MdeModulePkg/SdMmc: Add EDKII SD/MMC stack

This stack includes:
1. Dxe phase support by:
   1) SdMmcPciHcDxe driver to consume PciIo and produce
      SdMmcPassThru.
   2) SdDxe driver to consume SdMmcPassThru to produce
      BlkIo1/BlkIo2.
   3) EmmcDxe driver to consume SdMmcPassThru to produce
      BlkIo1/BlkIo2/SSP.

2. Pei phase support
   1) SdBlockIoPei driver to consume SdMmcHostController
      Ppi and produce VirutalBlkIo1&2.
   2) EmmcBlockIoPei driver to consume SdMmcHostController
      Ppi and produce VirutalBlkIo1&2.
   3) SdMmcPciHcPei driver to produce SdMmcHostController
      Ppi.

Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Feng Tian <feng.tian@intel.com>
Reviewed-by: Hao Wu <hao.a.wu@intel.com>
This commit is contained in:
Feng Tian
2016-03-23 10:47:05 +08:00
parent 627373d7e7
commit 48555339be
52 changed files with 24405 additions and 0 deletions

View File

@@ -0,0 +1,240 @@
/** @file
UEFI Component Name(2) protocol implementation for SdDxe driver.
Copyright (c) 2015, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "SdDxe.h"
//
// Driver name table
//
GLOBAL_REMOVE_IF_UNREFERENCED EFI_UNICODE_STRING_TABLE mSdDxeDriverNameTable[] = {
{ "eng;en", L"Edkii Sd Memory Card Device Driver" },
{ NULL , NULL }
};
//
// Controller name table
//
GLOBAL_REMOVE_IF_UNREFERENCED EFI_UNICODE_STRING_TABLE mSdDxeControllerNameTable[] = {
{ "eng;en", L"Edkii Sd Host Controller" },
{ NULL , NULL }
};
//
// EFI Component Name Protocol
//
GLOBAL_REMOVE_IF_UNREFERENCED EFI_COMPONENT_NAME_PROTOCOL gSdDxeComponentName = {
SdDxeComponentNameGetDriverName,
SdDxeComponentNameGetControllerName,
"eng"
};
//
// EFI Component Name 2 Protocol
//
GLOBAL_REMOVE_IF_UNREFERENCED EFI_COMPONENT_NAME2_PROTOCOL gSdDxeComponentName2 = {
(EFI_COMPONENT_NAME2_GET_DRIVER_NAME) SdDxeComponentNameGetDriverName,
(EFI_COMPONENT_NAME2_GET_CONTROLLER_NAME) SdDxeComponentNameGetControllerName,
"en"
};
/**
Retrieves a Unicode string that is the user readable name of the driver.
This function retrieves the user readable name of a driver in the form of a
Unicode string. If the driver specified by This has a user readable name in
the language specified by Language, then a pointer to the driver name is
returned in DriverName, and EFI_SUCCESS is returned. If the driver specified
by This does not support the language specified by Language,
then EFI_UNSUPPORTED is returned.
@param This[in] A pointer to the EFI_COMPONENT_NAME2_PROTOCOL or
EFI_COMPONENT_NAME_PROTOCOL instance.
@param Language[in] A pointer to a Null-terminated ASCII string
array indicating the language. This is the
language of the driver name that the caller is
requesting, and it must match one of the
languages specified in SupportedLanguages. The
number of languages supported by a driver is up
to the driver writer. Language is specified
in RFC 4646 or ISO 639-2 language code format.
@param DriverName[out] A pointer to the Unicode string to return.
This Unicode string is the name of the
driver specified by This in the language
specified by Language.
@retval EFI_SUCCESS The Unicode string for the Driver specified by
This and the language specified by Language was
returned in DriverName.
@retval EFI_INVALID_PARAMETER Language is NULL.
@retval EFI_INVALID_PARAMETER DriverName is NULL.
@retval EFI_UNSUPPORTED The driver specified by This does not support
the language specified by Language.
**/
EFI_STATUS
EFIAPI
SdDxeComponentNameGetDriverName (
IN EFI_COMPONENT_NAME_PROTOCOL *This,
IN CHAR8 *Language,
OUT CHAR16 **DriverName
)
{
return LookupUnicodeString2 (
Language,
This->SupportedLanguages,
mSdDxeDriverNameTable,
DriverName,
(BOOLEAN)(This == &gSdDxeComponentName)
);
}
/**
Retrieves a Unicode string that is the user readable name of the controller
that is being managed by a driver.
This function retrieves the user readable name of the controller specified by
ControllerHandle and ChildHandle in the form of a Unicode string. If the
driver specified by This has a user readable name in the language specified by
Language, then a pointer to the controller name is returned in ControllerName,
and EFI_SUCCESS is returned. If the driver specified by This is not currently
managing the controller specified by ControllerHandle and ChildHandle,
then EFI_UNSUPPORTED is returned. If the driver specified by This does not
support the language specified by Language, then EFI_UNSUPPORTED is returned.
@param This[in] A pointer to the EFI_COMPONENT_NAME2_PROTOCOL or
EFI_COMPONENT_NAME_PROTOCOL instance.
@param ControllerHandle[in] The handle of a controller that the driver
specified by This is managing. This handle
specifies the controller whose name is to be
returned.
@param ChildHandle[in] The handle of the child controller to retrieve
the name of. This is an optional parameter that
may be NULL. It will be NULL for device
drivers. It will also be NULL for a bus drivers
that wish to retrieve the name of the bus
controller. It will not be NULL for a bus
driver that wishes to retrieve the name of a
child controller.
@param Language[in] A pointer to a Null-terminated ASCII string
array indicating the language. This is the
language of the driver name that the caller is
requesting, and it must match one of the
languages specified in SupportedLanguages. The
number of languages supported by a driver is up
to the driver writer. Language is specified in
RFC 4646 or ISO 639-2 language code format.
@param ControllerName[out] A pointer to the Unicode string to return.
This Unicode string is the name of the
controller specified by ControllerHandle and
ChildHandle in the language specified by
Language from the point of view of the driver
specified by This.
@retval EFI_SUCCESS The Unicode string for the user readable name in
the language specified by Language for the
driver specified by This was returned in
DriverName.
@retval EFI_INVALID_PARAMETER ControllerHandle is NULL.
@retval EFI_INVALID_PARAMETER ChildHandle is not NULL and it is not a valid
EFI_HANDLE.
@retval EFI_INVALID_PARAMETER Language is NULL.
@retval EFI_INVALID_PARAMETER ControllerName is NULL.
@retval EFI_UNSUPPORTED The driver specified by This is not currently
managing the controller specified by
ControllerHandle and ChildHandle.
@retval EFI_UNSUPPORTED The driver specified by This does not support
the language specified by Language.
**/
EFI_STATUS
EFIAPI
SdDxeComponentNameGetControllerName (
IN EFI_COMPONENT_NAME_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN EFI_HANDLE ChildHandle OPTIONAL,
IN CHAR8 *Language,
OUT CHAR16 **ControllerName
)
{
EFI_STATUS Status;
EFI_BLOCK_IO_PROTOCOL *BlockIo;
SD_DEVICE *Device;
EFI_UNICODE_STRING_TABLE *ControllerNameTable;
//
// Make sure this driver is currently managing ControllHandle
//
Status = EfiTestManagedDevice (
ControllerHandle,
gSdDxeDriverBinding.DriverBindingHandle,
&gEfiSdMmcPassThruProtocolGuid
);
if (EFI_ERROR (Status)) {
return Status;
}
ControllerNameTable = mSdDxeControllerNameTable;
if (ChildHandle != NULL) {
Status = EfiTestChildHandle (
ControllerHandle,
ChildHandle,
&gEfiSdMmcPassThruProtocolGuid
);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Get the child context
//
Status = gBS->OpenProtocol (
ChildHandle,
&gEfiBlockIoProtocolGuid,
(VOID **) &BlockIo,
gSdDxeDriverBinding.DriverBindingHandle,
ChildHandle,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
return EFI_UNSUPPORTED;
}
Device = SD_DEVICE_DATA_FROM_BLKIO (BlockIo);
ControllerNameTable = Device->ControllerNameTable;
}
return LookupUnicodeString2 (
Language,
This->SupportedLanguages,
ControllerNameTable,
ControllerName,
(BOOLEAN)(This == &gSdDxeComponentName)
);
}

