UefiPayloadPkg: Remove PEI phase from Payload

REF: https://bugzilla.tianocore.org/show_bug.cgi?id=3100

It is not necessary to have a PEI phase in the UEFI payload since no
specific PEI task is required. This patch adds a UefiPayloadEntry
driver to get UEFI Payload required information from the bootloaders,
convert them into a HOB list, load DXE core and transfer control to it.

Here is the change details:
1) Removed PEI phase, including Peicore, BlSupportPei, SecCore, etc.
2) Added UefiPayloadEntry driver. this is the only driver before DXE core.
3) Added Pure X64 support, dropped Pure IA32 (Could add later if required)
   64bit payload with 32bit entry point is still supported.
4) Use one DSC file UefiPayloadPkg.dsc to support X64 and IA32X64 build.
   Removed UefiPayloadIa32.dsc and UefiPayloadIa32X64.dsc

Tested with SBL and coreboot on QEMU.

Signed-off-by: Guo Dong <guo.dong@intel.com>
Reviewed-by: Maurice Ma <maurice.ma@intel.com>
Reviewed-by: Benjamin You <benjamin.you@intel.com>
This commit is contained in:
Guo Dong
2020-09-12 16:31:14 -07:00
committed by mergify[bot]
parent 9fb629edd7
commit 7c4ab1c2ef
28 changed files with 3581 additions and 1916 deletions

View File

@@ -0,0 +1,365 @@
/** @file
Ia32-specific functionality for DxeLoad.
Copyright (c) 2006 - 2020, Intel Corporation. All rights reserved.<BR>
Copyright (c) 2017, AMD Incorporated. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <PiPei.h>
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/PcdLib.h>
#include <Library/HobLib.h>
#include "VirtualMemory.h"
#include "UefiPayloadEntry.h"
#define STACK_SIZE 0x20000
#define IDT_ENTRY_COUNT 32
typedef struct _X64_IDT_TABLE {
//
// Reserved 4 bytes preceding PeiService and IdtTable,
// since IDT base address should be 8-byte alignment.
//
UINT32 Reserved;
CONST EFI_PEI_SERVICES **PeiService;
X64_IDT_GATE_DESCRIPTOR IdtTable[IDT_ENTRY_COUNT];
} X64_IDT_TABLE;
//
// Global Descriptor Table (GDT)
//
GLOBAL_REMOVE_IF_UNREFERENCED IA32_GDT gGdtEntries[] = {
/* selector { Global Segment Descriptor } */
/* 0x00 */ {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, //null descriptor
/* 0x08 */ {{0xffff, 0, 0, 0x2, 1, 0, 1, 0xf, 0, 0, 1, 1, 0}}, //linear data segment descriptor
/* 0x10 */ {{0xffff, 0, 0, 0xf, 1, 0, 1, 0xf, 0, 0, 1, 1, 0}}, //linear code segment descriptor
/* 0x18 */ {{0xffff, 0, 0, 0x3, 1, 0, 1, 0xf, 0, 0, 1, 1, 0}}, //system data segment descriptor
/* 0x20 */ {{0xffff, 0, 0, 0xa, 1, 0, 1, 0xf, 0, 0, 1, 1, 0}}, //system code segment descriptor
/* 0x28 */ {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, //spare segment descriptor
/* 0x30 */ {{0xffff, 0, 0, 0x2, 1, 0, 1, 0xf, 0, 0, 1, 1, 0}}, //system data segment descriptor
/* 0x38 */ {{0xffff, 0, 0, 0xa, 1, 0, 1, 0xf, 0, 1, 0, 1, 0}}, //system code segment descriptor
/* 0x40 */ {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, //spare segment descriptor
};
//
// IA32 Gdt register
//
GLOBAL_REMOVE_IF_UNREFERENCED CONST IA32_DESCRIPTOR gGdt = {
sizeof (gGdtEntries) - 1,
(UINTN) gGdtEntries
};
GLOBAL_REMOVE_IF_UNREFERENCED IA32_DESCRIPTOR gLidtDescriptor = {
sizeof (X64_IDT_GATE_DESCRIPTOR) * IDT_ENTRY_COUNT - 1,
0
};
/**
Allocates and fills in the Page Directory and Page Table Entries to
establish a 4G page table.
@param[in] StackBase Stack base address.
@param[in] StackSize Stack size.
@return The address of page table.
**/
UINTN
Create4GPageTablesIa32Pae (
IN EFI_PHYSICAL_ADDRESS StackBase,
IN UINTN StackSize
)
{
UINT8 PhysicalAddressBits;
EFI_PHYSICAL_ADDRESS PhysicalAddress;
UINTN IndexOfPdpEntries;
UINTN IndexOfPageDirectoryEntries;
UINT32 NumberOfPdpEntriesNeeded;
PAGE_MAP_AND_DIRECTORY_POINTER *PageMap;
PAGE_MAP_AND_DIRECTORY_POINTER *PageDirectoryPointerEntry;
PAGE_TABLE_ENTRY *PageDirectoryEntry;
UINTN TotalPagesNum;
UINTN PageAddress;
UINT64 AddressEncMask;
//
// Make sure AddressEncMask is contained to smallest supported address field
//
AddressEncMask = PcdGet64 (PcdPteMemoryEncryptionAddressOrMask) & PAGING_1G_ADDRESS_MASK_64;
PhysicalAddressBits = 32;
//
// Calculate the table entries needed.
//
NumberOfPdpEntriesNeeded = (UINT32) LShiftU64 (1, (PhysicalAddressBits - 30));
TotalPagesNum = NumberOfPdpEntriesNeeded + 1;
PageAddress = (UINTN) AllocatePageTableMemory (TotalPagesNum);
ASSERT (PageAddress != 0);
PageMap = (VOID *) PageAddress;
PageAddress += SIZE_4KB;
PageDirectoryPointerEntry = PageMap;
PhysicalAddress = 0;
for (IndexOfPdpEntries = 0; IndexOfPdpEntries < NumberOfPdpEntriesNeeded; IndexOfPdpEntries++, PageDirectoryPointerEntry++) {
//
// Each Directory Pointer entries points to a page of Page Directory entires.
// So allocate space for them and fill them in in the IndexOfPageDirectoryEntries loop.
//
PageDirectoryEntry = (VOID *) PageAddress;
PageAddress += SIZE_4KB;
//
// Fill in a Page Directory Pointer Entries
//
PageDirectoryPointerEntry->Uint64 = (UINT64) (UINTN) PageDirectoryEntry | AddressEncMask;
PageDirectoryPointerEntry->Bits.Present = 1;
for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectoryEntry++, PhysicalAddress += SIZE_2MB) {
if ((IsNullDetectionEnabled () && PhysicalAddress == 0)
|| ((PhysicalAddress < StackBase + StackSize)
&& ((PhysicalAddress + SIZE_2MB) > StackBase))) {
//
// Need to split this 2M page that covers stack range.
//
Split2MPageTo4K (PhysicalAddress, (UINT64 *) PageDirectoryEntry, StackBase, StackSize, 0, 0);
} else {
//
// Fill in the Page Directory entries
//
PageDirectoryEntry->Uint64 = (UINT64) PhysicalAddress | AddressEncMask;
PageDirectoryEntry->Bits.ReadWrite = 1;
PageDirectoryEntry->Bits.Present = 1;
PageDirectoryEntry->Bits.MustBe1 = 1;
}
}
}
for (; IndexOfPdpEntries < 512; IndexOfPdpEntries++, PageDirectoryPointerEntry++) {
ZeroMem (
PageDirectoryPointerEntry,
sizeof (PAGE_MAP_AND_DIRECTORY_POINTER)
);
}
//
// Protect the page table by marking the memory used for page table to be
// read-only.
//
EnablePageTableProtection ((UINTN)PageMap, FALSE);
return (UINTN) PageMap;
}
/**
The function will check if IA32 PAE is supported.
@retval TRUE IA32 PAE is supported.
@retval FALSE IA32 PAE is not supported.
**/
BOOLEAN
IsIa32PaeSupport (
VOID
)
{
UINT32 RegEax;
UINT32 RegEdx;
BOOLEAN Ia32PaeSupport;
Ia32PaeSupport = FALSE;
AsmCpuid (0x0, &RegEax, NULL, NULL, NULL);
if (RegEax >= 0x1) {
AsmCpuid (0x1, NULL, NULL, NULL, &RegEdx);
if ((RegEdx & BIT6) != 0) {
Ia32PaeSupport = TRUE;
}
}
return Ia32PaeSupport;
}
/**
The function will check if page table should be setup or not.
@retval TRUE Page table should be created.
@retval FALSE Page table should not be created.
**/
BOOLEAN
ToBuildPageTable (
VOID
)
{
if (!IsIa32PaeSupport ()) {
return FALSE;
}
if (IsNullDetectionEnabled ()) {
return TRUE;
}
if (PcdGet8 (PcdHeapGuardPropertyMask) != 0) {
return TRUE;
}
if (PcdGetBool (PcdCpuStackGuard)) {
return TRUE;
}
if (IsEnableNonExecNeeded ()) {
return TRUE;
}
return FALSE;
}
/**
Transfers control to DxeCore.
This function performs a CPU architecture specific operations to execute
the entry point of DxeCore with the parameters of HobList.
@param DxeCoreEntryPoint The entry point of DxeCore.
@param HobList The start of HobList passed to DxeCore.
**/
VOID
HandOffToDxeCore (
IN EFI_PHYSICAL_ADDRESS DxeCoreEntryPoint,
IN EFI_PEI_HOB_POINTERS HobList
)
{
EFI_PHYSICAL_ADDRESS BaseOfStack;
EFI_PHYSICAL_ADDRESS TopOfStack;
UINTN PageTables;
X64_IDT_GATE_DESCRIPTOR *IdtTable;
UINTN SizeOfTemplate;
VOID *TemplateBase;
EFI_PHYSICAL_ADDRESS VectorAddress;
UINT32 Index;
X64_IDT_TABLE *IdtTableForX64;
//
// Clear page 0 and mark it as allocated if NULL pointer detection is enabled.
//
if (IsNullDetectionEnabled ()) {
ClearFirst4KPage (HobList.Raw);
BuildMemoryAllocationHob (0, EFI_PAGES_TO_SIZE (1), EfiBootServicesData);
}
BaseOfStack = (EFI_PHYSICAL_ADDRESS) (UINTN) AllocatePages (EFI_SIZE_TO_PAGES (STACK_SIZE));
ASSERT (BaseOfStack != 0);
if (FeaturePcdGet(PcdDxeIplSwitchToLongMode)) {
//
// Compute the top of the stack we were allocated, which is used to load X64 dxe core.
// Pre-allocate a 32 bytes which confroms to x64 calling convention.
//
// The first four parameters to a function are passed in rcx, rdx, r8 and r9.
// Any further parameters are pushed on the stack. Furthermore, space (4 * 8bytes) for the
// register parameters is reserved on the stack, in case the called function
// wants to spill them; this is important if the function is variadic.
//
TopOfStack = BaseOfStack + EFI_SIZE_TO_PAGES (STACK_SIZE) * EFI_PAGE_SIZE - 32;
//
// x64 Calling Conventions requires that the stack must be aligned to 16 bytes
//
TopOfStack = (EFI_PHYSICAL_ADDRESS) (UINTN) ALIGN_POINTER (TopOfStack, 16);
//
// Load the GDT of Go64. Since the GDT of 32-bit Tiano locates in the BS_DATA
// memory, it may be corrupted when copying FV to high-end memory
//
AsmWriteGdtr (&gGdt);
//
// Create page table and save PageMapLevel4 to CR3
//
PageTables = CreateIdentityMappingPageTables (BaseOfStack, STACK_SIZE, 0, 0);
//
// Paging might be already enabled. To avoid conflict configuration,
// disable paging first anyway.
//
AsmWriteCr0 (AsmReadCr0 () & (~BIT31));
AsmWriteCr3 (PageTables);
//
// Update the contents of BSP stack HOB to reflect the real stack info passed to DxeCore.
//
UpdateStackHob (BaseOfStack, STACK_SIZE);
SizeOfTemplate = AsmGetVectorTemplatInfo (&TemplateBase);
VectorAddress = (EFI_PHYSICAL_ADDRESS) (UINTN) AllocatePages (EFI_SIZE_TO_PAGES(sizeof (X64_IDT_TABLE) + SizeOfTemplate * IDT_ENTRY_COUNT));
ASSERT (VectorAddress != 0);
//
// Store EFI_PEI_SERVICES** in the 4 bytes immediately preceding IDT to avoid that
// it may not be gotten correctly after IDT register is re-written.
//
IdtTableForX64 = (X64_IDT_TABLE *) (UINTN) VectorAddress;
IdtTableForX64->PeiService = NULL;
VectorAddress = (EFI_PHYSICAL_ADDRESS) (UINTN) (IdtTableForX64 + 1);
IdtTable = IdtTableForX64->IdtTable;
for (Index = 0; Index < IDT_ENTRY_COUNT; Index++) {
IdtTable[Index].Ia32IdtEntry.Bits.GateType = 0x8e;
IdtTable[Index].Ia32IdtEntry.Bits.Reserved_0 = 0;
IdtTable[Index].Ia32IdtEntry.Bits.Selector = SYS_CODE64_SEL;
IdtTable[Index].Ia32IdtEntry.Bits.OffsetLow = (UINT16) VectorAddress;
IdtTable[Index].Ia32IdtEntry.Bits.OffsetHigh = (UINT16) (RShiftU64 (VectorAddress, 16));
IdtTable[Index].Offset32To63 = (UINT32) (RShiftU64 (VectorAddress, 32));
IdtTable[Index].Reserved = 0;
CopyMem ((VOID *) (UINTN) VectorAddress, TemplateBase, SizeOfTemplate);
AsmVectorFixup ((VOID *) (UINTN) VectorAddress, (UINT8) Index);
VectorAddress += SizeOfTemplate;
}
gLidtDescriptor.Base = (UINTN) IdtTable;
AsmWriteIdtr (&gLidtDescriptor);
DEBUG ((
DEBUG_INFO,
"%a() Stack Base: 0x%lx, Stack Size: 0x%x\n",
__FUNCTION__,
BaseOfStack,
STACK_SIZE
));
//
// Go to Long Mode and transfer control to DxeCore.
// Interrupts will not get turned on until the CPU AP is loaded.
// Call x64 drivers passing in single argument, a pointer to the HOBs.
//
AsmEnablePaging64 (
SYS_CODE64_SEL,
DxeCoreEntryPoint,
(EFI_PHYSICAL_ADDRESS)(UINTN)(HobList.Raw),
0,
TopOfStack
);
} else {
// 32bit UEFI payload could be supported if required later.
DEBUG ((DEBUG_ERROR, "NOT support 32bit UEFI payload\n"));
ASSERT (FALSE);
CpuDeadLoop();
}
}

