pos = fastsearch(str+i, str_len-i, sep, sep_len, -1, FAST_SEARCH);
if (pos < 0)
break;
j = i + pos;
SPLIT_ADD(str, i, j);
i = j + sep_len;
}
#ifndef STRINGLIB_MUTABLE
if (count == 0 && STRINGLIB_CHECK_EXACT(str_obj)) {
/* No match in str_obj, so just use it as list[0] */
Py_INCREF(str_obj);
PyList_SET_ITEM(list, 0, (PyObject *)str_obj);
count++;
} else
#endif
{
SPLIT_ADD(str, i, str_len);
}
FIX_PREALLOC_SIZE(list);
return list;
onError:
Py_DECREF(list);
return NULL;
}
Py_LOCAL_INLINE(PyObject *)
stringlib_rsplit_whitespace(PyObject* str_obj,
const STRINGLIB_CHAR* str, Py_ssize_t str_len,
Py_ssize_t maxcount)
{
Py_ssize_t i, j, count=0;
PyObject *list = PyList_New(PREALLOC_SIZE(maxcount));
PyObject *sub;
if (list == NULL)
return NULL;
i = j = str_len - 1;
while (maxcount-- > 0) {
while (i >= 0 && STRINGLIB_ISSPACE(str[i]))
i--;
if (i < 0) break;
j = i; i--;
while (i >= 0 && !STRINGLIB_ISSPACE(str[i]))
i--;
#ifndef STRINGLIB_MUTABLE
if (j == str_len - 1 && i < 0 && STRINGLIB_CHECK_EXACT(str_obj)) {
/* No whitespace in str_obj, so just use it as list[0] */
Py_INCREF(str_obj);
PyList_SET_ITEM(list, 0, (PyObject *)str_obj);
count++;
break;
}
#endif
SPLIT_ADD(str, i + 1, j + 1);
}
if (i >= 0) {
/* Only occurs when maxcount was reached */
/* Skip any remaining whitespace and copy to beginning of string */
while (i >= 0 && STRINGLIB_ISSPACE(str[i]))
i--;
if (i >= 0)
SPLIT_ADD(str, 0, i + 1);
}
FIX_PREALLOC_SIZE(list);
if (PyList_Reverse(list) < 0)
goto onError;
return list;
onError:
Py_DECREF(list);
return NULL;
}
Py_LOCAL_INLINE(PyObject *)
stringlib_rsplit_char(PyObject* str_obj,
const STRINGLIB_CHAR* str, Py_ssize_t str_len,
const STRINGLIB_CHAR ch,
Py_ssize_t maxcount)
{
Py_ssize_t i, j, count=0;
PyObject *list = PyList_New(PREALLOC_SIZE(maxcount));
PyObject *sub;
if (list == NULL)
return NULL;
i = j = str_len - 1;
while ((i >= 0) && (maxcount-- > 0)) {
for(; i >= 0; i--) {
if (str[i] == ch) {
SPLIT_ADD(str, i + 1, j + 1);
j = i = i - 1;
break;
}
}
}
#ifndef STRINGLIB_MUTABLE
if (count == 0 && STRINGLIB_CHECK_EXACT(str_obj)) {
/* ch not in str_obj, so just use str_obj as list[0] */
Py_INCREF(str_obj);
PyList_SET_ITEM(list, 0, (PyObject *)str_obj);
count++;
} else
#endif
if (j >= -1) {
SPLIT_ADD(str, 0, j + 1);
}
FIX_PREALLOC_SIZE(list);
if (PyList_Reverse(list) < 0)
goto onError;
return list;
onError:
Py_DECREF(list);
return NULL;
}
Py_LOCAL_INLINE(PyObject *)
stringlib_rsplit(PyObject* str_obj,
const STRINGLIB_CHAR* str, Py_ssize_t str_len,
const STRINGLIB_CHAR* sep, Py_ssize_t sep_len,
Py_ssize_t maxcount)
{
Py_ssize_t j, pos, count=0;
PyObject *list, *sub;
if (sep_len == 0) {
PyErr_SetString(PyExc_ValueError, "empty separator");
return NULL;
}
else if (sep_len == 1)
return stringlib_rsplit_char(str_obj, str, str_len, sep[0], maxcount);
list = PyList_New(PREALLOC_SIZE(maxcount));
if (list == NULL)
return NULL;
j = str_len;
while (maxcount-- > 0) {
pos = fastsearch(str, j, sep, sep_len, -1, FAST_RSEARCH);
if (pos < 0)
break;
SPLIT_ADD(str, pos + sep_len, j);
j = pos;
}
#ifndef STRINGLIB_MUTABLE
if (count == 0 && STRINGLIB_CHECK_EXACT(str_obj)) {
/* No match in str_obj, so just use it as list[0] */
Py_INCREF(str_obj);
PyList_SET_ITEM(list, 0, (PyObject *)str_obj);
count++;
} else
#endif
{
SPLIT_ADD(str, 0, j);
}
FIX_PREALLOC_SIZE(list);
if (PyList_Reverse(list) < 0)
goto onError;
return list;
onError:
Py_DECREF(list);
return NULL;
}
Py_LOCAL_INLINE(PyObject *)
stringlib_splitlines(PyObject* str_obj,
const STRINGLIB_CHAR* str, Py_ssize_t str_len,
int keepends)
{
/* This does not use the preallocated list because splitlines is
usually run with hundreds of newlines. The overhead of
switching between PyList_SET_ITEM and append causes about a
2-3% slowdown for that common case. A smarter implementation
could move the if check out, so the SET_ITEMs are done first
and the appends only done when the prealloc buffer is full.
