Renamed remotely

git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@6021 6f19259b-4bc3-4df7-8a09-765794883524
This commit is contained in:
vanjeff
2008-09-27 05:30:09 +00:00
parent e007e62763
commit b7d0300da3
7 changed files with 0 additions and 0 deletions

View File

@@ -0,0 +1,618 @@
/*++
Copyright (c) 2005 - 2008, Intel Corporation
All rights reserved. This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
Module Name:
Fvb.c
Abstract:
Firmware Volume Block Protocol Runtime Abstraction
mFvbEntry is an array of Handle Fvb pairs. The Fvb Lib Instance matches the
index in the mFvbEntry array. This should be the same sequence as the FVB's
were described in the HOB. We have to remember the handle so we can tell if
the protocol has been reinstalled and it needs updateing.
If you are using any of these lib functions.you must first call FvbInitialize ().
Key:
FVB - Firmware Volume Block
--*/
#include "Tiano.h"
#include "EfiRuntimeLib.h"
#include EFI_PROTOCOL_DEFINITION (FirmwareVolumeBlock)
#include EFI_PROTOCOL_DEFINITION (FvbExtension)
//
// Lib will ASSERT if more FVB devices than this are added to the system.
//
UINTN mFvbCount;
VOID *mFvbRegistration;
VOID *mFvbExtRegistration;
//static EFI_EVENT mEfiFvbVirtualNotifyEvent;
BOOLEAN gEfiFvbInitialized = FALSE;
EFI_EVENT mFvbEvent;
BOOLEAN
IsMemoryRuntime (
IN VOID *Address
)
/*++
Routine Description:
Check whether an address is runtime memory or not.
Arguments:
Address - The Address being checked.
Returns:
TRUE - The address is runtime memory.
FALSE - The address is not runtime memory.
--*/
{
EFI_STATUS Status;
UINT8 TmpMemoryMap[1];
UINTN MapKey;
UINTN DescriptorSize;
UINT32 DescriptorVersion;
UINTN MemoryMapSize;
EFI_MEMORY_DESCRIPTOR *MemoryMap;
EFI_MEMORY_DESCRIPTOR *MemoryMapPtr;
BOOLEAN IsRuntime;
UINTN Index;
IsRuntime = FALSE;
//
// Get System MemoryMapSize
//
MemoryMapSize = 1;
Status = gBS->GetMemoryMap (
&MemoryMapSize,
(EFI_MEMORY_DESCRIPTOR *)TmpMemoryMap,
&MapKey,
&DescriptorSize,
&DescriptorVersion
);
ASSERT (Status == EFI_BUFFER_TOO_SMALL);
//
// Enlarge space here, because we will allocate pool now.
//
MemoryMapSize += EFI_PAGE_SIZE;
Status = gBS->AllocatePool (
EfiBootServicesData,
MemoryMapSize,
(VOID**)&MemoryMap
);
ASSERT_EFI_ERROR (Status);
//
// Get System MemoryMap
//
Status = gBS->GetMemoryMap (
&MemoryMapSize,
MemoryMap,
&MapKey,
&DescriptorSize,
&DescriptorVersion
);
ASSERT_EFI_ERROR (Status);
MemoryMapPtr = MemoryMap;
//
// Search the request Address
//
for (Index = 0; Index < (MemoryMapSize / DescriptorSize); Index++) {
if (((EFI_PHYSICAL_ADDRESS)(UINTN)Address >= MemoryMap->PhysicalStart) &&
((EFI_PHYSICAL_ADDRESS)(UINTN)Address < MemoryMap->PhysicalStart
+ LShiftU64 (MemoryMap->NumberOfPages, EFI_PAGE_SHIFT))) {
//
// Found it
//
if (MemoryMap->Attribute & EFI_MEMORY_RUNTIME) {
IsRuntime = TRUE;
}
break;
}
//
// Get next item
//
MemoryMap = (EFI_MEMORY_DESCRIPTOR *)((UINTN)MemoryMap + DescriptorSize);
}
//
// Done
//
gBS->FreePool (MemoryMapPtr);
