Add SMM Variable implementation.
git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@11151 6f19259b-4bc3-4df7-8a09-765794883524
This commit is contained in:
@@ -1,44 +1,7 @@
|
||||
/** @file
|
||||
|
||||
This is a simple fault tolerant write driver.
|
||||
|
||||
This boot service protocol only provides fault tolerant write capability for
|
||||
block devices. The protocol has internal non-volatile intermediate storage
|
||||
of the data and private information. It should be able to recover
|
||||
automatically from a critical fault, such as power failure.
|
||||
|
||||
The implementation uses an FTW (Fault Tolerant Write) Work Space.
|
||||
This work space is a memory copy of the work space on the Working Block,
|
||||
the size of the work space is the FTW_WORK_SPACE_SIZE bytes.
|
||||
|
||||
The work space stores each write record as EFI_FTW_RECORD structure.
|
||||
The spare block stores the write buffer before write to the target block.
|
||||
|
||||
The write record has three states to specify the different phase of write operation.
|
||||
1) WRITE_ALLOCATED is that the record is allocated in write space.
|
||||
The information of write operation is stored in write record structure.
|
||||
2) SPARE_COMPLETED is that the data from write buffer is writed into the spare block as the backup.
|
||||
3) WRITE_COMPLETED is that the data is copied from the spare block to the target block.
|
||||
|
||||
This driver operates the data as the whole size of spare block.
|
||||
It first read the SpareAreaLength data from the target block into the spare memory buffer.
|
||||
Then copy the write buffer data into the spare memory buffer.
|
||||
Then write the spare memory buffer into the spare block.
|
||||
Final copy the data from the spare block to the target block.
|
||||
|
||||
To make this drive work well, the following conditions must be satisfied:
|
||||
1. The write NumBytes data must be fit within Spare area.
|
||||
Offset + NumBytes <= SpareAreaLength
|
||||
2. The whole flash range has the same block size.
|
||||
3. Working block is an area which contains working space in its last block and has the same size as spare block.
|
||||
4. Working Block area must be in the single one Firmware Volume Block range which FVB protocol is produced on.
|
||||
5. Spare area must be in the single one Firmware Volume Block range which FVB protocol is produced on.
|
||||
6. Any write data area (SpareAreaLength Area) which the data will be written into must be
|
||||
in the single one Firmware Volume Block range which FVB protocol is produced on.
|
||||
7. If write data area (such as Variable range) is enlarged, the spare area range must be enlarged.
|
||||
The spare area must be enough large to store the write data before write them into the target range.
|
||||
If one of them is not satisfied, FtwWrite may fail.
|
||||
Usually, Spare area only takes one block. That's SpareAreaLength = BlockSize, NumberOfSpareBlock = 1.
|
||||
These are the common Fault Tolerant Write (FTW) functions that are shared
|
||||
by DXE FTW driver and SMM FTW driver.
|
||||
|
||||
Copyright (c) 2006 - 2010, Intel Corporation. All rights reserved.<BR>
|
||||
This program and the accompanying materials
|
||||
@@ -53,8 +16,6 @@ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
||||
|
||||
#include "FaultTolerantWrite.h"
|
||||
|
||||
EFI_EVENT mFvbRegistration = NULL;
|
||||
|
||||
//
|
||||
// Fault Tolerant Write Protocol API
|
||||
//
|
||||
@@ -237,7 +198,7 @@ FtwWriteRecord (
|
||||
|
||||
//
|
||||
// Spare Complete but Destination not complete,
|
||||
// Recover the targt block with the spare block.
|
||||
// Recover the target block with the spare block.
|
||||
//
|
||||
Header = FtwDevice->FtwLastWriteHeader;
|
||||
Record = FtwDevice->FtwLastWriteRecord;
|
||||
@@ -864,390 +825,3 @@ FtwGetLastWrite (
|
||||
return Status;
|
||||
}
|
||||
|
||||
/**
|
||||
Firmware Volume Block Protocol notification event handler.
|
||||
|
||||
Initialization for Fault Tolerant Write is done in this handler.
|
||||
|
||||
@param[in] Event Event whose notification function is being invoked.