View File

@@ -0,0 +1,71 @@
;/** @file
;
; IDT vector entry.
;
; Copyright (c) 2007 - 2016, Intel Corporation. All rights reserved.<BR>
; SPDX-License-Identifier: BSD-2-Clause-Patent
;
;**/
SECTION .text
;
;------------------------------------------------------------------------------
; Generic IDT Vector Handlers for the Host.
;
;------------------------------------------------------------------------------
ALIGN 8
global ASM_PFX(AsmGetVectorTemplatInfo)
global ASM_PFX(AsmVectorFixup)
@VectorTemplateBase:
push eax
db 0x6a ; push #VectorNumber
@VectorNum:
db 0
mov eax, CommonInterruptEntry
jmp eax
@VectorTemplateEnd:
global ASM_PFX(AsmGetVectorTemplatInfo)
ASM_PFX(AsmGetVectorTemplatInfo):
mov ecx, [esp + 4]
mov dword [ecx], @VectorTemplateBase
mov eax, (@VectorTemplateEnd - @VectorTemplateBase)
ret
global ASM_PFX(AsmVectorFixup)
ASM_PFX(AsmVectorFixup):
mov eax, dword [esp + 8]
mov ecx, [esp + 4]
mov [ecx + (@VectorNum - @VectorTemplateBase)], al
ret
;---------------------------------------;
; CommonInterruptEntry ;
;---------------------------------------;
; The follow algorithm is used for the common interrupt routine.
;
; +---------------------+ <-- 16-byte aligned ensured by processor
; + Old SS +
; +---------------------+
; + Old RSP +
; +---------------------+
; + RFlags +
; +---------------------+
; + CS +
; +---------------------+
; + RIP +
; +---------------------+
; + Error Code +
; +---------------------+
; + Vector Number +
; +---------------------+
CommonInterruptEntry:
cli
jmp $

View File

@@ -0,0 +1,46 @@
;------------------------------------------------------------------------------
;*
;* Copyright (c) 2006 - 2020, Intel Corporation. All rights reserved.<BR>
;* SPDX-License-Identifier: BSD-2-Clause-Patent
;------------------------------------------------------------------------------
#include <Base.h>
SECTION .text
extern ASM_PFX(PayloadEntry)
extern ASM_PFX(PcdGet32 (PcdPayloadStackTop))
;
; SecCore Entry Point
;
; Processor is in flat protected mode
global ASM_PFX(_ModuleEntryPoint)
ASM_PFX(_ModuleEntryPoint):
;
; Disable all the interrupts
;
cli
;
; Save the bootloader parameter base address
;
mov eax, [esp + 4]
mov esp, FixedPcdGet32 (PcdPayloadStackTop)
;
; Push the bootloader parameter address onto new stack
;
push 0
push eax
;
; Call into C code
;
call ASM_PFX(PayloadEntry)
jmp $

View File

@@ -0,0 +1,307 @@
/** @file
Copyright (c) 2020, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "UefiPayloadEntry.h"
/**
Allocate pages for code.
@param[in] Pages Number of pages to be allocated.
@return Allocated memory.
**/
VOID*
AllocateCodePages (
IN UINTN Pages
)
{
VOID *Alloc;
EFI_PEI_HOB_POINTERS Hob;
Alloc = AllocatePages (Pages);
if (Alloc == NULL) {
return NULL;
}
// find the HOB we just created, and change the type to EfiBootServicesCode
Hob.Raw = GetFirstHob (EFI_HOB_TYPE_MEMORY_ALLOCATION);
while (Hob.Raw != NULL) {
if (Hob.MemoryAllocation->AllocDescriptor.MemoryBaseAddress == (UINTN)Alloc) {
Hob.MemoryAllocation->AllocDescriptor.MemoryType = EfiBootServicesCode;
return Alloc;
}
Hob.Raw = GetNextHob (EFI_HOB_TYPE_MEMORY_ALLOCATION, GET_NEXT_HOB (Hob));
}
ASSERT (FALSE);
FreePages (Alloc, Pages);
return NULL;
}
/**
Loads and relocates a PE/COFF image
@param[in] PeCoffImage Point to a Pe/Coff image.
@param[out] ImageAddress The image memory address after relocation.
@param[out] ImageSize The image size.
@param[out] EntryPoint The image entry point.
@return EFI_SUCCESS If the image is loaded and relocated successfully.
@return Others If the image failed to load or relocate.
**/
EFI_STATUS
LoadPeCoffImage (
IN VOID *PeCoffImage,
OUT EFI_PHYSICAL_ADDRESS *ImageAddress,
OUT UINT64 *ImageSize,
OUT EFI_PHYSICAL_ADDRESS *EntryPoint
)
{
RETURN_STATUS Status;
PE_COFF_LOADER_IMAGE_CONTEXT ImageContext;
VOID *Buffer;
ZeroMem (&ImageContext, sizeof (ImageContext));
ImageContext.Handle = PeCoffImage;
ImageContext.ImageRead = PeCoffLoaderImageReadFromMemory;
Status = PeCoffLoaderGetImageInfo (&ImageContext);
if (EFI_ERROR (Status)) {
ASSERT_EFI_ERROR (Status);
return Status;
}
//
// Allocate Memory for the image
//
Buffer = AllocateCodePages (EFI_SIZE_TO_PAGES((UINT32)ImageContext.ImageSize));
if (Buffer == NULL) {
return EFI_OUT_OF_RESOURCES;
}
ImageContext.ImageAddress = (EFI_PHYSICAL_ADDRESS)(UINTN)Buffer;
//
// Load the image to our new buffer
//
Status = PeCoffLoaderLoadImage (&ImageContext);
if (EFI_ERROR (Status)) {
ASSERT_EFI_ERROR (Status);
return Status;
}
//
// Relocate the image in our new buffer
//
Status = PeCoffLoaderRelocateImage (&ImageContext);
if (EFI_ERROR (Status)) {
ASSERT_EFI_ERROR (Status);
return Status;
}
*ImageAddress = ImageContext.ImageAddress;
*ImageSize = ImageContext.ImageSize;
*EntryPoint = ImageContext.EntryPoint;
return EFI_SUCCESS;
}
/**
This function searchs a given file type within a valid FV.
@param FvHeader A pointer to firmware volume header that contains the set of files
to be searched.
@param FileType File type to be searched.
@param FileHeader A pointer to the discovered file, if successful.
@retval EFI_SUCCESS Successfully found FileType
@retval EFI_NOT_FOUND File type can't be found.
**/
EFI_STATUS
FvFindFile (
IN EFI_FIRMWARE_VOLUME_HEADER *FvHeader,
IN EFI_FV_FILETYPE FileType,
OUT EFI_FFS_FILE_HEADER **FileHeader
)
{
EFI_PHYSICAL_ADDRESS CurrentAddress;
EFI_PHYSICAL_ADDRESS EndOfFirmwareVolume;
EFI_FFS_FILE_HEADER *File;
UINT32 Size;
EFI_PHYSICAL_ADDRESS EndOfFile;
CurrentAddress = (EFI_PHYSICAL_ADDRESS)(UINTN) FvHeader;
EndOfFirmwareVolume = CurrentAddress + FvHeader->FvLength;
//
// Loop through the FFS files
//
for (EndOfFile = CurrentAddress + FvHeader->HeaderLength; ; ) {
CurrentAddress = (EndOfFile + 7) & 0xfffffffffffffff8ULL;
if (CurrentAddress > EndOfFirmwareVolume) {
break;
}
File = (EFI_FFS_FILE_HEADER*)(UINTN) CurrentAddress;
if (IS_FFS_FILE2 (File)) {
Size = FFS_FILE2_SIZE (File);
if (Size <= 0x00FFFFFF) {
break;
}
} else {
Size = FFS_FILE_SIZE (File);
if (Size < sizeof (EFI_FFS_FILE_HEADER)) {
break;
}
}
EndOfFile = CurrentAddress + Size;
if (EndOfFile > EndOfFirmwareVolume) {
break;
}
//
// Look for file type
//
if (File->Type == FileType) {
*FileHeader = File;
return EFI_SUCCESS;
}
}
return EFI_NOT_FOUND;
}
/**
This function searchs a given section type within a valid FFS file.
@param FileHeader A pointer to the file header that contains the set of sections to
be searched.
@param SearchType The value of the section type to search.
@param SectionData A pointer to the discovered section, if successful.
@retval EFI_SUCCESS The section was found.
@retval EFI_NOT_FOUND The section was not found.
**/
EFI_STATUS
FileFindSection (
IN EFI_FFS_FILE_HEADER *FileHeader,
IN EFI_SECTION_TYPE SectionType,
OUT VOID **SectionData
)
{
UINT32 FileSize;
EFI_COMMON_SECTION_HEADER *Section;
UINT32 SectionSize;
UINT32 Index;
if (IS_FFS_FILE2 (FileHeader)) {
FileSize = FFS_FILE2_SIZE (FileHeader);
} else {
FileSize = FFS_FILE_SIZE (FileHeader);
}
FileSize -= sizeof (EFI_FFS_FILE_HEADER);
Section = (EFI_COMMON_SECTION_HEADER *)(FileHeader + 1);
Index = 0;
while (Index < FileSize) {
if (Section->Type == SectionType) {
if (IS_SECTION2 (Section)) {
*SectionData = (VOID *)((UINT8 *) Section + sizeof (EFI_COMMON_SECTION_HEADER2));
} else {
*SectionData = (VOID *)((UINT8 *) Section + sizeof (EFI_COMMON_SECTION_HEADER));
}
return EFI_SUCCESS;
}
if (IS_SECTION2 (Section)) {
SectionSize = SECTION2_SIZE (Section);
} else {
SectionSize = SECTION_SIZE (Section);
}
SectionSize = GET_OCCUPIED_SIZE (SectionSize, 4);
ASSERT (SectionSize != 0);
Index += SectionSize;
Section = (EFI_COMMON_SECTION_HEADER *)((UINT8 *)Section + SectionSize);
}
return EFI_NOT_FOUND;
}
/**
Find DXE core from FV and build DXE core HOBs.
@param[out] DxeCoreEntryPoint DXE core entry point
@retval EFI_SUCCESS If it completed successfully.
@retval EFI_NOT_FOUND If it failed to load DXE FV.
**/
EFI_STATUS
LoadDxeCore (
OUT PHYSICAL_ADDRESS *DxeCoreEntryPoint
)
{
EFI_STATUS Status;
EFI_FIRMWARE_VOLUME_HEADER *PayloadFv;
EFI_FIRMWARE_VOLUME_HEADER *DxeCoreFv;
EFI_FFS_FILE_HEADER *FileHeader;
VOID *PeCoffImage;
EFI_PHYSICAL_ADDRESS ImageAddress;
UINT64 ImageSize;
PayloadFv = (EFI_FIRMWARE_VOLUME_HEADER *)(UINTN)PcdGet32 (PcdPayloadFdMemBase);
//
// DXE FV is inside Payload FV. Here find DXE FV from Payload FV
//
Status = FvFindFile (PayloadFv, EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE, &FileHeader);
if (EFI_ERROR (Status)) {
return Status;
}
Status = FileFindSection (FileHeader, EFI_SECTION_FIRMWARE_VOLUME_IMAGE, (VOID **)&DxeCoreFv);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Report DXE FV to DXE core
//
BuildFvHob ((EFI_PHYSICAL_ADDRESS) (UINTN) DxeCoreFv, DxeCoreFv->FvLength);
//
// Find DXE core file from DXE FV
//
Status = FvFindFile (DxeCoreFv, EFI_FV_FILETYPE_DXE_CORE, &FileHeader);
if (EFI_ERROR (Status)) {
return Status;
}
Status = FileFindSection (FileHeader, EFI_SECTION_PE32, (VOID **)&PeCoffImage);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Get DXE core info
//
Status = LoadPeCoffImage (PeCoffImage, &ImageAddress, &ImageSize, DxeCoreEntryPoint);
if (EFI_ERROR (Status)) {
return Status;
}
BuildModuleHob (&FileHeader->Name, ImageAddress, EFI_SIZE_TO_PAGES ((UINT32) ImageSize) * EFI_PAGE_SIZE, *DxeCoreEntryPoint);
return EFI_SUCCESS;
}

