SecurityPkg: Add support for RngDxe on AARCH64
AARCH64 support has been added to BaseRngLib via the optional ARMv8.5 FEAT_RNG. Refactor RngDxe to support AARCH64, note support for it in the VALID_ARCHITECTURES line of RngDxe.inf and enable it in SecurityPkg.dsc. Signed-off-by: Rebecca Cran <rebecca@nuviainc.com> Reviewed-by: Liming Gao <gaoliming@byosoft.com.cn> Acked-by: Jiewen Yao <Jiewen.yao@intel.com> Reviewed-by: Sami Mujawar <sami.mujawar@arm.com>
This commit is contained in:
committed by
mergify[bot]
parent
9301e5644c
commit
4e5ecdbac8
298
SecurityPkg/RandomNumberGenerator/RngDxe/Rand/AesCore.c
Normal file
298
SecurityPkg/RandomNumberGenerator/RngDxe/Rand/AesCore.c
Normal file
@@ -0,0 +1,298 @@
|
||||
/** @file
|
||||
Core Primitive Implementation of the Advanced Encryption Standard (AES) algorithm.
|
||||
Refer to FIPS PUB 197 ("Advanced Encryption Standard (AES)") for detailed algorithm
|
||||
description of AES.
|
||||
|
||||
Copyright (c) 2013 - 2018, Intel Corporation. All rights reserved.<BR>
|
||||
SPDX-License-Identifier: BSD-2-Clause-Patent
|
||||
|
||||
**/
|
||||
|
||||
#include "AesCore.h"
|
||||
|
||||
//
|
||||
// Number of columns (32-bit words) comprising the State.
|
||||
// AES_NB is a constant (value = 4) for NIST FIPS-197.
|
||||
//
|
||||
#define AES_NB 4
|
||||
|
||||
//
|
||||
// Pre-computed AES Forward Table: AesForwardTable[t] = AES_SBOX[t].[02, 01, 01, 03]
|
||||
// AES_SBOX (AES S-box) is defined in sec 5.1.1 of FIPS PUB 197.
|
||||
// This is to speed up execution of the cipher by combining SubBytes and
|
||||
// ShiftRows with MixColumns steps and transforming them into table lookups.
|
||||
//
|
||||
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT32 AesForwardTable[] = {
|
||||
0xc66363a5, 0xf87c7c84, 0xee777799, 0xf67b7b8d, 0xfff2f20d, 0xd66b6bbd,
|
||||
0xde6f6fb1, 0x91c5c554, 0x60303050, 0x02010103, 0xce6767a9, 0x562b2b7d,
|
||||
0xe7fefe19, 0xb5d7d762, 0x4dababe6, 0xec76769a, 0x8fcaca45, 0x1f82829d,
|
||||
0x89c9c940, 0xfa7d7d87, 0xeffafa15, 0xb25959eb, 0x8e4747c9, 0xfbf0f00b,
|
||||
0x41adadec, 0xb3d4d467, 0x5fa2a2fd, 0x45afafea, 0x239c9cbf, 0x53a4a4f7,
|
||||
0xe4727296, 0x9bc0c05b, 0x75b7b7c2, 0xe1fdfd1c, 0x3d9393ae, 0x4c26266a,
|
||||
0x6c36365a, 0x7e3f3f41, 0xf5f7f702, 0x83cccc4f, 0x6834345c, 0x51a5a5f4,
|
||||
0xd1e5e534, 0xf9f1f108, 0xe2717193, 0xabd8d873, 0x62313153, 0x2a15153f,
|
||||
0x0804040c, 0x95c7c752, 0x46232365, 0x9dc3c35e, 0x30181828, 0x379696a1,
|
||||
0x0a05050f, 0x2f9a9ab5, 0x0e070709, 0x24121236, 0x1b80809b, 0xdfe2e23d,
|
||||
0xcdebeb26, 0x4e272769, 0x7fb2b2cd, 0xea75759f, 0x1209091b, 0x1d83839e,