View File

@@ -0,0 +1,971 @@
/** @file
The helper functions for BlockIo and BlockIo2 protocol.
Copyright (c) 2015, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "SdDxe.h"
/**
Nonblocking I/O callback funtion when the event is signaled.
@param[in] Event The Event this notify function registered to.
@param[in] Context Pointer to the context data registered to the
Event.
**/
VOID
EFIAPI
AsyncIoCallback (
IN EFI_EVENT Event,
IN VOID *Context
)
{
SD_REQUEST *Request;
gBS->CloseEvent (Event);
Request = (SD_REQUEST *) Context;
DEBUG_CODE_BEGIN ();
DEBUG ((EFI_D_INFO, "Sd Async Request: CmdIndex[%d] Arg[%08x] %r\n",
Request->SdMmcCmdBlk.CommandIndex, Request->SdMmcCmdBlk.CommandArgument,
Request->Packet.TransactionStatus));
DEBUG_CODE_END ();
if (EFI_ERROR (Request->Packet.TransactionStatus)) {
Request->Token->TransactionStatus = Request->Packet.TransactionStatus;
}
RemoveEntryList (&Request->Link);
if (Request->IsEnd) {
gBS->SignalEvent (Request->Token->Event);
}
FreePool (Request);
}
/**
Send command SET_RELATIVE_ADDRESS to the device to set the device address.
@param[in] Device A pointer to the SD_DEVICE instance.
@param[out] Rca The relative device address to assign.
@retval EFI_SUCCESS The request is executed successfully.
@retval EFI_OUT_OF_RESOURCES The request could not be executed due to a lack of resources.
@retval Others The request could not be executed successfully.
**/
EFI_STATUS
SdSetRca (
IN SD_DEVICE *Device,
OUT UINT16 *Rca
)
{
EFI_STATUS Status;
EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru;
EFI_SD_MMC_COMMAND_BLOCK SdMmcCmdBlk;
EFI_SD_MMC_STATUS_BLOCK SdMmcStatusBlk;
EFI_SD_MMC_PASS_THRU_COMMAND_PACKET Packet;
PassThru = Device->Private->PassThru;
ZeroMem (&SdMmcCmdBlk, sizeof (SdMmcCmdBlk));
ZeroMem (&SdMmcStatusBlk, sizeof (SdMmcStatusBlk));
ZeroMem (&Packet, sizeof (Packet));
Packet.SdMmcCmdBlk = &SdMmcCmdBlk;
Packet.SdMmcStatusBlk = &SdMmcStatusBlk;
Packet.Timeout = SD_GENERIC_TIMEOUT;
SdMmcCmdBlk.CommandIndex = SD_SET_RELATIVE_ADDR;
SdMmcCmdBlk.CommandType = SdMmcCommandTypeBcr;
SdMmcCmdBlk.ResponseType = SdMmcResponseTypeR6;
Status = PassThru->PassThru (PassThru, Device->Slot, &Packet, NULL);
if (!EFI_ERROR (Status)) {
DEBUG ((EFI_D_INFO, "Set RCA succeeds with Resp0 = 0x%x\n", SdMmcStatusBlk.Resp0));
*Rca = (UINT16)(SdMmcStatusBlk.Resp0 >> 16);
}
return Status;
}
/**
Send command SELECT to the device to select/deselect the device.
@param[in] Device A pointer to the SD_DEVICE instance.
@param[in] Rca The relative device address to use.
@retval EFI_SUCCESS The request is executed successfully.
@retval EFI_OUT_OF_RESOURCES The request could not be executed due to a lack of resources.
@retval Others The request could not be executed successfully.
**/
EFI_STATUS
SdSelect (
IN SD_DEVICE *Device,
IN UINT16 Rca
)
{
EFI_STATUS Status;
EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru;
EFI_SD_MMC_COMMAND_BLOCK SdMmcCmdBlk;
EFI_SD_MMC_STATUS_BLOCK SdMmcStatusBlk;
EFI_SD_MMC_PASS_THRU_COMMAND_PACKET Packet;
PassThru = Device->Private->PassThru;
ZeroMem (&SdMmcCmdBlk, sizeof (SdMmcCmdBlk));
ZeroMem (&SdMmcStatusBlk, sizeof (SdMmcStatusBlk));
ZeroMem (&Packet, sizeof (Packet));
Packet.SdMmcCmdBlk = &SdMmcCmdBlk;
Packet.SdMmcStatusBlk = &SdMmcStatusBlk;
Packet.Timeout = SD_GENERIC_TIMEOUT;
SdMmcCmdBlk.CommandIndex = SD_SELECT_DESELECT_CARD;
SdMmcCmdBlk.CommandType = SdMmcCommandTypeAc;
SdMmcCmdBlk.ResponseType = SdMmcResponseTypeR1b;
SdMmcCmdBlk.CommandArgument = (UINT32)Rca << 16;
Status = PassThru->PassThru (PassThru, Device->Slot, &Packet, NULL);
return Status;
}
/**
Send command SEND_STATUS to the device to get device status.
@param[in] Device A pointer to the SD_DEVICE instance.
@param[in] Rca The relative device address to use.
@param[out] DevStatus The buffer to store the device status.
@retval EFI_SUCCESS The request is executed successfully.
@retval EFI_OUT_OF_RESOURCES The request could not be executed due to a lack of resources.
@retval Others The request could not be executed successfully.
**/
EFI_STATUS
SdSendStatus (
IN SD_DEVICE *Device,
IN UINT16 Rca,
OUT UINT32 *DevStatus
)
{
EFI_STATUS Status;
EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru;
EFI_SD_MMC_COMMAND_BLOCK SdMmcCmdBlk;
EFI_SD_MMC_STATUS_BLOCK SdMmcStatusBlk;
EFI_SD_MMC_PASS_THRU_COMMAND_PACKET Packet;
PassThru = Device->Private->PassThru;
ZeroMem (&SdMmcCmdBlk, sizeof (SdMmcCmdBlk));
ZeroMem (&SdMmcStatusBlk, sizeof (SdMmcStatusBlk));
ZeroMem (&Packet, sizeof (Packet));
Packet.SdMmcCmdBlk = &SdMmcCmdBlk;
Packet.SdMmcStatusBlk = &SdMmcStatusBlk;
Packet.Timeout = SD_GENERIC_TIMEOUT;
SdMmcCmdBlk.CommandIndex = SD_SEND_STATUS;
SdMmcCmdBlk.CommandType = SdMmcCommandTypeAc;
SdMmcCmdBlk.ResponseType = SdMmcResponseTypeR1;
SdMmcCmdBlk.CommandArgument = (UINT32)Rca << 16;
Status = PassThru->PassThru (PassThru, Device->Slot, &Packet, NULL);
if (!EFI_ERROR (Status)) {
CopyMem (DevStatus, &SdMmcStatusBlk.Resp0, sizeof (UINT32));
}
return Status;
}
/**
Send command SEND_CSD to the device to get the CSD register data.
@param[in] Device A pointer to the SD_DEVICE instance.
@param[in] Rca The relative device address to use.
@param[out] Csd The buffer to store the SD_CSD register data.
@retval EFI_SUCCESS The request is executed successfully.
@retval EFI_OUT_OF_RESOURCES The request could not be executed due to a lack of resources.
@retval Others The request could not be executed successfully.
**/
EFI_STATUS
SdGetCsd (
IN SD_DEVICE *Device,
IN UINT16 Rca,
OUT SD_CSD *Csd
)
{
EFI_STATUS Status;
EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru;
EFI_SD_MMC_COMMAND_BLOCK SdMmcCmdBlk;
EFI_SD_MMC_STATUS_BLOCK SdMmcStatusBlk;
EFI_SD_MMC_PASS_THRU_COMMAND_PACKET Packet;
PassThru = Device->Private->PassThru;
ZeroMem (&SdMmcCmdBlk, sizeof (SdMmcCmdBlk));
ZeroMem (&SdMmcStatusBlk, sizeof (SdMmcStatusBlk));
ZeroMem (&Packet, sizeof (Packet));
ZeroMem (Csd, sizeof (SD_CSD));
Packet.SdMmcCmdBlk = &SdMmcCmdBlk;
Packet.SdMmcStatusBlk = &SdMmcStatusBlk;
Packet.Timeout = SD_GENERIC_TIMEOUT;
SdMmcCmdBlk.CommandIndex = SD_SEND_CSD;
SdMmcCmdBlk.CommandType = SdMmcCommandTypeAc;
SdMmcCmdBlk.ResponseType = SdMmcResponseTypeR2;
SdMmcCmdBlk.CommandArgument = (UINT32)Rca << 16;
Status = PassThru->PassThru (PassThru, Device->Slot, &Packet, NULL);
if (!EFI_ERROR (Status)) {
//
// For details, refer to SD Host Controller Simplified Spec 3.0 Table 2-12.
//
CopyMem (((UINT8*)Csd) + 1, &SdMmcStatusBlk.Resp0, sizeof (SD_CSD) - 1);
}
return Status;
}
/**
Send command SEND_CID to the device to get the CID register data.
@param[in] Device A pointer to the SD_DEVICE instance.
@param[in] Rca The relative device address to use.
@param[out] Cid The buffer to store the SD_CID register data.
@retval EFI_SUCCESS The request is executed successfully.
@retval EFI_OUT_OF_RESOURCES The request could not be executed due to a lack of resources.
@retval Others The request could not be executed successfully.
**/
EFI_STATUS
SdGetCid (
IN SD_DEVICE *Device,
IN UINT16 Rca,
OUT SD_CID *Cid
)
{
EFI_STATUS Status;
EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru;
EFI_SD_MMC_COMMAND_BLOCK SdMmcCmdBlk;
EFI_SD_MMC_STATUS_BLOCK SdMmcStatusBlk;
EFI_SD_MMC_PASS_THRU_COMMAND_PACKET Packet;
PassThru = Device->Private->PassThru;
ZeroMem (&SdMmcCmdBlk, sizeof (SdMmcCmdBlk));
ZeroMem (&SdMmcStatusBlk, sizeof (SdMmcStatusBlk));
ZeroMem (&Packet, sizeof (Packet));
ZeroMem (Cid, sizeof (SD_CID));
Packet.SdMmcCmdBlk = &SdMmcCmdBlk;
Packet.SdMmcStatusBlk = &SdMmcStatusBlk;
Packet.Timeout = SD_GENERIC_TIMEOUT;
SdMmcCmdBlk.CommandIndex = SD_SEND_CID;
SdMmcCmdBlk.CommandType = SdMmcCommandTypeAc;
SdMmcCmdBlk.ResponseType = SdMmcResponseTypeR2;
SdMmcCmdBlk.CommandArgument = (UINT32)Rca << 16;
Status = PassThru->PassThru (PassThru, Device->Slot, &Packet, NULL);
if (!EFI_ERROR (Status)) {
//
// For details, refer to SD Host Controller Simplified Spec 3.0 Table 2-12.
//
CopyMem (((UINT8*)Cid) + 1, &SdMmcStatusBlk.Resp0, sizeof (SD_CID) - 1);
}
return Status;
}
/**
Read/write single block through sync or async I/O request.
@param[in] Device A pointer to the SD_DEVICE instance.
@param[in] Lba The starting logical block address to be read/written.
The caller is responsible for reading/writing to only
legitimate locations.
@param[in] Buffer A pointer to the destination/source buffer for the data.
@param[in] BufferSize Size of Buffer, must be a multiple of device block size.
@param[in] IsRead Indicates it is a read or write operation.
@param[in] Token A pointer to the token associated with the transaction.
@param[in] IsEnd A boolean to show whether it's the last cmd in a series of cmds.
This parameter is only meaningful in async I/O request.
@retval EFI_SUCCESS The request is executed successfully.
@retval EFI_OUT_OF_RESOURCES The request could not be executed due to a lack of resources.
@retval Others The request could not be executed successfully.
**/
EFI_STATUS
SdRwSingleBlock (
IN SD_DEVICE *Device,
IN EFI_LBA Lba,
IN VOID *Buffer,
IN UINTN BufferSize,
IN BOOLEAN IsRead,
IN EFI_BLOCK_IO2_TOKEN *Token,
IN BOOLEAN IsEnd
)
{
EFI_STATUS Status;
EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru;
