Moved the MdePkg to OldMdePkg so that new code in MdePkg does not break existing builds. Also updated the SPD and FPD files UiNames

git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@2616 6f19259b-4bc3-4df7-8a09-765794883524
This commit is contained in:
lhauch
2007-06-01 14:49:55 +00:00
parent 144d783d40
commit 586cd1f1f4
1130 changed files with 4 additions and 4 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -1,550 +0,0 @@
/** @file
I/O Library.
Copyright (c) 2006, Intel Corporation<BR>
All rights reserved. This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
Module Name: IoLib.c
**/
/**
Reads an 8-bit I/O port.
Reads the 8-bit I/O port specified by Port. The 8-bit read value is returned.
This function must guarantee that all I/O read and write operations are
serialized.
If 8-bit I/O port operations are not supported, then ASSERT().
@param Port The I/O port to read.
@return The value read.
**/
UINT8
EFIAPI
IoRead8 (
IN UINTN Port
)
{
EFI_PEI_SERVICES **PeiServices;
EFI_PEI_CPU_IO_PPI *CpuIo;
PeiServices = GetPeiServicesTablePointer ();
CpuIo = (*PeiServices)->CpuIo;
ASSERT (CpuIo != NULL);
return CpuIo->IoRead8 (PeiServices, CpuIo, (UINT64) Port);
}
/**
Writes an 8-bit I/O port.
Writes the 8-bit I/O port specified by Port with the value specified by Value
and returns Value. This function must guarantee that all I/O read and write
operations are serialized.
If 8-bit I/O port operations are not supported, then ASSERT().
@param Port The I/O port to write.
@param Value The value to write to the I/O port.
@return The value written the I/O port.
**/
UINT8
EFIAPI
IoWrite8 (
IN UINTN Port,
IN UINT8 Value
)
{
EFI_PEI_SERVICES **PeiServices;
EFI_PEI_CPU_IO_PPI *CpuIo;
PeiServices = GetPeiServicesTablePointer ();
CpuIo = (*PeiServices)->CpuIo;
ASSERT (CpuIo != NULL);
CpuIo->IoWrite8 (PeiServices, CpuIo, (UINT64) Port, Value);
return Value;
}
/**
Reads a 16-bit I/O port.
Reads the 16-bit I/O port specified by Port. The 16-bit read value is returned.
This function must guarantee that all I/O read and write operations are
serialized.
If 16-bit I/O port operations are not supported, then ASSERT().
@param Port The I/O port to read.
@return The value read.
**/
UINT16
EFIAPI
IoRead16 (
IN UINTN Port
)
{
EFI_PEI_SERVICES **PeiServices;
EFI_PEI_CPU_IO_PPI *CpuIo;
PeiServices = GetPeiServicesTablePointer ();
CpuIo = (*PeiServices)->CpuIo;
ASSERT (CpuIo != NULL);
//
// Make sure Port is aligned on a 16-bit boundary.
//
ASSERT ((Port & 1) == 0);
return CpuIo->IoRead16 (PeiServices, CpuIo, (UINT64) Port);
}
/**
Writes a 16-bit I/O port.
Writes the 16-bit I/O port specified by Port with the value specified by Value
and returns Value. This function must guarantee that all I/O read and write
operations are serialized.
If 16-bit I/O port operations are not supported, then ASSERT().
@param Port The I/O port to write.
@param Value The value to write to the I/O port.
@return The value written the I/O port.
**/
UINT16
EFIAPI
IoWrite16 (
IN UINTN Port,
IN UINT16 Value
)
{
EFI_PEI_SERVICES **PeiServices;
EFI_PEI_CPU_IO_PPI *CpuIo;
PeiServices = GetPeiServicesTablePointer ();
CpuIo = (*PeiServices)->CpuIo;
ASSERT (CpuIo != NULL);
//
// Make sure Port is aligned on a 16-bit boundary.
//
ASSERT ((Port & 1) == 0);
CpuIo->IoWrite16 (PeiServices, CpuIo, (UINT64) Port, Value);
return Value;
}
/**
Reads a 32-bit I/O port.
Reads the 32-bit I/O port specified by Port. The 32-bit read value is returned.
This function must guarantee that all I/O read and write operations are
serialized.
If 32-bit I/O port operations are not supported, then ASSERT().