|
||||
0x582c2c74, 0x341a1a2e, 0x361b1b2d, 0xdc6e6eb2, 0xb45a5aee, 0x5ba0a0fb,
|
||||
0xa45252f6, 0x763b3b4d, 0xb7d6d661, 0x7db3b3ce, 0x5229297b, 0xdde3e33e,
|
||||
0x5e2f2f71, 0x13848497, 0xa65353f5, 0xb9d1d168, 0x00000000, 0xc1eded2c,
|
||||
0x40202060, 0xe3fcfc1f, 0x79b1b1c8, 0xb65b5bed, 0xd46a6abe, 0x8dcbcb46,
|
||||
0x67bebed9, 0x7239394b, 0x944a4ade, 0x984c4cd4, 0xb05858e8, 0x85cfcf4a,
|
||||
0xbbd0d06b, 0xc5efef2a, 0x4faaaae5, 0xedfbfb16, 0x864343c5, 0x9a4d4dd7,
|
||||
0x66333355, 0x11858594, 0x8a4545cf, 0xe9f9f910, 0x04020206, 0xfe7f7f81,
|
||||
0xa05050f0, 0x783c3c44, 0x259f9fba, 0x4ba8a8e3, 0xa25151f3, 0x5da3a3fe,
|
||||
0x804040c0, 0x058f8f8a, 0x3f9292ad, 0x219d9dbc, 0x70383848, 0xf1f5f504,
|
||||
0x63bcbcdf, 0x77b6b6c1, 0xafdada75, 0x42212163, 0x20101030, 0xe5ffff1a,
|
||||
0xfdf3f30e, 0xbfd2d26d, 0x81cdcd4c, 0x180c0c14, 0x26131335, 0xc3ecec2f,
|
||||
0xbe5f5fe1, 0x359797a2, 0x884444cc, 0x2e171739, 0x93c4c457, 0x55a7a7f2,
|
||||
0xfc7e7e82, 0x7a3d3d47, 0xc86464ac, 0xba5d5de7, 0x3219192b, 0xe6737395,
|
||||
0xc06060a0, 0x19818198, 0x9e4f4fd1, 0xa3dcdc7f, 0x44222266, 0x542a2a7e,
|
||||
0x3b9090ab, 0x0b888883, 0x8c4646ca, 0xc7eeee29, 0x6bb8b8d3, 0x2814143c,
|
||||
0xa7dede79, 0xbc5e5ee2, 0x160b0b1d, 0xaddbdb76, 0xdbe0e03b, 0x64323256,
|
||||
0x743a3a4e, 0x140a0a1e, 0x924949db, 0x0c06060a, 0x4824246c, 0xb85c5ce4,
|
||||
0x9fc2c25d, 0xbdd3d36e, 0x43acacef, 0xc46262a6, 0x399191a8, 0x319595a4,
|
||||
0xd3e4e437, 0xf279798b, 0xd5e7e732, 0x8bc8c843, 0x6e373759, 0xda6d6db7,
|
||||
0x018d8d8c, 0xb1d5d564, 0x9c4e4ed2, 0x49a9a9e0, 0xd86c6cb4, 0xac5656fa,
|
||||
0xf3f4f407, 0xcfeaea25, 0xca6565af, 0xf47a7a8e, 0x47aeaee9, 0x10080818,
|
||||
0x6fbabad5, 0xf0787888, 0x4a25256f, 0x5c2e2e72, 0x381c1c24, 0x57a6a6f1,
|
||||
0x73b4b4c7, 0x97c6c651, 0xcbe8e823, 0xa1dddd7c, 0xe874749c, 0x3e1f1f21,
|
||||
0x964b4bdd, 0x61bdbddc, 0x0d8b8b86, 0x0f8a8a85, 0xe0707090, 0x7c3e3e42,
|
||||
0x71b5b5c4, 0xcc6666aa, 0x904848d8, 0x06030305, 0xf7f6f601, 0x1c0e0e12,
|
||||
0xc26161a3, 0x6a35355f, 0xae5757f9, 0x69b9b9d0, 0x17868691, 0x99c1c158,
|
||||
0x3a1d1d27, 0x279e9eb9, 0xd9e1e138, 0xebf8f813, 0x2b9898b3, 0x22111133,
|
||||
0xd26969bb, 0xa9d9d970, 0x078e8e89, 0x339494a7, 0x2d9b9bb6, 0x3c1e1e22,
|
||||
0x15878792, 0xc9e9e920, 0x87cece49, 0xaa5555ff, 0x50282878, 0xa5dfdf7a,
|
||||
0x038c8c8f, 0x59a1a1f8, 0x09898980, 0x1a0d0d17, 0x65bfbfda, 0xd7e6e631,
|
||||
0x844242c6, 0xd06868b8, 0x824141c3, 0x299999b0, 0x5a2d2d77, 0x1e0f0f11,
|
||||
0x7bb0b0cb, 0xa85454fc, 0x6dbbbbd6, 0x2c16163a
|
||||
};
|
||||
|
||||
//
|
||||
// Round constant word array used in AES key expansion.