SD_REQUEST *RwSingleBlkReq;
EFI_TPL OldTpl;
RwSingleBlkReq = NULL;
PassThru = Device->Private->PassThru;
RwSingleBlkReq = AllocateZeroPool (sizeof (SD_REQUEST));
if (RwSingleBlkReq == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto Error;
}
RwSingleBlkReq->Signature = SD_REQUEST_SIGNATURE;
OldTpl = gBS->RaiseTPL (TPL_CALLBACK);
InsertTailList (&Device->Queue, &RwSingleBlkReq->Link);
gBS->RestoreTPL (OldTpl);
RwSingleBlkReq->Packet.SdMmcCmdBlk = &RwSingleBlkReq->SdMmcCmdBlk;
RwSingleBlkReq->Packet.SdMmcStatusBlk = &RwSingleBlkReq->SdMmcStatusBlk;
//
// Calculate timeout value through the below formula.
// Timeout = (transfer size) / (2MB/s).
// Taking 2MB/s as divisor as it's the lowest transfer speed
// above class 2.
// Refer to SD Physical Layer Simplified spec section 3.4 for details.
//
RwSingleBlkReq->Packet.Timeout = (BufferSize / (2 * 1024 * 1024) + 1) * 1000 * 1000;
if (IsRead) {
RwSingleBlkReq->Packet.InDataBuffer = Buffer;
RwSingleBlkReq->Packet.InTransferLength = (UINT32)BufferSize;
RwSingleBlkReq->SdMmcCmdBlk.CommandIndex = SD_READ_SINGLE_BLOCK;
RwSingleBlkReq->SdMmcCmdBlk.CommandType = SdMmcCommandTypeAdtc;
RwSingleBlkReq->SdMmcCmdBlk.ResponseType = SdMmcResponseTypeR1;
} else {
RwSingleBlkReq->Packet.OutDataBuffer = Buffer;
RwSingleBlkReq->Packet.OutTransferLength = (UINT32)BufferSize;
RwSingleBlkReq->SdMmcCmdBlk.CommandIndex = SD_WRITE_SINGLE_BLOCK;
RwSingleBlkReq->SdMmcCmdBlk.CommandType = SdMmcCommandTypeAdtc;
RwSingleBlkReq->SdMmcCmdBlk.ResponseType = SdMmcResponseTypeR1;
}
if (Device->SectorAddressing) {
RwSingleBlkReq->SdMmcCmdBlk.CommandArgument = (UINT32)Lba;
} else {
RwSingleBlkReq->SdMmcCmdBlk.CommandArgument = (UINT32)MultU64x32 (Lba, Device->BlockMedia.BlockSize);
}
RwSingleBlkReq->IsEnd = IsEnd;
RwSingleBlkReq->Token = Token;
if ((Token != NULL) && (Token->Event != NULL)) {
Status = gBS->CreateEvent (
EVT_NOTIFY_SIGNAL,
TPL_CALLBACK,
AsyncIoCallback,
RwSingleBlkReq,
&RwSingleBlkReq->Event
);
if (EFI_ERROR (Status)) {
goto Error;
}
} else {
RwSingleBlkReq->Event = NULL;
}
Status = PassThru->PassThru (PassThru, Device->Slot, &RwSingleBlkReq->Packet, RwSingleBlkReq->Event);
Error:
if ((Token != NULL) && (Token->Event != NULL)) {
//
// For asynchronous operation, only free request and event in error case.
// The request and event will be freed in asynchronous callback for success case.
//
if (EFI_ERROR (Status) && (RwSingleBlkReq != NULL)) {
RemoveEntryList (&RwSingleBlkReq->Link);
if (RwSingleBlkReq->Event != NULL) {
gBS->CloseEvent (RwSingleBlkReq->Event);
}
FreePool (RwSingleBlkReq);
}
} else {
//
// For synchronous operation, free request whatever the execution result is.
//
if (RwSingleBlkReq != NULL) {
RemoveEntryList (&RwSingleBlkReq->Link);
FreePool (RwSingleBlkReq);
}
}
return Status;
}
/**
Read/write multiple blocks through sync or async I/O request.
@param[in] Device A pointer to the SD_DEVICE instance.
@param[in] Lba The starting logical block address to be read/written.
The caller is responsible for reading/writing to only
legitimate locations.
@param[in] Buffer A pointer to the destination/source buffer for the data.
@param[in] BufferSize Size of Buffer, must be a multiple of device block size.
@param[in] IsRead Indicates it is a read or write operation.
@param[in] Token A pointer to the token associated with the transaction.
@param[in] IsEnd A boolean to show whether it's the last cmd in a series of cmds.
This parameter is only meaningful in async I/O request.
@retval EFI_SUCCESS The request is executed successfully.
@retval EFI_OUT_OF_RESOURCES The request could not be executed due to a lack of resources.
@retval Others The request could not be executed successfully.
**/
EFI_STATUS
SdRwMultiBlocks (
IN SD_DEVICE *Device,
IN EFI_LBA Lba,
IN VOID *Buffer,
IN UINTN BufferSize,
IN BOOLEAN IsRead,
IN EFI_BLOCK_IO2_TOKEN *Token,
IN BOOLEAN IsEnd
)
{
EFI_STATUS Status;
SD_REQUEST *RwMultiBlkReq;
EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru;
EFI_TPL OldTpl;
RwMultiBlkReq = NULL;
PassThru = Device->Private->PassThru;
RwMultiBlkReq = AllocateZeroPool (sizeof (SD_REQUEST));
if (RwMultiBlkReq == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto Error;
}
RwMultiBlkReq->Signature = SD_REQUEST_SIGNATURE;
OldTpl = gBS->RaiseTPL (TPL_CALLBACK);
InsertTailList (&Device->Queue, &RwMultiBlkReq->Link);
gBS->RestoreTPL (OldTpl);
RwMultiBlkReq->Packet.SdMmcCmdBlk = &RwMultiBlkReq->SdMmcCmdBlk;
RwMultiBlkReq->Packet.SdMmcStatusBlk = &RwMultiBlkReq->SdMmcStatusBlk;
//
// Calculate timeout value through the below formula.
// Timeout = (transfer size) / (2MB/s).
// Taking 2MB/s as divisor as it's the lowest transfer speed
// above class 2.
// Refer to SD Physical Layer Simplified spec section 3.4 for details.
//
RwMultiBlkReq->Packet.Timeout = (BufferSize / (2 * 1024 * 1024) + 1) * 1000 * 1000;
if (IsRead) {
RwMultiBlkReq->Packet.InDataBuffer = Buffer;
RwMultiBlkReq->Packet.InTransferLength = (UINT32)BufferSize;
RwMultiBlkReq->SdMmcCmdBlk.CommandIndex = SD_READ_MULTIPLE_BLOCK;
RwMultiBlkReq->SdMmcCmdBlk.CommandType = SdMmcCommandTypeAdtc;
RwMultiBlkReq->SdMmcCmdBlk.ResponseType = SdMmcResponseTypeR1;
} else {
RwMultiBlkReq->Packet.OutDataBuffer = Buffer;
RwMultiBlkReq->Packet.OutTransferLength = (UINT32)BufferSize;
RwMultiBlkReq->SdMmcCmdBlk.CommandIndex = SD_WRITE_MULTIPLE_BLOCK;
RwMultiBlkReq->SdMmcCmdBlk.CommandType = SdMmcCommandTypeAdtc;
RwMultiBlkReq->SdMmcCmdBlk.ResponseType = SdMmcResponseTypeR1;
}
if (Device->SectorAddressing) {
RwMultiBlkReq->SdMmcCmdBlk.CommandArgument = (UINT32)Lba;
} else {
RwMultiBlkReq->SdMmcCmdBlk.CommandArgument = (UINT32)MultU64x32 (Lba, Device->BlockMedia.BlockSize);
}
RwMultiBlkReq->IsEnd = IsEnd;
RwMultiBlkReq->Token = Token;
if ((Token != NULL) && (Token->Event != NULL)) {
Status = gBS->CreateEvent (
EVT_NOTIFY_SIGNAL,
TPL_CALLBACK,
AsyncIoCallback,
RwMultiBlkReq,
&RwMultiBlkReq->Event
);
if (EFI_ERROR (Status)) {
goto Error;
}
} else {
RwMultiBlkReq->Event = NULL;
}
Status = PassThru->PassThru (PassThru, Device->Slot, &RwMultiBlkReq->Packet, RwMultiBlkReq->Event);
Error:
if ((Token != NULL) && (Token->Event != NULL)) {
//
// For asynchronous operation, only free request and event in error case.
// The request and event will be freed in asynchronous callback for success case.
//
if (EFI_ERROR (Status) && (RwMultiBlkReq != NULL)) {
RemoveEntryList (&RwMultiBlkReq->Link);
if (RwMultiBlkReq->Event != NULL) {
gBS->CloseEvent (RwMultiBlkReq->Event);
}
FreePool (RwMultiBlkReq);
}
} else {
//
// For synchronous operation, free request whatever the execution result is.
//
if (RwMultiBlkReq != NULL) {
RemoveEntryList (&RwMultiBlkReq->Link);
FreePool (RwMultiBlkReq);
}
}
return Status;
}
/**
This function transfers data from/to the sd memory card device.
@param[in] Device A pointer to the SD_DEVICE instance.
@param[in] MediaId The media ID that the read/write request is for.
@param[in] Lba The starting logical block address to be read/written.
The caller is responsible for reading/writing to only
legitimate locations.
@param[in, out] Buffer A pointer to the destination/source buffer for the data.
@param[in] BufferSize Size of Buffer, must be a multiple of device block size.
@param[in] IsRead Indicates it is a read or write operation.
@param[in, out] Token A pointer to the token associated with the transaction.
@retval EFI_SUCCESS The data was read/written correctly to the device.
@retval EFI_WRITE_PROTECTED The device can not be read/written to.
@retval EFI_DEVICE_ERROR The device reported an error while performing the read/write.
@retval EFI_NO_MEDIA There is no media in the device.
@retval EFI_MEDIA_CHNAGED The MediaId does not matched the current device.
@retval EFI_BAD_BUFFER_SIZE The Buffer was not a multiple of the block size of the device.
@retval EFI_INVALID_PARAMETER The read/write request contains LBAs that are not valid,
or the buffer is not on proper alignment.
**/
EFI_STATUS
SdReadWrite (
IN SD_DEVICE *Device,
IN UINT32 MediaId,
IN EFI_LBA Lba,
IN OUT VOID *Buffer,
IN UINTN BufferSize,
IN BOOLEAN IsRead,
IN OUT EFI_BLOCK_IO2_TOKEN *Token
)
{
EFI_STATUS Status;
EFI_BLOCK_IO_MEDIA *Media;
UINTN BlockSize;
UINTN BlockNum;
UINTN IoAlign;
UINTN Remaining;
UINT32 MaxBlock;
BOOLEAN LastRw;
Status = EFI_SUCCESS;
Media = &Device->BlockMedia;
LastRw = FALSE;
if (MediaId != Media->MediaId) {
return EFI_MEDIA_CHANGED;
}
if (!IsRead && Media->ReadOnly) {
return EFI_WRITE_PROTECTED;
}
//
// Check parameters.
//
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
if (BufferSize == 0) {
if ((Token != NULL) && (Token->Event != NULL)) {
Token->TransactionStatus = EFI_SUCCESS;
gBS->SignalEvent (Token->Event);
}
return EFI_SUCCESS;
}
BlockSize = Media->BlockSize;
if ((BufferSize % BlockSize) != 0) {
return EFI_BAD_BUFFER_SIZE;
}
BlockNum = BufferSize / BlockSize;
if ((Lba + BlockNum - 1) > Media->LastBlock) {
return EFI_INVALID_PARAMETER;
}
IoAlign = Media->IoAlign;
if (IoAlign > 0 && (((UINTN) Buffer & (IoAlign - 1)) != 0)) {
return EFI_INVALID_PARAMETER;
}
if ((Token != NULL) && (Token->Event != NULL)) {
Token->TransactionStatus = EFI_SUCCESS;
}
//