View File

@@ -0,0 +1,201 @@
/** @file
Copyright (c) 2008 - 2009, Apple Inc. All rights reserved.<BR>
Copyright (c) 2020, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "UefiPayloadEntry.h"
/**
Allocates one or more pages of type EfiBootServicesData.
Allocates the number of pages of MemoryType and returns a pointer to the
allocated buffer. The buffer returned is aligned on a 4KB boundary.
If Pages is 0, then NULL is returned.
If there is not enough memory availble to satisfy the request, then NULL
is returned.
@param Pages The number of 4 KB pages to allocate.
@return A pointer to the allocated buffer or NULL if allocation fails.
**/
VOID *
EFIAPI
AllocatePages (
IN UINTN Pages
)
{
EFI_PEI_HOB_POINTERS Hob;
EFI_PHYSICAL_ADDRESS Offset;
EFI_HOB_HANDOFF_INFO_TABLE *HobTable;
Hob.Raw = GetHobList ();
HobTable = Hob.HandoffInformationTable;
if (Pages == 0) {
return NULL;
}
// Make sure allocation address is page alligned.
Offset = HobTable->EfiFreeMemoryTop & EFI_PAGE_MASK;
if (Offset != 0) {
HobTable->EfiFreeMemoryTop -= Offset;
}
//
// Check available memory for the allocation
//
if (HobTable->EfiFreeMemoryTop - ((Pages * EFI_PAGE_SIZE) + sizeof (EFI_HOB_MEMORY_ALLOCATION)) < HobTable->EfiFreeMemoryBottom) {
return NULL;
}
HobTable->EfiFreeMemoryTop -= Pages * EFI_PAGE_SIZE;
BuildMemoryAllocationHob (HobTable->EfiFreeMemoryTop, Pages * EFI_PAGE_SIZE, EfiBootServicesData);
return (VOID *)(UINTN)HobTable->EfiFreeMemoryTop;
}
/**
Frees one or more 4KB pages that were previously allocated with one of the page allocation
functions in the Memory Allocation Library.
Frees the number of 4KB pages specified by Pages from the buffer specified by Buffer. Buffer
must have been allocated on a previous call to the page allocation services of the Memory
Allocation Library. If it is not possible to free allocated pages, then this function will
perform no actions.
If Buffer was not allocated with a page allocation function in the Memory Allocation Library,
then ASSERT().
If Pages is zero, then ASSERT().
@param Buffer Pointer to the buffer of pages to free.
@param Pages The number of 4 KB pages to free.
**/
VOID
EFIAPI
FreePages (
IN VOID *Buffer,
IN UINTN Pages
)
{
}
/**
Allocates one or more pages of type EfiBootServicesData at a specified alignment.
Allocates the number of pages specified by Pages of type EfiBootServicesData with an
alignment specified by Alignment.
If Pages is 0, then NULL is returned.
If Alignment is not a power of two and Alignment is not zero, then ASSERT().
If there is no enough memory at the specified alignment available to satisfy the
request, then NULL is returned.
@param Pages The number of 4 KB pages to allocate.
@param Alignment The requested alignment of the allocation.
@return A pointer to the allocated buffer or NULL if allocation fails.
**/
VOID *
EFIAPI
AllocateAlignedPages (
IN UINTN Pages,
IN UINTN Alignment
)
{
VOID *Memory;
UINTN AlignmentMask;
//
// Alignment must be a power of two or zero.
//
ASSERT ((Alignment & (Alignment - 1)) == 0);
if (Pages == 0) {
return NULL;
}
//
// Check overflow.
//
ASSERT (Pages <= (MAX_ADDRESS - EFI_SIZE_TO_PAGES (Alignment)));
Memory = (VOID *)(UINTN)AllocatePages (Pages + EFI_SIZE_TO_PAGES (Alignment));
if (Memory == NULL) {
return NULL;
}
if (Alignment == 0) {
AlignmentMask = Alignment;
} else {
AlignmentMask = Alignment - 1;
}
return (VOID *) (UINTN) (((UINTN) Memory + AlignmentMask) & ~AlignmentMask);
}
/**
Allocates a buffer of type EfiBootServicesData.
Allocates the number bytes specified by AllocationSize of type EfiBootServicesData and returns a
pointer to the allocated buffer. If AllocationSize is 0, then a valid buffer of 0 size is
returned. If there is not enough memory remaining to satisfy the request, then NULL is returned.
@param AllocationSize The number of bytes to allocate.
@return A pointer to the allocated buffer or NULL if allocation fails.
**/
VOID *
EFIAPI
AllocatePool (
IN UINTN AllocationSize
)
{
EFI_HOB_MEMORY_POOL *Hob;
if (AllocationSize > 0x4000) {
// Please use AllocatePages for big allocations
return NULL;
}
Hob = (EFI_HOB_MEMORY_POOL *)CreateHob (EFI_HOB_TYPE_MEMORY_POOL, (UINT16)(sizeof (EFI_HOB_TYPE_MEMORY_POOL) + AllocationSize));
return (VOID *)(Hob + 1);
}
/**
Allocates and zeros a buffer of type EfiBootServicesData.
Allocates the number bytes specified by AllocationSize of type EfiBootServicesData, clears the
buffer with zeros, and returns a pointer to the allocated buffer. If AllocationSize is 0, then a
valid buffer of 0 size is returned. If there is not enough memory remaining to satisfy the
request, then NULL is returned.
@param AllocationSize The number of bytes to allocate and zero.
@return A pointer to the allocated buffer or NULL if allocation fails.
**/
VOID *
EFIAPI
AllocateZeroPool (
IN UINTN AllocationSize
)
{
VOID *Buffer;
Buffer = AllocatePool (AllocationSize);
if (Buffer == NULL) {
return NULL;
}
ZeroMem (Buffer, AllocationSize);
return Buffer;
}