That's too much work for little gain.*/
register Py_ssize_t i;
register Py_ssize_t j;
PyObject *list = PyList_New(0);
PyObject *sub;
if (list == NULL)
return NULL;
for (i = j = 0; i < str_len; ) {
Py_ssize_t eol;
/* Find a line and append it */
while (i < str_len && !STRINGLIB_ISLINEBREAK(str[i]))
i++;
/* Skip the line break reading CRLF as one line break */
eol = i;
if (i < str_len) {
if (str[i] == '\r' && i + 1 < str_len && str[i+1] == '\n')
i += 2;
else
i++;
if (keepends)
eol = i;
}
#ifndef STRINGLIB_MUTABLE
if (j == 0 && eol == str_len && STRINGLIB_CHECK_EXACT(str_obj)) {
/* No linebreak in str_obj, so just use it as list[0] */
if (PyList_Append(list, str_obj))
goto onError;
break;
}
#endif
SPLIT_APPEND(str, j, eol);
j = i;
}
return list;
onError:
Py_DECREF(list);
return NULL;
}
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,33 @@
#ifndef STRINGLIB_STRINGDEFS_H
#define STRINGLIB_STRINGDEFS_H
/* this is sort of a hack. there's at least one place (formatting
floats) where some stringlib code takes a different path if it's
compiled as unicode. */
#define STRINGLIB_IS_UNICODE 0
#define STRINGLIB_OBJECT PyStringObject
#define STRINGLIB_CHAR char
#define STRINGLIB_TYPE_NAME "string"
#define STRINGLIB_PARSE_CODE "S"
#define STRINGLIB_EMPTY nullstring
#define STRINGLIB_ISSPACE Py_ISSPACE
#define STRINGLIB_ISLINEBREAK(x) ((x == '\n') || (x == '\r'))
#define STRINGLIB_ISDECIMAL(x) ((x >= '0') && (x <= '9'))
#define STRINGLIB_TODECIMAL(x) (STRINGLIB_ISDECIMAL(x) ? (x - '0') : -1)
#define STRINGLIB_TOUPPER Py_TOUPPER
#define STRINGLIB_TOLOWER Py_TOLOWER
#define STRINGLIB_FILL memset
#define STRINGLIB_STR PyString_AS_STRING
#define STRINGLIB_LEN PyString_GET_SIZE
#define STRINGLIB_NEW PyString_FromStringAndSize
#define STRINGLIB_RESIZE _PyString_Resize
#define STRINGLIB_CHECK PyString_Check
#define STRINGLIB_CHECK_EXACT PyString_CheckExact
#define STRINGLIB_TOSTR PyObject_Str
#define STRINGLIB_GROUPING _PyString_InsertThousandsGrouping
#define STRINGLIB_GROUPING_LOCALE _PyString_InsertThousandsGroupingLocale
#define STRINGLIB_WANT_CONTAINS_OBJ 1
#endif /* !STRINGLIB_STRINGDEFS_H */

View File

@@ -0,0 +1,264 @@
/* NOTE: this API is -ONLY- for use with single byte character strings. */
/* Do not use it with Unicode. */
/* the more complicated methods. parts of these should be pulled out into the
shared code in bytes_methods.c to cut down on duplicate code bloat. */
PyDoc_STRVAR(expandtabs__doc__,
"B.expandtabs([tabsize]) -> copy of B\n\
\n\
Return a copy of B where all tab characters are expanded using spaces.\n\
If tabsize is not given, a tab size of 8 characters is assumed.");
static PyObject*
stringlib_expandtabs(PyObject *self, PyObject *args)
{
const char *e, *p;
char *q;
size_t i, j;
PyObject *u;
int tabsize = 8;
if (!PyArg_ParseTuple(args, "|i:expandtabs", &tabsize))
return NULL;
/* First pass: determine size of output string */
i = j = 0;
e = STRINGLIB_STR(self) + STRINGLIB_LEN(self);
for (p = STRINGLIB_STR(self); p < e; p++)
if (*p == '\t') {
if (tabsize > 0) {
j += tabsize - (j % tabsize);
if (j > PY_SSIZE_T_MAX) {
PyErr_SetString(PyExc_OverflowError,