|
||||
//
|
||||
GLOBAL_REMOVE_IF_UNREFERENCED CONST UINT32 Rcon[] = {
|
||||
0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000,
|
||||
0x20000000, 0x40000000, 0x80000000, 0x1B000000, 0x36000000
|
||||
};
|
||||
|
||||
//
|
||||
// Rotates x right n bits (circular right shift operation)
|
||||
//
|
||||
#define ROTATE_RIGHT32(x, n) (((x) >> (n)) | ((x) << (32-(n))))
|
||||
|
||||
//
|
||||
// Loading & Storing 32-bit words in big-endian format: y[3..0] --> x; x --> y[3..0];
|
||||
//
|
||||
#define LOAD32H(x, y) { x = ((UINT32)((y)[0] & 0xFF) << 24) | ((UINT32)((y)[1] & 0xFF) << 16) | \
|
||||
((UINT32)((y)[2] & 0xFF) << 8) | ((UINT32)((y)[3] & 0xFF)); }
|
||||
#define STORE32H(x, y) { (y)[0] = (UINT8)(((x) >> 24) & 0xFF); (y)[1] = (UINT8)(((x) >> 16) & 0xFF); \
|
||||
(y)[2] = (UINT8)(((x) >> 8) & 0xFF); (y)[3] = (UINT8)((x) & 0xFF); }
|
||||
|
||||
//
|
||||
// Wrap macros for AES forward tables lookups
|
||||
//
|
||||
#define AES_FT0(x) AesForwardTable[x]
|
||||
#define AES_FT1(x) ROTATE_RIGHT32(AesForwardTable[x], 8)
|
||||
#define AES_FT2(x) ROTATE_RIGHT32(AesForwardTable[x], 16)
|
||||
#define AES_FT3(x) ROTATE_RIGHT32(AesForwardTable[x], 24)
|
||||
|
||||
///
|
||||
/// AES Key Schedule which is expanded from symmetric key [Size 60 = 4 * ((Max AES Round, 14) + 1)].
|
||||
///
|
||||
typedef struct {
|
||||
UINTN Nk; // Number of Cipher Key (in 32-bit words);
|
||||
UINT32 EncKey[60]; // Expanded AES encryption key
|
||||
UINT32 DecKey[60]; // Expanded AES decryption key (Not used here)
|
||||
} AES_KEY;
|
||||
|
||||
/**
|
||||
AES Key Expansion.
|
||||
This function expands the cipher key into encryption schedule.
|
||||
|
||||
@param[in] Key AES symmetric key buffer.
|
||||
@param[in] KeyLenInBits Key length in bits (128, 192, or 256).
|
||||
@param[out] AesKey Expanded AES Key schedule for encryption.
|
||||
|
||||
@retval EFI_SUCCESS AES key expansion succeeded.
|
||||
@retval EFI_INVALID_PARAMETER Unsupported key length.
|
||||
|
||||
**/
|
||||
EFI_STATUS
|
||||
EFIAPI
|
||||
AesExpandKey (
|
||||
IN UINT8 *Key,
|
||||
IN UINTN KeyLenInBits,
|
||||
OUT AES_KEY *AesKey
|
||||
)
|
||||
{
|
||||
UINTN Nk;
|
||||
UINTN Nr;
|
||||
UINTN Nw;
|
||||
UINTN Index1;
|
||||
UINTN Index2;
|
||||
UINTN Index3;
|
||||
UINT32 *Ek;
|
||||
UINT32 Temp;
|
||||
|
||||
//
|
||||
// Nk - Number of 32-bit words comprising the cipher key. (Nk = 4, 6 or 8)
|
||||
// Nr - Number of rounds. (Nr = 10, 12, or 14), which is dependent on the key size.
|
||||
//
|
||||
Nk = KeyLenInBits >> 5;
|
||||
if (Nk != 4 && Nk != 6 && Nk != 8) {
|
||||
return EFI_INVALID_PARAMETER;
|
||||
}
|
||||
Nr = Nk + 6;
|
||||
Nw = AES_NB * (Nr + 1); // Key Expansion generates a total of Nb * (Nr + 1) words
|
||||
AesKey->Nk = Nk;
|
||||
|
||||
//
|
||||
// Load initial symmetric AES key;
|
||||
// Note that AES was designed on big-endian systems.
|
||||
//
|
||||
Ek = AesKey->EncKey;
|
||||
for (Index1 = Index2 = 0; Index1 < Nk; Index1++, Index2 += 4) {
|
||||
LOAD32H (Ek[Index1], Key + Index2);
|
||||
}
|
||||
|
||||
//
|
||||
// Initialize the encryption key scheduler
|
||||
//
|
||||
for (Index2 = Nk, Index3 = 0; Index2 < Nw; Index2 += Nk, Index3++) {
|
||||
Temp = Ek[Index2 - 1];
|
||||
Ek[Index2] = Ek[Index2 - Nk] ^ (AES_FT2((Temp >> 16) & 0xFF) & 0xFF000000) ^
|
||||
(AES_FT3((Temp >> 8) & 0xFF) & 0x00FF0000) ^
|
||||
(AES_FT0((Temp) & 0xFF) & 0x0000FF00) ^
|
||||
(AES_FT1((Temp >> 24) & 0xFF) & 0x000000FF) ^
|
||||
Rcon[Index3];
|
||||
if (Nk <= 6) {
|
||||
//
|
||||
// If AES Cipher Key is 128 or 192 bits
|
||||
//
|
||||
for (Index1 = 1; Index1 < Nk && (Index1 + Index2) < Nw; Index1++) {
|
||||
Ek [Index1 + Index2] = Ek [Index1 + Index2 - Nk] ^ Ek[Index1 + Index2 - 1];
|
||||
}
|
||||
} else {
|
||||
//
|
||||
// Different routine for key expansion If Cipher Key is 256 bits,
|
||||
//
|
||||
for (Index1 = 1; Index1 < 4 && (Index1 + Index2) < Nw; Index1++) {
|
||||
Ek [Index1 + Index2] = Ek[Index1 + Index2 - Nk] ^ Ek[Index1 + Index2 - 1];
|
||||
}
|
||||
if (Index2 + 4 < Nw) {
|
||||
Temp = Ek[Index2 + 3];
|
||||
Ek[Index2 + 4] = Ek[Index2 + 4 - Nk] ^ (AES_FT2((Temp >> 24) & 0xFF) & 0xFF000000) ^
|
||||
(AES_FT3((Temp >> 16) & 0xFF) & 0x00FF0000) ^
|
||||
(AES_FT0((Temp >> 8) & 0xFF) & 0x0000FF00) ^
|
||||
(AES_FT1((Temp) & 0xFF) & 0x000000FF);
|
||||
}
|
||||
|
||||
for (Index1 = 5; Index1 < Nk && (Index1 + Index2) < Nw; Index1++) {
|
||||
Ek[Index1 + Index2] = Ek[Index1 + Index2 - Nk] ^ Ek[Index1 + Index2 - 1];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
Encrypts one single block data (128 bits) with AES algorithm.
