Initial import.
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@3 6f19259b-4bc3-4df7-8a09-765794883524
This commit is contained in:
145
EdkModulePkg/Universal/Ebc/Dxe/x64/EbcLowLevel.asm
Normal file
145
EdkModulePkg/Universal/Ebc/Dxe/x64/EbcLowLevel.asm
Normal file
@@ -0,0 +1,145 @@
|
||||
page ,132
|
||||
title VM ASSEMBLY LANGUAGE ROUTINES
|
||||
;****************************************************************************
|
||||
;*
|
||||
;* Copyright (c) 2006, Intel Corporation
|
||||
;* All rights reserved. This program and the accompanying materials
|
||||
;* are licensed and made available under the terms and conditions of the BSD License
|
||||
;* which accompanies this distribution. The full text of the license may be found at
|
||||
;* http://opensource.org/licenses/bsd-license.php
|
||||
;*
|
||||
;* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
||||
;* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
||||
;*
|
||||
;****************************************************************************
|
||||
;****************************************************************************
|
||||
; REV 1.0
|
||||
;****************************************************************************
|
||||
;
|
||||
; Rev Date Description
|
||||
; --- -------- ------------------------------------------------------------
|
||||
; 1.0 05/09/12 Initial creation of file.
|
||||
;
|
||||
;****************************************************************************
|
||||
|
||||
;* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
|
||||
; This code provides low level routines that support the Virtual Machine
|
||||
; for option ROMs.
|
||||
;* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
|
||||
|
||||
;---------------------------------------------------------------------------
|
||||
; Equate files needed.
|
||||
;---------------------------------------------------------------------------
|
||||
|
||||
text SEGMENT
|
||||
|
||||
;---------------------------------------------------------------------------
|
||||
;;GenericPostSegment SEGMENT USE16
|
||||
;---------------------------------------------------------------------------
|
||||
|
||||
;****************************************************************************
|
||||
; EbcLLCALLEX
|
||||
;
|
||||
; This function is called to execute an EBC CALLEX instruction.
|
||||
; This instruction requires that we thunk out to external native
|
||||
; code. For x64, we switch stacks, copy the arguments to the stack
|
||||
; and jump to the specified function.
|
||||
; On return, we restore the stack pointer to its original location.
|
||||
;
|
||||
; Destroys no working registers.
|
||||
;****************************************************************************
|
||||
; VOID EbcLLCALLEXNative(UINTN FuncAddr, UINTN NewStackPointer, VOID *FramePtr)
|
||||
EbcLLCALLEXNative PROC
|
||||
push rbp
|
||||
push rbx
|
||||
mov rbp, rsp
|
||||
; Function prolog
|
||||
|
||||
; Copy FuncAddr to a preserved register.
|
||||
mov rbx, rcx
|
||||
|
||||
; Set stack pointer to new value
|
||||
mov rsp, rdx
|
||||
|
||||
; Considering the worst case, load 4 potiential arguments
|
||||
; into registers.
|
||||
mov rcx, qword ptr [rsp]
|
||||
mov rdx, qword ptr [rsp+8h]
|
||||
mov r8, qword ptr [rsp+10h]
|
||||
mov r9, qword ptr [rsp+18h]
|
||||
|
||||
; Now call the external routine
|
||||
call rbx
|
||||
|
||||
; Function epilog
|
||||
mov rsp, rbp
|
||||
pop rbx
|
||||
pop rbp
|
||||
ret
|
||||
EbcLLCALLEXNative ENDP
|
||||
|
||||
|
||||
; UINTN EbcLLGetEbcEntryPoint(VOID);
|
||||
; Routine Description:
|
||||
; The VM thunk code stuffs an EBC entry point into a processor
|
||||
; register. Since we can't use inline assembly to get it from
|
||||
; the interpreter C code, stuff it into the return value
|
||||
; register and return.
|
||||
;
|
||||
; Arguments:
|
||||
; None.
|
||||
;
|
||||
; Returns:
|
||||
; The contents of the register in which the entry point is passed.
|
||||
;
|
||||
EbcLLGetEbcEntryPoint PROC
|
||||
ret
|
||||
EbcLLGetEbcEntryPoint ENDP
|
||||
|
||||
;/*++
|
||||
;
|
||||
;Routine Description:
|
||||
;
|
||||
; Return the caller's value of the stack pointer.
|
||||
;
|
||||
;Arguments:
|
||||
;
|
||||
; None.
|
||||
;
|
||||
;Returns:
|
||||
;
|
||||
; The current value of the stack pointer for the caller. We
|
||||
; adjust it by 4 here because when they called us, the return address
|
||||
; is put on the stack, thereby lowering it by 4 bytes.
|
||||
;
|
||||
;--*/
|
||||
|
||||
; UINTN EbcLLGetStackPointer()
|
||||
EbcLLGetStackPointer PROC
|
||||
mov rax, rsp ; get current stack pointer
|
||||
; Stack adjusted by this much when we were called,
|
||||
; For this function, it's 4.
|
||||
add rax, 4
|
||||
ret
|
||||
EbcLLGetStackPointer ENDP
|
||||
|
||||
; UINT64 EbcLLGetReturnValue(VOID);
|
||||
; Routine Description:
|
||||
; When EBC calls native, on return the VM has to stuff the return
|
||||
; value into a VM register. It's assumed here that the value is still
|
||||
; in the register, so simply return and the caller should get the
|
||||
; return result properly.