// Start to execute data transfer. The max block number in single cmd is 65535 blocks.
//
Remaining = BlockNum;
MaxBlock = 0xFFFF;
while (Remaining > 0) {
if (Remaining <= MaxBlock) {
BlockNum = Remaining;
LastRw = TRUE;
} else {
BlockNum = MaxBlock;
}
BufferSize = BlockNum * BlockSize;
if (BlockNum == 1) {
Status = SdRwSingleBlock (Device, Lba, Buffer, BufferSize, IsRead, Token, LastRw);
} else {
Status = SdRwMultiBlocks (Device, Lba, Buffer, BufferSize, IsRead, Token, LastRw);
}
if (EFI_ERROR (Status)) {
return Status;
}
DEBUG ((EFI_D_INFO, "Sd%a(): Lba 0x%x BlkNo 0x%x Event %p with %r\n", IsRead ? "Read" : "Write", Lba, BlockNum, Token->Event, Status));
Lba += BlockNum;
Buffer = (UINT8*)Buffer + BufferSize;
Remaining -= BlockNum;
}
return Status;
}
/**
Reset the Block Device.
@param This Indicates a pointer to the calling context.
@param ExtendedVerification Driver may perform diagnostics on reset.
@retval EFI_SUCCESS The device was reset.
@retval EFI_DEVICE_ERROR The device is not functioning properly and could
not be reset.
**/
EFI_STATUS
EFIAPI
SdReset (
IN EFI_BLOCK_IO_PROTOCOL *This,
IN BOOLEAN ExtendedVerification
)
{
EFI_STATUS Status;
SD_DEVICE *Device;
EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru;
Device = SD_DEVICE_DATA_FROM_BLKIO (This);
PassThru = Device->Private->PassThru;
Status = PassThru->ResetDevice (PassThru, Device->Slot);
if (EFI_ERROR (Status)) {
Status = EFI_DEVICE_ERROR;
}
return Status;
}
/**
Read BufferSize bytes from Lba into Buffer.
@param This Indicates a pointer to the calling context.
@param MediaId Id of the media, changes every time the media is replaced.
@param Lba The starting Logical Block Address to read from
@param BufferSize Size of Buffer, must be a multiple of device block size.
@param Buffer A pointer to the destination buffer for the data. The caller is
responsible for either having implicit or explicit ownership of the buffer.
@retval EFI_SUCCESS The data was read correctly from the device.
@retval EFI_DEVICE_ERROR The device reported an error while performing the read.
@retval EFI_NO_MEDIA There is no media in the device.
@retval EFI_MEDIA_CHANGED The MediaId does not matched the current device.
@retval EFI_BAD_BUFFER_SIZE The Buffer was not a multiple of the block size of the device.
@retval EFI_INVALID_PARAMETER The read request contains LBAs that are not valid,
or the buffer is not on proper alignment.
**/
EFI_STATUS
EFIAPI
SdReadBlocks (
IN EFI_BLOCK_IO_PROTOCOL *This,
IN UINT32 MediaId,
IN EFI_LBA Lba,
IN UINTN BufferSize,
OUT VOID *Buffer
)
{
EFI_STATUS Status;
SD_DEVICE *Device;
Device = SD_DEVICE_DATA_FROM_BLKIO (This);
Status = SdReadWrite (Device, MediaId, Lba, Buffer, BufferSize, TRUE, NULL);
return Status;
}
/**
Write BufferSize bytes from Lba into Buffer.
@param This Indicates a pointer to the calling context.
@param MediaId The media ID that the write request is for.
@param Lba The starting logical block address to be written. The caller is
responsible for writing to only legitimate locations.
@param BufferSize Size of Buffer, must be a multiple of device block size.
@param Buffer A pointer to the source buffer for the data.
@retval EFI_SUCCESS The data was written correctly to the device.
@retval EFI_WRITE_PROTECTED The device can not be written to.
@retval EFI_DEVICE_ERROR The device reported an error while performing the write.
@retval EFI_NO_MEDIA There is no media in the device.
@retval EFI_MEDIA_CHNAGED The MediaId does not matched the current device.
@retval EFI_BAD_BUFFER_SIZE The Buffer was not a multiple of the block size of the device.
@retval EFI_INVALID_PARAMETER The write request contains LBAs that are not valid,
or the buffer is not on proper alignment.
**/
EFI_STATUS
EFIAPI
SdWriteBlocks (
IN EFI_BLOCK_IO_PROTOCOL *This,
IN UINT32 MediaId,
IN EFI_LBA Lba,
IN UINTN BufferSize,
IN VOID *Buffer
)
{
EFI_STATUS Status;
SD_DEVICE *Device;
Device = SD_DEVICE_DATA_FROM_BLKIO (This);
Status = SdReadWrite (Device, MediaId, Lba, Buffer, BufferSize, FALSE, NULL);
return Status;
}
/**
Flush the Block Device.
@param This Indicates a pointer to the calling context.
@retval EFI_SUCCESS All outstanding data was written to the device
@retval EFI_DEVICE_ERROR The device reported an error while writing back the data
@retval EFI_NO_MEDIA There is no media in the device.
**/
EFI_STATUS
EFIAPI
SdFlushBlocks (
IN EFI_BLOCK_IO_PROTOCOL *This
)
{
//
// return directly
//
return EFI_SUCCESS;
}
/**
Reset the Block Device.
@param[in] This Indicates a pointer to the calling context.
@param[in] ExtendedVerification Driver may perform diagnostics on reset.
@retval EFI_SUCCESS The device was reset.
@retval EFI_DEVICE_ERROR The device is not functioning properly and could
not be reset.
**/
EFI_STATUS
EFIAPI
SdResetEx (
IN EFI_BLOCK_IO2_PROTOCOL *This,
IN BOOLEAN ExtendedVerification
)
{
SD_DEVICE *Device;
LIST_ENTRY *Link;
LIST_ENTRY *NextLink;
SD_REQUEST *Request;
EFI_TPL OldTpl;
Device = SD_DEVICE_DATA_FROM_BLKIO2 (This);
OldTpl = gBS->RaiseTPL (TPL_CALLBACK);
for (Link = GetFirstNode (&Device->Queue);
!IsNull (&Device->Queue, Link);
Link = NextLink) {
NextLink = GetNextNode (&Device->Queue, Link);
RemoveEntryList (Link);
Request = SD_REQUEST_FROM_LINK (Link);
gBS->CloseEvent (Request->Event);
Request->Token->TransactionStatus = EFI_ABORTED;
if (Request->IsEnd) {
gBS->SignalEvent (Request->Token->Event);
}
FreePool (Request);
}
gBS->RestoreTPL (OldTpl);
return EFI_SUCCESS;
}
/**
Read BufferSize bytes from Lba into Buffer.
@param[in] This Indicates a pointer to the calling context.
@param[in] MediaId Id of the media, changes every time the media is replaced.
@param[in] Lba The starting Logical Block Address to read from.
@param[in, out] Token A pointer to the token associated with the transaction.
@param[in] BufferSize Size of Buffer, must be a multiple of device block size.
@param[out] Buffer A pointer to the destination buffer for the data. The caller is
responsible for either having implicit or explicit ownership of the buffer.
@retval EFI_SUCCESS The read request was queued if Event is not NULL.
The data was read correctly from the device if
the Event is NULL.
@retval EFI_DEVICE_ERROR The device reported an error while performing
the read.
@retval EFI_NO_MEDIA There is no media in the device.
@retval EFI_MEDIA_CHANGED The MediaId is not for the current media.
@retval EFI_BAD_BUFFER_SIZE The BufferSize parameter is not a multiple of the
intrinsic block size of the device.
@retval EFI_INVALID_PARAMETER The read request contains LBAs that are not valid,
or the buffer is not on proper alignment.
@retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack
of resources.
**/
EFI_STATUS
EFIAPI
SdReadBlocksEx (
IN EFI_BLOCK_IO2_PROTOCOL *This,
IN UINT32 MediaId,
IN EFI_LBA Lba,
IN OUT EFI_BLOCK_IO2_TOKEN *Token,
IN UINTN BufferSize,
OUT VOID *Buffer
)
{
EFI_STATUS Status;
SD_DEVICE *Device;
Device = SD_DEVICE_DATA_FROM_BLKIO2 (This);
Status = SdReadWrite (Device, MediaId, Lba, Buffer, BufferSize, TRUE, Token);
return Status;
}
/**
Write BufferSize bytes from Lba into Buffer.
@param[in] This Indicates a pointer to the calling context.
@param[in] MediaId The media ID that the write request is for.
@param[in] Lba The starting logical block address to be written. The
caller is responsible for writing to only legitimate
locations.
@param[in, out] Token A pointer to the token associated with the transaction.
@param[in] BufferSize Size of Buffer, must be a multiple of device block size.
@param[in] Buffer A pointer to the source buffer for the data.
@retval EFI_SUCCESS The data was written correctly to the device.
@retval EFI_WRITE_PROTECTED The device can not be written to.
@retval EFI_DEVICE_ERROR The device reported an error while performing the write.
@retval EFI_NO_MEDIA There is no media in the device.
@retval EFI_MEDIA_CHNAGED The MediaId does not matched the current device.
@retval EFI_BAD_BUFFER_SIZE The Buffer was not a multiple of the block size of the device.
@retval EFI_INVALID_PARAMETER The write request contains LBAs that are not valid,
or the buffer is not on proper alignment.
**/
EFI_STATUS
EFIAPI
SdWriteBlocksEx (
IN EFI_BLOCK_IO2_PROTOCOL *This,
IN UINT32 MediaId,
IN EFI_LBA Lba,
IN OUT EFI_BLOCK_IO2_TOKEN *Token,
IN UINTN BufferSize,
IN VOID *Buffer
)
{
EFI_STATUS Status;
SD_DEVICE *Device;
Device = SD_DEVICE_DATA_FROM_BLKIO2 (This);
Status = SdReadWrite (Device, MediaId, Lba, Buffer, BufferSize, FALSE, Token);
return Status;
}
/**
Flush the Block Device.
@param[in] This Indicates a pointer to the calling context.
@param[in, out] Token A pointer to the token associated with the transaction.
@retval EFI_SUCCESS All outstanding data was written to the device
@retval EFI_DEVICE_ERROR The device reported an error while writing back the data
@retval EFI_NO_MEDIA There is no media in the device.
**/
EFI_STATUS
EFIAPI
SdFlushBlocksEx (
IN EFI_BLOCK_IO2_PROTOCOL *This,
IN OUT EFI_BLOCK_IO2_TOKEN *Token
)
{
//
// Signal event and return directly.
//
if (Token != NULL && Token->Event != NULL) {
Token->TransactionStatus = EFI_SUCCESS;
gBS->SignalEvent (Token->Event);
}
return EFI_SUCCESS;
}