|
||||
|
||||
@param[in] Key AES symmetric key buffer.
|
||||
@param[in] InData One block of input plaintext to be encrypted.
|
||||
@param[out] OutData Encrypted output ciphertext.
|
||||
|
||||
@retval EFI_SUCCESS AES Block Encryption succeeded.
|
||||
@retval EFI_INVALID_PARAMETER One or more parameters are invalid.
|
||||
|
||||
**/
|
||||
EFI_STATUS
|
||||
EFIAPI
|
||||
AesEncrypt (
|
||||
IN UINT8 *Key,
|
||||
IN UINT8 *InData,
|
||||
OUT UINT8 *OutData
|
||||
)
|
||||
{
|
||||
AES_KEY AesKey;
|
||||
UINTN Nr;
|
||||
UINT32 *Ek;
|
||||
UINT32 State[4];
|
||||
UINT32 TempState[4];
|
||||
UINT32 *StateX;
|
||||
UINT32 *StateY;
|
||||
UINT32 *Temp;
|
||||
UINTN Index;
|
||||
UINTN NbIndex;
|
||||
UINTN Round;
|
||||
|
||||
if ((Key == NULL) || (InData == NULL) || (OutData == NULL)) {
|
||||
return EFI_INVALID_PARAMETER;
|
||||
}
|
||||
|
||||
//
|
||||
// Expands AES Key for encryption.
|
||||
//
|
||||
AesExpandKey (Key, 128, &AesKey);
|
||||
|
||||
Nr = AesKey.Nk + 6;
|
||||
Ek = AesKey.EncKey;
|
||||
|
||||
//
|
||||
// Initialize the cipher State array with the initial round key
|
||||
//
|
||||
for (Index = 0; Index < AES_NB; Index++) {
|
||||
LOAD32H (State[Index], InData + 4 * Index);
|
||||
State[Index] ^= Ek[Index];
|
||||
}
|
||||
|
||||
NbIndex = AES_NB;
|
||||
StateX = State;
|
||||
StateY = TempState;
|
||||
|
||||
//
|
||||
// AES Cipher transformation rounds (Nr - 1 rounds), in which SubBytes(),
|
||||
// ShiftRows() and MixColumns() operations were combined by a sequence of
|
||||
// table lookups to speed up the execution.