|
||||
;
|
||||
; Arguments:
|
||||
; None.
|
||||
;
|
||||
; Returns:
|
||||
; The unmodified value returned by the native code.
|
||||
;
|
||||
EbcLLGetReturnValue PROC
|
||||
ret
|
||||
EbcLLGetReturnValue ENDP
|
||||
|
||||
text ENDS
|
||||
END
|
||||
|
579
EdkModulePkg/Universal/Ebc/Dxe/x64/EbcSupport.c
Normal file
579
EdkModulePkg/Universal/Ebc/Dxe/x64/EbcSupport.c
Normal file
@@ -0,0 +1,579 @@
|
||||
/*++
|
||||
|
||||
Copyright (c) 2006, Intel Corporation
|
||||
All rights reserved. This program and the accompanying materials
|
||||
are licensed and made available under the terms and conditions of the BSD License
|
||||
which accompanies this distribution. The full text of the license may be found at
|
||||
http://opensource.org/licenses/bsd-license.php
|
||||
|
||||
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
||||
|
||||
Module Name:
|
||||
|
||||
EbcSupport.c
|
||||
|
||||
Abstract:
|
||||
|
||||
This module contains EBC support routines that are customized based on
|
||||
the target x64 processor.
|
||||
|
||||
--*/
|
||||
|
||||
#include "EbcInt.h"
|
||||
#include "EbcExecute.h"
|
||||
|
||||
//
|
||||
// NOTE: This is the stack size allocated for the interpreter
|
||||
// when it executes an EBC image. The requirements can change
|
||||
// based on whether or not a debugger is present, and other
|
||||
// platform-specific configurations.
|
||||
//
|
||||
#define VM_STACK_SIZE (1024 * 8)
|
||||
#define EBC_THUNK_SIZE 64
|
||||
|
||||
STATIC
|
||||
VOID
|
||||
PushU64 (
|
||||
VM_CONTEXT *VmPtr,
|
||||
UINT64 Arg
|
||||
)
|
||||
/*++
|
||||
|
||||
Routine Description:
|
||||
|
||||
Push a 64 bit unsigned value to the VM stack.
|
||||
|
||||
Arguments:
|
||||
|
||||
VmPtr - The pointer to current VM context.
|
||||
Arg - The value to be pushed
|
||||
|
||||
Returns:
|
||||
|
||||
VOID
|
||||
|
||||
--*/
|
||||
{
|
||||
//
|
||||
// Advance the VM stack down, and then copy the argument to the stack.
|
||||
// Hope it's aligned.
|
||||
//
|
||||
VmPtr->R[0] -= sizeof (UINT64);
|
||||
*(UINT64 *) VmPtr->R[0] = Arg;
|
||||
return;
|
||||
}
|
||||
|
||||
STATIC
|
||||
UINT64
|
||||
EbcInterpret (
|
||||
UINTN Arg1,
|
||||
UINTN Arg2,
|
||||
UINTN Arg3,
|
||||
UINTN Arg4,
|
||||
UINTN Arg5
|
||||
)
|
||||
/*++
|
||||
|
||||
Routine Description:
|
||||
|
||||
Begin executing an EBC image. The address of the entry point is passed
|
||||
in via a processor register, so we'll need to make a call to get the
|
||||
value.
|
||||
|
||||
Arguments:
|
||||
|
||||
This is a thunk function. Microsoft x64 compiler only provide fast_call
|
||||
calling convention, so the first four arguments are passed by rcx, rdx,
|
||||
r8, and r9, while other arguments are passed in stack.
|
||||
|
||||
Returns:
|
||||
|
||||
The value returned by the EBC application we're going to run.
|
||||
|
||||
--*/
|
||||
{
|
||||
//
|
||||
// Create a new VM context on the stack
|
||||
//
|
||||
VM_CONTEXT VmContext;
|
||||
UINTN Addr;
|
||||
|
||||
//
|
||||
// Get the EBC entry point from the processor register.
|
||||
// Don't call any function before getting the EBC entry
|
||||
// point because this will collab the return register.
|
||||
//
|
||||
Addr = EbcLLGetEbcEntryPoint ();
|
||||
|
||||
//
|
||||
// Now clear out our context
|
||||
//
|
||||
ZeroMem ((VOID *) &VmContext, sizeof (VM_CONTEXT));
|
||||
|
||||
//
|
||||
// Set the VM instruction pointer to the correct location in memory.
|
||||
//
|
||||
VmContext.Ip = (VMIP) Addr;
|
||||
|
||||
//
|
||||
// Initialize the stack pointer for the EBC. Get the current system stack
|
||||
// pointer and adjust it down by the max needed for the interpreter.
|
||||
//
|
||||
Addr = EbcLLGetStackPointer ();
|
||||
|
||||
//
|
||||
// Adjust the VM's stack pointer down.
|
||||
//
|
||||
VmContext.R[0] = (UINT64) Addr;
|
||||
VmContext.R[0] -= VM_STACK_SIZE;
|
||||
|
||||
//
|
||||
// Align the stack on a natural boundary.