View File

@@ -0,0 +1,415 @@
/** @file
Copyright (c) 2014 - 2020, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "UefiPayloadEntry.h"
/**
Callback function to build resource descriptor HOB
This function build a HOB based on the memory map entry info.
@param MemoryMapEntry Memory map entry info got from bootloader.
@param Params Not used for now.
@retval RETURN_SUCCESS Successfully build a HOB.
**/
EFI_STATUS
MemInfoCallback (
IN MEMROY_MAP_ENTRY *MemoryMapEntry,
IN VOID *Params
)
{
EFI_PHYSICAL_ADDRESS Base;
EFI_RESOURCE_TYPE Type;
UINT64 Size;
EFI_RESOURCE_ATTRIBUTE_TYPE Attribue;
Type = (MemoryMapEntry->Type == 1) ? EFI_RESOURCE_SYSTEM_MEMORY : EFI_RESOURCE_MEMORY_RESERVED;
Base = MemoryMapEntry->Base;
Size = MemoryMapEntry->Size;
Attribue = EFI_RESOURCE_ATTRIBUTE_PRESENT |
EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
EFI_RESOURCE_ATTRIBUTE_TESTED |
EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE |
EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE;
if (Base >= BASE_4GB ) {
// Remove tested attribute to avoid DXE core to dispatch driver to memory above 4GB
Attribue &= ~EFI_RESOURCE_ATTRIBUTE_TESTED;
}
BuildResourceDescriptorHob (Type, Attribue, (EFI_PHYSICAL_ADDRESS)Base, Size);
DEBUG ((DEBUG_INFO , "buildhob: base = 0x%lx, size = 0x%lx, type = 0x%x\n", Base, Size, Type));
return RETURN_SUCCESS;
}
/**
Find the board related info from ACPI table
@param AcpiTableBase ACPI table start address in memory
@param AcpiBoardInfo Pointer to the acpi board info strucutre
@retval RETURN_SUCCESS Successfully find out all the required information.
@retval RETURN_NOT_FOUND Failed to find the required info.
**/
RETURN_STATUS
ParseAcpiInfo (
IN UINT64 AcpiTableBase,
OUT ACPI_BOARD_INFO *AcpiBoardInfo
)
{
EFI_ACPI_3_0_ROOT_SYSTEM_DESCRIPTION_POINTER *Rsdp;
EFI_ACPI_DESCRIPTION_HEADER *Rsdt;
UINT32 *Entry32;
UINTN Entry32Num;
EFI_ACPI_3_0_FIXED_ACPI_DESCRIPTION_TABLE *Fadt;
EFI_ACPI_DESCRIPTION_HEADER *Xsdt;
UINT64 *Entry64;
UINTN Entry64Num;
UINTN Idx;
UINT32 *Signature;
EFI_ACPI_MEMORY_MAPPED_CONFIGURATION_BASE_ADDRESS_TABLE_HEADER *MmCfgHdr;
EFI_ACPI_MEMORY_MAPPED_ENHANCED_CONFIGURATION_SPACE_BASE_ADDRESS_ALLOCATION_STRUCTURE *MmCfgBase;
Rsdp = (EFI_ACPI_3_0_ROOT_SYSTEM_DESCRIPTION_POINTER *)(UINTN)AcpiTableBase;
DEBUG ((DEBUG_INFO, "Rsdp at 0x%p\n", Rsdp));
DEBUG ((DEBUG_INFO, "Rsdt at 0x%x, Xsdt at 0x%lx\n", Rsdp->RsdtAddress, Rsdp->XsdtAddress));
//
// Search Rsdt First
//
Fadt = NULL;
MmCfgHdr = NULL;
Rsdt = (EFI_ACPI_DESCRIPTION_HEADER *)(UINTN)(Rsdp->RsdtAddress);
if (Rsdt != NULL) {
Entry32 = (UINT32 *)(Rsdt + 1);
Entry32Num = (Rsdt->Length - sizeof(EFI_ACPI_DESCRIPTION_HEADER)) >> 2;
for (Idx = 0; Idx < Entry32Num; Idx++) {
Signature = (UINT32 *)(UINTN)Entry32[Idx];
if (*Signature == EFI_ACPI_3_0_FIXED_ACPI_DESCRIPTION_TABLE_SIGNATURE) {
Fadt = (EFI_ACPI_3_0_FIXED_ACPI_DESCRIPTION_TABLE *)Signature;
DEBUG ((DEBUG_INFO, "Found Fadt in Rsdt\n"));
}
if (*Signature == EFI_ACPI_5_0_PCI_EXPRESS_MEMORY_MAPPED_CONFIGURATION_SPACE_BASE_ADDRESS_DESCRIPTION_TABLE_SIGNATURE) {
MmCfgHdr = (EFI_ACPI_MEMORY_MAPPED_CONFIGURATION_BASE_ADDRESS_TABLE_HEADER *)Signature;
DEBUG ((DEBUG_INFO, "Found MM config address in Rsdt\n"));
}
if ((Fadt != NULL) && (MmCfgHdr != NULL)) {
goto Done;
}
}
}
//
// Search Xsdt Second
//
Xsdt = (EFI_ACPI_DESCRIPTION_HEADER *)(UINTN)(Rsdp->XsdtAddress);
if (Xsdt != NULL) {
Entry64 = (UINT64 *)(Xsdt + 1);
Entry64Num = (Xsdt->Length - sizeof(EFI_ACPI_DESCRIPTION_HEADER)) >> 3;
for (Idx = 0; Idx < Entry64Num; Idx++) {
Signature = (UINT32 *)(UINTN)Entry64[Idx];
if (*Signature == EFI_ACPI_3_0_FIXED_ACPI_DESCRIPTION_TABLE_SIGNATURE) {
Fadt = (EFI_ACPI_3_0_FIXED_ACPI_DESCRIPTION_TABLE *)Signature;
DEBUG ((DEBUG_INFO, "Found Fadt in Xsdt\n"));
}
if (*Signature == EFI_ACPI_5_0_PCI_EXPRESS_MEMORY_MAPPED_CONFIGURATION_SPACE_BASE_ADDRESS_DESCRIPTION_TABLE_SIGNATURE) {
MmCfgHdr = (EFI_ACPI_MEMORY_MAPPED_CONFIGURATION_BASE_ADDRESS_TABLE_HEADER *)Signature;
DEBUG ((DEBUG_INFO, "Found MM config address in Xsdt\n"));
}
if ((Fadt != NULL) && (MmCfgHdr != NULL)) {
goto Done;
}
}
}
if (Fadt == NULL) {
return RETURN_NOT_FOUND;
}
Done:
AcpiBoardInfo->PmCtrlRegBase = Fadt->Pm1aCntBlk;
AcpiBoardInfo->PmTimerRegBase = Fadt->PmTmrBlk;
AcpiBoardInfo->ResetRegAddress = Fadt->ResetReg.Address;
AcpiBoardInfo->ResetValue = Fadt->ResetValue;
AcpiBoardInfo->PmEvtBase = Fadt->Pm1aEvtBlk;
AcpiBoardInfo->PmGpeEnBase = Fadt->Gpe0Blk + Fadt->Gpe0BlkLen / 2;
if (MmCfgHdr != NULL) {
MmCfgBase = (EFI_ACPI_MEMORY_MAPPED_ENHANCED_CONFIGURATION_SPACE_BASE_ADDRESS_ALLOCATION_STRUCTURE *)((UINT8*) MmCfgHdr + sizeof (*MmCfgHdr));
AcpiBoardInfo->PcieBaseAddress = MmCfgBase->BaseAddress;
AcpiBoardInfo->PcieBaseSize = (MmCfgBase->EndBusNumber + 1 - MmCfgBase->StartBusNumber) * 4096 * 32 * 8;
} else {
AcpiBoardInfo->PcieBaseAddress = 0;
AcpiBoardInfo->PcieBaseSize = 0;
}
DEBUG ((DEBUG_INFO, "PmCtrl Reg 0x%lx\n", AcpiBoardInfo->PmCtrlRegBase));
DEBUG ((DEBUG_INFO, "PmTimer Reg 0x%lx\n", AcpiBoardInfo->PmTimerRegBase));
DEBUG ((DEBUG_INFO, "Reset Reg 0x%lx\n", AcpiBoardInfo->ResetRegAddress));
DEBUG ((DEBUG_INFO, "Reset Value 0x%x\n", AcpiBoardInfo->ResetValue));
DEBUG ((DEBUG_INFO, "PmEvt Reg 0x%lx\n", AcpiBoardInfo->PmEvtBase));
DEBUG ((DEBUG_INFO, "PmGpeEn Reg 0x%lx\n", AcpiBoardInfo->PmGpeEnBase));
DEBUG ((DEBUG_INFO, "PcieBaseAddr 0x%lx\n", AcpiBoardInfo->PcieBaseAddress));
DEBUG ((DEBUG_INFO, "PcieBaseSize 0x%lx\n", AcpiBoardInfo->PcieBaseSize));
//
// Verify values for proper operation
//
ASSERT(Fadt->Pm1aCntBlk != 0);
ASSERT(Fadt->PmTmrBlk != 0);
ASSERT(Fadt->ResetReg.Address != 0);
ASSERT(Fadt->Pm1aEvtBlk != 0);
ASSERT(Fadt->Gpe0Blk != 0);
DEBUG_CODE_BEGIN ();
BOOLEAN SciEnabled;
//
// Check the consistency of SCI enabling
//
//
// Get SCI_EN value
//
if (Fadt->Pm1CntLen == 4) {
SciEnabled = (IoRead32 (Fadt->Pm1aCntBlk) & BIT0)? TRUE : FALSE;
} else {
//
// if (Pm1CntLen == 2), use 16 bit IO read;
// if (Pm1CntLen != 2 && Pm1CntLen != 4), use 16 bit IO read as a fallback
//
SciEnabled = (IoRead16 (Fadt->Pm1aCntBlk) & BIT0)? TRUE : FALSE;
}
if (!(Fadt->Flags & EFI_ACPI_5_0_HW_REDUCED_ACPI) &&
(Fadt->SmiCmd == 0) &&
!SciEnabled) {
//
// The ACPI enabling status is inconsistent: SCI is not enabled but ACPI
// table does not provide a means to enable it through FADT->SmiCmd
//
DEBUG ((DEBUG_ERROR, "ERROR: The ACPI enabling status is inconsistent: SCI is not"
" enabled but the ACPI table does not provide a means to enable it through FADT->SmiCmd."
" This may cause issues in OS.\n"));
}
DEBUG_CODE_END ();
return RETURN_SUCCESS;
}
/**
It will build HOBs based on information from bootloaders.
@retval EFI_SUCCESS If it completed successfully.
@retval Others If it failed to build required HOBs.
**/
EFI_STATUS
BuildHobFromBl (
VOID
)
{
EFI_STATUS Status;
SYSTEM_TABLE_INFO SysTableInfo;
SYSTEM_TABLE_INFO *NewSysTableInfo;
ACPI_BOARD_INFO AcpiBoardInfo;
ACPI_BOARD_INFO *NewAcpiBoardInfo;
EFI_PEI_GRAPHICS_INFO_HOB GfxInfo;
EFI_PEI_GRAPHICS_INFO_HOB *NewGfxInfo;
EFI_PEI_GRAPHICS_DEVICE_INFO_HOB GfxDeviceInfo;
EFI_PEI_GRAPHICS_DEVICE_INFO_HOB *NewGfxDeviceInfo;
//
// Parse memory info and build memory HOBs
//
Status = ParseMemoryInfo (MemInfoCallback, NULL);
if (EFI_ERROR(Status)) {
return Status;
}
//
// Create guid hob for frame buffer information
//
Status = ParseGfxInfo (&GfxInfo);
if (!EFI_ERROR (Status)) {
NewGfxInfo = BuildGuidHob (&gEfiGraphicsInfoHobGuid, sizeof (GfxInfo));
ASSERT (NewGfxInfo != NULL);
CopyMem (NewGfxInfo, &GfxInfo, sizeof (GfxInfo));
DEBUG ((DEBUG_INFO, "Created graphics info hob\n"));
}
Status = ParseGfxDeviceInfo (&GfxDeviceInfo);
if (!EFI_ERROR (Status)) {
NewGfxDeviceInfo = BuildGuidHob (&gEfiGraphicsDeviceInfoHobGuid, sizeof (GfxDeviceInfo));
ASSERT (NewGfxDeviceInfo != NULL);
CopyMem (NewGfxDeviceInfo, &GfxDeviceInfo, sizeof (GfxDeviceInfo));
DEBUG ((DEBUG_INFO, "Created graphics device info hob\n"));
}
//
// Create guid hob for system tables like acpi table and smbios table
//
Status = ParseSystemTable(&SysTableInfo);
ASSERT_EFI_ERROR (Status);
if (!EFI_ERROR (Status)) {
NewSysTableInfo = BuildGuidHob (&gUefiSystemTableInfoGuid, sizeof (SYSTEM_TABLE_INFO));
ASSERT (NewSysTableInfo != NULL);
CopyMem (NewSysTableInfo, &SysTableInfo, sizeof (SYSTEM_TABLE_INFO));
DEBUG ((DEBUG_INFO, "Detected Acpi Table at 0x%lx, length 0x%x\n", SysTableInfo.AcpiTableBase, SysTableInfo.AcpiTableSize));
DEBUG ((DEBUG_INFO, "Detected Smbios Table at 0x%lx, length 0x%x\n", SysTableInfo.SmbiosTableBase, SysTableInfo.SmbiosTableSize));
}
//
// Create guid hob for acpi board information
//
Status = ParseAcpiInfo (SysTableInfo.AcpiTableBase, &AcpiBoardInfo);
ASSERT_EFI_ERROR (Status);
if (!EFI_ERROR (Status)) {
NewAcpiBoardInfo = BuildGuidHob (&gUefiAcpiBoardInfoGuid, sizeof (ACPI_BOARD_INFO));
ASSERT (NewAcpiBoardInfo != NULL);
CopyMem (NewAcpiBoardInfo, &AcpiBoardInfo, sizeof (ACPI_BOARD_INFO));
DEBUG ((DEBUG_INFO, "Create acpi board info guid hob\n"));
}
//
// Parse platform specific information.
//
Status = ParsePlatformInfo ();
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "Error when parsing platform info, Status = %r\n", Status));
return Status;
}
return EFI_SUCCESS;
}
/**
This function will build some generic HOBs that doesn't depend on information from bootloaders.
**/
VOID
BuildGenericHob (
VOID
)
{
UINT32 RegEax;
UINT8 PhysicalAddressBits;
EFI_RESOURCE_ATTRIBUTE_TYPE ResourceAttribute;
// The UEFI payload FV
BuildMemoryAllocationHob (PcdGet32 (PcdPayloadFdMemBase), PcdGet32 (PcdPayloadFdMemSize), EfiBootServicesData);
//
// Build CPU memory space and IO space hob
//
AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
if (RegEax >= 0x80000008) {
AsmCpuid (0x80000008, &RegEax, NULL, NULL, NULL);
PhysicalAddressBits = (UINT8) RegEax;
} else {
PhysicalAddressBits = 36;
}
BuildCpuHob (PhysicalAddressBits, 16);
//
// Report Local APIC range, cause sbl HOB to be NULL, comment now
//
ResourceAttribute = (
EFI_RESOURCE_ATTRIBUTE_PRESENT |
EFI_RESOURCE_ATTRIBUTE_INITIALIZED |
EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE |
EFI_RESOURCE_ATTRIBUTE_TESTED
);
BuildResourceDescriptorHob (EFI_RESOURCE_MEMORY_MAPPED_IO, ResourceAttribute, 0xFEC80000, SIZE_512KB);
BuildMemoryAllocationHob ( 0xFEC80000, SIZE_512KB, EfiMemoryMappedIO);
}
/**
Entry point to the C language phase of UEFI payload.
@retval It will not return if SUCCESS, and return error when passing bootloader parameter.
**/
EFI_STATUS
EFIAPI
PayloadEntry (
IN UINTN BootloaderParameter
)
{
EFI_STATUS Status;
PHYSICAL_ADDRESS DxeCoreEntryPoint;
EFI_HOB_HANDOFF_INFO_TABLE *HandoffHobTable;
UINTN MemBase;
UINTN MemSize;
UINTN HobMemBase;
UINTN HobMemTop;
EFI_PEI_HOB_POINTERS Hob;
// Call constructor for all libraries
ProcessLibraryConstructorList ();
DEBUG ((DEBUG_INFO, "GET_BOOTLOADER_PARAMETER() = 0x%lx\n", GET_BOOTLOADER_PARAMETER()));
DEBUG ((DEBUG_INFO, "sizeof(UINTN) = 0x%x\n", sizeof(UINTN)));
// Initialize floating point operating environment to be compliant with UEFI spec.
InitializeFloatingPointUnits ();
// HOB region is used for HOB and memory allocation for this module
MemBase = PcdGet32 (PcdPayloadFdMemBase);
HobMemBase = ALIGN_VALUE (MemBase + PcdGet32 (PcdPayloadFdMemSize), SIZE_1MB);
HobMemTop = HobMemBase + FixedPcdGet32 (PcdSystemMemoryUefiRegionSize);
// DXE core assumes the memory below HOB region could be used, so include the FV region memory into HOB range.
MemSize = HobMemTop - MemBase;
HandoffHobTable = HobConstructor ((VOID *)MemBase, MemSize, (VOID *)HobMemBase, (VOID *)HobMemTop);
// Build HOB based on information from Bootloader
Status = BuildHobFromBl ();
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "BuildHobFromBl Status = %r\n", Status));
return Status;
}
// Build other HOBs required by DXE
BuildGenericHob ();
// Load the DXE Core
Status = LoadDxeCore (&DxeCoreEntryPoint);
ASSERT_EFI_ERROR (Status);
DEBUG ((DEBUG_INFO, "DxeCoreEntryPoint = 0x%lx\n", DxeCoreEntryPoint));
//
// Mask off all legacy 8259 interrupt sources
//
IoWrite8 (LEGACY_8259_MASK_REGISTER_MASTER, 0xFF);
IoWrite8 (LEGACY_8259_MASK_REGISTER_SLAVE, 0xFF);
Hob.HandoffInformationTable = HandoffHobTable;
HandOffToDxeCore (DxeCoreEntryPoint, Hob);
// Should not get here
CpuDeadLoop ();
return EFI_SUCCESS;
}

View File

@@ -0,0 +1,134 @@
/** @file
*
* Copyright (c) 2020, Intel Corporation. All rights reserved.<BR>
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
#ifndef __UEFI_PAYLOAD_ENTRY_H__
#define __UEFI_PAYLOAD_ENTRY_H__
#include <PiPei.h>
#include <Library/BaseLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/DebugLib.h>
#include <Library/PeCoffLib.h>
#include <Library/HobLib.h>
#include <Library/PcdLib.h>
#include <Guid/MemoryAllocationHob.h>
#include <Library/IoLib.h>
#include <Library/PeCoffLib.h>
#include <Library/BlParseLib.h>
#include <Library/PlatformSupportLib.h>
#include <Library/UefiCpuLib.h>
#include <IndustryStandard/Acpi.h>
#include <IndustryStandard/MemoryMappedConfigurationSpaceAccessTable.h>
#include <Guid/SerialPortInfoGuid.h>
#include <Guid/SystemTableInfoGuid.h>
#include <Guid/MemoryMapInfoGuid.h>
#include <Guid/AcpiBoardInfoGuid.h>
#include <Guid/GraphicsInfoHob.h>
#define LEGACY_8259_MASK_REGISTER_MASTER 0x21
#define LEGACY_8259_MASK_REGISTER_SLAVE 0xA1
#define GET_OCCUPIED_SIZE(ActualSize, Alignment) \
((ActualSize) + (((Alignment) - ((ActualSize) & ((Alignment) - 1))) & ((Alignment) - 1)))
/**
Auto-generated function that calls the library constructors for all of the module's
dependent libraries.
**/
VOID
EFIAPI
ProcessLibraryConstructorList (
VOID
);
/**
Add a new HOB to the HOB List.
@param HobType Type of the new HOB.
@param HobLength Length of the new HOB to allocate.
@return NULL if there is no space to create a hob.
@return The address point to the new created hob.
**/
VOID *
EFIAPI
CreateHob (
IN UINT16 HobType,
IN UINT16 HobLength
);
/**
Update the Stack Hob if the stack has been moved
@param BaseAddress The 64 bit physical address of the Stack.
@param Length The length of the stack in bytes.
**/
VOID
EFIAPI
UpdateStackHob (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
);
/**
Build a Handoff Information Table HOB
This function initialize a HOB region from EfiMemoryBegin with length
EfiMemoryLength. And EfiFreeMemoryBottom and EfiFreeMemoryTop should
be inside the HOB region.
@param[in] EfiMemoryBegin Total memory start address
@param[in] EfiMemoryLength Total memory length reported in handoff HOB.
@param[in] EfiFreeMemoryBottom Free memory start address
@param[in] EfiFreeMemoryTop Free memory end address.
@return The pointer to the handoff HOB table.
**/
EFI_HOB_HANDOFF_INFO_TABLE*
EFIAPI
HobConstructor (
IN VOID *EfiMemoryBegin,
IN UINTN EfiMemoryLength,
IN VOID *EfiFreeMemoryBottom,
IN VOID *EfiFreeMemoryTop
);
/**
Find DXE core from FV and build DXE core HOBs.
@param[out] DxeCoreEntryPoint DXE core entry point
@retval EFI_SUCCESS If it completed successfully.
@retval EFI_NOT_FOUND If it failed to load DXE FV.
**/
EFI_STATUS
LoadDxeCore (
OUT PHYSICAL_ADDRESS *DxeCoreEntryPoint
);
/**
Transfers control to DxeCore.
This function performs a CPU architecture specific operations to execute
the entry point of DxeCore with the parameters of HobList.
@param DxeCoreEntryPoint The entry point of DxeCore.
@param HobList The start of HobList passed to DxeCore.
**/
VOID
HandOffToDxeCore (
IN EFI_PHYSICAL_ADDRESS DxeCoreEntryPoint,
IN EFI_PEI_HOB_POINTERS HobList
);
#endif