|
||||
//
|
||||
for (Round = 1; Round < Nr; Round++) {
|
||||
StateY[0] = AES_FT0 ((StateX[0] >> 24) ) ^ AES_FT1 ((StateX[1] >> 16) & 0xFF) ^
|
||||
AES_FT2 ((StateX[2] >> 8) & 0xFF) ^ AES_FT3 ((StateX[3] ) & 0xFF) ^ Ek[NbIndex];
|
||||
StateY[1] = AES_FT0 ((StateX[1] >> 24) ) ^ AES_FT1 ((StateX[2] >> 16) & 0xFF) ^
|
||||
AES_FT2 ((StateX[3] >> 8) & 0xFF) ^ AES_FT3 ((StateX[0] ) & 0xFF) ^ Ek[NbIndex + 1];
|
||||
StateY[2] = AES_FT0 ((StateX[2] >> 24) ) ^ AES_FT1 ((StateX[3] >> 16) & 0xFF) ^
|
||||
AES_FT2 ((StateX[0] >> 8) & 0xFF) ^ AES_FT3 ((StateX[1] ) & 0xFF) ^ Ek[NbIndex + 2];
|
||||
StateY[3] = AES_FT0 ((StateX[3] >> 24) ) ^ AES_FT1 ((StateX[0] >> 16) & 0xFF) ^
|
||||
AES_FT2 ((StateX[1] >> 8) & 0xFF) ^ AES_FT3 ((StateX[2] ) & 0xFF) ^ Ek[NbIndex + 3];
|
||||
|
||||
NbIndex += 4;
|
||||
Temp = StateX; StateX = StateY; StateY = Temp;
|
||||
}
|
||||
|
||||
//
|
||||
// Apply the final round, which does not include MixColumns() transformation
|
||||
//
|
||||
StateY[0] = (AES_FT2 ((StateX[0] >> 24) ) & 0xFF000000) ^ (AES_FT3 ((StateX[1] >> 16) & 0xFF) & 0x00FF0000) ^
|
||||
(AES_FT0 ((StateX[2] >> 8) & 0xFF) & 0x0000FF00) ^ (AES_FT1 ((StateX[3] ) & 0xFF) & 0x000000FF) ^
|
||||
Ek[NbIndex];
|
||||
StateY[1] = (AES_FT2 ((StateX[1] >> 24) ) & 0xFF000000) ^ (AES_FT3 ((StateX[2] >> 16) & 0xFF) & 0x00FF0000) ^
|
||||
(AES_FT0 ((StateX[3] >> 8) & 0xFF) & 0x0000FF00) ^ (AES_FT1 ((StateX[0] ) & 0xFF) & 0x000000FF) ^
|
||||
Ek[NbIndex + 1];
|
||||
StateY[2] = (AES_FT2 ((StateX[2] >> 24) ) & 0xFF000000) ^ (AES_FT3 ((StateX[3] >> 16) & 0xFF) & 0x00FF0000) ^
|
||||
(AES_FT0 ((StateX[0] >> 8) & 0xFF) & 0x0000FF00) ^ (AES_FT1 ((StateX[1] ) & 0xFF) & 0x000000FF) ^
|
||||
Ek[NbIndex + 2];
|
||||
StateY[3] = (AES_FT2 ((StateX[3] >> 24) ) & 0xFF000000) ^ (AES_FT3 ((StateX[0] >> 16) & 0xFF) & 0x00FF0000) ^
|
||||
(AES_FT0 ((StateX[1] >> 8) & 0xFF) & 0x0000FF00) ^ (AES_FT1 ((StateX[2] ) & 0xFF) & 0x000000FF) ^
|
||||
Ek[NbIndex + 3];
|
||||
|
||||
//
|
||||
// Output the transformed result;
|
||||
//
|
||||
for (Index = 0; Index < AES_NB; Index++) {
|
||||
STORE32H (StateY[Index], OutData + 4 * Index);
|
||||
}
|
||||
|
||||
return EFI_SUCCESS;
|
||||
}
|
31
SecurityPkg/RandomNumberGenerator/RngDxe/Rand/AesCore.h
Normal file
31
SecurityPkg/RandomNumberGenerator/RngDxe/Rand/AesCore.h
Normal file
@@ -0,0 +1,31 @@
|
||||
/** @file
|
||||
Function prototype for AES Block Cipher support.
|
||||
|
||||
Copyright (c) 2013, Intel Corporation. All rights reserved.<BR>
|
||||
SPDX-License-Identifier: BSD-2-Clause-Patent
|
||||
|
||||
**/
|
||||
|
||||
#ifndef __AES_CORE_H__
|
||||
#define __AES_CORE_H__
|
||||
|
||||
/**
|
||||
Encrypts one single block data (128 bits) with AES algorithm.
|
||||
|
||||
@param[in] Key AES symmetric key buffer.
|
||||
@param[in] InData One block of input plaintext to be encrypted.
|
||||
@param[out] OutData Encrypted output ciphertext.
|
||||
|
||||
@retval EFI_SUCCESS AES Block Encryption succeeded.
|
||||
@retval EFI_INVALID_PARAMETER One or more parameters are invalid.
|
||||
|
||||
**/
|
||||
EFI_STATUS
|
||||
EFIAPI
|
||||
AesEncrypt (
|
||||
IN UINT8 *Key,
|
||||
IN UINT8 *InData,
|
||||
OUT UINT8 *OutData
|
||||
);
|
||||
|
||||
#endif // __AES_CORE_H__
|
128
SecurityPkg/RandomNumberGenerator/RngDxe/Rand/RdRand.c
Normal file
128
SecurityPkg/RandomNumberGenerator/RngDxe/Rand/RdRand.c
Normal file
@@ -0,0 +1,128 @@
|
||||
/** @file
|
||||
Support routines for RDRAND instruction access.
|
||||
|
||||
Copyright (c) 2013 - 2018, Intel Corporation. All rights reserved.<BR>
|
||||
(C) Copyright 2015 Hewlett Packard Enterprise Development LP<BR>
|
||||
SPDX-License-Identifier: BSD-2-Clause-Patent
|
||||
|
||||
**/
|
||||
#include <Library/RngLib.h>
|
||||
|
||||
#include "AesCore.h"
|
||||
#include "RdRand.h"
|
||||
#include "RngDxeInternals.h"
|
||||
|
||||
/**
|
||||
Creates a 128bit random value that is fully forward and backward prediction resistant,
|
||||
suitable for seeding a NIST SP800-90 Compliant, FIPS 1402-2 certifiable SW DRBG.