|
||||
@param[in] Context Pointer to the notification function's context.
|
||||
**/
|
||||
VOID
|
||||
EFIAPI
|
||||
FvbNotificationEvent (
|
||||
IN EFI_EVENT Event,
|
||||
IN VOID *Context
|
||||
)
|
||||
{
|
||||
EFI_STATUS Status;
|
||||
EFI_HANDLE *HandleBuffer;
|
||||
UINTN HandleCount;
|
||||
UINTN Index;
|
||||
EFI_PHYSICAL_ADDRESS FvbBaseAddress;
|
||||
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb;
|
||||
EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader;
|
||||
EFI_FVB_ATTRIBUTES_2 Attributes;
|
||||
EFI_FTW_DEVICE *FtwDevice;
|
||||
EFI_FV_BLOCK_MAP_ENTRY *FvbMapEntry;
|
||||
UINT32 LbaIndex;
|
||||
UINTN Length;
|
||||
EFI_FAULT_TOLERANT_WRITE_HEADER *FtwHeader;
|
||||
UINTN Offset;
|
||||
EFI_HANDLE FvbHandle;
|
||||
|
||||
FtwDevice = (EFI_FTW_DEVICE *)Context;
|
||||
FvbHandle = NULL;
|
||||
Fvb = NULL;
|
||||
|
||||
FtwDevice->WorkSpaceAddress = (EFI_PHYSICAL_ADDRESS) PcdGet64 (PcdFlashNvStorageFtwWorkingBase64);
|
||||
if (FtwDevice->WorkSpaceAddress == 0) {
|
||||
FtwDevice->WorkSpaceAddress = (EFI_PHYSICAL_ADDRESS) PcdGet32 (PcdFlashNvStorageFtwWorkingBase);
|
||||
}
|
||||
|
||||
FtwDevice->SpareAreaAddress = (EFI_PHYSICAL_ADDRESS) PcdGet64 (PcdFlashNvStorageFtwSpareBase64);
|
||||
if (FtwDevice->SpareAreaAddress == 0) {
|
||||
FtwDevice->SpareAreaAddress = (EFI_PHYSICAL_ADDRESS) PcdGet32 (PcdFlashNvStorageFtwSpareBase);
|
||||
}
|
||||
|
||||
|
||||
//
|
||||
// Locate all handles of Fvb protocol
|
||||
//
|
||||
Status = gBS->LocateHandleBuffer (
|
||||
ByProtocol,
|
||||
&gEfiFirmwareVolumeBlockProtocolGuid,
|
||||
NULL,
|
||||
&HandleCount,
|
||||
&HandleBuffer
|
||||
);
|
||||
if (EFI_ERROR (Status)) {
|
||||
return;
|
||||
}
|
||||
|
||||
//
|
||||
// Get the FVB to access variable store
|
||||
//
|
||||
for (Index = 0; Index < HandleCount; Index += 1) {
|
||||
Status = gBS->HandleProtocol (
|
||||
HandleBuffer[Index],
|
||||
&gEfiFirmwareVolumeBlockProtocolGuid,
|
||||
(VOID **) &Fvb
|
||||
);
|
||||
if (EFI_ERROR (Status)) {
|
||||
Status = EFI_NOT_FOUND;
|
||||
break;
|
||||
}
|
||||
|
||||
//
|
||||
// Ensure this FVB protocol supported Write operation.