"result is too long");
return NULL;
}
}
}
else {
j++;
if (*p == '\n' || *p == '\r') {
i += j;
j = 0;
if (i > PY_SSIZE_T_MAX) {
PyErr_SetString(PyExc_OverflowError,
"result is too long");
return NULL;
}
}
}
if ((i + j) > PY_SSIZE_T_MAX) {
PyErr_SetString(PyExc_OverflowError, "result is too long");
return NULL;
}
/* Second pass: create output string and fill it */
u = STRINGLIB_NEW(NULL, i + j);
if (!u)
return NULL;
j = 0;
q = STRINGLIB_STR(u);
for (p = STRINGLIB_STR(self); p < e; p++)
if (*p == '\t') {
if (tabsize > 0) {
i = tabsize - (j % tabsize);
j += i;
while (i--)
*q++ = ' ';
}
}
else {
j++;
*q++ = *p;
if (*p == '\n' || *p == '\r')
j = 0;
}
return u;
}
Py_LOCAL_INLINE(PyObject *)
pad(PyObject *self, Py_ssize_t left, Py_ssize_t right, char fill)
{
PyObject *u;
if (left < 0)
left = 0;
if (right < 0)
right = 0;
if (left == 0 && right == 0 && STRINGLIB_CHECK_EXACT(self)) {
#if STRINGLIB_MUTABLE
/* We're defined as returning a copy; If the object is mutable
* that means we must make an identical copy. */
return STRINGLIB_NEW(STRINGLIB_STR(self), STRINGLIB_LEN(self));
#else
Py_INCREF(self);
return (PyObject *)self;
#endif /* STRINGLIB_MUTABLE */
}
u = STRINGLIB_NEW(NULL,
left + STRINGLIB_LEN(self) + right);
if (u) {
if (left)
memset(STRINGLIB_STR(u), fill, left);
Py_MEMCPY(STRINGLIB_STR(u) + left,
STRINGLIB_STR(self),
STRINGLIB_LEN(self));
if (right)
memset(STRINGLIB_STR(u) + left + STRINGLIB_LEN(self),
fill, right);
}
return u;
}
PyDoc_STRVAR(ljust__doc__,
"B.ljust(width[, fillchar]) -> copy of B\n"
"\n"
"Return B left justified in a string of length width. Padding is\n"
"done using the specified fill character (default is a space).");
static PyObject *
stringlib_ljust(PyObject *self, PyObject *args)
{
Py_ssize_t width;
char fillchar = ' ';
if (!PyArg_ParseTuple(args, "n|c:ljust", &width, &fillchar))
return NULL;
if (STRINGLIB_LEN(self) >= width && STRINGLIB_CHECK_EXACT(self)) {
#if STRINGLIB_MUTABLE
/* We're defined as returning a copy; If the object is mutable
* that means we must make an identical copy. */
return STRINGLIB_NEW(STRINGLIB_STR(self), STRINGLIB_LEN(self));
#else
Py_INCREF(self);
return (PyObject*) self;
#endif
}
return pad(self, 0, width - STRINGLIB_LEN(self), fillchar);
}
PyDoc_STRVAR(rjust__doc__,
"B.rjust(width[, fillchar]) -> copy of B\n"
"\n"
"Return B right justified in a string of length width. Padding is\n"
"done using the specified fill character (default is a space)");
static PyObject *
stringlib_rjust(PyObject *self, PyObject *args)
{
Py_ssize_t width;
char fillchar = ' ';
if (!PyArg_ParseTuple(args, "n|c:rjust", &width, &fillchar))
return NULL;
if (STRINGLIB_LEN(self) >= width && STRINGLIB_CHECK_EXACT(self)) {
#if STRINGLIB_MUTABLE
/* We're defined as returning a copy; If the object is mutable
* that means we must make an identical copy. */
return STRINGLIB_NEW(STRINGLIB_STR(self), STRINGLIB_LEN(self));
#else
Py_INCREF(self);
return (PyObject*) self;
#endif
}
return pad(self, width - STRINGLIB_LEN(self), 0, fillchar);
}
PyDoc_STRVAR(center__doc__,
"B.center(width[, fillchar]) -> copy of B\n"
"\n"