View File

@@ -0,0 +1,221 @@
/** @file
Header file for SdDxe Driver.
This file defines common data structures, macro definitions and some module
internal function header files.
Copyright (c) 2015, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#ifndef _SD_BLOCK_IO_H_
#define _SD_BLOCK_IO_H_
/**
Reset the Block Device.
@param This Indicates a pointer to the calling context.
@param ExtendedVerification Driver may perform diagnostics on reset.
@retval EFI_SUCCESS The device was reset.
@retval EFI_DEVICE_ERROR The device is not functioning properly and could
not be reset.
**/
EFI_STATUS
EFIAPI
SdReset (
IN EFI_BLOCK_IO_PROTOCOL *This,
IN BOOLEAN ExtendedVerification
);
/**
Read BufferSize bytes from Lba into Buffer.
@param This Indicates a pointer to the calling context.
@param MediaId Id of the media, changes every time the media is replaced.
@param Lba The starting Logical Block Address to read from
@param BufferSize Size of Buffer, must be a multiple of device block size.
@param Buffer A pointer to the destination buffer for the data. The caller is
responsible for either having implicit or explicit ownership of the buffer.
@retval EFI_SUCCESS The data was read correctly from the device.
@retval EFI_DEVICE_ERROR The device reported an error while performing the read.
@retval EFI_NO_MEDIA There is no media in the device.
@retval EFI_MEDIA_CHANGED The MediaId does not matched the current device.
@retval EFI_BAD_BUFFER_SIZE The Buffer was not a multiple of the block size of the device.
@retval EFI_INVALID_PARAMETER The read request contains LBAs that are not valid,
or the buffer is not on proper alignment.
**/
EFI_STATUS
EFIAPI
SdReadBlocks (
IN EFI_BLOCK_IO_PROTOCOL *This,
IN UINT32 MediaId,
IN EFI_LBA Lba,
IN UINTN BufferSize,
OUT VOID *Buffer
);
/**
Write BufferSize bytes from Lba into Buffer.
@param This Indicates a pointer to the calling context.
@param MediaId The media ID that the write request is for.
@param Lba The starting logical block address to be written. The caller is
responsible for writing to only legitimate locations.
@param BufferSize Size of Buffer, must be a multiple of device block size.
@param Buffer A pointer to the source buffer for the data.
@retval EFI_SUCCESS The data was written correctly to the device.
@retval EFI_WRITE_PROTECTED The device can not be written to.
@retval EFI_DEVICE_ERROR The device reported an error while performing the write.
@retval EFI_NO_MEDIA There is no media in the device.
@retval EFI_MEDIA_CHNAGED The MediaId does not matched the current device.
@retval EFI_BAD_BUFFER_SIZE The Buffer was not a multiple of the block size of the device.
@retval EFI_INVALID_PARAMETER The write request contains LBAs that are not valid,
or the buffer is not on proper alignment.
**/
EFI_STATUS
EFIAPI
SdWriteBlocks (
IN EFI_BLOCK_IO_PROTOCOL *This,
IN UINT32 MediaId,
IN EFI_LBA Lba,
IN UINTN BufferSize,
IN VOID *Buffer
);
/**
Flush the Block Device.
@param This Indicates a pointer to the calling context.
@retval EFI_SUCCESS All outstanding data was written to the device
@retval EFI_DEVICE_ERROR The device reported an error while writing back the data
@retval EFI_NO_MEDIA There is no media in the device.
**/
EFI_STATUS
EFIAPI
SdFlushBlocks (
IN EFI_BLOCK_IO_PROTOCOL *This
);
/**
Reset the Block Device.
@param[in] This Indicates a pointer to the calling context.
@param[in] ExtendedVerification Driver may perform diagnostics on reset.
@retval EFI_SUCCESS The device was reset.
@retval EFI_DEVICE_ERROR The device is not functioning properly and could
not be reset.
**/
EFI_STATUS
EFIAPI
SdResetEx (
IN EFI_BLOCK_IO2_PROTOCOL *This,
IN BOOLEAN ExtendedVerification
);
/**
Read BufferSize bytes from Lba into Buffer.
@param[in] This Indicates a pointer to the calling context.
@param[in] MediaId Id of the media, changes every time the media is replaced.
@param[in] Lba The starting Logical Block Address to read from.
@param[in, out] Token A pointer to the token associated with the transaction.
@param[in] BufferSize Size of Buffer, must be a multiple of device block size.
@param[out] Buffer A pointer to the destination buffer for the data. The caller is
responsible for either having implicit or explicit ownership of the buffer.
@retval EFI_SUCCESS The read request was queued if Event is not NULL.
The data was read correctly from the device if
the Event is NULL.
@retval EFI_DEVICE_ERROR The device reported an error while performing
the read.
@retval EFI_NO_MEDIA There is no media in the device.
@retval EFI_MEDIA_CHANGED The MediaId is not for the current media.
@retval EFI_BAD_BUFFER_SIZE The BufferSize parameter is not a multiple of the
intrinsic block size of the device.
@retval EFI_INVALID_PARAMETER The read request contains LBAs that are not valid,
or the buffer is not on proper alignment.
@retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack
of resources.
**/
EFI_STATUS
EFIAPI
SdReadBlocksEx (
IN EFI_BLOCK_IO2_PROTOCOL *This,
IN UINT32 MediaId,
IN EFI_LBA Lba,
IN OUT EFI_BLOCK_IO2_TOKEN *Token,
IN UINTN BufferSize,
OUT VOID *Buffer
);
/**
Write BufferSize bytes from Lba into Buffer.
@param[in] This Indicates a pointer to the calling context.
@param[in] MediaId The media ID that the write request is for.
@param[in] Lba The starting logical block address to be written. The
caller is responsible for writing to only legitimate
locations.
@param[in, out] Token A pointer to the token associated with the transaction.
@param[in] BufferSize Size of Buffer, must be a multiple of device block size.
@param[in] Buffer A pointer to the source buffer for the data.
@retval EFI_SUCCESS The data was written correctly to the device.
@retval EFI_WRITE_PROTECTED The device can not be written to.
@retval EFI_DEVICE_ERROR The device reported an error while performing the write.
@retval EFI_NO_MEDIA There is no media in the device.
@retval EFI_MEDIA_CHNAGED The MediaId does not matched the current device.
@retval EFI_BAD_BUFFER_SIZE The Buffer was not a multiple of the block size of the device.
@retval EFI_INVALID_PARAMETER The write request contains LBAs that are not valid,
or the buffer is not on proper alignment.
**/
EFI_STATUS
EFIAPI
SdWriteBlocksEx (
IN EFI_BLOCK_IO2_PROTOCOL *This,
IN UINT32 MediaId,
IN EFI_LBA Lba,
IN OUT EFI_BLOCK_IO2_TOKEN *Token,
IN UINTN BufferSize,
IN VOID *Buffer
);
/**
Flush the Block Device.
@param[in] This Indicates a pointer to the calling context.
@param[in, out] Token A pointer to the token associated with the transaction.
@retval EFI_SUCCESS All outstanding data was written to the device
@retval EFI_DEVICE_ERROR The device reported an error while writing back the data
@retval EFI_NO_MEDIA There is no media in the device.
**/
EFI_STATUS
EFIAPI
SdFlushBlocksEx (
IN EFI_BLOCK_IO2_PROTOCOL *This,
IN OUT EFI_BLOCK_IO2_TOKEN *Token
);
#endif