|
||||
//
|
||||
Status = Fvb->GetAttributes (Fvb, &Attributes);
|
||||
if (EFI_ERROR (Status) || ((Attributes & EFI_FVB2_WRITE_STATUS) == 0)) {
|
||||
continue;
|
||||
}
|
||||
//
|
||||
// Compare the address and select the right one
|
||||
//
|
||||
Status = Fvb->GetPhysicalAddress (Fvb, &FvbBaseAddress);
|
||||
if (EFI_ERROR (Status)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *) ((UINTN) FvbBaseAddress);
|
||||
if ((FtwDevice->FtwFvBlock == NULL) && (FtwDevice->WorkSpaceAddress >= FvbBaseAddress) &&
|
||||
((FtwDevice->WorkSpaceAddress + FtwDevice->WorkSpaceLength) <= (FvbBaseAddress + FwVolHeader->FvLength))
|
||||
) {
|
||||
FtwDevice->FtwFvBlock = Fvb;
|
||||
//
|
||||
// To get the LBA of work space
|
||||
//
|
||||
if ((FwVolHeader->FvLength) > (FwVolHeader->HeaderLength)) {
|
||||
//
|
||||
// Now, one FV has one type of BlockLength
|
||||
//
|
||||
FvbMapEntry = &FwVolHeader->BlockMap[0];
|
||||
for (LbaIndex = 1; LbaIndex <= FvbMapEntry->NumBlocks; LbaIndex += 1) {
|
||||
if ((FtwDevice->WorkSpaceAddress >= (FvbBaseAddress + FvbMapEntry->Length * (LbaIndex - 1)))
|
||||
&& (FtwDevice->WorkSpaceAddress < (FvbBaseAddress + FvbMapEntry->Length * LbaIndex))) {
|
||||
FtwDevice->FtwWorkSpaceLba = LbaIndex - 1;
|
||||
//
|
||||
// Get the Work space size and Base(Offset)
|
||||
//
|
||||
FtwDevice->FtwWorkSpaceSize = FtwDevice->WorkSpaceLength;
|
||||
FtwDevice->FtwWorkSpaceBase = (UINTN) (FtwDevice->WorkSpaceAddress - (FvbBaseAddress + FvbMapEntry->Length * (LbaIndex - 1)));
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if ((FtwDevice->FtwBackupFvb == NULL) && (FtwDevice->SpareAreaAddress >= FvbBaseAddress) &&
|
||||
((FtwDevice->SpareAreaAddress + FtwDevice->SpareAreaLength) <= (FvbBaseAddress + FwVolHeader->FvLength))
|
||||
) {
|
||||
FtwDevice->FtwBackupFvb = Fvb;
|
||||
//
|
||||
// To get the LBA of spare
|
||||
//
|
||||
if ((FwVolHeader->FvLength) > (FwVolHeader->HeaderLength)) {
|
||||
//
|
||||
// Now, one FV has one type of BlockLength
|
||||
//
|
||||
FvbMapEntry = &FwVolHeader->BlockMap[0];
|
||||
for (LbaIndex = 1; LbaIndex <= FvbMapEntry->NumBlocks; LbaIndex += 1) {
|
||||
if ((FtwDevice->SpareAreaAddress >= (FvbBaseAddress + FvbMapEntry->Length * (LbaIndex - 1)))
|
||||
&& (FtwDevice->SpareAreaAddress < (FvbBaseAddress + FvbMapEntry->Length * LbaIndex))) {
|
||||
//
|
||||
// Get the NumberOfSpareBlock and BlockSize
|
||||
//
|
||||
FtwDevice->FtwSpareLba = LbaIndex - 1;
|
||||
FtwDevice->BlockSize = FvbMapEntry->Length;
|
||||
FtwDevice->NumberOfSpareBlock = FtwDevice->SpareAreaLength / FtwDevice->BlockSize;
|
||||
//
|
||||
// Check the range of spare area to make sure that it's in FV range
|
||||
//
|
||||
if ((FtwDevice->FtwSpareLba + FtwDevice->NumberOfSpareBlock) > FvbMapEntry->NumBlocks) {
|
||||
DEBUG ((EFI_D_ERROR, "Ftw: Spare area is out of FV range\n"));
|
||||
ASSERT (FALSE);
|
||||
return;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if ((FtwDevice->FtwBackupFvb == NULL) || (FtwDevice->FtwFvBlock == NULL) ||
|
||||
(FtwDevice->FtwWorkSpaceLba == (EFI_LBA) (-1)) || (FtwDevice->FtwSpareLba == (EFI_LBA) (-1))) {
|
||||
return;
|
||||
}
|
||||
|
||||
DEBUG ((EFI_D_INFO, "Ftw: Working and spare FVB is ready\n"));
|
||||
//
|
||||
// Calculate the start LBA of working block. Working block is an area which
|
||||
// contains working space in its last block and has the same size as spare
|
||||
// block, unless there are not enough blocks before the block that contains
|
||||
// working space.