|
||||
This function takes multiple random numbers through RDRAND without intervening
|
||||
delays to ensure reseeding and performs AES-CBC-MAC over the data to compute the
|
||||
seed value.
|
||||
|
||||
@param[out] SeedBuffer Pointer to a 128bit buffer to store the random seed.
|
||||
|
||||
@retval EFI_SUCCESS Random seed generation succeeded.
|
||||
@retval EFI_NOT_READY Failed to request random bytes.
|
||||
|
||||
**/
|
||||
EFI_STATUS
|
||||
EFIAPI
|
||||
RdRandGetSeed128 (
|
||||
OUT UINT8 *SeedBuffer
|
||||
)
|
||||
{
|
||||
EFI_STATUS Status;
|
||||
UINT8 RandByte[16];
|
||||
UINT8 Key[16];
|
||||
UINT8 Ffv[16];
|
||||
UINT8 Xored[16];
|
||||
UINT32 Index;
|
||||
UINT32 Index2;
|
||||
|
||||
//
|
||||
// Chose an arbitrary key and zero the feed_forward_value (FFV)
|
||||
//
|
||||
for (Index = 0; Index < 16; Index++) {
|
||||
Key[Index] = (UINT8) Index;
|
||||
Ffv[Index] = 0;
|
||||
}
|
||||
|
||||
//
|
||||
// Perform CBC_MAC over 32 * 128 bit values, with 10us gaps between 128 bit value
|
||||
// The 10us gaps will ensure multiple reseeds within the HW RNG with a large design margin.
|
||||
//
|
||||
for (Index = 0; Index < 32; Index++) {
|
||||
MicroSecondDelay (10);
|
||||
Status = RngGetBytes (16, RandByte);
|
||||
if (EFI_ERROR (Status)) {
|
||||
return Status;
|
||||
}
|
||||
|
||||
//
|
||||
// Perform XOR operations on two 128-bit value.
|
||||
//
|
||||
for (Index2 = 0; Index2 < 16; Index2++) {
|
||||
Xored[Index2] = RandByte[Index2] ^ Ffv[Index2];
|
||||
}
|
||||
|
||||
AesEncrypt (Key, Xored, Ffv);
|
||||
}
|
||||
|
||||
for (Index = 0; Index < 16; Index++) {
|
||||
SeedBuffer[Index] = Ffv[Index];
|
||||
}
|
||||
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
Generate high-quality entropy source through RDRAND.
|
||||
|
||||
@param[in] Length Size of the buffer, in bytes, to fill with.
|
||||
@param[out] Entropy Pointer to the buffer to store the entropy data.
|
||||
|
||||
@retval EFI_SUCCESS Entropy generation succeeded.
|
||||
@retval EFI_NOT_READY Failed to request random data.
|
||||
|
||||
**/
|
||||
EFI_STATUS
|
||||
EFIAPI
|
||||
RdRandGenerateEntropy (
|
||||
IN UINTN Length,
|
||||
OUT UINT8 *Entropy
|
||||
)
|
||||
{
|
||||
EFI_STATUS Status;
|
||||
UINTN BlockCount;
|
||||
UINT8 Seed[16];
|
||||
UINT8 *Ptr;
|
||||
|
||||
Status = EFI_NOT_READY;
|
||||
BlockCount = Length / 16;
|
||||
Ptr = (UINT8 *)Entropy;
|
||||
|
||||
//
|
||||
// Generate high-quality seed for DRBG Entropy
|
||||
//
|
||||
while (BlockCount > 0) {
|
||||
Status = RdRandGetSeed128 (Seed);
|
||||
if (EFI_ERROR (Status)) {
|
||||
return Status;
|
||||
}
|
||||
CopyMem (Ptr, Seed, 16);
|
||||
|
||||
BlockCount--;
|
||||
Ptr = Ptr + 16;
|
||||
}
|
||||
|
||||
//
|
||||
// Populate the remained data as request.
|
||||
//
|
||||
Status = RdRandGetSeed128 (Seed);
|
||||
if (EFI_ERROR (Status)) {
|
||||
return Status;
|
||||
}
|
||||
CopyMem (Ptr, Seed, (Length % 16));
|
||||
|
||||
return Status;
|
||||
}
|
43
SecurityPkg/RandomNumberGenerator/RngDxe/Rand/RdRand.h
Normal file
43
SecurityPkg/RandomNumberGenerator/RngDxe/Rand/RdRand.h
Normal file
@@ -0,0 +1,43 @@
|
||||
/** @file
|
||||
Header for the RDRAND APIs used by RNG DXE driver.