View File

@@ -0,0 +1,888 @@
/** @file
The SdDxe driver is used to manage the SD memory card device.
It produces BlockIo and BlockIo2 protocols to allow upper layer
access the SD memory card device.
Copyright (c) 2015 - 2016, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "SdDxe.h"
//
// SdDxe Driver Binding Protocol Instance
//
EFI_DRIVER_BINDING_PROTOCOL gSdDxeDriverBinding = {
SdDxeDriverBindingSupported,
SdDxeDriverBindingStart,
SdDxeDriverBindingStop,
0x10,
NULL,
NULL
};
//
// Template for SD_DEVICE data structure.
//
SD_DEVICE mSdDeviceTemplate = {
SD_DEVICE_SIGNATURE, // Signature
NULL, // Handle
NULL, // DevicePath
0xFF, // Slot
FALSE, // SectorAddressing
{ // BlockIo
EFI_BLOCK_IO_PROTOCOL_REVISION,
NULL,
SdReset,
SdReadBlocks,
SdWriteBlocks,
SdFlushBlocks
},
{ // BlockIo2
NULL,
SdResetEx,
SdReadBlocksEx,
SdWriteBlocksEx,
SdFlushBlocksEx
},
{ // BlockMedia
0, // MediaId
FALSE, // RemovableMedia
TRUE, // MediaPresent
FALSE, // LogicPartition
FALSE, // ReadOnly
FALSE, // WritingCache
0x200, // BlockSize
0, // IoAlign
0 // LastBlock
},
{ // Queue
NULL,
NULL
},
{ // Csd
0,
},
{ // Cid
0,
},
NULL, // ControllerNameTable
{ // ModelName
0,
},
NULL // Private
};
/**
Decode and print SD CSD Register content.
@param[in] Csd Pointer to SD_CSD data structure.
@retval EFI_SUCCESS The function completed successfully
**/
EFI_STATUS
DumpCsd (
IN SD_CSD *Csd
)
{
SD_CSD2 *Csd2;
DEBUG((DEBUG_INFO, "== Dump Sd Csd Register==\n"));
DEBUG((DEBUG_INFO, " CSD structure 0x%x\n", Csd->CsdStructure));
DEBUG((DEBUG_INFO, " Data read access-time 1 0x%x\n", Csd->Taac));
DEBUG((DEBUG_INFO, " Data read access-time 2 0x%x\n", Csd->Nsac));
DEBUG((DEBUG_INFO, " Max. bus clock frequency 0x%x\n", Csd->TranSpeed));
DEBUG((DEBUG_INFO, " Device command classes 0x%x\n", Csd->Ccc));
DEBUG((DEBUG_INFO, " Max. read data block length 0x%x\n", Csd->ReadBlLen));
DEBUG((DEBUG_INFO, " Partial blocks for read allowed 0x%x\n", Csd->ReadBlPartial));
DEBUG((DEBUG_INFO, " Write block misalignment 0x%x\n", Csd->WriteBlkMisalign));
DEBUG((DEBUG_INFO, " Read block misalignment 0x%x\n", Csd->ReadBlkMisalign));
DEBUG((DEBUG_INFO, " DSR implemented 0x%x\n", Csd->DsrImp));
if (Csd->CsdStructure == 0) {
DEBUG((DEBUG_INFO, " Device size 0x%x\n", Csd->CSizeLow | (Csd->CSizeHigh << 2)));
DEBUG((DEBUG_INFO, " Max. read current @ VDD min 0x%x\n", Csd->VddRCurrMin));
DEBUG((DEBUG_INFO, " Max. read current @ VDD max 0x%x\n", Csd->VddRCurrMax));
DEBUG((DEBUG_INFO, " Max. write current @ VDD min 0x%x\n", Csd->VddWCurrMin));
DEBUG((DEBUG_INFO, " Max. write current @ VDD max 0x%x\n", Csd->VddWCurrMax));
} else {
Csd2 = (SD_CSD2*)(VOID*)Csd;
DEBUG((DEBUG_INFO, " Device size 0x%x\n", Csd2->CSizeLow | (Csd->CSizeHigh << 16)));
}
DEBUG((DEBUG_INFO, " Erase sector size 0x%x\n", Csd->SectorSize));
DEBUG((DEBUG_INFO, " Erase single block enable 0x%x\n", Csd->EraseBlkEn));
DEBUG((DEBUG_INFO, " Write protect group size 0x%x\n", Csd->WpGrpSize));
DEBUG((DEBUG_INFO, " Write protect group enable 0x%x\n", Csd->WpGrpEnable));
DEBUG((DEBUG_INFO, " Write speed factor 0x%x\n", Csd->R2WFactor));
DEBUG((DEBUG_INFO, " Max. write data block length 0x%x\n", Csd->WriteBlLen));
DEBUG((DEBUG_INFO, " Partial blocks for write allowed 0x%x\n", Csd->WriteBlPartial));
DEBUG((DEBUG_INFO, " File format group 0x%x\n", Csd->FileFormatGrp));
DEBUG((DEBUG_INFO, " Copy flag (OTP) 0x%x\n", Csd->Copy));
DEBUG((DEBUG_INFO, " Permanent write protection 0x%x\n", Csd->PermWriteProtect));
DEBUG((DEBUG_INFO, " Temporary write protection 0x%x\n", Csd->TmpWriteProtect));
DEBUG((DEBUG_INFO, " File format 0x%x\n", Csd->FileFormat));
return EFI_SUCCESS;
}
/**
Get SD device model name.
@param[in, out] Device The pointer to the SD_DEVICE data structure.
@param[in] Cid Pointer to SD_CID data structure.
@retval EFI_SUCCESS The function completed successfully
**/
EFI_STATUS
GetSdModelName (
IN OUT SD_DEVICE *Device,
IN SD_CID *Cid
)
{
CHAR8 String[SD_MODEL_NAME_MAX_LEN];
ZeroMem (String, sizeof (String));
CopyMem (String, Cid->OemId, sizeof (Cid->OemId));
String[sizeof (Cid->OemId)] = ' ';
CopyMem (String + sizeof (Cid->OemId) + 1, Cid->ProductName, sizeof (Cid->ProductName));
String[sizeof (Cid->OemId) + sizeof (Cid->ProductName)] = ' ';
CopyMem (String + sizeof (Cid->OemId) + sizeof (Cid->ProductName) + 1, Cid->ProductSerialNumber, sizeof (Cid->ProductSerialNumber));
AsciiStrToUnicodeStr (String, Device->ModelName);
return EFI_SUCCESS;
}
/**
Discover user area partition in the SD device.
@param[in] Device The pointer to the SD_DEVICE data structure.
@retval EFI_SUCCESS The user area partition in the SD device is successfully identified.
@return Others Some error occurs when identifying the user area.
**/
EFI_STATUS
DiscoverUserArea (
IN SD_DEVICE *Device
)
{
EFI_STATUS Status;
SD_CSD *Csd;
SD_CSD2 *Csd2;
SD_CID *Cid;
UINT64 Capacity;
UINT32 DevStatus;
UINT16 Rca;
UINT32 CSize;
UINT32 CSizeMul;
UINT32 ReadBlLen;
//
// Deselect the device to force it enter stby mode.
// Note here we don't judge return status as some SD devices return
// error but the state has been stby.
//
SdSelect (Device, 0);
Status = SdSetRca (Device, &Rca);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "DiscoverUserArea(): Assign new Rca = 0x%x fails with %r\n", Rca, Status));
return Status;
}
Csd = &Device->Csd;
Status = SdGetCsd (Device, Rca, Csd);
if (EFI_ERROR (Status)) {
return Status;
}
DumpCsd (Csd);
Cid = &Device->Cid;
Status = SdGetCid (Device, Rca, Cid);
if (EFI_ERROR (Status)) {
return Status;
}
GetSdModelName (Device, Cid);
Status = SdSelect (Device, Rca);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "DiscoverUserArea(): Reselect the device 0x%x fails with %r\n", Rca, Status));
return Status;
}
Status = SdSendStatus (Device, Rca, &DevStatus);
if (EFI_ERROR (Status)) {
return Status;
}
if (Csd->CsdStructure == 0) {
Device->SectorAddressing = FALSE;
CSize = (Csd->CSizeHigh << 2 | Csd->CSizeLow) + 1;
CSizeMul = (1 << (Csd->CSizeMul + 2));
ReadBlLen = (1 << (Csd->ReadBlLen));
Capacity = MultU64x32 (MultU64x32 ((UINT64)CSize, CSizeMul), ReadBlLen);
} else {
Device->SectorAddressing = TRUE;
Csd2 = (SD_CSD2*)(VOID*)Csd;
CSize = (Csd2->CSizeHigh << 16 | Csd2->CSizeLow) + 1;
Capacity = MultU64x32 ((UINT64)CSize, SIZE_512KB);
}
Device->BlockIo.Media = &Device->BlockMedia;
Device->BlockIo2.Media = &Device->BlockMedia;
Device->BlockMedia.IoAlign = Device->Private->PassThru->IoAlign;
Device->BlockMedia.BlockSize = 0x200;
Device->BlockMedia.LastBlock = 0x00;
Device->BlockMedia.RemovableMedia = TRUE;
Device->BlockMedia.MediaPresent = TRUE;
Device->BlockMedia.LogicalPartition = FALSE;
Device->BlockMedia.LastBlock = DivU64x32 (Capacity, Device->BlockMedia.BlockSize) - 1;
return Status;
}
/**
Scan SD Bus to discover the device.
@param[in] Private The SD driver private data structure.
@param[in] Slot The slot number to check device present.
@retval EFI_SUCCESS Successfully to discover the device and attach
SdMmcIoProtocol to it.
@retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack
of resources.
@retval EFI_ALREADY_STARTED The device was discovered before.
@retval Others Fail to discover the device.
**/
EFI_STATUS
EFIAPI
DiscoverSdDevice (
IN SD_DRIVER_PRIVATE_DATA *Private,
IN UINT8 Slot
)
{
EFI_STATUS Status;
SD_DEVICE *Device;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
EFI_DEVICE_PATH_PROTOCOL *NewDevicePath;
EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath;
EFI_HANDLE DeviceHandle;
EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru;
Device = NULL;
DevicePath = NULL;
NewDevicePath = NULL;
RemainingDevicePath = NULL;
PassThru = Private->PassThru;
//
// Build Device Path
//
Status = PassThru->BuildDevicePath (
PassThru,
Slot,
&DevicePath
);
if (EFI_ERROR(Status)) {
return Status;
}
if (DevicePath->SubType != MSG_SD_DP) {
Status = EFI_UNSUPPORTED;
goto Error;
}
NewDevicePath = AppendDevicePathNode (
Private->ParentDevicePath,
DevicePath
);
if (NewDevicePath == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto Error;
}
DeviceHandle = NULL;
RemainingDevicePath = NewDevicePath;
Status = gBS->LocateDevicePath (&gEfiDevicePathProtocolGuid, &RemainingDevicePath, &DeviceHandle);
if (!EFI_ERROR (Status) && (DeviceHandle != NULL) && IsDevicePathEnd(RemainingDevicePath)) {
//
// The device has been started, directly return to fast boot.
//
Status = EFI_ALREADY_STARTED;
goto Error;
}
//
// Allocate buffer to store SD_DEVICE private data.
//
Device = AllocateCopyPool (sizeof (SD_DEVICE), &mSdDeviceTemplate);
if (Device == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto Error;
}
Device->DevicePath = NewDevicePath;
Device->Slot = Slot;
Device->Private = Private;
InitializeListHead (&Device->Queue);
//
// Expose user area in the Sd memory card to upper layer.
//
Status = DiscoverUserArea (Device);
if (EFI_ERROR(Status)) {
goto Error;
}
Device->ControllerNameTable = NULL;
AddUnicodeString2 (
"eng",
gSdDxeComponentName.SupportedLanguages,
&Device->ControllerNameTable,
Device->ModelName,
TRUE
);
AddUnicodeString2 (
"en",
gSdDxeComponentName.SupportedLanguages,
&Device->ControllerNameTable,
Device->ModelName,
FALSE
);
Status = gBS->InstallMultipleProtocolInterfaces (
&Device->Handle,
&gEfiDevicePathProtocolGuid,
Device->DevicePath,
&gEfiBlockIoProtocolGuid,
&Device->BlockIo,
&gEfiBlockIo2ProtocolGuid,
&Device->BlockIo2,
NULL
);
if (!EFI_ERROR (Status)) {
gBS->OpenProtocol (
Private->Controller,
&gEfiSdMmcPassThruProtocolGuid,
(VOID **) &(Private->PassThru),
Private->DriverBindingHandle,
Device->Handle,
EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER
);
}
Error:
FreePool (DevicePath);
if (EFI_ERROR (Status) && (NewDevicePath != NULL)) {
FreePool (NewDevicePath);
}
if (EFI_ERROR (Status) && (Device != NULL)) {
FreePool (Device);
}
return Status;
}
/**
Tests to see if this driver supports a given controller. If a child device is provided,
it further tests to see if this driver supports creating a handle for the specified child device.
This function checks to see if the driver specified by This supports the device specified by
ControllerHandle. Drivers will typically use the device path attached to
ControllerHandle and/or the services from the bus I/O abstraction attached to
ControllerHandle to determine if the driver supports ControllerHandle. This function
may be called many times during platform initialization. In order to reduce boot times, the tests
performed by this function must be very small, and take as little time as possible to execute. This
function must not change the state of any hardware devices, and this function must be aware that the
device specified by ControllerHandle may already be managed by the same driver or a
different driver. This function must match its calls to AllocatePages() with FreePages(),
AllocatePool() with FreePool(), and OpenProtocol() with CloseProtocol().
Since ControllerHandle may have been previously started by the same driver, if a protocol is
already in the opened state, then it must not be closed with CloseProtocol(). This is required
to guarantee the state of ControllerHandle is not modified by this function.
@param[in] This A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance.
@param[in] ControllerHandle The handle of the controller to test. This handle
must support a protocol interface that supplies
an I/O abstraction to the driver.
@param[in] RemainingDevicePath A pointer to the remaining portion of a device path. This
parameter is ignored by device drivers, and is optional for bus
drivers. For bus drivers, if this parameter is not NULL, then
the bus driver must determine if the bus controller specified
by ControllerHandle and the child controller specified