|
||||
//
|
||||
FtwDevice->FtwWorkBlockLba = FtwDevice->FtwWorkSpaceLba - FtwDevice->NumberOfSpareBlock + 1;
|
||||
ASSERT ((INT64) (FtwDevice->FtwWorkBlockLba) >= 0);
|
||||
|
||||
//
|
||||
// Initialize other parameters, and set WorkSpace as FTW_ERASED_BYTE.
|
||||
//
|
||||
FtwDevice->FtwWorkSpace = (UINT8 *) (FtwDevice + 1);
|
||||
FtwDevice->FtwWorkSpaceHeader = (EFI_FAULT_TOLERANT_WORKING_BLOCK_HEADER *) FtwDevice->FtwWorkSpace;
|
||||
|
||||
FtwDevice->FtwLastWriteHeader = NULL;
|
||||
FtwDevice->FtwLastWriteRecord = NULL;
|
||||
|
||||
//
|
||||
// Refresh the working space data from working block
|
||||
//
|
||||
Status = WorkSpaceRefresh (FtwDevice);
|
||||
ASSERT_EFI_ERROR (Status);
|
||||
//
|
||||
// If the working block workspace is not valid, try the spare block
|
||||
//
|
||||
if (!IsValidWorkSpace (FtwDevice->FtwWorkSpaceHeader)) {
|
||||
//
|
||||
// Read from spare block
|
||||
//
|
||||
Length = FtwDevice->FtwWorkSpaceSize;
|
||||
Status = FtwDevice->FtwBackupFvb->Read (
|
||||
FtwDevice->FtwBackupFvb,
|
||||
FtwDevice->FtwSpareLba,
|
||||
FtwDevice->FtwWorkSpaceBase,
|
||||
&Length,
|
||||
FtwDevice->FtwWorkSpace
|
||||
);
|
||||
ASSERT_EFI_ERROR (Status);
|
||||
|
||||
//
|
||||
// If spare block is valid, then replace working block content.
|
||||
//
|
||||
if (IsValidWorkSpace (FtwDevice->FtwWorkSpaceHeader)) {
|
||||
Status = FlushSpareBlockToWorkingBlock (FtwDevice);
|
||||
DEBUG ((EFI_D_ERROR, "Ftw: Restart working block update in Init() - %r\n", Status));
|
||||
FtwAbort (&FtwDevice->FtwInstance);
|
||||
//
|
||||
// Refresh work space.
|
||||
//
|
||||
Status = WorkSpaceRefresh (FtwDevice);
|
||||
ASSERT_EFI_ERROR (Status);
|
||||
} else {
|
||||
DEBUG ((EFI_D_ERROR, "Ftw: Both are invalid, init workspace\n"));
|
||||
//
|
||||
// If both are invalid, then initialize work space.
|
||||
//
|
||||
SetMem (
|
||||
FtwDevice->FtwWorkSpace,
|
||||
FtwDevice->FtwWorkSpaceSize,
|
||||
FTW_ERASED_BYTE
|
||||
);
|
||||
InitWorkSpaceHeader (FtwDevice->FtwWorkSpaceHeader);
|
||||
//
|
||||
// Initialize the work space
|
||||
//
|
||||
Status = FtwReclaimWorkSpace (FtwDevice, FALSE);
|
||||
ASSERT_EFI_ERROR (Status);
|
||||
}
|
||||
}
|
||||
//
|
||||
// If the FtwDevice->FtwLastWriteRecord is 1st record of write header &&
|
||||
// (! SpareComplete) THEN call Abort().
|
||||
//
|
||||
if ((FtwDevice->FtwLastWriteHeader->HeaderAllocated == FTW_VALID_STATE) &&
|
||||
(FtwDevice->FtwLastWriteRecord->SpareComplete != FTW_VALID_STATE) &&
|
||||
IsFirstRecordOfWrites (FtwDevice->FtwLastWriteHeader, FtwDevice->FtwLastWriteRecord)
|
||||
) {
|
||||
DEBUG ((EFI_D_ERROR, "Ftw: Init.. find first record not SpareCompleted, abort()\n"));
|
||||
FtwAbort (&FtwDevice->FtwInstance);
|
||||
}
|
||||
//
|
||||
// If Header is incompleted and the last record has completed, then
|
||||
// call Abort() to set the Header->Complete FLAG.