@param Port The I/O port to read.
@return The value read.
**/
UINT32
EFIAPI
IoRead32 (
IN UINTN Port
)
{
EFI_PEI_SERVICES **PeiServices;
EFI_PEI_CPU_IO_PPI *CpuIo;
PeiServices = GetPeiServicesTablePointer ();
CpuIo = (*PeiServices)->CpuIo;
ASSERT (CpuIo != NULL);
//
// Make sure Port is aligned on a 32-bit boundary.
//
ASSERT ((Port & 3) == 0);
return CpuIo->IoRead32 (PeiServices, CpuIo, (UINT64) Port);
}
/**
Writes a 32-bit I/O port.
Writes the 32-bit I/O port specified by Port with the value specified by Value
and returns Value. This function must guarantee that all I/O read and write
operations are serialized.
If 32-bit I/O port operations are not supported, then ASSERT().
@param Port The I/O port to write.
@param Value The value to write to the I/O port.
@return The value written the I/O port.
**/
UINT32
EFIAPI
IoWrite32 (
IN UINTN Port,
IN UINT32 Value
)
{
EFI_PEI_SERVICES **PeiServices;
EFI_PEI_CPU_IO_PPI *CpuIo;
PeiServices = GetPeiServicesTablePointer ();
CpuIo = (*PeiServices)->CpuIo;
ASSERT (CpuIo != NULL);
//
// Make sure Port is aligned on a 32-bit boundary.
//
ASSERT ((Port & 3) == 0);
CpuIo->IoWrite32 (PeiServices, CpuIo, (UINT64) Port, Value);
return Value;
}
/**
Reads a 64-bit I/O port.
Reads the 64-bit I/O port specified by Port. The 64-bit read value is returned.
This function must guarantee that all I/O read and write operations are
serialized.
If 64-bit I/O port operations are not supported, then ASSERT().
@param Port The I/O port to read.
@return The value read.
**/
UINT64
EFIAPI
IoRead64 (
IN UINTN Port
)
{
EFI_PEI_SERVICES **PeiServices;
EFI_PEI_CPU_IO_PPI *CpuIo;
PeiServices = GetPeiServicesTablePointer ();
CpuIo = (*PeiServices)->CpuIo;
ASSERT (CpuIo != NULL);
//
// Make sure Port is aligned on a 64-bit boundary.
//
ASSERT ((Port & 7) == 0);
return CpuIo->IoRead64 (PeiServices, CpuIo, (UINT64) Port);
}
/**
Writes a 64-bit I/O port.
Writes the 64-bit I/O port specified by Port with the value specified by Value
and returns Value. This function must guarantee that all I/O read and write
operations are serialized.
If 64-bit I/O port operations are not supported, then ASSERT().
@param Port The I/O port to write.
@param Value The value to write to the I/O port.
@return The value written the I/O port.
**/
UINT64
EFIAPI
IoWrite64 (
IN UINTN Port,
IN UINT64 Value
)
{
EFI_PEI_SERVICES **PeiServices;
EFI_PEI_CPU_IO_PPI *CpuIo;
PeiServices = GetPeiServicesTablePointer ();
CpuIo = (*PeiServices)->CpuIo;
ASSERT (CpuIo != NULL);
//
// Make sure Port is aligned on a 64-bit boundary.
//
ASSERT ((Port & 7) == 0);
CpuIo->IoWrite64 (PeiServices, CpuIo, (UINT64) Port, Value);
return Value;;
}
/**
Reads an 8-bit MMIO register.
Reads the 8-bit MMIO register specified by Address. The 8-bit read value is
returned. This function must guarantee that all MMIO read and write
operations are serialized.
If 8-bit MMIO register operations are not supported, then ASSERT().
@param Address The MMIO register to read.
@return The value read.
**/
UINT8
EFIAPI
MmioRead8 (
IN UINTN Address
)
{
EFI_PEI_SERVICES **PeiServices;
EFI_PEI_CPU_IO_PPI *CpuIo;
PeiServices = GetPeiServicesTablePointer ();
CpuIo = (*PeiServices)->CpuIo;
ASSERT (CpuIo != NULL);
return CpuIo->MemRead8 (PeiServices, CpuIo, (UINT64) Address);
}
/**
Writes an 8-bit MMIO register.