|
||||
//
|
||||
VmContext.R[0] &= ~(sizeof (UINTN) - 1);
|
||||
|
||||
//
|
||||
// Put a magic value in the stack gap, then adjust down again.
|
||||
//
|
||||
*(UINTN *) (UINTN) (VmContext.R[0]) = (UINTN) VM_STACK_KEY_VALUE;
|
||||
VmContext.StackMagicPtr = (UINTN *) (UINTN) VmContext.R[0];
|
||||
|
||||
//
|
||||
// The stack upper to LowStackTop is belong to the VM.
|
||||
//
|
||||
VmContext.LowStackTop = (UINTN) VmContext.R[0];
|
||||
|
||||
//
|
||||
// For the worst case, assume there are 4 arguments passed in registers, store
|
||||
// them to VM's stack.
|
||||
//
|
||||
PushU64 (&VmContext, (UINT64) Arg4);
|
||||
PushU64 (&VmContext, (UINT64) Arg3);
|
||||
PushU64 (&VmContext, (UINT64) Arg2);
|
||||
PushU64 (&VmContext, (UINT64) Arg1);
|
||||
|
||||
//
|
||||
// Interpreter assumes 64-bit return address is pushed on the stack.
|
||||
// The x64 does not do this so pad the stack accordingly.
|
||||
//
|
||||
PushU64 (&VmContext, (UINT64) 0);
|
||||
PushU64 (&VmContext, (UINT64) 0x1234567887654321);
|
||||
|
||||
//
|
||||
// For x64, this is where we say our return address is
|
||||
//
|
||||
VmContext.StackRetAddr = (UINT64) VmContext.R[0];
|
||||
|
||||
//
|
||||
// We need to keep track of where the EBC stack starts. This way, if the EBC
|
||||
// accesses any stack variables above its initial stack setting, then we know
|
||||
// it's accessing variables passed into it, which means the data is on the
|
||||
// VM's stack.
|
||||
// When we're called, on the stack (high to low) we have the parameters, the
|
||||
// return address, then the saved ebp. Save the pointer to the return address.
|
||||
// EBC code knows that's there, so should look above it for function parameters.
|
||||
// The offset is the size of locals (VMContext + Addr + saved ebp).
|
||||
// Note that the interpreter assumes there is a 16 bytes of return address on
|
||||
// the stack too, so adjust accordingly.
|
||||
// VmContext.HighStackBottom = (UINTN)(Addr + sizeof (VmContext) + sizeof (Addr));
|
||||
//
|
||||
VmContext.HighStackBottom = (UINTN) &Arg5;
|
||||
|
||||
//
|
||||
// Begin executing the EBC code
|
||||
//
|
||||
EbcExecute (&VmContext);
|
||||
|
||||
//
|
||||
// Return the value in R[7] unless there was an error
|
||||
//
|
||||
return (UINT64) VmContext.R[7];
|
||||
}
|
||||
|
||||
STATIC
|
||||
UINT64
|
||||
ExecuteEbcImageEntryPoint (
|
||||
IN EFI_HANDLE ImageHandle,
|
||||
IN EFI_SYSTEM_TABLE *SystemTable
|
||||
)
|
||||
/*++
|
||||
|
||||
Routine Description:
|
||||
|
||||
Begin executing an EBC image. The address of the entry point is passed
|
||||
in via a processor register, so we'll need to make a call to get the
|
||||
value.
|
||||
|
||||
Arguments:
|
||||
|
||||
ImageHandle - image handle for the EBC application we're executing
|
||||
SystemTable - standard system table passed into an driver's entry point
|
||||
|
||||
Returns:
|
||||
|
||||
The value returned by the EBC application we're going to run.
|
||||
|
||||
--*/
|
||||
{
|
||||
//
|
||||
// Create a new VM context on the stack
|
||||
//
|
||||
VM_CONTEXT VmContext;
|
||||
UINTN Addr;
|
||||
|
||||
//
|
||||
// Get the EBC entry point from the processor register. Make sure you don't
|
||||
// call any functions before this or you could mess up the register the
|
||||
// entry point is passed in.
|
||||
//
|
||||
Addr = EbcLLGetEbcEntryPoint ();
|
||||
|
||||
//
|
||||
// Now clear out our context
|
||||
//
|
||||
ZeroMem ((VOID *) &VmContext, sizeof (VM_CONTEXT));
|
||||
|
||||
//
|
||||
// Save the image handle so we can track the thunks created for this image
|
||||
//
|
||||
VmContext.ImageHandle = ImageHandle;
|
||||
VmContext.SystemTable = SystemTable;
|
||||
|
||||
//
|
||||
// Set the VM instruction pointer to the correct location in memory.
|
||||
//
|
||||
VmContext.Ip = (VMIP) Addr;
|
||||
|
||||
//
|
||||
// Initialize the stack pointer for the EBC. Get the current system stack
|
||||
// pointer and adjust it down by the max needed for the interpreter.