View File

@@ -0,0 +1,93 @@
## @file
# This is the first module for UEFI payload.
#
# Copyright (c) 2006 - 2020, Intel Corporation. All rights reserved.<BR>
# Copyright (c) 2017, AMD Incorporated. All rights reserved.<BR>
#
# SPDX-License-Identifier: BSD-2-Clause-Patent
#
##
[Defines]
INF_VERSION = 0x00010005
BASE_NAME = PayloadEntry
FILE_GUID = 2119BBD7-9432-4f47-B5E2-5C4EA31B6BDC
MODULE_TYPE = SEC
VERSION_STRING = 1.0
#
# The following information is for reference only and not required by the build tools.
#
# VALID_ARCHITECTURES = IA32 X64
#
[Sources]
UefiPayloadEntry.c
LoadDxeCore.c
MemoryAllocation.c
[Sources.Ia32]
X64/VirtualMemory.h
X64/VirtualMemory.c
Ia32/DxeLoadFunc.c
Ia32/IdtVectorAsm.nasm
Ia32/SecEntry.nasm
[Sources.X64]
X64/VirtualMemory.h
X64/VirtualMemory.c
X64/DxeLoadFunc.c
X64/SecEntry.nasm
[Packages]
MdePkg/MdePkg.dec
MdeModulePkg/MdeModulePkg.dec
UefiCpuPkg/UefiCpuPkg.dec
UefiPayloadPkg/UefiPayloadPkg.dec
[LibraryClasses]
BaseMemoryLib
DebugLib
BaseLib
SerialPortLib
IoLib
BlParseLib
HobLib
PeCoffLib
PlatformSupportLib
UefiCpuLib
[Guids]
gEfiMemoryTypeInformationGuid
gEfiFirmwareFileSystem2Guid
gUefiSystemTableInfoGuid
gEfiGraphicsInfoHobGuid
gEfiGraphicsDeviceInfoHobGuid
gUefiAcpiBoardInfoGuid
[FeaturePcd.IA32]
gEfiMdeModulePkgTokenSpaceGuid.PcdDxeIplSwitchToLongMode ## CONSUMES
[FeaturePcd.X64]
gEfiMdeModulePkgTokenSpaceGuid.PcdDxeIplBuildPageTables ## CONSUMES
[Pcd.IA32,Pcd.X64]
gEfiMdeModulePkgTokenSpaceGuid.PcdUse1GPageTable ## SOMETIMES_CONSUMES
gEfiMdeModulePkgTokenSpaceGuid.PcdPteMemoryEncryptionAddressOrMask ## CONSUMES
gEfiMdeModulePkgTokenSpaceGuid.PcdNullPointerDetectionPropertyMask ## CONSUMES
gEfiMdeModulePkgTokenSpaceGuid.PcdHeapGuardPropertyMask ## CONSUMES
gEfiMdeModulePkgTokenSpaceGuid.PcdCpuStackGuard ## CONSUMES
gEfiMdeModulePkgTokenSpaceGuid.PcdUse5LevelPageTable ## SOMETIMES_CONSUMES
gEfiMdeModulePkgTokenSpaceGuid.PcdGhcbBase ## CONSUMES
gEfiMdeModulePkgTokenSpaceGuid.PcdGhcbSize ## CONSUMES
gUefiPayloadPkgTokenSpaceGuid.PcdPayloadFdMemBase
gUefiPayloadPkgTokenSpaceGuid.PcdPayloadFdMemSize
gUefiPayloadPkgTokenSpaceGuid.PcdPayloadStackTop
gUefiPayloadPkgTokenSpaceGuid.PcdSystemMemoryUefiRegionSize
gEfiMdeModulePkgTokenSpaceGuid.PcdSetNxForStack ## SOMETIMES_CONSUMES
gEfiMdeModulePkgTokenSpaceGuid.PcdDxeNxMemoryProtectionPolicy ## SOMETIMES_CONSUMES
gEfiMdeModulePkgTokenSpaceGuid.PcdImageProtectionPolicy ## SOMETIMES_CONSUMES

View File

@@ -0,0 +1,107 @@
/** @file
x64-specifc functionality for DxeLoad.
Copyright (c) 2006 - 2020, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <PiPei.h>
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/PcdLib.h>
#include <Library/HobLib.h>
#include "X64/VirtualMemory.h"
#include "UefiPayloadEntry.h"
#define STACK_SIZE 0x20000
/**
Transfers control to DxeCore.
This function performs a CPU architecture specific operations to execute
the entry point of DxeCore with the parameters of HobList.
It also installs EFI_END_OF_PEI_PPI to signal the end of PEI phase.
@param DxeCoreEntryPoint The entry point of DxeCore.
@param HobList The start of HobList passed to DxeCore.
**/
VOID
HandOffToDxeCore (
IN EFI_PHYSICAL_ADDRESS DxeCoreEntryPoint,
IN EFI_PEI_HOB_POINTERS HobList
)
{
VOID *BaseOfStack;
VOID *TopOfStack;
UINTN PageTables;
VOID *GhcbBase;
UINTN GhcbSize;
//
// Clear page 0 and mark it as allocated if NULL pointer detection is enabled.
//
if (IsNullDetectionEnabled ()) {
ClearFirst4KPage (HobList.Raw);
BuildMemoryAllocationHob (0, EFI_PAGES_TO_SIZE (1), EfiBootServicesData);
}
//
// Allocate 128KB for the Stack
//
BaseOfStack = AllocatePages (EFI_SIZE_TO_PAGES (STACK_SIZE));
ASSERT (BaseOfStack != NULL);
//
// Compute the top of the stack we were allocated. Pre-allocate a UINTN
// for safety.
//
TopOfStack = (VOID *) ((UINTN) BaseOfStack + EFI_SIZE_TO_PAGES (STACK_SIZE) * EFI_PAGE_SIZE - CPU_STACK_ALIGNMENT);
TopOfStack = ALIGN_POINTER (TopOfStack, CPU_STACK_ALIGNMENT);
//
// Get the address and size of the GHCB pages
//
GhcbBase = (VOID *) PcdGet64 (PcdGhcbBase);
GhcbSize = PcdGet64 (PcdGhcbSize);
PageTables = 0;
if (FeaturePcdGet (PcdDxeIplBuildPageTables)) {
//
// Create page table and save PageMapLevel4 to CR3
//
PageTables = CreateIdentityMappingPageTables ((EFI_PHYSICAL_ADDRESS) (UINTN) BaseOfStack, STACK_SIZE,
(EFI_PHYSICAL_ADDRESS) (UINTN) GhcbBase, GhcbSize);
} else {
//
// Set NX for stack feature also require PcdDxeIplBuildPageTables be TRUE
// for the DxeIpl and the DxeCore are both X64.
//
ASSERT (PcdGetBool (PcdSetNxForStack) == FALSE);
ASSERT (PcdGetBool (PcdCpuStackGuard) == FALSE);
}
if (FeaturePcdGet (PcdDxeIplBuildPageTables)) {
AsmWriteCr3 (PageTables);
}
//
// Update the contents of BSP stack HOB to reflect the real stack info passed to DxeCore.
//
UpdateStackHob ((EFI_PHYSICAL_ADDRESS)(UINTN) BaseOfStack, STACK_SIZE);
//
// Transfer the control to the entry point of DxeCore.
//
SwitchStack (
(SWITCH_STACK_ENTRY_POINT)(UINTN)DxeCoreEntryPoint,
HobList.Raw,
NULL,
TopOfStack
);
}

View File

@@ -0,0 +1,47 @@
;------------------------------------------------------------------------------
;*
;* Copyright (c) 2006 - 2020, Intel Corporation. All rights reserved.<BR>
;* SPDX-License-Identifier: BSD-2-Clause-Patent
;------------------------------------------------------------------------------
#include <Base.h>
DEFAULT REL
SECTION .text
extern ASM_PFX(PayloadEntry)
extern ASM_PFX(PcdGet32 (PcdPayloadStackTop))
;
; SecCore Entry Point
;
; Processor is in flat protected mode
global ASM_PFX(_ModuleEntryPoint)
ASM_PFX(_ModuleEntryPoint):
;
; Disable all the interrupts
;
cli
mov rsp, FixedPcdGet32 (PcdPayloadStackTop)
;
; Push the bootloader parameter address onto new stack
;
push rcx
mov rax, 0
push rax ; shadow space
push rax
push rax
push rax
;
; Call into C code
;
call ASM_PFX(PayloadEntry)
jmp $