Writes the 8-bit MMIO register specified by Address with the value specified
by Value and returns Value. This function must guarantee that all MMIO read
and write operations are serialized.
If 8-bit MMIO register operations are not supported, then ASSERT().
@param Address The MMIO register to write.
@param Value The value to write to the MMIO register.
**/
UINT8
EFIAPI
MmioWrite8 (
IN UINTN Address,
IN UINT8 Value
)
{
EFI_PEI_SERVICES **PeiServices;
EFI_PEI_CPU_IO_PPI *CpuIo;
PeiServices = GetPeiServicesTablePointer ();
CpuIo = (*PeiServices)->CpuIo;
ASSERT (CpuIo != NULL);
CpuIo->MemWrite8 (PeiServices, CpuIo, (UINT64) Address, Value);
return Value;
}
/**
Reads a 16-bit MMIO register.
Reads the 16-bit MMIO register specified by Address. The 16-bit read value is
returned. This function must guarantee that all MMIO read and write
operations are serialized.
If 16-bit MMIO register operations are not supported, then ASSERT().
@param Address The MMIO register to read.
@return The value read.
**/
UINT16
EFIAPI
MmioRead16 (
IN UINTN Address
)
{
EFI_PEI_SERVICES **PeiServices;
EFI_PEI_CPU_IO_PPI *CpuIo;
PeiServices = GetPeiServicesTablePointer ();
CpuIo = (*PeiServices)->CpuIo;
ASSERT (CpuIo != NULL);
//
// Make sure Address is aligned on a 16-bit boundary.
//
ASSERT ((Address & 1) == 0);
return CpuIo->MemRead16 (PeiServices, CpuIo, (UINT64) Address);
}
/**
Writes a 16-bit MMIO register.
Writes the 16-bit MMIO register specified by Address with the value specified
by Value and returns Value. This function must guarantee that all MMIO read
and write operations are serialized.
If 16-bit MMIO register operations are not supported, then ASSERT().
@param Address The MMIO register to write.
@param Value The value to write to the MMIO register.
**/
UINT16
EFIAPI
MmioWrite16 (
IN UINTN Address,
IN UINT16 Value
)
{
EFI_PEI_SERVICES **PeiServices;
EFI_PEI_CPU_IO_PPI *CpuIo;
PeiServices = GetPeiServicesTablePointer ();
CpuIo = (*PeiServices)->CpuIo;
ASSERT (CpuIo != NULL);
//
// Make sure Address is aligned on a 16-bit boundary.
//
ASSERT ((Address & 1) == 0);
CpuIo->MemWrite16 (PeiServices, CpuIo, (UINT64) Address, Value);
return Value;
}
/**
Reads a 32-bit MMIO register.
Reads the 32-bit MMIO register specified by Address. The 32-bit read value is
returned. This function must guarantee that all MMIO read and write
operations are serialized.
If 32-bit MMIO register operations are not supported, then ASSERT().
@param Address The MMIO register to read.
@return The value read.
**/
UINT32
EFIAPI
MmioRead32 (
IN UINTN Address
)
{
EFI_PEI_SERVICES **PeiServices;
EFI_PEI_CPU_IO_PPI *CpuIo;
PeiServices = GetPeiServicesTablePointer ();
CpuIo = (*PeiServices)->CpuIo;
ASSERT (CpuIo != NULL);
//
// Make sure Address is aligned on a 32-bit boundary.
//
ASSERT ((Address & 3) == 0);
return CpuIo->MemRead32 (PeiServices, CpuIo, (UINT64) Address);
}
/**
Writes a 32-bit MMIO register.
Writes the 32-bit MMIO register specified by Address with the value specified
by Value and returns Value. This function must guarantee that all MMIO read
and write operations are serialized.
If 32-bit MMIO register operations are not supported, then ASSERT().
@param Address The MMIO register to write.
@param Value The value to write to the MMIO register.
**/
UINT32
EFIAPI
MmioWrite32 (
IN UINTN Address,
IN UINT32 Value
)
{
EFI_PEI_SERVICES **PeiServices;
EFI_PEI_CPU_IO_PPI *CpuIo;
PeiServices = GetPeiServicesTablePointer ();
CpuIo = (*PeiServices)->CpuIo;
ASSERT (CpuIo != NULL);
//
// Make sure Address is aligned on a 32-bit boundary.