|
||||
|
||||
Support API definitions for RDRAND instruction access, which will leverage
|
||||
Intel Secure Key technology to provide high-quality random numbers for use
|
||||
in applications, or entropy for seeding other random number generators.
|
||||
Refer to http://software.intel.com/en-us/articles/intel-digital-random-number
|
||||
-generator-drng-software-implementation-guide/ for more information about Intel
|
||||
Secure Key technology.
|
||||
|
||||
Copyright (c) 2013, Intel Corporation. All rights reserved.<BR>
|
||||
(C) Copyright 2015 Hewlett Packard Enterprise Development LP<BR>
|
||||
SPDX-License-Identifier: BSD-2-Clause-Patent
|
||||
|
||||
**/
|
||||
|
||||
#ifndef __RD_RAND_H__
|
||||
#define __RD_RAND_H__
|
||||
|
||||
#include <Library/BaseLib.h>
|
||||
#include <Library/BaseMemoryLib.h>
|
||||
#include <Library/UefiBootServicesTableLib.h>
|
||||
#include <Library/TimerLib.h>
|
||||
#include <Protocol/Rng.h>
|
||||
|
||||
/**
|
||||
Generate high-quality entropy source through RDRAND.
|
||||
|
||||
@param[in] Length Size of the buffer, in bytes, to fill with.
|
||||
@param[out] Entropy Pointer to the buffer to store the entropy data.
|
||||
|
||||
@retval EFI_SUCCESS Entropy generation succeeded.
|
||||
@retval EFI_NOT_READY Failed to request random data.
|
||||
|
||||
**/
|
||||
EFI_STATUS
|
||||
EFIAPI
|
||||
RdRandGenerateEntropy (
|
||||
IN UINTN Length,
|
||||
OUT UINT8 *Entropy
|
||||
);
|
||||
|
||||
#endif // __RD_RAND_H__
|
145
SecurityPkg/RandomNumberGenerator/RngDxe/Rand/RngDxe.c
Normal file
145
SecurityPkg/RandomNumberGenerator/RngDxe/Rand/RngDxe.c
Normal file
@@ -0,0 +1,145 @@
|
||||
/** @file
|
||||
RNG Driver to produce the UEFI Random Number Generator protocol.
|
||||
|
||||
The driver will use the new RDRAND instruction to produce high-quality, high-performance
|
||||
entropy and random number.
|
||||
|
||||
RNG Algorithms defined in UEFI 2.4:
|
||||
- EFI_RNG_ALGORITHM_SP800_90_CTR_256_GUID - Supported
|
||||
(RDRAND implements a hardware NIST SP800-90 AES-CTR-256 based DRBG)
|
||||
- EFI_RNG_ALGORITHM_RAW - Supported
|
||||
(Structuring RDRAND invocation can be guaranteed as high-quality entropy source)
|
||||
- EFI_RNG_ALGORITHM_SP800_90_HMAC_256_GUID - Unsupported
|
||||
- EFI_RNG_ALGORITHM_SP800_90_HASH_256_GUID - Unsupported
|
||||
- EFI_RNG_ALGORITHM_X9_31_3DES_GUID - Unsupported
|
||||
- EFI_RNG_ALGORITHM_X9_31_AES_GUID - Unsupported
|
||||
|
||||
Copyright (c) 2013 - 2018, Intel Corporation. All rights reserved.<BR>
|
||||
(C) Copyright 2015 Hewlett Packard Enterprise Development LP<BR>
|
||||
SPDX-License-Identifier: BSD-2-Clause-Patent
|
||||
|
||||
**/
|
||||
|
||||
#include "RdRand.h"
|
||||
#include "RngDxeInternals.h"
|
||||
|
||||
/**
|
||||
Produces and returns an RNG value using either the default or specified RNG algorithm.
|
||||
|
||||
@param[in] This A pointer to the EFI_RNG_PROTOCOL instance.
|
||||
@param[in] RNGAlgorithm A pointer to the EFI_RNG_ALGORITHM that identifies the RNG
|
||||
algorithm to use. May be NULL in which case the function will
|
||||
use its default RNG algorithm.
|
||||
@param[in] RNGValueLength The length in bytes of the memory buffer pointed to by
|
||||
RNGValue. The driver shall return exactly this numbers of bytes.
|
||||
@param[out] RNGValue A caller-allocated memory buffer filled by the driver with the
|
||||
resulting RNG value.
|
||||
|
||||
@retval EFI_SUCCESS The RNG value was returned successfully.
|
||||
@retval EFI_UNSUPPORTED The algorithm specified by RNGAlgorithm is not supported by
|
||||
this driver.
|
||||
@retval EFI_DEVICE_ERROR An RNG value could not be retrieved due to a hardware or
|
||||
firmware error.
|
||||
@retval EFI_NOT_READY There is not enough random data available to satisfy the length
|
||||
requested by RNGValueLength.