|
||||
//
|
||||
if ((FtwDevice->FtwLastWriteHeader->Complete != FTW_VALID_STATE) &&
|
||||
(FtwDevice->FtwLastWriteRecord->DestinationComplete == FTW_VALID_STATE) &&
|
||||
IsLastRecordOfWrites (FtwDevice->FtwLastWriteHeader, FtwDevice->FtwLastWriteRecord)
|
||||
) {
|
||||
DEBUG ((EFI_D_ERROR, "Ftw: Init.. find last record completed but header not, abort()\n"));
|
||||
FtwAbort (&FtwDevice->FtwInstance);
|
||||
}
|
||||
//
|
||||
// To check the workspace buffer following last Write header/records is EMPTY or not.
|
||||
// If it's not EMPTY, FTW also need to call reclaim().
|
||||
//
|
||||
FtwHeader = FtwDevice->FtwLastWriteHeader;
|
||||
Offset = (UINT8 *) FtwHeader - FtwDevice->FtwWorkSpace;
|
||||
if (FtwDevice->FtwWorkSpace[Offset] != FTW_ERASED_BYTE) {
|
||||
Offset += WRITE_TOTAL_SIZE (FtwHeader->NumberOfWrites, FtwHeader->PrivateDataSize);
|
||||
}
|
||||
|
||||
if (!IsErasedFlashBuffer (FtwDevice->FtwWorkSpace + Offset, FtwDevice->FtwWorkSpaceSize - Offset)) {
|
||||
Status = FtwReclaimWorkSpace (FtwDevice, TRUE);
|
||||
ASSERT_EFI_ERROR (Status);
|
||||
}
|
||||
|
||||
//
|
||||
// Restart if it's boot block
|
||||
//
|
||||
if ((FtwDevice->FtwLastWriteHeader->Complete != FTW_VALID_STATE) &&
|
||||
(FtwDevice->FtwLastWriteRecord->SpareComplete == FTW_VALID_STATE)
|
||||
) {
|
||||
if (FtwDevice->FtwLastWriteRecord->BootBlockUpdate == FTW_VALID_STATE) {
|
||||
Status = FlushSpareBlockToBootBlock (FtwDevice);
|
||||
DEBUG ((EFI_D_ERROR, "Ftw: Restart boot block update - %r\n", Status));
|
||||
ASSERT_EFI_ERROR (Status);
|
||||
FtwAbort (&FtwDevice->FtwInstance);
|
||||
} else {
|
||||
//
|
||||
// if (SpareCompleted) THEN Restart to fault tolerant write.
|
||||
//
|
||||
FvbHandle = GetFvbByAddress (FtwDevice->FtwLastWriteRecord->FvBaseAddress, &Fvb);
|
||||
if (FvbHandle != NULL) {
|
||||
Status = FtwRestart (&FtwDevice->FtwInstance, FvbHandle);
|
||||
DEBUG ((EFI_D_ERROR, "FtwLite: Restart last write - %r\n", Status));
|
||||
ASSERT_EFI_ERROR (Status);
|
||||
}
|
||||
FtwAbort (&FtwDevice->FtwInstance);
|
||||
}
|
||||
}
|
||||
//
|
||||
// Hook the protocol API
|
||||
//
|
||||
FtwDevice->FtwInstance.GetMaxBlockSize = FtwGetMaxBlockSize;
|
||||
FtwDevice->FtwInstance.Allocate = FtwAllocate;
|
||||
FtwDevice->FtwInstance.Write = FtwWrite;
|
||||
FtwDevice->FtwInstance.Restart = FtwRestart;
|
||||
FtwDevice->FtwInstance.Abort = FtwAbort;
|
||||
FtwDevice->FtwInstance.GetLastWrite = FtwGetLastWrite;
|
||||
|
||||
//
|
||||
// Install protocol interface
|
||||
//
|
||||
Status = gBS->InstallProtocolInterface (
|
||||
&FtwDevice->Handle,
|
||||
&gEfiFaultTolerantWriteProtocolGuid,
|
||||
EFI_NATIVE_INTERFACE,
|
||||
&FtwDevice->FtwInstance
|
||||
);
|
||||
|
||||
ASSERT_EFI_ERROR (Status);
|
||||
|
||||
//
|
||||
// Close the notify event to avoid install FaultTolerantWriteProtocol again.