//
ASSERT ((Address & 3) == 0);
CpuIo->MemWrite32 (PeiServices, CpuIo, (UINT64) Address, Value);
return Value;
}
/**
Reads a 64-bit MMIO register.
Reads the 64-bit MMIO register specified by Address. The 64-bit read value is
returned. This function must guarantee that all MMIO read and write
operations are serialized.
If 64-bit MMIO register operations are not supported, then ASSERT().
@param Address The MMIO register to read.
@return The value read.
**/
UINT64
EFIAPI
MmioRead64 (
IN UINTN Address
)
{
EFI_PEI_SERVICES **PeiServices;
EFI_PEI_CPU_IO_PPI *CpuIo;
PeiServices = GetPeiServicesTablePointer ();
CpuIo = (*PeiServices)->CpuIo;
ASSERT (CpuIo != NULL);
//
// Make sure Address is aligned on a 64-bit boundary.
//
ASSERT ((Address & 7) == 0);
return CpuIo->MemRead64 (PeiServices, CpuIo, (UINT64) Address);
}
/**
Writes a 64-bit MMIO register.
Writes the 64-bit MMIO register specified by Address with the value specified
by Value and returns Value. This function must guarantee that all MMIO read
and write operations are serialized.
If 64-bit MMIO register operations are not supported, then ASSERT().
@param Address The MMIO register to write.
@param Value The value to write to the MMIO register.
**/
UINT64
EFIAPI
MmioWrite64 (
IN UINTN Address,
IN UINT64 Value
)
{
EFI_PEI_SERVICES **PeiServices;
EFI_PEI_CPU_IO_PPI *CpuIo;
PeiServices = GetPeiServicesTablePointer ();
CpuIo = (*PeiServices)->CpuIo;
ASSERT (CpuIo != NULL);
//
// Make sure Address is aligned on a 64-bit boundary.
//
ASSERT ((Address & 7) == 0);
CpuIo->MemWrite64 (PeiServices, CpuIo, (UINT64) Address, Value);
return Value;
}

View File

@@ -1,409 +0,0 @@
/** @file
I/O Library MMIO Buffer Functions.
Copyright (c) 2007, Intel Corporation<BR>
All rights reserved. This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
/**
Copy data from MMIO region to system memory by using 8-bit access.
Copy data from MMIO region specified by starting address StartAddress
to system memory specified by Buffer by using 8-bit access. The total
number of byte to be copied is specified by Length. Buffer is returned.
If Length is greater than (MAX_ADDRESS - StartAddress + 1), then ASSERT().
If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
@param StartAddress Starting address for the MMIO region to be copied from.
@param Length Size in bytes of the copy.
@param Buffer Pointer to a system memory buffer receiving the data read.
@return Buffer
**/
UINT8 *
EFIAPI
MmioReadBuffer8 (
IN UINTN StartAddress,
IN UINTN Length,
OUT UINT8 *Buffer
)
{
UINT8 *ReturnBuffer;
ASSERT ((Length - 1) <= (MAX_ADDRESS - StartAddress));
ASSERT ((Length - 1) <= (MAX_ADDRESS - (UINTN) Buffer));
ReturnBuffer = Buffer;
while (Length--) {
*(Buffer++) = MmioRead8 (StartAddress++);
}
return ReturnBuffer;
}
/**
Copy data from MMIO region to system memory by using 16-bit access.
Copy data from MMIO region specified by starting address StartAddress
to system memory specified by Buffer by using 16-bit access. The total
number of byte to be copied is specified by Length. Buffer is returned.
If StartAddress is not aligned on a 16-bit boundary, then ASSERT().
If Length is greater than (MAX_ADDRESS - StartAddress + 1), then ASSERT().
If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
If Length is not aligned on a 16-bit boundary, then ASSERT().
If Buffer is not aligned on a 16-bit boundary, then ASSERT().
@param StartAddress Starting address for the MMIO region to be copied from.
@param Length Size in bytes of the copy.
@param Buffer Pointer to a system memory buffer receiving the data read.