View File

@@ -0,0 +1,939 @@
/** @file
x64 Virtual Memory Management Services in the form of an IA-32 driver.
Used to establish a 1:1 Virtual to Physical Mapping that is required to
enter Long Mode (x64 64-bit mode).
While we make a 1:1 mapping (identity mapping) for all physical pages
we still need to use the MTRR's to ensure that the cachability attributes
for all memory regions is correct.
The basic idea is to use 2MB page table entries where ever possible. If
more granularity of cachability is required then 4K page tables are used.
References:
1) IA-32 Intel(R) Architecture Software Developer's Manual Volume 1:Basic Architecture, Intel
2) IA-32 Intel(R) Architecture Software Developer's Manual Volume 2:Instruction Set Reference, Intel
3) IA-32 Intel(R) Architecture Software Developer's Manual Volume 3:System Programmer's Guide, Intel
Copyright (c) 2006 - 2020, Intel Corporation. All rights reserved.<BR>
Copyright (c) 2017, AMD Incorporated. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <PiPei.h>
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/PcdLib.h>
#include <Library/HobLib.h>
#include <Register/Intel/Cpuid.h>
#include "VirtualMemory.h"
//
// Global variable to keep track current available memory used as page table.
//
PAGE_TABLE_POOL *mPageTablePool = NULL;
/**
Clear legacy memory located at the first 4K-page, if available.
This function traverses the whole HOB list to check if memory from 0 to 4095
exists and has not been allocated, and then clear it if so.
@param HobStart The start of HobList passed to DxeCore.
**/
VOID
ClearFirst4KPage (
IN VOID *HobStart
)
{
EFI_PEI_HOB_POINTERS RscHob;
EFI_PEI_HOB_POINTERS MemHob;
BOOLEAN DoClear;
RscHob.Raw = HobStart;
MemHob.Raw = HobStart;
DoClear = FALSE;
//
// Check if page 0 exists and free
//
while ((RscHob.Raw = GetNextHob (EFI_HOB_TYPE_RESOURCE_DESCRIPTOR,
RscHob.Raw)) != NULL) {
if (RscHob.ResourceDescriptor->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY &&
RscHob.ResourceDescriptor->PhysicalStart == 0) {
DoClear = TRUE;
//
// Make sure memory at 0-4095 has not been allocated.
//
while ((MemHob.Raw = GetNextHob (EFI_HOB_TYPE_MEMORY_ALLOCATION,
MemHob.Raw)) != NULL) {
if (MemHob.MemoryAllocation->AllocDescriptor.MemoryBaseAddress
< EFI_PAGE_SIZE) {
DoClear = FALSE;
break;
}
MemHob.Raw = GET_NEXT_HOB (MemHob);
}
break;
}
RscHob.Raw = GET_NEXT_HOB (RscHob);
}
if (DoClear) {
DEBUG ((DEBUG_INFO, "Clearing first 4K-page!\r\n"));
SetMem (NULL, EFI_PAGE_SIZE, 0);
}
return;
}
/**
Return configure status of NULL pointer detection feature.
@return TRUE NULL pointer detection feature is enabled
@return FALSE NULL pointer detection feature is disabled
**/
BOOLEAN
IsNullDetectionEnabled (
VOID
)
{
return ((PcdGet8 (PcdNullPointerDetectionPropertyMask) & BIT0) != 0);
}
/**
The function will check if Execute Disable Bit is available.
@retval TRUE Execute Disable Bit is available.
@retval FALSE Execute Disable Bit is not available.
**/
BOOLEAN
IsExecuteDisableBitAvailable (
VOID
)
{
UINT32 RegEax;
UINT32 RegEdx;
BOOLEAN Available;
Available = FALSE;
AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
if (RegEax >= 0x80000001) {
AsmCpuid (0x80000001, NULL, NULL, NULL, &RegEdx);
if ((RegEdx & BIT20) != 0) {
//
// Bit 20: Execute Disable Bit available.
//
Available = TRUE;
}
}
return Available;
}
/**
Check if Execute Disable Bit (IA32_EFER.NXE) should be enabled or not.
@retval TRUE IA32_EFER.NXE should be enabled.
@retval FALSE IA32_EFER.NXE should not be enabled.
**/
BOOLEAN
IsEnableNonExecNeeded (
VOID
)
{
if (!IsExecuteDisableBitAvailable ()) {
return FALSE;
}
//
// XD flag (BIT63) in page table entry is only valid if IA32_EFER.NXE is set.
// Features controlled by Following PCDs need this feature to be enabled.
//
return (PcdGetBool (PcdSetNxForStack) ||
PcdGet64 (PcdDxeNxMemoryProtectionPolicy) != 0 ||
PcdGet32 (PcdImageProtectionPolicy) != 0);
}
/**
Enable Execute Disable Bit.
**/
VOID
EnableExecuteDisableBit (
VOID
)
{
UINT64 MsrRegisters;
MsrRegisters = AsmReadMsr64 (0xC0000080);
MsrRegisters |= BIT11;
AsmWriteMsr64 (0xC0000080, MsrRegisters);
}
/**
The function will check if page table entry should be splitted to smaller
granularity.
@param Address Physical memory address.
@param Size Size of the given physical memory.
@param StackBase Base address of stack.
@param StackSize Size of stack.
@param GhcbBase Base address of GHCB pages.
@param GhcbSize Size of GHCB area.
@retval TRUE Page table should be split.
@retval FALSE Page table should not be split.
**/
BOOLEAN
ToSplitPageTable (
IN EFI_PHYSICAL_ADDRESS Address,
IN UINTN Size,
IN EFI_PHYSICAL_ADDRESS StackBase,
IN UINTN StackSize,
IN EFI_PHYSICAL_ADDRESS GhcbBase,
IN UINTN GhcbSize
)
{
if (IsNullDetectionEnabled () && Address == 0) {
return TRUE;
}
if (PcdGetBool (PcdCpuStackGuard)) {
if (StackBase >= Address && StackBase < (Address + Size)) {
return TRUE;
}
}
if (PcdGetBool (PcdSetNxForStack)) {
if ((Address < StackBase + StackSize) && ((Address + Size) > StackBase)) {
return TRUE;
}
}
if (GhcbBase != 0) {
if ((Address < GhcbBase + GhcbSize) && ((Address + Size) > GhcbBase)) {
return TRUE;
}
}
return FALSE;
}
/**
Initialize a buffer pool for page table use only.
To reduce the potential split operation on page table, the pages reserved for
page table should be allocated in the times of PAGE_TABLE_POOL_UNIT_PAGES and
at the boundary of PAGE_TABLE_POOL_ALIGNMENT. So the page pool is always
initialized with number of pages greater than or equal to the given PoolPages.
Once the pages in the pool are used up, this method should be called again to
reserve at least another PAGE_TABLE_POOL_UNIT_PAGES. But usually this won't
happen in practice.
@param PoolPages The least page number of the pool to be created.
@retval TRUE The pool is initialized successfully.
@retval FALSE The memory is out of resource.
**/
BOOLEAN
InitializePageTablePool (
IN UINTN PoolPages
)
{
VOID *Buffer;
//
// Always reserve at least PAGE_TABLE_POOL_UNIT_PAGES, including one page for
// header.
//
PoolPages += 1; // Add one page for header.
PoolPages = ((PoolPages - 1) / PAGE_TABLE_POOL_UNIT_PAGES + 1) *
PAGE_TABLE_POOL_UNIT_PAGES;
Buffer = AllocateAlignedPages (PoolPages, PAGE_TABLE_POOL_ALIGNMENT);
if (Buffer == NULL) {
DEBUG ((DEBUG_ERROR, "ERROR: Out of aligned pages\r\n"));
return FALSE;
}
//
// Link all pools into a list for easier track later.
//
if (mPageTablePool == NULL) {
mPageTablePool = Buffer;
mPageTablePool->NextPool = mPageTablePool;
} else {
((PAGE_TABLE_POOL *)Buffer)->NextPool = mPageTablePool->NextPool;
mPageTablePool->NextPool = Buffer;
mPageTablePool = Buffer;
}
//
// Reserve one page for pool header.
//
mPageTablePool->FreePages = PoolPages - 1;
mPageTablePool->Offset = EFI_PAGES_TO_SIZE (1);
return TRUE;
}
/**
This API provides a way to allocate memory for page table.
This API can be called more than once to allocate memory for page tables.
Allocates the number of 4KB pages and returns a pointer to the allocated
buffer. The buffer returned is aligned on a 4KB boundary.
If Pages is 0, then NULL is returned.
If there is not enough memory remaining to satisfy the request, then NULL is
returned.
@param Pages The number of 4 KB pages to allocate.
@return A pointer to the allocated buffer or NULL if allocation fails.
**/
VOID *
AllocatePageTableMemory (
IN UINTN Pages
)
{
VOID *Buffer;
if (Pages == 0) {
return NULL;
}
//
// Renew the pool if necessary.
//
if (mPageTablePool == NULL ||
Pages > mPageTablePool->FreePages) {
if (!InitializePageTablePool (Pages)) {
return NULL;
}
}
Buffer = (UINT8 *)mPageTablePool + mPageTablePool->Offset;
mPageTablePool->Offset += EFI_PAGES_TO_SIZE (Pages);
mPageTablePool->FreePages -= Pages;
return Buffer;
}
/**
Split 2M page to 4K.
@param[in] PhysicalAddress Start physical address the 2M page covered.
@param[in, out] PageEntry2M Pointer to 2M page entry.
@param[in] StackBase Stack base address.
@param[in] StackSize Stack size.
@param[in] GhcbBase GHCB page area base address.
@param[in] GhcbSize GHCB page area size.
**/
VOID
Split2MPageTo4K (
IN EFI_PHYSICAL_ADDRESS PhysicalAddress,
IN OUT UINT64 *PageEntry2M,
IN EFI_PHYSICAL_ADDRESS StackBase,
IN UINTN StackSize,
IN EFI_PHYSICAL_ADDRESS GhcbBase,
IN UINTN GhcbSize
)
{
EFI_PHYSICAL_ADDRESS PhysicalAddress4K;
UINTN IndexOfPageTableEntries;
PAGE_TABLE_4K_ENTRY *PageTableEntry;
UINT64 AddressEncMask;
//
// Make sure AddressEncMask is contained to smallest supported address field
//
AddressEncMask = PcdGet64 (PcdPteMemoryEncryptionAddressOrMask) & PAGING_1G_ADDRESS_MASK_64;
PageTableEntry = AllocatePageTableMemory (1);
ASSERT (PageTableEntry != NULL);
//
// Fill in 2M page entry.
//
*PageEntry2M = (UINT64) (UINTN) PageTableEntry | AddressEncMask | IA32_PG_P | IA32_PG_RW;
PhysicalAddress4K = PhysicalAddress;
for (IndexOfPageTableEntries = 0; IndexOfPageTableEntries < 512; IndexOfPageTableEntries++, PageTableEntry++, PhysicalAddress4K += SIZE_4KB) {
//
// Fill in the Page Table entries
//
PageTableEntry->Uint64 = (UINT64) PhysicalAddress4K;
//
// The GHCB range consists of two pages per CPU, the GHCB and a
// per-CPU variable page. The GHCB page needs to be mapped as an
// unencrypted page while the per-CPU variable page needs to be
// mapped encrypted. These pages alternate in assignment.
//
if ((GhcbBase == 0)
|| (PhysicalAddress4K < GhcbBase)
|| (PhysicalAddress4K >= GhcbBase + GhcbSize)
|| (((PhysicalAddress4K - GhcbBase) & SIZE_4KB) != 0)) {
PageTableEntry->Uint64 |= AddressEncMask;
}
PageTableEntry->Bits.ReadWrite = 1;
if ((IsNullDetectionEnabled () && PhysicalAddress4K == 0) ||
(PcdGetBool (PcdCpuStackGuard) && PhysicalAddress4K == StackBase)) {
PageTableEntry->Bits.Present = 0;
} else {
PageTableEntry->Bits.Present = 1;
}
if (PcdGetBool (PcdSetNxForStack)
&& (PhysicalAddress4K >= StackBase)
&& (PhysicalAddress4K < StackBase + StackSize)) {
//
// Set Nx bit for stack.
//
PageTableEntry->Bits.Nx = 1;
}
}
}
/**
Split 1G page to 2M.
@param[in] PhysicalAddress Start physical address the 1G page covered.
@param[in, out] PageEntry1G Pointer to 1G page entry.
@param[in] StackBase Stack base address.
@param[in] StackSize Stack size.
@param[in] GhcbBase GHCB page area base address.
@param[in] GhcbSize GHCB page area size.
**/
VOID
Split1GPageTo2M (
IN EFI_PHYSICAL_ADDRESS PhysicalAddress,
IN OUT UINT64 *PageEntry1G,
IN EFI_PHYSICAL_ADDRESS StackBase,
IN UINTN StackSize,
IN EFI_PHYSICAL_ADDRESS GhcbBase,
IN UINTN GhcbSize
)
{
EFI_PHYSICAL_ADDRESS PhysicalAddress2M;
UINTN IndexOfPageDirectoryEntries;
PAGE_TABLE_ENTRY *PageDirectoryEntry;
UINT64 AddressEncMask;
//
// Make sure AddressEncMask is contained to smallest supported address field
//
AddressEncMask = PcdGet64 (PcdPteMemoryEncryptionAddressOrMask) & PAGING_1G_ADDRESS_MASK_64;
PageDirectoryEntry = AllocatePageTableMemory (1);
ASSERT (PageDirectoryEntry != NULL);
//
// Fill in 1G page entry.
//
*PageEntry1G = (UINT64) (UINTN) PageDirectoryEntry | AddressEncMask | IA32_PG_P | IA32_PG_RW;
PhysicalAddress2M = PhysicalAddress;
for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectoryEntry++, PhysicalAddress2M += SIZE_2MB) {
if (ToSplitPageTable (PhysicalAddress2M, SIZE_2MB, StackBase, StackSize, GhcbBase, GhcbSize)) {
//
// Need to split this 2M page that covers NULL or stack range.
//
Split2MPageTo4K (PhysicalAddress2M, (UINT64 *) PageDirectoryEntry, StackBase, StackSize, GhcbBase, GhcbSize);
} else {
//
// Fill in the Page Directory entries
//
PageDirectoryEntry->Uint64 = (UINT64) PhysicalAddress2M | AddressEncMask;
PageDirectoryEntry->Bits.ReadWrite = 1;
PageDirectoryEntry->Bits.Present = 1;
PageDirectoryEntry->Bits.MustBe1 = 1;
}
}
}
/**
Set one page of page table pool memory to be read-only.
@param[in] PageTableBase Base address of page table (CR3).
@param[in] Address Start address of a page to be set as read-only.
@param[in] Level4Paging Level 4 paging flag.
**/
VOID
SetPageTablePoolReadOnly (
IN UINTN PageTableBase,
IN EFI_PHYSICAL_ADDRESS Address,
IN BOOLEAN Level4Paging
)
{
UINTN Index;
UINTN EntryIndex;
UINT64 AddressEncMask;
EFI_PHYSICAL_ADDRESS PhysicalAddress;
UINT64 *PageTable;
UINT64 *NewPageTable;
UINT64 PageAttr;
UINT64 LevelSize[5];
UINT64 LevelMask[5];
UINTN LevelShift[5];