|
||||
//
|
||||
Addr = EbcLLGetStackPointer ();
|
||||
VmContext.R[0] = (UINT64) Addr;
|
||||
VmContext.R[0] -= VM_STACK_SIZE;
|
||||
|
||||
//
|
||||
// Put a magic value in the stack gap, then adjust down again
|
||||
//
|
||||
*(UINTN *) (UINTN) (VmContext.R[0]) = (UINTN) VM_STACK_KEY_VALUE;
|
||||
VmContext.StackMagicPtr = (UINTN *) (UINTN) VmContext.R[0];
|
||||
|
||||
//
|
||||
// Align the stack on a natural boundary
|
||||
VmContext.R[0] &= ~(sizeof(UINTN) - 1);
|
||||
//
|
||||
VmContext.LowStackTop = (UINTN) VmContext.R[0];
|
||||
|
||||
//
|
||||
// Simply copy the image handle and system table onto the EBC stack.
|
||||
// Greatly simplifies things by not having to spill the args.
|
||||
//
|
||||
PushU64 (&VmContext, (UINT64) SystemTable);
|
||||
PushU64 (&VmContext, (UINT64) ImageHandle);
|
||||
|
||||
//
|
||||
// VM pushes 16-bytes for return address. Simulate that here.
|
||||
//
|
||||
PushU64 (&VmContext, (UINT64) 0);
|
||||
PushU64 (&VmContext, (UINT64) 0x1234567887654321);
|
||||
|
||||
//
|
||||
// For x64, this is where we say our return address is
|
||||
//
|
||||
VmContext.StackRetAddr = (UINT64) VmContext.R[0];
|
||||
|
||||
//
|
||||
// Entry function needn't access high stack context, simply
|
||||
// put the stack pointer here.
|
||||
//
|
||||
VmContext.HighStackBottom = (UINTN) Addr;
|
||||
|
||||
//
|
||||
// Begin executing the EBC code
|
||||
//
|
||||
EbcExecute (&VmContext);
|
||||
|
||||
//
|
||||
// Return the value in R[7] unless there was an error
|
||||
//
|
||||
return (UINT64) VmContext.R[7];
|
||||
}
|
||||
|
||||
EFI_STATUS
|
||||
EbcCreateThunks (
|
||||
IN EFI_HANDLE ImageHandle,
|
||||
IN VOID *EbcEntryPoint,
|
||||
OUT VOID **Thunk,
|
||||
IN UINT32 Flags
|
||||
)
|
||||
/*++
|
||||
|
||||
Routine Description:
|
||||
|
||||
Create an IA32 thunk for the given EBC entry point.
|
||||
|
||||
Arguments:
|
||||
|
||||
ImageHandle - Handle of image for which this thunk is being created
|
||||
EbcEntryPoint - Address of the EBC code that the thunk is to call
|
||||
Thunk - Returned thunk we create here
|
||||
|
||||
Returns:
|
||||
|
||||
Standard EFI status.
|
||||
|
||||
--*/
|
||||
{
|
||||
UINT8 *Ptr;
|
||||
UINT8 *ThunkBase;
|
||||
UINT32 I;
|
||||
UINT64 Addr;
|
||||
INT32 Size;
|
||||
INT32 ThunkSize;
|
||||
EFI_STATUS Status;
|
||||
|
||||
//
|
||||
// Check alignment of pointer to EBC code
|
||||
//
|
||||
if ((UINT32) (UINTN) EbcEntryPoint & 0x01) {
|
||||
return EFI_INVALID_PARAMETER;
|
||||
}
|
||||
|
||||
Size = EBC_THUNK_SIZE;
|
||||
ThunkSize = Size;
|
||||
|
||||
Status = gBS->AllocatePool (
|
||||
EfiBootServicesData,
|
||||
Size,
|
||||
(VOID *) &Ptr
|
||||
);
|
||||
if (Status != EFI_SUCCESS) {
|
||||
return EFI_OUT_OF_RESOURCES;
|
||||
}
|
||||
//
|
||||
// Print(L"Allocate TH: 0x%X\n", (UINT32)Ptr);
|
||||
//
|
||||
// Save the start address so we can add a pointer to it to a list later.
|
||||
//
|
||||
ThunkBase = Ptr;
|
||||
|
||||
//
|
||||
// Give them the address of our buffer we're going to fix up
|
||||
//
|
||||
*Thunk = (VOID *) Ptr;
|
||||
|
||||
//
|
||||
// Add a magic code here to help the VM recognize the thunk..
|
||||
// mov rax, ca112ebccall2ebch => 48 B8 BC 2E 11 CA BC 2E 11 CA
|
||||
//
|
||||
*Ptr = 0x48;
|
||||
Ptr++;
|
||||
Size--;
|
||||
*Ptr = 0xB8;
|
||||
Ptr++;
|
||||
Size--;
|
||||
Addr = (UINT64) 0xCA112EBCCA112EBC;
|
||||
for (I = 0; I < sizeof (Addr); I++) {
|
||||
*Ptr = (UINT8) (UINTN) Addr;
|
||||
Addr >>= 8;
|
||||
Ptr++;
|
||||
Size--;
|
||||
}
|
||||
|
||||
//
|
||||
// Add code bytes to load up a processor register with the EBC entry point.
|
||||
// mov rax, 123456789abcdef0h => 48 B8 F0 DE BC 9A 78 56 34 12
|
||||
// The first 8 bytes of the thunk entry is the address of the EBC
|
||||
// entry point.