by RemainingDevicePath are both supported by this
bus driver.
@retval EFI_SUCCESS The device specified by ControllerHandle and
RemainingDevicePath is supported by the driver specified by This.
@retval EFI_ALREADY_STARTED The device specified by ControllerHandle and
RemainingDevicePath is already being managed by the driver
specified by This.
@retval EFI_ACCESS_DENIED The device specified by ControllerHandle and
RemainingDevicePath is already being managed by a different
driver or an application that requires exclusive access.
Currently not implemented.
@retval EFI_UNSUPPORTED The device specified by ControllerHandle and
RemainingDevicePath is not supported by the driver specified by This.
**/
EFI_STATUS
EFIAPI
SdDxeDriverBindingSupported (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE Controller,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath
)
{
EFI_STATUS Status;
EFI_DEVICE_PATH_PROTOCOL *ParentDevicePath;
EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru;
UINT8 Slot;
//
// Test EFI_SD_MMC_PASS_THRU_PROTOCOL on the controller handle.
//
Status = gBS->OpenProtocol (
Controller,
&gEfiSdMmcPassThruProtocolGuid,
(VOID**) &PassThru,
This->DriverBindingHandle,
Controller,
EFI_OPEN_PROTOCOL_BY_DRIVER
);
if (Status == EFI_ALREADY_STARTED) {
return EFI_SUCCESS;
}
if (EFI_ERROR (Status)) {
return Status;
}
//
// Test RemainingDevicePath is valid or not.
//
if ((RemainingDevicePath != NULL) && !IsDevicePathEnd (RemainingDevicePath)) {
Status = PassThru->GetSlotNumber (PassThru, RemainingDevicePath, &Slot);
if (EFI_ERROR (Status)) {
//
// Close the I/O Abstraction(s) used to perform the supported test
//
gBS->CloseProtocol (
Controller,
&gEfiSdMmcPassThruProtocolGuid,
This->DriverBindingHandle,
Controller
);
return Status;
}
}
//
// Close the I/O Abstraction(s) used to perform the supported test
//
gBS->CloseProtocol (
Controller,
&gEfiSdMmcPassThruProtocolGuid,
This->DriverBindingHandle,
Controller
);
//
// Open the EFI Device Path protocol needed to perform the supported test
//
Status = gBS->OpenProtocol (
Controller,
&gEfiDevicePathProtocolGuid,
(VOID **) &ParentDevicePath,
This->DriverBindingHandle,
Controller,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
return Status;
}
/**
Starts a device controller or a bus controller.
The Start() function is designed to be invoked from the EFI boot service ConnectController().
As a result, much of the error checking on the parameters to Start() has been moved into this
common boot service. It is legal to call Start() from other locations,
but the following calling restrictions must be followed or the system behavior will not be deterministic.
1. ControllerHandle must be a valid EFI_HANDLE.
2. If RemainingDevicePath is not NULL, then it must be a pointer to a naturally aligned
EFI_DEVICE_PATH_PROTOCOL.
3. Prior to calling Start(), the Supported() function for the driver specified by This must
have been called with the same calling parameters, and Supported() must have returned EFI_SUCCESS.
@param[in] This A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance.
@param[in] ControllerHandle The handle of the controller to start. This handle
must support a protocol interface that supplies
an I/O abstraction to the driver.
@param[in] RemainingDevicePath A pointer to the remaining portion of a device path. This
parameter is ignored by device drivers, and is optional for bus
drivers. For a bus driver, if this parameter is NULL, then handles
for all the children of Controller are created by this driver.
If this parameter is not NULL and the first Device Path Node is
not the End of Device Path Node, then only the handle for the
child device specified by the first Device Path Node of
RemainingDevicePath is created by this driver.
If the first Device Path Node of RemainingDevicePath is
the End of Device Path Node, no child handle is created by this
driver.
@retval EFI_SUCCESS The device was started.
@retval EFI_DEVICE_ERROR The device could not be started due to a device error.Currently not implemented.
@retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
@retval Others The driver failded to start the device.
**/
EFI_STATUS
EFIAPI
SdDxeDriverBindingStart (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE Controller,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath
)
{
EFI_STATUS Status;
EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru;
EFI_DEVICE_PATH_PROTOCOL *ParentDevicePath;
SD_DRIVER_PRIVATE_DATA *Private;
UINT8 Slot;
Private = NULL;
PassThru = NULL;
Status = gBS->OpenProtocol (
Controller,
&gEfiSdMmcPassThruProtocolGuid,
(VOID **) &PassThru,
This->DriverBindingHandle,
Controller,
EFI_OPEN_PROTOCOL_BY_DRIVER
);
if ((EFI_ERROR (Status)) && (Status != EFI_ALREADY_STARTED)) {
return Status;
}
//
// Check EFI_ALREADY_STARTED to reuse the original SD_DRIVER_PRIVATE_DATA.
//
if (Status != EFI_ALREADY_STARTED) {
Private = AllocateZeroPool (sizeof (SD_DRIVER_PRIVATE_DATA));
if (Private == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto Error;
}
Status = gBS->OpenProtocol (
Controller,
&gEfiDevicePathProtocolGuid,
(VOID **) &ParentDevicePath,
This->DriverBindingHandle,
Controller,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
ASSERT_EFI_ERROR (Status);
Private->PassThru = PassThru;
Private->Controller = Controller;
Private->ParentDevicePath = ParentDevicePath;
Private->DriverBindingHandle = This->DriverBindingHandle;
Status = gBS->InstallProtocolInterface (
&Controller,
&gEfiCallerIdGuid,
EFI_NATIVE_INTERFACE,
Private
);
if (EFI_ERROR (Status)) {
goto Error;
}
} else {
Status = gBS->OpenProtocol (
Controller,
&gEfiCallerIdGuid,
(VOID **) &Private,
This->DriverBindingHandle,
Controller,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
goto Error;
}
}
if (RemainingDevicePath == NULL) {
Slot = 0xFF;
while (TRUE) {
Status = PassThru->GetNextSlot (PassThru, &Slot);
if (EFI_ERROR (Status)) {
//
// Cannot find more legal slots.
//
Status = EFI_SUCCESS;
break;
}
Status = DiscoverSdDevice (Private, Slot);
if (EFI_ERROR (Status) && (Status != EFI_ALREADY_STARTED)) {
break;
}
}
} else if (!IsDevicePathEnd (RemainingDevicePath)) {
Status = PassThru->GetSlotNumber (PassThru, RemainingDevicePath, &Slot);
if (!EFI_ERROR (Status)) {
Status = DiscoverSdDevice (Private, Slot);
}
}
Error:
if (EFI_ERROR (Status) && (Status != EFI_ALREADY_STARTED)) {
gBS->CloseProtocol (
Controller,
&gEfiSdMmcPassThruProtocolGuid,
This->DriverBindingHandle,
Controller
);
if (Private != NULL) {
gBS->UninstallMultipleProtocolInterfaces (
Controller,
&gEfiCallerIdGuid,
Private,
NULL
);
FreePool (Private);
}
}
return Status;
}
/**
Stops a device controller or a bus controller.
The Stop() function is designed to be invoked from the EFI boot service DisconnectController().
As a result, much of the error checking on the parameters to Stop() has been moved
into this common boot service. It is legal to call Stop() from other locations,
but the following calling restrictions must be followed or the system behavior will not be deterministic.
1. ControllerHandle must be a valid EFI_HANDLE that was used on a previous call to this
same driver's Start() function.
2. The first NumberOfChildren handles of ChildHandleBuffer must all be a valid
EFI_HANDLE. In addition, all of these handles must have been created in this driver's
Start() function, and the Start() function must have called OpenProtocol() on
ControllerHandle with an Attribute of EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.
@param[in] This A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance.
@param[in] ControllerHandle A handle to the device being stopped. The handle must
support a bus specific I/O protocol for the driver
to use to stop the device.
@param[in] NumberOfChildren The number of child device handles in ChildHandleBuffer.
@param[in] ChildHandleBuffer An array of child handles to be freed. May be NULL
if NumberOfChildren is 0.
@retval EFI_SUCCESS The device was stopped.
@retval EFI_DEVICE_ERROR The device could not be stopped due to a device error.
**/
EFI_STATUS
EFIAPI
SdDxeDriverBindingStop (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE Controller,
IN UINTN NumberOfChildren,
IN EFI_HANDLE *ChildHandleBuffer
)
{
EFI_STATUS Status;
BOOLEAN AllChildrenStopped;
UINTN Index;
SD_DRIVER_PRIVATE_DATA *Private;
SD_DEVICE *Device;
EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru;
EFI_BLOCK_IO2_PROTOCOL *BlockIo2;
EFI_BLOCK_IO_PROTOCOL *BlockIo;
LIST_ENTRY *Link;
LIST_ENTRY *NextLink;
SD_REQUEST *Request;
EFI_TPL OldTpl;
if (NumberOfChildren == 0) {
Status = gBS->OpenProtocol (
Controller,
&gEfiCallerIdGuid,
(VOID **) &Private,
This->DriverBindingHandle,
Controller,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
return EFI_DEVICE_ERROR;
}
gBS->UninstallProtocolInterface (
Controller,
&gEfiCallerIdGuid,
Private
);
gBS->CloseProtocol (
Controller,
&gEfiSdMmcPassThruProtocolGuid,
This->DriverBindingHandle,
Controller
);
FreePool (Private);
return EFI_SUCCESS;
}
AllChildrenStopped = TRUE;
for (Index = 0; Index < NumberOfChildren; Index++) {
BlockIo = NULL;
BlockIo2 = NULL;
Status = gBS->OpenProtocol (
ChildHandleBuffer[Index],
&gEfiBlockIoProtocolGuid,
(VOID **) &BlockIo,
This->DriverBindingHandle,
Controller,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
Status = gBS->OpenProtocol (
ChildHandleBuffer[Index],
&gEfiBlockIo2ProtocolGuid,
(VOID **) &BlockIo2,
This->DriverBindingHandle,
Controller,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
AllChildrenStopped = FALSE;
continue;
}
}
if (BlockIo != NULL) {
Device = SD_DEVICE_DATA_FROM_BLKIO (BlockIo);
} else {
ASSERT (BlockIo2 != NULL);
Device = SD_DEVICE_DATA_FROM_BLKIO2 (BlockIo2);
}
//
// Free all on-going async tasks.
//
OldTpl = gBS->RaiseTPL (TPL_CALLBACK);
for (Link = GetFirstNode (&Device->Queue);
!IsNull (&Device->Queue, Link);
Link = NextLink) {
NextLink = GetNextNode (&Device->Queue, Link);
RemoveEntryList (Link);
Request = SD_REQUEST_FROM_LINK (Link);
gBS->CloseEvent (Request->Event);
Request->Token->TransactionStatus = EFI_ABORTED;
if (Request->IsEnd) {
gBS->SignalEvent (Request->Token->Event);
}
FreePool (Request);
}
gBS->RestoreTPL (OldTpl);
//
// Close the child handle
//
Status = gBS->CloseProtocol (
Controller,
&gEfiSdMmcPassThruProtocolGuid,
This->DriverBindingHandle,
ChildHandleBuffer[Index]
);
Status = gBS->UninstallMultipleProtocolInterfaces (
ChildHandleBuffer[Index],
&gEfiDevicePathProtocolGuid,
Device->DevicePath,
&gEfiBlockIoProtocolGuid,
&Device->BlockIo,
&gEfiBlockIo2ProtocolGuid,
&Device->BlockIo2,
NULL
);
if (EFI_ERROR (Status)) {
AllChildrenStopped = FALSE;
gBS->OpenProtocol (
Controller,
&gEfiSdMmcPassThruProtocolGuid,
(VOID **)&PassThru,
This->DriverBindingHandle,
ChildHandleBuffer[Index],
EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER
);
} else {
FreePool (Device->DevicePath);
FreeUnicodeStringTable (Device->ControllerNameTable);
FreePool (Device);
}
}
if (!AllChildrenStopped) {
return EFI_DEVICE_ERROR;
}
return EFI_SUCCESS;
}
/**
The user Entry Point for module SdDxe. The user code starts with this function.
@param[in] ImageHandle The firmware allocated handle for the EFI image.
@param[in] SystemTable A pointer to the EFI System Table.
@retval EFI_SUCCESS The entry point is executed successfully.
@retval other Some errors occur when executing this entry point.
**/
EFI_STATUS
EFIAPI
InitializeSdDxe (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
//
// Install driver model protocol(s).
//
Status = EfiLibInstallDriverBindingComponentName2 (
ImageHandle,
SystemTable,
&gSdDxeDriverBinding,
ImageHandle,
&gSdDxeComponentName,
&gSdDxeComponentName2
);
ASSERT_EFI_ERROR (Status);
return Status;
}