UINTN Level;
UINT64 PoolUnitSize;
ASSERT (PageTableBase != 0);
//
// Since the page table is always from page table pool, which is always
// located at the boundary of PcdPageTablePoolAlignment, we just need to
// set the whole pool unit to be read-only.
//
Address = Address & PAGE_TABLE_POOL_ALIGN_MASK;
LevelShift[1] = PAGING_L1_ADDRESS_SHIFT;
LevelShift[2] = PAGING_L2_ADDRESS_SHIFT;
LevelShift[3] = PAGING_L3_ADDRESS_SHIFT;
LevelShift[4] = PAGING_L4_ADDRESS_SHIFT;
LevelMask[1] = PAGING_4K_ADDRESS_MASK_64;
LevelMask[2] = PAGING_2M_ADDRESS_MASK_64;
LevelMask[3] = PAGING_1G_ADDRESS_MASK_64;
LevelMask[4] = PAGING_1G_ADDRESS_MASK_64;
LevelSize[1] = SIZE_4KB;
LevelSize[2] = SIZE_2MB;
LevelSize[3] = SIZE_1GB;
LevelSize[4] = SIZE_512GB;
AddressEncMask = PcdGet64 (PcdPteMemoryEncryptionAddressOrMask) &
PAGING_1G_ADDRESS_MASK_64;
PageTable = (UINT64 *)(UINTN)PageTableBase;
PoolUnitSize = PAGE_TABLE_POOL_UNIT_SIZE;
for (Level = (Level4Paging) ? 4 : 3; Level > 0; --Level) {
Index = ((UINTN)RShiftU64 (Address, LevelShift[Level]));
Index &= PAGING_PAE_INDEX_MASK;
PageAttr = PageTable[Index];
if ((PageAttr & IA32_PG_PS) == 0) {
//
// Go to next level of table.
//
PageTable = (UINT64 *)(UINTN)(PageAttr & ~AddressEncMask &
PAGING_4K_ADDRESS_MASK_64);
continue;
}
if (PoolUnitSize >= LevelSize[Level]) {
//
// Clear R/W bit if current page granularity is not larger than pool unit
// size.
//
if ((PageAttr & IA32_PG_RW) != 0) {
while (PoolUnitSize > 0) {
//
// PAGE_TABLE_POOL_UNIT_SIZE and PAGE_TABLE_POOL_ALIGNMENT are fit in
// one page (2MB). Then we don't need to update attributes for pages
// crossing page directory. ASSERT below is for that purpose.
//
ASSERT (Index < EFI_PAGE_SIZE/sizeof (UINT64));
PageTable[Index] &= ~(UINT64)IA32_PG_RW;
PoolUnitSize -= LevelSize[Level];
++Index;
}
}
break;
} else {
//
// The smaller granularity of page must be needed.
//
ASSERT (Level > 1);
NewPageTable = AllocatePageTableMemory (1);
ASSERT (NewPageTable != NULL);
PhysicalAddress = PageAttr & LevelMask[Level];
for (EntryIndex = 0;
EntryIndex < EFI_PAGE_SIZE/sizeof (UINT64);
++EntryIndex) {
NewPageTable[EntryIndex] = PhysicalAddress | AddressEncMask |
IA32_PG_P | IA32_PG_RW;
if (Level > 2) {
NewPageTable[EntryIndex] |= IA32_PG_PS;
}
PhysicalAddress += LevelSize[Level - 1];
}
PageTable[Index] = (UINT64)(UINTN)NewPageTable | AddressEncMask |
IA32_PG_P | IA32_PG_RW;
PageTable = NewPageTable;
}
}
}
/**
Prevent the memory pages used for page table from been overwritten.
@param[in] PageTableBase Base address of page table (CR3).
@param[in] Level4Paging Level 4 paging flag.
**/
VOID
EnablePageTableProtection (
IN UINTN PageTableBase,
IN BOOLEAN Level4Paging
)
{
PAGE_TABLE_POOL *HeadPool;
PAGE_TABLE_POOL *Pool;
UINT64 PoolSize;
EFI_PHYSICAL_ADDRESS Address;
if (mPageTablePool == NULL) {
return;
}
//
// Disable write protection, because we need to mark page table to be write
// protected.
//
AsmWriteCr0 (AsmReadCr0() & ~CR0_WP);
//
// SetPageTablePoolReadOnly might update mPageTablePool. It's safer to
// remember original one in advance.
//
HeadPool = mPageTablePool;
Pool = HeadPool;
do {
Address = (EFI_PHYSICAL_ADDRESS)(UINTN)Pool;
PoolSize = Pool->Offset + EFI_PAGES_TO_SIZE (Pool->FreePages);
//
// The size of one pool must be multiple of PAGE_TABLE_POOL_UNIT_SIZE, which
// is one of page size of the processor (2MB by default). Let's apply the
// protection to them one by one.
//
while (PoolSize > 0) {
SetPageTablePoolReadOnly(PageTableBase, Address, Level4Paging);
Address += PAGE_TABLE_POOL_UNIT_SIZE;
PoolSize -= PAGE_TABLE_POOL_UNIT_SIZE;
}
Pool = Pool->NextPool;
} while (Pool != HeadPool);
//
// Enable write protection, after page table attribute updated.
//
AsmWriteCr0 (AsmReadCr0() | CR0_WP);
}
/**
Allocates and fills in the Page Directory and Page Table Entries to
establish a 1:1 Virtual to Physical mapping.
@param[in] StackBase Stack base address.
@param[in] StackSize Stack size.
@param[in] GhcbBase GHCB base address.
@param[in] GhcbSize GHCB size.
@return The address of 4 level page map.
**/
UINTN
CreateIdentityMappingPageTables (
IN EFI_PHYSICAL_ADDRESS StackBase,
IN UINTN StackSize,
IN EFI_PHYSICAL_ADDRESS GhcbBase,
IN UINTN GhcbSize
)
{
UINT32 RegEax;
CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_ECX EcxFlags;
UINT32 RegEdx;
UINT8 PhysicalAddressBits;
EFI_PHYSICAL_ADDRESS PageAddress;
UINTN IndexOfPml5Entries;
UINTN IndexOfPml4Entries;
UINTN IndexOfPdpEntries;
UINTN IndexOfPageDirectoryEntries;
UINT32 NumberOfPml5EntriesNeeded;
UINT32 NumberOfPml4EntriesNeeded;
UINT32 NumberOfPdpEntriesNeeded;
PAGE_MAP_AND_DIRECTORY_POINTER *PageMapLevel5Entry;
PAGE_MAP_AND_DIRECTORY_POINTER *PageMapLevel4Entry;
PAGE_MAP_AND_DIRECTORY_POINTER *PageMap;
PAGE_MAP_AND_DIRECTORY_POINTER *PageDirectoryPointerEntry;
PAGE_TABLE_ENTRY *PageDirectoryEntry;
UINTN TotalPagesNum;
UINTN BigPageAddress;
VOID *Hob;
BOOLEAN Page5LevelSupport;
BOOLEAN Page1GSupport;
PAGE_TABLE_1G_ENTRY *PageDirectory1GEntry;
UINT64 AddressEncMask;
IA32_CR4 Cr4;
//
// Set PageMapLevel5Entry to suppress incorrect compiler/analyzer warnings
//
PageMapLevel5Entry = NULL;
//
// Make sure AddressEncMask is contained to smallest supported address field
//
AddressEncMask = PcdGet64 (PcdPteMemoryEncryptionAddressOrMask) & PAGING_1G_ADDRESS_MASK_64;
Page1GSupport = FALSE;
if (PcdGetBool(PcdUse1GPageTable)) {
AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
if (RegEax >= 0x80000001) {
AsmCpuid (0x80000001, NULL, NULL, NULL, &RegEdx);
if ((RegEdx & BIT26) != 0) {
Page1GSupport = TRUE;
}
}
}
//
// Get physical address bits supported.
//
Hob = GetFirstHob (EFI_HOB_TYPE_CPU);
if (Hob != NULL) {
PhysicalAddressBits = ((EFI_HOB_CPU *) Hob)->SizeOfMemorySpace;
} else {
AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
if (RegEax >= 0x80000008) {
AsmCpuid (0x80000008, &RegEax, NULL, NULL, NULL);
PhysicalAddressBits = (UINT8) RegEax;
} else {
PhysicalAddressBits = 36;
}
}
Page5LevelSupport = FALSE;
if (PcdGetBool (PcdUse5LevelPageTable)) {
AsmCpuidEx (
CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS, CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_SUB_LEAF_INFO, NULL,
&EcxFlags.Uint32, NULL, NULL
);
if (EcxFlags.Bits.FiveLevelPage != 0) {
Page5LevelSupport = TRUE;
}
}
DEBUG ((DEBUG_INFO, "AddressBits=%u 5LevelPaging=%u 1GPage=%u\n", PhysicalAddressBits, Page5LevelSupport, Page1GSupport));
//
// IA-32e paging translates 48-bit linear addresses to 52-bit physical addresses
// when 5-Level Paging is disabled,
// due to either unsupported by HW, or disabled by PCD.
//
ASSERT (PhysicalAddressBits <= 52);
if (!Page5LevelSupport && PhysicalAddressBits > 48) {
PhysicalAddressBits = 48;
}
//
// Calculate the table entries needed.
//
NumberOfPml5EntriesNeeded = 1;
if (PhysicalAddressBits > 48) {
NumberOfPml5EntriesNeeded = (UINT32) LShiftU64 (1, PhysicalAddressBits - 48);
PhysicalAddressBits = 48;
}
NumberOfPml4EntriesNeeded = 1;
if (PhysicalAddressBits > 39) {
NumberOfPml4EntriesNeeded = (UINT32) LShiftU64 (1, PhysicalAddressBits - 39);
PhysicalAddressBits = 39;
}
NumberOfPdpEntriesNeeded = 1;
ASSERT (PhysicalAddressBits > 30);
NumberOfPdpEntriesNeeded = (UINT32) LShiftU64 (1, PhysicalAddressBits - 30);
//
// Pre-allocate big pages to avoid later allocations.
//
if (!Page1GSupport) {
TotalPagesNum = ((NumberOfPdpEntriesNeeded + 1) * NumberOfPml4EntriesNeeded + 1) * NumberOfPml5EntriesNeeded + 1;
} else {
TotalPagesNum = (NumberOfPml4EntriesNeeded + 1) * NumberOfPml5EntriesNeeded + 1;
}
//
// Substract the one page occupied by PML5 entries if 5-Level Paging is disabled.
//
if (!Page5LevelSupport) {
TotalPagesNum--;
}
DEBUG ((DEBUG_INFO, "Pml5=%u Pml4=%u Pdp=%u TotalPage=%Lu\n",
NumberOfPml5EntriesNeeded, NumberOfPml4EntriesNeeded,
NumberOfPdpEntriesNeeded, (UINT64)TotalPagesNum));
BigPageAddress = (UINTN) AllocatePageTableMemory (TotalPagesNum);
ASSERT (BigPageAddress != 0);
//
// By architecture only one PageMapLevel4 exists - so lets allocate storage for it.
//
PageMap = (VOID *) BigPageAddress;
if (Page5LevelSupport) {
//
// By architecture only one PageMapLevel5 exists - so lets allocate storage for it.
//
PageMapLevel5Entry = PageMap;
BigPageAddress += SIZE_4KB;
}
PageAddress = 0;
for ( IndexOfPml5Entries = 0
; IndexOfPml5Entries < NumberOfPml5EntriesNeeded
; IndexOfPml5Entries++) {
//
// Each PML5 entry points to a page of PML4 entires.
// So lets allocate space for them and fill them in in the IndexOfPml4Entries loop.
// When 5-Level Paging is disabled, below allocation happens only once.
//
PageMapLevel4Entry = (VOID *) BigPageAddress;
BigPageAddress += SIZE_4KB;
if (Page5LevelSupport) {
//
// Make a PML5 Entry
//
PageMapLevel5Entry->Uint64 = (UINT64) (UINTN) PageMapLevel4Entry | AddressEncMask;
PageMapLevel5Entry->Bits.ReadWrite = 1;
PageMapLevel5Entry->Bits.Present = 1;
PageMapLevel5Entry++;
}
for ( IndexOfPml4Entries = 0
; IndexOfPml4Entries < (NumberOfPml5EntriesNeeded == 1 ? NumberOfPml4EntriesNeeded : 512)
; IndexOfPml4Entries++, PageMapLevel4Entry++) {
//
// Each PML4 entry points to a page of Page Directory Pointer entires.
// So lets allocate space for them and fill them in in the IndexOfPdpEntries loop.
//
PageDirectoryPointerEntry = (VOID *) BigPageAddress;
BigPageAddress += SIZE_4KB;
//
// Make a PML4 Entry
//
PageMapLevel4Entry->Uint64 = (UINT64)(UINTN)PageDirectoryPointerEntry | AddressEncMask;
PageMapLevel4Entry->Bits.ReadWrite = 1;
PageMapLevel4Entry->Bits.Present = 1;
if (Page1GSupport) {
PageDirectory1GEntry = (VOID *) PageDirectoryPointerEntry;
for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectory1GEntry++, PageAddress += SIZE_1GB) {
if (ToSplitPageTable (PageAddress, SIZE_1GB, StackBase, StackSize, GhcbBase, GhcbSize)) {
Split1GPageTo2M (PageAddress, (UINT64 *) PageDirectory1GEntry, StackBase, StackSize, GhcbBase, GhcbSize);
} else {
//
// Fill in the Page Directory entries
//
PageDirectory1GEntry->Uint64 = (UINT64)PageAddress | AddressEncMask;
PageDirectory1GEntry->Bits.ReadWrite = 1;
PageDirectory1GEntry->Bits.Present = 1;
PageDirectory1GEntry->Bits.MustBe1 = 1;
}
}
} else {
for ( IndexOfPdpEntries = 0
; IndexOfPdpEntries < (NumberOfPml4EntriesNeeded == 1 ? NumberOfPdpEntriesNeeded : 512)
; IndexOfPdpEntries++, PageDirectoryPointerEntry++) {
//
// Each Directory Pointer entries points to a page of Page Directory entires.
// So allocate space for them and fill them in in the IndexOfPageDirectoryEntries loop.
//
PageDirectoryEntry = (VOID *) BigPageAddress;
BigPageAddress += SIZE_4KB;
//
// Fill in a Page Directory Pointer Entries
//
PageDirectoryPointerEntry->Uint64 = (UINT64)(UINTN)PageDirectoryEntry | AddressEncMask;
PageDirectoryPointerEntry->Bits.ReadWrite = 1;
PageDirectoryPointerEntry->Bits.Present = 1;
for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectoryEntry++, PageAddress += SIZE_2MB) {
if (ToSplitPageTable (PageAddress, SIZE_2MB, StackBase, StackSize, GhcbBase, GhcbSize)) {
//
// Need to split this 2M page that covers NULL or stack range.
//
Split2MPageTo4K (PageAddress, (UINT64 *) PageDirectoryEntry, StackBase, StackSize, GhcbBase, GhcbSize);
} else {
//
// Fill in the Page Directory entries
//
PageDirectoryEntry->Uint64 = (UINT64)PageAddress | AddressEncMask;
PageDirectoryEntry->Bits.ReadWrite = 1;
PageDirectoryEntry->Bits.Present = 1;
PageDirectoryEntry->Bits.MustBe1 = 1;
}
}
}
//
// Fill with null entry for unused PDPTE
//
ZeroMem (PageDirectoryPointerEntry, (512 - IndexOfPdpEntries) * sizeof(PAGE_MAP_AND_DIRECTORY_POINTER));
}
}
//
// For the PML4 entries we are not using fill in a null entry.
//
ZeroMem (PageMapLevel4Entry, (512 - IndexOfPml4Entries) * sizeof (PAGE_MAP_AND_DIRECTORY_POINTER));
}
if (Page5LevelSupport) {
Cr4.UintN = AsmReadCr4 ();
Cr4.Bits.LA57 = 1;
AsmWriteCr4 (Cr4.UintN);
//
// For the PML5 entries we are not using fill in a null entry.
//
ZeroMem (PageMapLevel5Entry, (512 - IndexOfPml5Entries) * sizeof (PAGE_MAP_AND_DIRECTORY_POINTER));
}
//
// Protect the page table by marking the memory used for page table to be
// read-only.
//
EnablePageTableProtection ((UINTN)PageMap, TRUE);
//
// Set IA32_EFER.NXE if necessary.
//
if (IsEnableNonExecNeeded ()) {
EnableExecuteDisableBit ();
}
return (UINTN)PageMap;
}