|
||||
//
|
||||
*Ptr = 0x48;
|
||||
Ptr++;
|
||||
Size--;
|
||||
*Ptr = 0xB8;
|
||||
Ptr++;
|
||||
Size--;
|
||||
Addr = (UINT64) EbcEntryPoint;
|
||||
for (I = 0; I < sizeof (Addr); I++) {
|
||||
*Ptr = (UINT8) (UINTN) Addr;
|
||||
Addr >>= 8;
|
||||
Ptr++;
|
||||
Size--;
|
||||
}
|
||||
|
||||
//
|
||||
// Stick in a load of ecx with the address of appropriate VM function.
|
||||
// Using r11 because it's a volatile register and won't be used in this
|
||||
// point.
|
||||
// mov r11 123456789abcdef0h => 49 BB F0 DE BC 9A 78 56 34 12
|
||||
//
|
||||
if (Flags & FLAG_THUNK_ENTRY_POINT) {
|
||||
Addr = (UINTN) ExecuteEbcImageEntryPoint;
|
||||
} else {
|
||||
Addr = (UINTN) EbcInterpret;
|
||||
}
|
||||
|
||||
//
|
||||
// mov r11 Addr => 0x49 0xBB
|
||||
//
|
||||
*Ptr = 0x49;
|
||||
Ptr++;
|
||||
Size--;
|
||||
*Ptr = 0xBB;
|
||||
Ptr++;
|
||||
Size--;
|
||||
for (I = 0; I < sizeof (Addr); I++) {
|
||||
*Ptr = (UINT8) Addr;
|
||||
Addr >>= 8;
|
||||
Ptr++;
|
||||
Size--;
|
||||
}
|
||||
//
|
||||
// Stick in jump opcode bytes for jmp r11 => 0x41 0xFF 0xE3
|
||||
//
|
||||
*Ptr = 0x41;
|
||||
Ptr++;
|
||||
Size--;
|
||||
*Ptr = 0xFF;
|
||||
Ptr++;
|
||||
Size--;
|
||||
*Ptr = 0xE3;
|
||||
Size--;
|
||||
|
||||
//
|
||||
// Double check that our defined size is ok (application error)
|
||||
//
|
||||
if (Size < 0) {
|
||||
ASSERT (FALSE);
|
||||
return EFI_BUFFER_TOO_SMALL;
|
||||
}
|
||||
//
|
||||
// Add the thunk to the list for this image. Do this last since the add
|
||||
// function flushes the cache for us.
|
||||
//
|
||||
EbcAddImageThunk (ImageHandle, (VOID *) ThunkBase, ThunkSize);
|
||||
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
|
||||
VOID
|
||||
EbcLLCALLEX (
|
||||
IN VM_CONTEXT *VmPtr,
|
||||
IN UINTN FuncAddr,
|
||||
IN UINTN NewStackPointer,
|
||||
IN VOID *FramePtr,
|
||||
IN UINT8 Size
|
||||
)
|
||||
/*++
|
||||
|
||||
Routine Description:
|
||||
|
||||
This function is called to execute an EBC CALLEX instruction.
|
||||
The function check the callee's content to see whether it is common native
|
||||
code or a thunk to another piece of EBC code.
|
||||
If the callee is common native code, use EbcLLCAllEXASM to manipulate,
|
||||
otherwise, set the VM->IP to target EBC code directly to avoid another VM
|
||||
be startup which cost time and stack space.
|
||||
|
||||
Arguments:
|
||||
|
||||
VmPtr - Pointer to a VM context.
|
||||
FuncAddr - Callee's address
|
||||
NewStackPointer - New stack pointer after the call
|
||||
FramePtr - New frame pointer after the call
|
||||
Size - The size of call instruction
|
||||
|
||||
Returns:
|
||||
|
||||
None.
|
||||
|
||||
--*/
|
||||
{
|
||||
UINTN IsThunk;
|
||||
UINTN TargetEbcAddr;
|
||||
|
||||
IsThunk = 1;
|
||||
TargetEbcAddr = 0;
|
||||
|
||||
//
|
||||
// Processor specific code to check whether the callee is a thunk to EBC.