View File

@@ -0,0 +1,469 @@
/** @file
Header file for SdDxe Driver.
This file defines common data structures, macro definitions and some module
internal function header files.
Copyright (c) 2015, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#ifndef _SD_DXE_H_
#define _SD_DXE_H_
#include <Uefi.h>
#include <IndustryStandard/Sd.h>
#include <Protocol/SdMmcPassThru.h>
#include <Protocol/BlockIo.h>
#include <Protocol/BlockIo2.h>
#include <Protocol/DevicePath.h>
#include <Library/DebugLib.h>
#include <Library/UefiDriverEntryPoint.h>
#include <Library/BaseLib.h>
#include <Library/UefiLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/DevicePathLib.h>
#include <Library/UefiRuntimeServicesTableLib.h>
#include "SdBlockIo.h"
//
// Global Variables
//
extern EFI_DRIVER_BINDING_PROTOCOL gSdDxeDriverBinding;
extern EFI_COMPONENT_NAME_PROTOCOL gSdDxeComponentName;
extern EFI_COMPONENT_NAME2_PROTOCOL gSdDxeComponentName2;
#define SD_DEVICE_SIGNATURE SIGNATURE_32 ('S', 'D', 't', 'f')
#define SD_DEVICE_DATA_FROM_BLKIO(a) \
CR(a, SD_DEVICE, BlockIo, SD_DEVICE_SIGNATURE)
#define SD_DEVICE_DATA_FROM_BLKIO2(a) \
CR(a, SD_DEVICE, BlockIo2, SD_DEVICE_SIGNATURE)
//
// Take 2.5 seconds as generic time out value, 1 microsecond as unit.
//
#define SD_GENERIC_TIMEOUT 2500 * 1000
#define SD_REQUEST_SIGNATURE SIGNATURE_32 ('S', 'D', 'R', 'E')
#define SD_MODEL_NAME_MAX_LEN 32
typedef struct _SD_DEVICE SD_DEVICE;
typedef struct _SD_DRIVER_PRIVATE_DATA SD_DRIVER_PRIVATE_DATA;
//
// Asynchronous I/O request.
//
typedef struct {
UINT32 Signature;
LIST_ENTRY Link;
EFI_SD_MMC_COMMAND_BLOCK SdMmcCmdBlk;
EFI_SD_MMC_STATUS_BLOCK SdMmcStatusBlk;
EFI_SD_MMC_PASS_THRU_COMMAND_PACKET Packet;
BOOLEAN IsEnd;
EFI_BLOCK_IO2_TOKEN *Token;
EFI_EVENT Event;
} SD_REQUEST;
#define SD_REQUEST_FROM_LINK(a) \
CR(a, SD_REQUEST, Link, SD_REQUEST_SIGNATURE)
struct _SD_DEVICE {
UINT32 Signature;
EFI_HANDLE Handle;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
UINT8 Slot;
BOOLEAN SectorAddressing;
EFI_BLOCK_IO_PROTOCOL BlockIo;
EFI_BLOCK_IO2_PROTOCOL BlockIo2;
EFI_BLOCK_IO_MEDIA BlockMedia;
LIST_ENTRY Queue;
SD_CSD Csd;
SD_CID Cid;
EFI_UNICODE_STRING_TABLE *ControllerNameTable;
//
// The model name consists of three fields in CID register
// 1) OEM/Application ID (2 bytes)
// 2) Product Name (5 bytes)
// 3) Product Serial Number (4 bytes)
// The delimiters of these fields are whitespace.
//
CHAR16 ModelName[SD_MODEL_NAME_MAX_LEN];
SD_DRIVER_PRIVATE_DATA *Private;
} ;
//
// SD DXE driver private data structure
//
struct _SD_DRIVER_PRIVATE_DATA {
EFI_SD_MMC_PASS_THRU_PROTOCOL *PassThru;
EFI_HANDLE Controller;
EFI_DEVICE_PATH_PROTOCOL *ParentDevicePath;
EFI_HANDLE DriverBindingHandle;
} ;
/**
Tests to see if this driver supports a given controller. If a child device is provided,
it further tests to see if this driver supports creating a handle for the specified child device.
This function checks to see if the driver specified by This supports the device specified by
ControllerHandle. Drivers will typically use the device path attached to
ControllerHandle and/or the services from the bus I/O abstraction attached to
ControllerHandle to determine if the driver supports ControllerHandle. This function
may be called many times during platform initialization. In order to reduce boot times, the tests
performed by this function must be very small, and take as little time as possible to execute. This
function must not change the state of any hardware devices, and this function must be aware that the
device specified by ControllerHandle may already be managed by the same driver or a
different driver. This function must match its calls to AllocatePages() with FreePages(),
AllocatePool() with FreePool(), and OpenProtocol() with CloseProtocol().
Since ControllerHandle may have been previously started by the same driver, if a protocol is
already in the opened state, then it must not be closed with CloseProtocol(). This is required
to guarantee the state of ControllerHandle is not modified by this function.
@param[in] This A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance.
@param[in] ControllerHandle The handle of the controller to test. This handle
must support a protocol interface that supplies
an I/O abstraction to the driver.
@param[in] RemainingDevicePath A pointer to the remaining portion of a device path. This
parameter is ignored by device drivers, and is optional for bus
drivers. For bus drivers, if this parameter is not NULL, then
the bus driver must determine if the bus controller specified
by ControllerHandle and the child controller specified
by RemainingDevicePath are both supported by this
bus driver.
@retval EFI_SUCCESS The device specified by ControllerHandle and
RemainingDevicePath is supported by the driver specified by This.
@retval EFI_ALREADY_STARTED The device specified by ControllerHandle and
RemainingDevicePath is already being managed by the driver
specified by This.
@retval EFI_ACCESS_DENIED The device specified by ControllerHandle and
RemainingDevicePath is already being managed by a different
driver or an application that requires exclusive access.
Currently not implemented.
@retval EFI_UNSUPPORTED The device specified by ControllerHandle and
RemainingDevicePath is not supported by the driver specified by This.
**/
EFI_STATUS
EFIAPI
SdDxeDriverBindingSupported (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE Controller,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath
);
/**
Starts a device controller or a bus controller.
The Start() function is designed to be invoked from the EFI boot service ConnectController().
As a result, much of the error checking on the parameters to Start() has been moved into this
common boot service. It is legal to call Start() from other locations,
but the following calling restrictions must be followed or the system behavior will not be deterministic.
1. ControllerHandle must be a valid EFI_HANDLE.
2. If RemainingDevicePath is not NULL, then it must be a pointer to a naturally aligned
EFI_DEVICE_PATH_PROTOCOL.
3. Prior to calling Start(), the Supported() function for the driver specified by This must
have been called with the same calling parameters, and Supported() must have returned EFI_SUCCESS.
@param[in] This A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance.
@param[in] ControllerHandle The handle of the controller to start. This handle
must support a protocol interface that supplies
an I/O abstraction to the driver.
@param[in] RemainingDevicePath A pointer to the remaining portion of a device path. This
parameter is ignored by device drivers, and is optional for bus
drivers. For a bus driver, if this parameter is NULL, then handles
for all the children of Controller are created by this driver.
If this parameter is not NULL and the first Device Path Node is
not the End of Device Path Node, then only the handle for the
child device specified by the first Device Path Node of
RemainingDevicePath is created by this driver.
If the first Device Path Node of RemainingDevicePath is
the End of Device Path Node, no child handle is created by this
driver.
@retval EFI_SUCCESS The device was started.
@retval EFI_DEVICE_ERROR The device could not be started due to a device error.Currently not implemented.
@retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources.
@retval Others The driver failded to start the device.
**/
EFI_STATUS
EFIAPI
SdDxeDriverBindingStart (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE Controller,
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath
);
/**
Stops a device controller or a bus controller.
The Stop() function is designed to be invoked from the EFI boot service DisconnectController().
As a result, much of the error checking on the parameters to Stop() has been moved
into this common boot service. It is legal to call Stop() from other locations,
but the following calling restrictions must be followed or the system behavior will not be deterministic.
1. ControllerHandle must be a valid EFI_HANDLE that was used on a previous call to this
same driver's Start() function.
2. The first NumberOfChildren handles of ChildHandleBuffer must all be a valid
EFI_HANDLE. In addition, all of these handles must have been created in this driver's
Start() function, and the Start() function must have called OpenProtocol() on
ControllerHandle with an Attribute of EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER.
@param[in] This A pointer to the EFI_DRIVER_BINDING_PROTOCOL instance.
@param[in] ControllerHandle A handle to the device being stopped. The handle must
support a bus specific I/O protocol for the driver
to use to stop the device.
@param[in] NumberOfChildren The number of child device handles in ChildHandleBuffer.
@param[in] ChildHandleBuffer An array of child handles to be freed. May be NULL
if NumberOfChildren is 0.
@retval EFI_SUCCESS The device was stopped.
@retval EFI_DEVICE_ERROR The device could not be stopped due to a device error.
**/
EFI_STATUS
EFIAPI
SdDxeDriverBindingStop (
IN EFI_DRIVER_BINDING_PROTOCOL *This,
IN EFI_HANDLE Controller,
IN UINTN NumberOfChildren,
IN EFI_HANDLE *ChildHandleBuffer
);
/**
Retrieves a Unicode string that is the user readable name of the driver.
This function retrieves the user readable name of a driver in the form of a
Unicode string. If the driver specified by This has a user readable name in
the language specified by Language, then a pointer to the driver name is
returned in DriverName, and EFI_SUCCESS is returned. If the driver specified
by This does not support the language specified by Language,
then EFI_UNSUPPORTED is returned.
@param This[in] A pointer to the EFI_COMPONENT_NAME2_PROTOCOL or
EFI_COMPONENT_NAME_PROTOCOL instance.
@param Language[in] A pointer to a Null-terminated ASCII string
array indicating the language. This is the
language of the driver name that the caller is
requesting, and it must match one of the
languages specified in SupportedLanguages. The
number of languages supported by a driver is up
to the driver writer. Language is specified
in RFC 4646 or ISO 639-2 language code format.
@param DriverName[out] A pointer to the Unicode string to return.
This Unicode string is the name of the
driver specified by This in the language
specified by Language.
@retval EFI_SUCCESS The Unicode string for the Driver specified by
This and the language specified by Language was
returned in DriverName.
@retval EFI_INVALID_PARAMETER Language is NULL.
@retval EFI_INVALID_PARAMETER DriverName is NULL.
@retval EFI_UNSUPPORTED The driver specified by This does not support
the language specified by Language.
**/
EFI_STATUS
EFIAPI
SdDxeComponentNameGetDriverName (
IN EFI_COMPONENT_NAME_PROTOCOL *This,
IN CHAR8 *Language,
OUT CHAR16 **DriverName
);
/**
Retrieves a Unicode string that is the user readable name of the controller
that is being managed by a driver.
This function retrieves the user readable name of the controller specified by
ControllerHandle and ChildHandle in the form of a Unicode string. If the
driver specified by This has a user readable name in the language specified by
Language, then a pointer to the controller name is returned in ControllerName,
and EFI_SUCCESS is returned. If the driver specified by This is not currently
managing the controller specified by ControllerHandle and ChildHandle,
then EFI_UNSUPPORTED is returned. If the driver specified by This does not
support the language specified by Language, then EFI_UNSUPPORTED is returned.
@param This[in] A pointer to the EFI_COMPONENT_NAME2_PROTOCOL or
EFI_COMPONENT_NAME_PROTOCOL instance.
@param ControllerHandle[in] The handle of a controller that the driver
specified by This is managing. This handle
specifies the controller whose name is to be
returned.
@param ChildHandle[in] The handle of the child controller to retrieve
the name of. This is an optional parameter that
may be NULL. It will be NULL for device
drivers. It will also be NULL for a bus drivers
that wish to retrieve the name of the bus
controller. It will not be NULL for a bus
driver that wishes to retrieve the name of a
child controller.
@param Language[in] A pointer to a Null-terminated ASCII string
array indicating the language. This is the
language of the driver name that the caller is
requesting, and it must match one of the
languages specified in SupportedLanguages. The
number of languages supported by a driver is up
to the driver writer. Language is specified in
RFC 4646 or ISO 639-2 language code format.
@param ControllerName[out] A pointer to the Unicode string to return.
This Unicode string is the name of the
controller specified by ControllerHandle and
ChildHandle in the language specified by
Language from the point of view of the driver
specified by This.
@retval EFI_SUCCESS The Unicode string for the user readable name in
the language specified by Language for the
driver specified by This was returned in
DriverName.
@retval EFI_INVALID_PARAMETER ControllerHandle is NULL.
@retval EFI_INVALID_PARAMETER ChildHandle is not NULL and it is not a valid
EFI_HANDLE.
@retval EFI_INVALID_PARAMETER Language is NULL.
@retval EFI_INVALID_PARAMETER ControllerName is NULL.
@retval EFI_UNSUPPORTED The driver specified by This is not currently
managing the controller specified by
ControllerHandle and ChildHandle.
@retval EFI_UNSUPPORTED The driver specified by This does not support
the language specified by Language.
**/
EFI_STATUS
EFIAPI
SdDxeComponentNameGetControllerName (
IN EFI_COMPONENT_NAME_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN EFI_HANDLE ChildHandle OPTIONAL,
IN CHAR8 *Language,
OUT CHAR16 **ControllerName
);
/**
Send command SET_RELATIVE_ADDRESS to the device to set the device address.
@param[in] Device A pointer to the SD_DEVICE instance.
@param[out] Rca The relative device address to assign.
@retval EFI_SUCCESS The request is executed successfully.
@retval EFI_OUT_OF_RESOURCES The request could not be executed due to a lack of resources.
@retval Others The request could not be executed successfully.
**/
EFI_STATUS
SdSetRca (
IN SD_DEVICE *Device,
OUT UINT16 *Rca
);
/**
Send command SELECT to the device to select/deselect the device.
@param[in] Device A pointer to the SD_DEVICE instance.
@param[in] Rca The relative device address to use.
@retval EFI_SUCCESS The request is executed successfully.
@retval EFI_OUT_OF_RESOURCES The request could not be executed due to a lack of resources.
@retval Others The request could not be executed successfully.
**/
EFI_STATUS
SdSelect (
IN SD_DEVICE *Device,
IN UINT16 Rca
);
/**
Send command SEND_STATUS to the device to get device status.
@param[in] Device A pointer to the SD_DEVICE instance.
@param[in] Rca The relative device address to use.
@param[out] DevStatus The buffer to store the device status.
@retval EFI_SUCCESS The request is executed successfully.
@retval EFI_OUT_OF_RESOURCES The request could not be executed due to a lack of resources.
@retval Others The request could not be executed successfully.
**/
EFI_STATUS
SdSendStatus (
IN SD_DEVICE *Device,
IN UINT16 Rca,
OUT UINT32 *DevStatus
);
/**
Send command SEND_CSD to the device to get the CSD register data.
@param[in] Device A pointer to the SD_DEVICE instance.
@param[in] Rca The relative device address to use.
@param[out] Csd The buffer to store the SD_CSD register data.
@retval EFI_SUCCESS The request is executed successfully.
@retval EFI_OUT_OF_RESOURCES The request could not be executed due to a lack of resources.
@retval Others The request could not be executed successfully.
**/
EFI_STATUS
SdGetCsd (
IN SD_DEVICE *Device,
IN UINT16 Rca,
OUT SD_CSD *Csd
);
/**
Send command SEND_CID to the device to get the CID register data.
@param[in] Device A pointer to the SD_DEVICE instance.
@param[in] Rca The relative device address to use.
@param[out] Cid The buffer to store the SD_CID register data.
@retval EFI_SUCCESS The request is executed successfully.
@retval EFI_OUT_OF_RESOURCES The request could not be executed due to a lack of resources.
@retval Others The request could not be executed successfully.
**/
EFI_STATUS
SdGetCid (
IN SD_DEVICE *Device,
IN UINT16 Rca,
OUT SD_CID *Cid
);
#endif

View File

@@ -0,0 +1,65 @@
## @file
# SdDxe driver is used to manage the SD memory card device.
#
# It produces BlockIo and BlockIo2 protocols to allow upper layer
# access the SD memory card device.
#
# Copyright (c) 2015, Intel Corporation. All rights reserved.<BR>
#
# This program and the accompanying materials
# are licensed and made available under the terms and conditions of the BSD License
# which accompanies this distribution. The full text of the license may be found at
# http://opensource.org/licenses/bsd-license.php
# THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
# WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
#
#
##
[Defines]
INF_VERSION = 0x00010005
BASE_NAME = SdDxe
MODULE_UNI_FILE = SdDxe.uni
FILE_GUID = 430AC2F7-EEC6-4093-94F7-9F825A7C1C40
MODULE_TYPE = UEFI_DRIVER
VERSION_STRING = 1.0
ENTRY_POINT = InitializeSdDxe
#
# The following information is for reference only and not required by the build tools.
#
# VALID_ARCHITECTURES = IA32 X64 IPF EBC
#
# DRIVER_BINDING = gSdDxeDriverBinding
# COMPONENT_NAME = gSdDxeComponentName
# COMPONENT_NAME2 = gSdDxeComponentName2
#
[Sources.common]
ComponentName.c
SdDxe.c
SdDxe.h
SdBlockIo.c
SdBlockIo.h
[Packages]
MdePkg/MdePkg.dec
[LibraryClasses]
DevicePathLib
UefiBootServicesTableLib
MemoryAllocationLib
BaseMemoryLib
UefiLib
BaseLib
UefiDriverEntryPoint
DebugLib
[Protocols]
gEfiSdMmcPassThruProtocolGuid ## TO_START
gEfiBlockIoProtocolGuid ## BY_START
gEfiBlockIo2ProtocolGuid ## BY_START
## TO_START
## BY_START
gEfiDevicePathProtocolGuid

View File

@@ -0,0 +1,20 @@
// /** @file
// SD memory card device driver to manage the SD memory card device and provide interface for upper layer
// access.
//
// Copyright (c) 2015, Intel Corporation. All rights reserved.<BR>
//
// This program and the accompanying materials
// are licensed and made available under the terms and conditions of the BSD License
// which accompanies this distribution. The full text of the license may be found at
// http://opensource.org/licenses/bsd-license.php
// THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
// WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
//
// **/
#string STR_MODULE_ABSTRACT #language en-US "SD device driver to manage the SD memory card device and provide interface for upper layer access"
#string STR_MODULE_DESCRIPTION #language en-US "This driver follows the UEFI driver model and layers on the SdMmcPassThru protocol. It installs BlockIo and BlockIo2 protocols on the SD device."

View File

@@ -0,0 +1,20 @@
// /** @file
// SD memory card device driver to manage the SD memory card device and provide interface for upper layer
// access.
//
// Copyright (c) 2015, Intel Corporation. All rights reserved.<BR>
//
// This program and the accompanying materials
// are licensed and made available under the terms and conditions of the BSD License
// which accompanies this distribution. The full text of the license may be found at
// http://opensource.org/licenses/bsd-license.php
// THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
// WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
//
// **/
#string STR_MODULE_ABSTRACT #language en-US "SD device driver to manage the SD memory card device and provide interface for upper layer access"
#string STR_MODULE_DESCRIPTION #language en-US "This driver follows the UEFI driver model and layers on the SdMmcPassThru protocol. It installs BlockIo and BlockIo2 protocols on the SD device."