"Return B centered in a string of length width. Padding is\n"
"done using the specified fill character (default is a space).");
static PyObject *
stringlib_center(PyObject *self, PyObject *args)
{
Py_ssize_t marg, left;
Py_ssize_t width;
char fillchar = ' ';
if (!PyArg_ParseTuple(args, "n|c:center", &width, &fillchar))
return NULL;
if (STRINGLIB_LEN(self) >= width && STRINGLIB_CHECK_EXACT(self)) {
#if STRINGLIB_MUTABLE
/* We're defined as returning a copy; If the object is mutable
* that means we must make an identical copy. */
return STRINGLIB_NEW(STRINGLIB_STR(self), STRINGLIB_LEN(self));
#else
Py_INCREF(self);
return (PyObject*) self;
#endif
}
marg = width - STRINGLIB_LEN(self);
left = marg / 2 + (marg & width & 1);
return pad(self, left, marg - left, fillchar);
}
PyDoc_STRVAR(zfill__doc__,
"B.zfill(width) -> copy of B\n"
"\n"
"Pad a numeric string B with zeros on the left, to fill a field\n"
"of the specified width. B is never truncated.");
static PyObject *
stringlib_zfill(PyObject *self, PyObject *args)
{
Py_ssize_t fill;
PyObject *s;
char *p;
Py_ssize_t width;
if (!PyArg_ParseTuple(args, "n:zfill", &width))
return NULL;
if (STRINGLIB_LEN(self) >= width) {
if (STRINGLIB_CHECK_EXACT(self)) {
#if STRINGLIB_MUTABLE
/* We're defined as returning a copy; If the object is mutable
* that means we must make an identical copy. */
return STRINGLIB_NEW(STRINGLIB_STR(self), STRINGLIB_LEN(self));
#else
Py_INCREF(self);
return (PyObject*) self;
#endif
}
else
return STRINGLIB_NEW(
STRINGLIB_STR(self),
STRINGLIB_LEN(self)
);
}
fill = width - STRINGLIB_LEN(self);
s = pad(self, fill, 0, '0');
if (s == NULL)
return NULL;
p = STRINGLIB_STR(s);
if (p[fill] == '+' || p[fill] == '-') {
/* move sign to beginning of string */
p[0] = p[fill];
p[fill] = '0';
}
return (PyObject*) s;
}

View File

@@ -0,0 +1,37 @@
#ifndef STRINGLIB_UNICODEDEFS_H
#define STRINGLIB_UNICODEDEFS_H
/* this is sort of a hack. there's at least one place (formatting
floats) where some stringlib code takes a different path if it's
compiled as unicode. */
#define STRINGLIB_IS_UNICODE 1
#define STRINGLIB_OBJECT PyUnicodeObject
#define STRINGLIB_CHAR Py_UNICODE
#define STRINGLIB_TYPE_NAME "unicode"
#define STRINGLIB_PARSE_CODE "U"
#define STRINGLIB_EMPTY unicode_empty
#define STRINGLIB_ISSPACE Py_UNICODE_ISSPACE
#define STRINGLIB_ISLINEBREAK BLOOM_LINEBREAK
#define STRINGLIB_ISDECIMAL Py_UNICODE_ISDECIMAL
#define STRINGLIB_TODECIMAL Py_UNICODE_TODECIMAL
#define STRINGLIB_TOUPPER Py_UNICODE_TOUPPER
#define STRINGLIB_TOLOWER Py_UNICODE_TOLOWER
#define STRINGLIB_FILL Py_UNICODE_FILL
#define STRINGLIB_STR PyUnicode_AS_UNICODE
#define STRINGLIB_LEN PyUnicode_GET_SIZE
#define STRINGLIB_NEW PyUnicode_FromUnicode
#define STRINGLIB_RESIZE PyUnicode_Resize
#define STRINGLIB_CHECK PyUnicode_Check
#define STRINGLIB_CHECK_EXACT PyUnicode_CheckExact
#define STRINGLIB_GROUPING _PyUnicode_InsertThousandsGrouping
#if PY_VERSION_HEX < 0x03000000
#define STRINGLIB_TOSTR PyObject_Unicode
#else
#define STRINGLIB_TOSTR PyObject_Str
#endif
#define STRINGLIB_WANT_CONTAINS_OBJ 1
#endif /* !STRINGLIB_UNICODEDEFS_H */