@return Buffer
**/
UINT16 *
EFIAPI
MmioReadBuffer16 (
IN UINTN StartAddress,
IN UINTN Length,
OUT UINT16 *Buffer
)
{
UINT16 *ReturnBuffer;
ASSERT ((StartAddress & (sizeof (UINT16) - 1)) == 0);
ASSERT ((Length - 1) <= (MAX_ADDRESS - StartAddress));
ASSERT ((Length - 1) <= (MAX_ADDRESS - (UINTN) Buffer));
ASSERT ((Length & (sizeof (UINT16) - 1)) == 0);
ASSERT (((UINTN) Buffer & (sizeof (UINT16) - 1)) == 0);
ReturnBuffer = Buffer;
while (Length) {
*(Buffer++) = MmioRead16 (StartAddress);
StartAddress += sizeof (UINT16);
Length -= sizeof (UINT16);
}
return ReturnBuffer;
}
/**
Copy data from MMIO region to system memory by using 32-bit access.
Copy data from MMIO region specified by starting address StartAddress
to system memory specified by Buffer by using 32-bit access. The total
number of byte to be copied is specified by Length. Buffer is returned.
If StartAddress is not aligned on a 32-bit boundary, then ASSERT().
If Length is greater than (MAX_ADDRESS - StartAddress + 1), then ASSERT().
If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
If Length is not aligned on a 32-bit boundary, then ASSERT().
If Buffer is not aligned on a 32-bit boundary, then ASSERT().
@param StartAddress Starting address for the MMIO region to be copied from.
@param Length Size in bytes of the copy.
@param Buffer Pointer to a system memory buffer receiving the data read.
@return Buffer
**/
UINT32 *
EFIAPI
MmioReadBuffer32 (
IN UINTN StartAddress,
IN UINTN Length,
OUT UINT32 *Buffer
)
{
UINT32 *ReturnBuffer;
ASSERT ((StartAddress & (sizeof (UINT32) - 1)) == 0);
ASSERT ((Length - 1) <= (MAX_ADDRESS - StartAddress));
ASSERT ((Length - 1) <= (MAX_ADDRESS - (UINTN) Buffer));
ASSERT ((Length & (sizeof (UINT32) - 1)) == 0);
ASSERT (((UINTN) Buffer & (sizeof (UINT32) - 1)) == 0);
ReturnBuffer = Buffer;
while (Length) {
*(Buffer++) = MmioRead32 (StartAddress);
StartAddress += sizeof (UINT32);
Length -= sizeof (UINT32);
}
return ReturnBuffer;
}
/**
Copy data from MMIO region to system memory by using 64-bit access.
Copy data from MMIO region specified by starting address StartAddress
to system memory specified by Buffer by using 64-bit access. The total
number of byte to be copied is specified by Length. Buffer is returned.
If StartAddress is not aligned on a 64-bit boundary, then ASSERT().
If Length is greater than (MAX_ADDRESS - StartAddress + 1), then ASSERT().
If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().
If Length is not aligned on a 64-bit boundary, then ASSERT().
If Buffer is not aligned on a 64-bit boundary, then ASSERT().
@param StartAddress Starting address for the MMIO region to be copied from.
@param Length Size in bytes of the copy.
@param Buffer Pointer to a system memory buffer receiving the data read.
@return Buffer
**/
UINT64 *
EFIAPI
MmioReadBuffer64 (
IN UINTN StartAddress,
IN UINTN Length,
OUT UINT64 *Buffer
)
{
UINT64 *ReturnBuffer;
ASSERT ((StartAddress & (sizeof (UINT64) - 1)) == 0);
ASSERT ((Length - 1) <= (MAX_ADDRESS - StartAddress));
ASSERT ((Length - 1) <= (MAX_ADDRESS - (UINTN) Buffer));
ASSERT ((Length & (sizeof (UINT64) - 1)) == 0);
ASSERT (((UINTN) Buffer & (sizeof (UINT64) - 1)) == 0);
ReturnBuffer = Buffer;
while (Length) {
*(Buffer++) = MmioRead64 (StartAddress);
StartAddress += sizeof (UINT64);
Length -= sizeof (UINT64);
}
return ReturnBuffer;
}
/**
Copy data from system memory to MMIO region by using 8-bit access.
Copy data from system memory specified by Buffer to MMIO region specified
by starting address StartAddress by using 8-bit access. The total number
of byte to be copied is specified by Length. Buffer is returned.
If Length is greater than (MAX_ADDRESS - StartAddress + 1), then ASSERT().