|
||||
@retval EFI_INVALID_PARAMETER RNGValue is NULL or RNGValueLength is zero.
|
||||
|
||||
**/
|
||||
EFI_STATUS
|
||||
EFIAPI
|
||||
RngGetRNG (
|
||||
IN EFI_RNG_PROTOCOL *This,
|
||||
IN EFI_RNG_ALGORITHM *RNGAlgorithm, OPTIONAL
|
||||
IN UINTN RNGValueLength,
|
||||
OUT UINT8 *RNGValue
|
||||
)
|
||||
{
|
||||
EFI_STATUS Status;
|
||||
|
||||
if ((RNGValueLength == 0) || (RNGValue == NULL)) {
|
||||
return EFI_INVALID_PARAMETER;
|
||||
}
|
||||
|
||||
Status = EFI_UNSUPPORTED;
|
||||
if (RNGAlgorithm == NULL) {
|
||||
//
|
||||
// Use the default RNG algorithm if RNGAlgorithm is NULL.
|
||||
//
|
||||
RNGAlgorithm = &gEfiRngAlgorithmSp80090Ctr256Guid;
|
||||
}
|
||||
|
||||
//
|
||||
// NIST SP800-90-AES-CTR-256 supported by RDRAND
|
||||
//
|
||||
if (CompareGuid (RNGAlgorithm, &gEfiRngAlgorithmSp80090Ctr256Guid)) {
|
||||
Status = RngGetBytes (RNGValueLength, RNGValue);
|
||||
return Status;
|
||||
}
|
||||
|
||||
//
|
||||
// The "raw" algorithm is intended to provide entropy directly
|
||||
//
|
||||
if (CompareGuid (RNGAlgorithm, &gEfiRngAlgorithmRaw)) {
|
||||
//
|
||||
// When a DRBG is used on the output of a entropy source,
|
||||
// its security level must be at least 256 bits according to UEFI Spec.
|
||||
//
|
||||
if (RNGValueLength < 32) {
|
||||
return EFI_INVALID_PARAMETER;
|
||||
}
|
||||
|
||||
Status = RdRandGenerateEntropy (RNGValueLength, RNGValue);
|
||||
return Status;
|
||||
}
|
||||
|
||||
//
|
||||
// Other algorithms were unsupported by this driver.
|
||||
//
|
||||
return Status;
|
||||
}
|
||||
|
||||
/**
|
||||
Returns information about the random number generation implementation.
|
||||
|
||||
@param[in,out] RNGAlgorithmListSize On input, the size in bytes of RNGAlgorithmList.
|
||||
On output with a return code of EFI_SUCCESS, the size
|
||||
in bytes of the data returned in RNGAlgorithmList. On output
|
||||
with a return code of EFI_BUFFER_TOO_SMALL,
|
||||
the size of RNGAlgorithmList required to obtain the list.
|
||||
@param[out] RNGAlgorithmList A caller-allocated memory buffer filled by the driver
|
||||
with one EFI_RNG_ALGORITHM element for each supported
|
||||
RNG algorithm. The list must not change across multiple
|
||||
calls to the same driver. The first algorithm in the list
|
||||
is the default algorithm for the driver.
|
||||
|
||||
@retval EFI_SUCCESS The RNG algorithm list was returned successfully.
|
||||
@retval EFI_BUFFER_TOO_SMALL The buffer RNGAlgorithmList is too small to hold the result.
|
||||
|
||||
**/
|
||||
UINTN
|
||||
EFIAPI
|
||||
ArchGetSupportedRngAlgorithms (
|
||||
IN OUT UINTN *RNGAlgorithmListSize,
|
||||
OUT EFI_RNG_ALGORITHM *RNGAlgorithmList
|
||||
)
|
||||
{
|
||||
UINTN RequiredSize;
|
||||
EFI_RNG_ALGORITHM *CpuRngSupportedAlgorithm;
|
||||
|
||||
RequiredSize = 2 * sizeof (EFI_RNG_ALGORITHM);
|
||||
|
||||
if (*RNGAlgorithmListSize < RequiredSize) {
|
||||
*RNGAlgorithmListSize = RequiredSize;
|
||||
return EFI_BUFFER_TOO_SMALL;
|
||||
}
|
||||
|
||||
CpuRngSupportedAlgorithm = PcdGetPtr (PcdCpuRngSupportedAlgorithm);
|
||||
|
||||
CopyMem(&RNGAlgorithmList[0], CpuRngSupportedAlgorithm, sizeof (EFI_RNG_ALGORITHM));
|
||||
|
||||
// x86 platforms also support EFI_RNG_ALGORITHM_RAW via RDSEED
|
||||
CopyMem(&RNGAlgorithmList[1], &gEfiRngAlgorithmRaw, sizeof (EFI_RNG_ALGORITHM));
|
||||
|
||||
*RNGAlgorithmListSize = RequiredSize;
|
||||
return EFI_SUCCESS;
|
||||
}
|
Reference in New Issue
Block a user