|
||||
//
|
||||
if (*((UINT8 *)FuncAddr) != 0x48) {
|
||||
IsThunk = 0;
|
||||
goto Action;
|
||||
}
|
||||
if (*((UINT8 *)FuncAddr + 1) != 0xB8) {
|
||||
IsThunk = 0;
|
||||
goto Action;
|
||||
}
|
||||
if (*((UINT8 *)FuncAddr + 2) != 0xBC) {
|
||||
IsThunk = 0;
|
||||
goto Action;
|
||||
}
|
||||
if (*((UINT8 *)FuncAddr + 3) != 0x2E) {
|
||||
IsThunk = 0;
|
||||
goto Action;
|
||||
}
|
||||
if (*((UINT8 *)FuncAddr + 4) != 0x11) {
|
||||
IsThunk = 0;
|
||||
goto Action;
|
||||
}
|
||||
if (*((UINT8 *)FuncAddr + 5) != 0xCA) {
|
||||
IsThunk = 0;
|
||||
goto Action;
|
||||
}
|
||||
if (*((UINT8 *)FuncAddr + 6) != 0xBC) {
|
||||
IsThunk = 0;
|
||||
goto Action;
|
||||
}
|
||||
if (*((UINT8 *)FuncAddr + 7) != 0x2E) {
|
||||
IsThunk = 0;
|
||||
goto Action;
|
||||
}
|
||||
if (*((UINT8 *)FuncAddr + 8) != 0x11) {
|
||||
IsThunk = 0;
|
||||
goto Action;
|
||||
}
|
||||
if (*((UINT8 *)FuncAddr + 9) != 0xCA) {
|
||||
IsThunk = 0;
|
||||
goto Action;
|
||||
}
|
||||
if (*((UINT8 *)FuncAddr + 10) != 0x48) {
|
||||
IsThunk = 0;
|
||||
goto Action;
|
||||
}
|
||||
if (*((UINT8 *)FuncAddr + 11) != 0xB8) {
|
||||
IsThunk = 0;
|
||||
goto Action;
|
||||
}
|
||||
|
||||
CopyMem (&TargetEbcAddr, (UINT8 *)FuncAddr + 12, 8);
|
||||
|
||||
Action:
|
||||
if (IsThunk == 1){
|
||||
//
|
||||
// The callee is a thunk to EBC, adjust the stack pointer down 16 bytes and
|
||||
// put our return address and frame pointer on the VM stack.
|
||||
// Then set the VM's IP to new EBC code.
|
||||
//
|
||||
VmPtr->R[0] -= 8;
|
||||
VmWriteMemN (VmPtr, (UINTN) VmPtr->R[0], (UINTN) FramePtr);
|
||||
VmPtr->FramePtr = (VOID *) (UINTN) VmPtr->R[0];
|
||||
VmPtr->R[0] -= 8;
|
||||
VmWriteMem64 (VmPtr, (UINTN) VmPtr->R[0], (UINT64) (VmPtr->Ip + Size));
|
||||
|
||||
VmPtr->Ip = (VMIP) (UINTN) TargetEbcAddr;
|
||||
} else {
|
||||
//
|
||||
// The callee is not a thunk to EBC, call native code.
|
||||
//
|
||||
EbcLLCALLEXNative (FuncAddr, NewStackPointer, FramePtr);
|
||||
|
||||
//
|
||||
// Get return value and advance the IP.
|
||||
//
|
||||
VmPtr->R[7] = EbcLLGetReturnValue ();
|
||||
VmPtr->Ip += Size;
|
||||
}
|
||||
}
|
||||
|
451
EdkModulePkg/Universal/Ebc/Dxe/x64/x64Math.c
Normal file
451
EdkModulePkg/Universal/Ebc/Dxe/x64/x64Math.c
Normal file
@@ -0,0 +1,451 @@
|
||||
/*++
|
||||
|
||||
Copyright (c) 2006 , Intel Corporation
|
||||
All rights reserved. This program and the accompanying materials
|
||||
are licensed and made available under the terms and conditions of the BSD License
|
||||
which accompanies this distribution. The full text of the license may be found at
|
||||
http://opensource.org/licenses/bsd-license.php
|
||||
|
||||
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
||||
|
||||
Module Name:
|
||||
|
||||
x64math.c
|
||||
|
||||
Abstract:
|
||||
|
||||
Math routines for x64.
|
||||
|
||||
--*/
|
||||
|
||||
UINT64
|
||||
LeftShiftU64 (
|
||||
IN UINT64 Operand,
|
||||
IN UINT64 Count
|
||||
)
|
||||
/*++
|
||||
|
||||
Routine Description:
|
||||
|
||||
Left-shift a 64 bit value.
|
||||
|
||||
Arguments:
|
||||
|
||||
Operand - 64-bit value to shift
|
||||
Count - shift count
|
||||
|
||||
Returns:
|
||||
|
||||
Operand << Count
|
||||
|
||||
--*/
|
||||
{
|
||||
if (Count > 63) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
return Operand << Count;
|
||||
}
|
||||
|
||||
UINT64
|
||||
RightShiftU64 (
|
||||
IN UINT64 Operand,
|
||||
IN UINT64 Count
|
||||
)
|
||||
/*++
|
||||
|
||||
Routine Description:
|
||||
|
||||
Right-shift a 64 bit value.
|
||||
|
||||
Arguments:
|
||||
|
||||
Operand - 64-bit value to shift
|
||||
Count - shift count
|
||||
|
||||
Returns:
|
||||
|
||||
Operand >> Count
|
||||
|
||||
--*/
|
||||
{
|
||||
if (Count > 63) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
return Operand >> Count;
|
||||
}
|
||||
|
||||
INT64
|
||||
ARightShift64 (
|
||||
IN INT64 Operand,
|
||||
IN UINT64 Count
|
||||
)
|
||||
/*++
|
||||
|
||||
Routine Description:
|
||||
|
||||
Right-shift a 64 bit signed value.
|
||||
|
||||
Arguments:
|
||||
|
||||
Operand - 64-bit value to shift
|
||||
Count - shift count
|
||||
|
||||
Returns:
|
||||
|
||||
Operand >> Count
|
||||
|
||||
--*/
|
||||
{
|
||||
if (Count > 63) {
|
||||
|
||||
if (Operand & 0x8000000000000000ULL) {
|
||||
return (INT64)~0;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
return Operand >> Count;
|
||||
}
|
||||
|
||||
#if 0
|
||||
//
|
||||
// The compiler generates true assembly for these, so we don't need them.