If Length is greater than (MAX_ADDRESS -Buffer + 1), then ASSERT().
@param StartAddress Starting address for the MMIO region to be copied to.
@param Length Size in bytes of the copy.
@param Buffer Pointer to a system memory buffer containing the data to write.
@return Size in bytes of the copy.
**/
UINT8 *
EFIAPI
MmioWriteBuffer8 (
IN UINTN StartAddress,
IN UINTN Length,
IN CONST UINT8 *Buffer
)
{
VOID* ReturnBuffer;
ASSERT ((Length - 1) <= (MAX_ADDRESS - StartAddress));
ASSERT ((Length - 1) <= (MAX_ADDRESS - (UINTN) Buffer));
ReturnBuffer = (UINT8 *) Buffer;
while (Length--) {
MmioWrite8 (StartAddress++, *(Buffer++));
}
return ReturnBuffer;
}
/**
Copy data from system memory to MMIO region by using 16-bit access.
Copy data from system memory specified by Buffer to MMIO region specified
by starting address StartAddress by using 16-bit access. The total number
of byte to be copied is specified by Length. Length is returned.
If StartAddress is not aligned on a 16-bit boundary, then ASSERT().
If Length is greater than (MAX_ADDRESS - StartAddress + 1), then ASSERT().
If Length is greater than (MAX_ADDRESS -Buffer + 1), then ASSERT().
If Length is not aligned on a 16-bit boundary, then ASSERT().
If Buffer is not aligned on a 16-bit boundary, then ASSERT().
@param StartAddress Starting address for the MMIO region to be copied to.
@param Length Size in bytes of the copy.
@param Buffer Pointer to a system memory buffer containing the data to write.
@return Size in bytes of the copy.
**/
UINT16 *
EFIAPI
MmioWriteBuffer16 (
IN UINTN StartAddress,
IN UINTN Length,
IN CONST UINT16 *Buffer
)
{
UINT16 *ReturnBuffer;
ASSERT ((StartAddress & (sizeof (UINT16) - 1)) == 0);
ASSERT ((Length - 1) <= (MAX_ADDRESS - StartAddress));
ASSERT ((Length - 1) <= (MAX_ADDRESS - (UINTN) Buffer));
ASSERT ((Length & (sizeof (UINT16) - 1)) == 0);
ASSERT (((UINTN) Buffer & (sizeof (UINT16) - 1)) == 0);
ReturnBuffer = (UINT16 *) Buffer;
while (Length) {
MmioWrite16 (StartAddress, *(Buffer++));
StartAddress += sizeof (UINT16);
Length -= sizeof (UINT16);
}
return ReturnBuffer;
}
/**
Copy data from system memory to MMIO region by using 32-bit access.
Copy data from system memory specified by Buffer to MMIO region specified
by starting address StartAddress by using 32-bit access. The total number
of byte to be copied is specified by Length. Length is returned.
If StartAddress is not aligned on a 32-bit boundary, then ASSERT().
If Length is greater than (MAX_ADDRESS - StartAddress + 1), then ASSERT().
If Length is greater than (MAX_ADDRESS -Buffer + 1), then ASSERT().
If Length is not aligned on a 32-bit boundary, then ASSERT().
If Buffer is not aligned on a 32-bit boundary, then ASSERT().
@param StartAddress Starting address for the MMIO region to be copied to.
@param Length Size in bytes of the copy.
@param Buffer Pointer to a system memory buffer containing the data to write.
@return Size in bytes of the copy.
**/
UINT32 *
EFIAPI
MmioWriteBuffer32 (
IN UINTN StartAddress,
IN UINTN Length,
IN CONST UINT32 *Buffer
)
{
UINT32 *ReturnBuffer;
ASSERT ((StartAddress & (sizeof (UINT32) - 1)) == 0);
ASSERT ((Length - 1) <= (MAX_ADDRESS - StartAddress));
ASSERT ((Length - 1) <= (MAX_ADDRESS - (UINTN) Buffer));
ASSERT ((Length & (sizeof (UINT32) - 1)) == 0);
ASSERT (((UINTN) Buffer & (sizeof (UINT32) - 1)) == 0);
ReturnBuffer = (UINT32 *) Buffer;
while (Length) {
MmioWrite32 (StartAddress, *(Buffer++));
StartAddress += sizeof (UINT32);
Length -= sizeof (UINT32);
}
return ReturnBuffer;
}
/**
Copy data from system memory to MMIO region by using 64-bit access.