View File

@@ -0,0 +1,330 @@
/** @file
x64 Long Mode Virtual Memory Management Definitions
References:
1) IA-32 Intel(R) Architecture Software Developer's Manual Volume 1:Basic Architecture, Intel
2) IA-32 Intel(R) Architecture Software Developer's Manual Volume 2:Instruction Set Reference, Intel
3) IA-32 Intel(R) Architecture Software Developer's Manual Volume 3:System Programmer's Guide, Intel
4) AMD64 Architecture Programmer's Manual Volume 2: System Programming
Copyright (c) 2006 - 2018, Intel Corporation. All rights reserved.<BR>
Copyright (c) 2017, AMD Incorporated. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#ifndef _VIRTUAL_MEMORY_H_
#define _VIRTUAL_MEMORY_H_
#define SYS_CODE64_SEL 0x38
#pragma pack(1)
typedef union {
struct {
UINT32 LimitLow : 16;
UINT32 BaseLow : 16;
UINT32 BaseMid : 8;
UINT32 Type : 4;
UINT32 System : 1;
UINT32 Dpl : 2;
UINT32 Present : 1;
UINT32 LimitHigh : 4;
UINT32 Software : 1;
UINT32 Reserved : 1;
UINT32 DefaultSize : 1;
UINT32 Granularity : 1;
UINT32 BaseHigh : 8;
} Bits;
UINT64 Uint64;
} IA32_GDT;
typedef struct {
IA32_IDT_GATE_DESCRIPTOR Ia32IdtEntry;
UINT32 Offset32To63;
UINT32 Reserved;
} X64_IDT_GATE_DESCRIPTOR;
//
// Page-Map Level-4 Offset (PML4) and
// Page-Directory-Pointer Offset (PDPE) entries 4K & 2MB
//
typedef union {
struct {
UINT64 Present:1; // 0 = Not present in memory, 1 = Present in memory
UINT64 ReadWrite:1; // 0 = Read-Only, 1= Read/Write
UINT64 UserSupervisor:1; // 0 = Supervisor, 1=User
UINT64 WriteThrough:1; // 0 = Write-Back caching, 1=Write-Through caching
UINT64 CacheDisabled:1; // 0 = Cached, 1=Non-Cached
UINT64 Accessed:1; // 0 = Not accessed, 1 = Accessed (set by CPU)
UINT64 Reserved:1; // Reserved
UINT64 MustBeZero:2; // Must Be Zero
UINT64 Available:3; // Available for use by system software
UINT64 PageTableBaseAddress:40; // Page Table Base Address
UINT64 AvabilableHigh:11; // Available for use by system software
UINT64 Nx:1; // No Execute bit
} Bits;
UINT64 Uint64;
} PAGE_MAP_AND_DIRECTORY_POINTER;
//
// Page Table Entry 4KB
//
typedef union {
struct {
UINT64 Present:1; // 0 = Not present in memory, 1 = Present in memory
UINT64 ReadWrite:1; // 0 = Read-Only, 1= Read/Write
UINT64 UserSupervisor:1; // 0 = Supervisor, 1=User
UINT64 WriteThrough:1; // 0 = Write-Back caching, 1=Write-Through caching
UINT64 CacheDisabled:1; // 0 = Cached, 1=Non-Cached
UINT64 Accessed:1; // 0 = Not accessed, 1 = Accessed (set by CPU)
UINT64 Dirty:1; // 0 = Not Dirty, 1 = written by processor on access to page
UINT64 PAT:1; //
UINT64 Global:1; // 0 = Not global page, 1 = global page TLB not cleared on CR3 write
UINT64 Available:3; // Available for use by system software
UINT64 PageTableBaseAddress:40; // Page Table Base Address
UINT64 AvabilableHigh:11; // Available for use by system software
UINT64 Nx:1; // 0 = Execute Code, 1 = No Code Execution
} Bits;
UINT64 Uint64;
} PAGE_TABLE_4K_ENTRY;
//
// Page Table Entry 2MB
//
typedef union {
struct {
UINT64 Present:1; // 0 = Not present in memory, 1 = Present in memory
UINT64 ReadWrite:1; // 0 = Read-Only, 1= Read/Write
UINT64 UserSupervisor:1; // 0 = Supervisor, 1=User
UINT64 WriteThrough:1; // 0 = Write-Back caching, 1=Write-Through caching
UINT64 CacheDisabled:1; // 0 = Cached, 1=Non-Cached
UINT64 Accessed:1; // 0 = Not accessed, 1 = Accessed (set by CPU)
UINT64 Dirty:1; // 0 = Not Dirty, 1 = written by processor on access to page
UINT64 MustBe1:1; // Must be 1
UINT64 Global:1; // 0 = Not global page, 1 = global page TLB not cleared on CR3 write
UINT64 Available:3; // Available for use by system software
UINT64 PAT:1; //
UINT64 MustBeZero:8; // Must be zero;
UINT64 PageTableBaseAddress:31; // Page Table Base Address
UINT64 AvabilableHigh:11; // Available for use by system software
UINT64 Nx:1; // 0 = Execute Code, 1 = No Code Execution
} Bits;
UINT64 Uint64;
} PAGE_TABLE_ENTRY;
//
// Page Table Entry 1GB
//
typedef union {
struct {
UINT64 Present:1; // 0 = Not present in memory, 1 = Present in memory
UINT64 ReadWrite:1; // 0 = Read-Only, 1= Read/Write
UINT64 UserSupervisor:1; // 0 = Supervisor, 1=User
UINT64 WriteThrough:1; // 0 = Write-Back caching, 1=Write-Through caching
UINT64 CacheDisabled:1; // 0 = Cached, 1=Non-Cached
UINT64 Accessed:1; // 0 = Not accessed, 1 = Accessed (set by CPU)
UINT64 Dirty:1; // 0 = Not Dirty, 1 = written by processor on access to page
UINT64 MustBe1:1; // Must be 1
UINT64 Global:1; // 0 = Not global page, 1 = global page TLB not cleared on CR3 write
UINT64 Available:3; // Available for use by system software
UINT64 PAT:1; //
UINT64 MustBeZero:17; // Must be zero;
UINT64 PageTableBaseAddress:22; // Page Table Base Address
UINT64 AvabilableHigh:11; // Available for use by system software
UINT64 Nx:1; // 0 = Execute Code, 1 = No Code Execution
} Bits;
UINT64 Uint64;
} PAGE_TABLE_1G_ENTRY;
#pragma pack()
#define CR0_WP BIT16
#define IA32_PG_P BIT0
#define IA32_PG_RW BIT1
#define IA32_PG_PS BIT7
#define PAGING_PAE_INDEX_MASK 0x1FF
#define PAGING_4K_ADDRESS_MASK_64 0x000FFFFFFFFFF000ull
#define PAGING_2M_ADDRESS_MASK_64 0x000FFFFFFFE00000ull
#define PAGING_1G_ADDRESS_MASK_64 0x000FFFFFC0000000ull
#define PAGING_L1_ADDRESS_SHIFT 12
#define PAGING_L2_ADDRESS_SHIFT 21
#define PAGING_L3_ADDRESS_SHIFT 30
#define PAGING_L4_ADDRESS_SHIFT 39
#define PAGING_PML4E_NUMBER 4
#define PAGE_TABLE_POOL_ALIGNMENT BASE_2MB
#define PAGE_TABLE_POOL_UNIT_SIZE SIZE_2MB
#define PAGE_TABLE_POOL_UNIT_PAGES EFI_SIZE_TO_PAGES (PAGE_TABLE_POOL_UNIT_SIZE)
#define PAGE_TABLE_POOL_ALIGN_MASK \
(~(EFI_PHYSICAL_ADDRESS)(PAGE_TABLE_POOL_ALIGNMENT - 1))
typedef struct {
VOID *NextPool;
UINTN Offset;
UINTN FreePages;
} PAGE_TABLE_POOL;
/**
Check if Execute Disable Bit (IA32_EFER.NXE) should be enabled or not.
@retval TRUE IA32_EFER.NXE should be enabled.
@retval FALSE IA32_EFER.NXE should not be enabled.
**/
BOOLEAN
IsEnableNonExecNeeded (
VOID
);
/**
Enable Execute Disable Bit.
**/
VOID
EnableExecuteDisableBit (
VOID
);
/**
Split 2M page to 4K.
@param[in] PhysicalAddress Start physical address the 2M page covered.
@param[in, out] PageEntry2M Pointer to 2M page entry.
@param[in] StackBase Stack base address.
@param[in] StackSize Stack size.
@param[in] GhcbBase GHCB page area base address.
@param[in] GhcbSize GHCB page area size.
**/
VOID
Split2MPageTo4K (
IN EFI_PHYSICAL_ADDRESS PhysicalAddress,
IN OUT UINT64 *PageEntry2M,
IN EFI_PHYSICAL_ADDRESS StackBase,
IN UINTN StackSize,
IN EFI_PHYSICAL_ADDRESS GhcbBase,
IN UINTN GhcbSize
);
/**
Allocates and fills in the Page Directory and Page Table Entries to
establish a 1:1 Virtual to Physical mapping.
@param[in] StackBase Stack base address.
@param[in] StackSize Stack size.
@param[in] GhcbBase GHCB page area base address.
@param[in] GhcbSize GHCB page area size.
@return The address of 4 level page map.
**/
UINTN
CreateIdentityMappingPageTables (
IN EFI_PHYSICAL_ADDRESS StackBase,
IN UINTN StackSize,
IN EFI_PHYSICAL_ADDRESS GhcbBase,
IN UINTN GhcbkSize
);
/**
Fix up the vector number in the vector code.
@param VectorBase Base address of the vector handler.
@param VectorNum Index of vector.
**/
VOID
EFIAPI
AsmVectorFixup (
VOID *VectorBase,
UINT8 VectorNum
);
/**
Get the information of vector template.
@param TemplateBase Base address of the template code.
@return Size of the Template code.
**/
UINTN
EFIAPI
AsmGetVectorTemplatInfo (
OUT VOID **TemplateBase
);
/**
Clear legacy memory located at the first 4K-page.
This function traverses the whole HOB list to check if memory from 0 to 4095
exists and has not been allocated, and then clear it if so.
@param HobStart The start of HobList passed to DxeCore.
**/
VOID
ClearFirst4KPage (
IN VOID *HobStart
);
/**
Return configure status of NULL pointer detection feature.
@return TRUE NULL pointer detection feature is enabled
@return FALSE NULL pointer detection feature is disabled
**/
BOOLEAN
IsNullDetectionEnabled (
VOID
);
/**
Prevent the memory pages used for page table from been overwritten.
@param[in] PageTableBase Base address of page table (CR3).
@param[in] Level4Paging Level 4 paging flag.
**/
VOID
EnablePageTableProtection (
IN UINTN PageTableBase,
IN BOOLEAN Level4Paging
);
/**
This API provides a way to allocate memory for page table.
This API can be called more than once to allocate memory for page tables.
Allocates the number of 4KB pages and returns a pointer to the allocated
buffer. The buffer returned is aligned on a 4KB boundary.
If Pages is 0, then NULL is returned.
If there is not enough memory remaining to satisfy the request, then NULL is
returned.
@param Pages The number of 4 KB pages to allocate.
@return A pointer to the allocated buffer or NULL if allocation fails.
**/
VOID *
AllocatePageTableMemory (
IN UINTN Pages
);
#endif