|
||||
//
|
||||
INT32
|
||||
ARightShift32 (
|
||||
IN INT32 Operand,
|
||||
IN UINTN Count
|
||||
)
|
||||
/*++
|
||||
|
||||
Routine Description:
|
||||
|
||||
Right shift a 32-bit value
|
||||
|
||||
Arguments:
|
||||
|
||||
Operand - value to shift
|
||||
Count - shift count
|
||||
|
||||
Returns:
|
||||
|
||||
Operand >> Count
|
||||
|
||||
--*/
|
||||
{
|
||||
return Operand >> (Count & 0x1f);
|
||||
}
|
||||
|
||||
INT32
|
||||
MulS32x32 (
|
||||
INT32 Value1,
|
||||
INT32 Value2,
|
||||
INT32 *ResultHigh
|
||||
)
|
||||
/*++
|
||||
|
||||
Routine Description:
|
||||
|
||||
Multiply two signed 32-bit numbers.
|
||||
|
||||
Arguments:
|
||||
|
||||
Value1 - first value to multiply
|
||||
Value2 - value to multiply Value1 by
|
||||
ResultHigh - overflow
|
||||
|
||||
Returns:
|
||||
|
||||
Value1 * Value2
|
||||
|
||||
Notes:
|
||||
|
||||
The 64-bit result is the concatenation of *ResultHigh and the return value
|
||||
|
||||
The product fits in 32 bits if
|
||||
(*ResultHigh == 0x00000000 AND *ResultLow_bit31 == 0)
|
||||
OR
|
||||
(*ResultHigh == 0xffffffff AND *ResultLow_bit31 == 1)
|
||||
|
||||
--*/
|
||||
{
|
||||
INT64 Rres64;
|
||||
INT32 Result;
|
||||
|
||||
Res64 = (INT64) Value1 * (INT64) Value2;
|
||||
*ResultHigh = (Res64 >> 32) & 0xffffffff;
|
||||
Result = Res64 & 0xffffffff;
|
||||
return Result;
|
||||
}
|
||||
|
||||
UINT32
|
||||
MulU32x32 (
|
||||
UINT32 Value1,
|
||||
UINT32 Value2,
|
||||
UINT32 *ResultHigh
|
||||
)
|
||||
/*++
|
||||
|
||||
Routine Description:
|
||||
|
||||
Multiply two unsigned 32-bit values.
|
||||
|
||||
Arguments:
|
||||
|
||||
Value1 - first number
|
||||
Value2 - number to multiply by Value1
|
||||
ResultHigh - overflow
|
||||
|
||||
Returns:
|
||||
|
||||
Value1 * Value2
|
||||
|
||||
Notes:
|
||||
|
||||
The 64-bit result is the concatenation of *ResultHigh and the return value.
|
||||
The product fits in 32 bits if *ResultHigh == 0x00000000
|
||||
|
||||
--*/
|
||||
{
|
||||
UINT64 Res64;
|
||||
UINT32 Result;
|
||||
|
||||
Res64 = (INT64) Value1 * (INT64) Value2;
|
||||
*ResultHigh = (Res64 >> 32) & 0xffffffff;
|
||||
Result = Res64 & 0xffffffff;
|
||||
return Result;
|
||||
}
|
||||
|
||||
INT32
|
||||
DivS32x32 (
|
||||
INT32 Value1,
|
||||
INT32 Value2,
|
||||
INT32 *Remainder,
|
||||
UINTN *error
|
||||
)
|
||||
//
|
||||
// signed 32-bit by signed 32-bit divide; the 32-bit remainder is
|
||||
// in *Remainder and the quotient is the return value; *error = 1 if the
|
||||
// divisor is 0, and it is 1 otherwise
|
||||
//
|
||||
{
|
||||
INT32 Result;
|
||||
|
||||
*error = 0;
|
||||
|
||||
if (Value2 == 0x0) {
|
||||
*error = 1;
|
||||
Result = 0x80000000;
|
||||
*Remainder = 0x80000000;
|
||||
} else {
|
||||
Result = Value1 / Value2;
|
||||
*Remainder = Value1 - Result * Value2;
|
||||
}
|
||||
|
||||
return Result;
|
||||
}
|
||||
|
||||
UINT32
|
||||
DivU32x32 (
|
||||
UINT32 Value1,
|
||||
UINT32 Value2,
|
||||
UINT32 *Remainder,
|
||||
UINTN *Error
|
||||
)
|
||||
//
|
||||
// unsigned 32-bit by unsigned 32-bit divide; the 32-bit remainder is
|
||||
// in *Remainder and the quotient is the return value; *error = 1 if the
|
||||
// divisor is 0, and it is 1 otherwise
|
||||
//
|
||||
{
|
||||
UINT32 Result;
|
||||
|
||||
*Error = 0;
|
||||
|
||||
if (Value2 == 0x0) {
|
||||
*Error = 1;
|
||||
Result = 0x80000000;
|
||||
*Remainder = 0x80000000;
|
||||
} else {
|
||||
Result = Value1 / Value2;
|
||||
*Remainder = Value1 - Result * Value2;
|
||||
}
|
||||
|
||||
return Result;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
INT64
|
||||
MulS64x64 (
|
||||
INT64 Value1,
|
||||
INT64 Value2,
|
||||
INT64 *ResultHigh
|
||||
)
|
||||
/*++
|
||||
|
||||
Routine Description:
|
||||
|
||||
Multiply two signed 32-bit numbers.