Copy data from system memory specified by Buffer to MMIO region specified
by starting address StartAddress by using 64-bit access. The total number
of byte to be copied is specified by Length. Length is returned.
If StartAddress is not aligned on a 64-bit boundary, then ASSERT().
If Length is greater than (MAX_ADDRESS - StartAddress + 1), then ASSERT().
If Length is greater than (MAX_ADDRESS -Buffer + 1), then ASSERT().
If Length is not aligned on a 64-bit boundary, then ASSERT().
If Buffer is not aligned on a 64-bit boundary, then ASSERT().
@param StartAddress Starting address for the MMIO region to be copied to.
@param Length Size in bytes of the copy.
@param Buffer Pointer to a system memory buffer containing the data to write.
@return Size in bytes of the copy.
**/
UINT64 *
EFIAPI
MmioWriteBuffer64 (
IN UINTN StartAddress,
IN UINTN Length,
IN CONST UINT64 *Buffer
)
{
UINT64 *ReturnBuffer;
ASSERT ((StartAddress & (sizeof (UINT64) - 1)) == 0);
ASSERT ((Length - 1) <= (MAX_ADDRESS - StartAddress));
ASSERT ((Length - 1) <= (MAX_ADDRESS - (UINTN) Buffer));
ASSERT ((Length & (sizeof (UINT64) - 1)) == 0);
ASSERT (((UINTN) Buffer & (sizeof (UINT64) - 1)) == 0);
ReturnBuffer = (UINT64 *) Buffer;
while (Length) {
MmioWrite64 (StartAddress, *(Buffer++));
StartAddress += sizeof (UINT64);
Length -= sizeof (UINT64);
}
return ReturnBuffer;
}

View File

@@ -1,51 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<ModuleSurfaceArea xmlns="http://www.TianoCore.org/2006/Edk2.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<MsaHeader>
<ModuleName>PeiIoLibCpuIo</ModuleName>
<ModuleType>PEIM</ModuleType>
<GuidValue>b2585b69-fb63-4220-844a-8fbea8bf01af</GuidValue>
<Version>1.0</Version>
<Abstract>Component description file for Cpu Io Pei Io Library</Abstract>
<Description>I/O Library implementation that uses the CPU I/O PPI for I/O
and MMIO operations.</Description>
<Copyright>Copyright (c) 2006 - 2007, Intel Corporation.</Copyright>
<License>All rights reserved. This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.</License>
<Specification>FRAMEWORK_BUILD_PACKAGING_SPECIFICATION 0x00000052</Specification>
</MsaHeader>
<ModuleDefinitions>
<SupportedArchitectures>IA32 X64 IPF EBC</SupportedArchitectures>
<BinaryModule>false</BinaryModule>
<OutputFileBasename>PeiIoLibCpuIo</OutputFileBasename>
</ModuleDefinitions>
<LibraryClassDefinitions>
<LibraryClass Usage="ALWAYS_PRODUCED" SupModuleList="PEIM PEI_CORE">
<Keyword>IoLib</Keyword>
</LibraryClass>
<LibraryClass Usage="ALWAYS_CONSUMED">
<Keyword>DebugLib</Keyword>
</LibraryClass>
<LibraryClass Usage="ALWAYS_CONSUMED">
<Keyword>BaseLib</Keyword>
</LibraryClass>
<LibraryClass Usage="ALWAYS_CONSUMED">
<Keyword>PeiServicesTablePointerLib</Keyword>
</LibraryClass>
</LibraryClassDefinitions>
<SourceFiles>
<Filename>IoLibMmioBuffer.c</Filename>
<Filename>IoLib.c</Filename>
<Filename>IoHighLevel.c</Filename>
</SourceFiles>
<PackageDependencies>
<Package PackageGuid="5e0e9358-46b6-4ae2-8218-4ab8b9bbdcec"/>
</PackageDependencies>
<Externs>
<Specification>EFI_SPECIFICATION_VERSION 0x00020000</Specification>
<Specification>EDK_RELEASE_VERSION 0x00020000</Specification>
</Externs>
</ModuleSurfaceArea>