|
||||
//
|
||||
Status = gBS->CloseEvent (Event);
|
||||
ASSERT_EFI_ERROR (Status);
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
/**
|
||||
This function is the entry point of the Fault Tolerant Write driver.
|
||||
|
||||
@param ImageHandle A handle for the image that is initializing this driver
|
||||
@param SystemTable A pointer to the EFI system table
|
||||
|
||||
@return EFI_SUCCESS FTW has finished the initialization
|
||||
@retval EFI_NOT_FOUND Locate FVB protocol error
|
||||
@retval EFI_OUT_OF_RESOURCES Allocate memory error
|
||||
@retval EFI_VOLUME_CORRUPTED Firmware volume is error
|
||||
@retval EFI_ABORTED FTW initialization error
|
||||
|
||||
**/
|
||||
EFI_STATUS
|
||||
EFIAPI
|
||||
InitializeFaultTolerantWrite (
|
||||
IN EFI_HANDLE ImageHandle,
|
||||
IN EFI_SYSTEM_TABLE *SystemTable
|
||||
)
|
||||
{
|
||||
EFI_FTW_DEVICE *FtwDevice;
|
||||
|
||||
//
|
||||
// Allocate Private data of this driver,
|
||||
// INCLUDING THE FtwWorkSpace[FTW_WORK_SPACE_SIZE].
|
||||
//
|
||||
FtwDevice = NULL;
|
||||
FtwDevice = AllocateZeroPool (sizeof (EFI_FTW_DEVICE) + PcdGet32 (PcdFlashNvStorageFtwWorkingSize));
|
||||
if (FtwDevice == NULL) {
|
||||
return EFI_OUT_OF_RESOURCES;
|
||||
}
|
||||
|
||||
ZeroMem (FtwDevice, sizeof (EFI_FTW_DEVICE));
|
||||
FtwDevice->Signature = FTW_DEVICE_SIGNATURE;
|
||||
|
||||
//
|
||||
// Initialize other parameters, and set WorkSpace as FTW_ERASED_BYTE.
|
||||
//
|
||||
|
||||
FtwDevice->WorkSpaceLength = (UINTN) PcdGet32 (PcdFlashNvStorageFtwWorkingSize);
|
||||
|
||||
FtwDevice->SpareAreaLength = (UINTN) PcdGet32 (PcdFlashNvStorageFtwSpareSize);
|
||||
|
||||
if ((FtwDevice->WorkSpaceLength == 0) || (FtwDevice->SpareAreaLength == 0)) {
|
||||
DEBUG ((EFI_D_ERROR, "Ftw: Workspace or Spare block does not exist!\n"));
|
||||
FreePool (FtwDevice);
|
||||
return EFI_OUT_OF_RESOURCES;
|
||||
}
|
||||
FtwDevice->FtwFvBlock = NULL;
|
||||
FtwDevice->FtwBackupFvb = NULL;
|
||||
FtwDevice->FtwWorkSpaceLba = (EFI_LBA) (-1);
|
||||
FtwDevice->FtwSpareLba = (EFI_LBA) (-1);
|
||||
|
||||
//
|
||||
// Register FvbNotificationEvent () notify function.
|
||||
//
|
||||
EfiCreateProtocolNotifyEvent (
|
||||
&gEfiFirmwareVolumeBlockProtocolGuid,
|
||||
TPL_CALLBACK,
|
||||
FvbNotificationEvent,
|
||||
(VOID *)FtwDevice,
|
||||
&mFvbRegistration
|
||||
);
|
||||
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
|
Reference in New Issue
Block a user