|
||||
|
||||
Arguments:
|
||||
|
||||
Value1 - first value to multiply
|
||||
Value2 - value to multiply Value1 by
|
||||
ResultHigh - overflow
|
||||
|
||||
Returns:
|
||||
|
||||
Value1 * Value2
|
||||
|
||||
Notes:
|
||||
|
||||
The 64-bit result is the concatenation of *ResultHigh and the return value
|
||||
|
||||
The product fits in 32 bits if
|
||||
(*ResultHigh == 0x00000000 AND *ResultLow_bit31 == 0)
|
||||
OR
|
||||
(*ResultHigh == 0xffffffff AND *ResultLow_bit31 == 1)
|
||||
|
||||
--*/
|
||||
{
|
||||
INT64 Result;
|
||||
|
||||
Result = Value1 * Value2;
|
||||
|
||||
return Result;
|
||||
}
|
||||
|
||||
UINT64
|
||||
MulU64x64 (
|
||||
UINT64 Value1,
|
||||
UINT64 Value2,
|
||||
UINT64 *ResultHigh
|
||||
)
|
||||
/*++
|
||||
|
||||
Routine Description:
|
||||
|
||||
Multiply two unsigned 32-bit values.
|
||||
|
||||
Arguments:
|
||||
|
||||
Value1 - first number
|
||||
Value2 - number to multiply by Value1
|
||||
ResultHigh - overflow
|
||||
|
||||
Returns:
|
||||
|
||||
Value1 * Value2
|
||||
|
||||
Notes:
|
||||
|
||||
The 64-bit result is the concatenation of *ResultHigh and the return value.
|
||||
The product fits in 32 bits if *ResultHigh == 0x00000000
|
||||
|
||||
--*/
|
||||
{
|
||||
UINT64 Result;
|
||||
|
||||
Result = Value1 * Value2;
|
||||
|
||||
return Result;
|
||||
}
|
||||
|
||||
INT64
|
||||
DivS64x64 (
|
||||
INT64 Value1,
|
||||
INT64 Value2,
|
||||
INT64 *Remainder,
|
||||
UINTN *Error
|
||||
)
|
||||
/*++
|
||||
|
||||
Routine Description:
|
||||
|
||||
Divide two 64-bit signed values.
|
||||
|
||||
Arguments:
|
||||
|
||||
Value1 - dividend
|
||||
Value2 - divisor
|
||||
Remainder - remainder of Value1/Value2
|
||||
Error - to flag errors (divide-by-0)
|
||||
|
||||
Returns:
|
||||
|
||||
Value1 / Valu2
|
||||
|
||||
Note:
|
||||
|
||||
The 64-bit remainder is in *Remainder and the quotient is the return value.
|
||||
*Error = 1 if the divisor is 0, and it is 1 otherwise
|
||||
|
||||
--*/
|
||||
{
|
||||
INT64 Result;
|
||||
|
||||
*Error = 0;
|
||||
|
||||
if (Value2 == 0x0) {
|
||||
*Error = 1;
|
||||
Result = 0x8000000000000000;
|
||||
*Remainder = 0x8000000000000000;
|
||||
} else {
|
||||
Result = Value1 / Value2;
|
||||
*Remainder = Value1 - Result * Value2;
|
||||
}
|
||||
|
||||
return Result;
|
||||
}
|
||||
|
||||
UINT64
|
||||
DivU64x64 (
|
||||
UINT64 Value1,
|
||||
UINT64 Value2,
|
||||
UINT64 *Remainder,
|
||||
UINTN *Error
|
||||
)
|
||||
/*++
|
||||
|
||||
Routine Description:
|
||||
|
||||
Divide two 64-bit unsigned values.
|
||||
|
||||
Arguments:
|
||||
|
||||
Value1 - dividend
|
||||
Value2 - divisor
|
||||
Remainder - remainder of Value1/Value2
|
||||
Error - to flag errors (divide-by-0)
|
||||
|
||||
Returns:
|
||||
|
||||
Value1 / Valu2
|
||||
|
||||
Note:
|
||||
|
||||
The 64-bit remainder is in *Remainder and the quotient is the return value.
|
||||
*Error = 1 if the divisor is 0, and it is 1 otherwise
|
||||
|
||||
--*/
|
||||
{
|
||||
UINT64 Result;
|
||||
|
||||
*Error = 0;
|
||||
|
||||
if (Value2 == 0x0) {
|
||||
*Error = 1;
|
||||
Result = 0x8000000000000000;
|
||||
*Remainder = 0x8000000000000000;
|
||||
} else {
|
||||
Result = Value1 / Value2;
|
||||
*Remainder = Value1 - Result * Value2;
|
||||
}
|
||||
|
||||
return Result;
|
||||
}
|
Reference in New Issue
Block a user