return IsRuntime;
}
VOID
EFIAPI
FvbNotificationFunction (
IN EFI_EVENT Event,
IN VOID *Context
)
/*++
Routine Description:
Update mFvbEntry. Add new entry, or update existing entry if Fvb protocol is
reinstalled.
Arguments:
Event - The Event that is being processed
Context - Event Context
Returns:
None
--*/
{
EFI_STATUS Status;
UINTN BufferSize;
EFI_HANDLE Handle;
UINTN Index;
UINTN UpdateIndex;
EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb;
EFI_FVB_EXTENSION_PROTOCOL *FvbExtension;
while (TRUE) {
BufferSize = sizeof (Handle);
Status = gBS->LocateHandle (
ByRegisterNotify,
&gEfiFirmwareVolumeBlockProtocolGuid,
mFvbRegistration,
&BufferSize,
&Handle
);
if (EFI_ERROR (Status)) {
//
// Exit Path of While Loop....
//
break;
}
UpdateIndex = MAX_FVB_COUNT;
for (Index = 0; Index < mFvbCount; Index++) {
if (mFvbEntry[Index].Handle == Handle) {
//
// If the handle is already in the table just update the protocol
//
UpdateIndex = Index;
break;
}
}
if (UpdateIndex == MAX_FVB_COUNT) {
//
// Use the next free slot for a new entry
//
UpdateIndex = mFvbCount;
}
//
// The array does not have enough entries
//
ASSERT (UpdateIndex < MAX_FVB_COUNT);
//
// Get the interface pointer and if it's ours, skip it.
// We check Runtime here, because it has no reason to register
// a boot time FVB protocol.
//
Status = gBS->HandleProtocol (Handle, &gEfiFirmwareVolumeBlockProtocolGuid, (VOID **) &Fvb);
ASSERT_EFI_ERROR (Status);
if (IsMemoryRuntime (Fvb)) {
//
// Increase mFvbCount if we need to add a new entry
//
if (UpdateIndex == mFvbCount) {
mFvbCount++;
}
mFvbEntry[UpdateIndex].Handle = Handle;
mFvbEntry[UpdateIndex].Fvb = Fvb;
mFvbEntry[UpdateIndex].FvbExtension = NULL;
Status = gBS->HandleProtocol (Handle, &gEfiFvbExtensionProtocolGuid, (VOID **) &FvbExtension);
if ((Status == EFI_SUCCESS) && IsMemoryRuntime (FvbExtension)) {
mFvbEntry[UpdateIndex].FvbExtension = FvbExtension;
}
}
}
}
EFI_STATUS
EfiFvbInitialize (
VOID
)
/*++
Routine Description:
Initialize globals and register Fvb Protocol notification function.
Arguments:
None
Returns:
EFI_SUCCESS - Fvb is successfully initialized
others - Fail to initialize
--*/
{
UINTN Status;
mFvbCount = 0;
Status = gBS->AllocatePool (
EfiRuntimeServicesData,
(UINTN) sizeof (FVB_ENTRY) * MAX_FVB_COUNT,
(VOID *) &mFvbEntry
);
if (EFI_ERROR (Status)) {
return Status;
}
EfiZeroMem (mFvbEntry, sizeof (FVB_ENTRY) * MAX_FVB_COUNT);
mFvbEvent = RtEfiLibCreateProtocolNotifyEvent (
&gEfiFirmwareVolumeBlockProtocolGuid,
EFI_TPL_CALLBACK,
FvbNotificationFunction,
NULL,
&mFvbRegistration
);
//
// Register SetVirtualAddressMap () notify function
//
// Status = gBS->CreateEvent (
// EFI_EVENT_SIGNAL_VIRTUAL_ADDRESS_CHANGE,
// EFI_TPL_NOTIFY,
// EfiRuntimeLibFvbVirtualNotifyEvent,
// NULL,
// &mEfiFvbVirtualNotifyEvent
// );
// ASSERT_EFI_ERROR (Status);
//
gEfiFvbInitialized = TRUE;
return EFI_SUCCESS;
}
EFI_STATUS
EfiFvbShutdown (
VOID
)
/*++
Routine Description:
Release resources allocated in EfiFvbInitialize.
Arguments:
None
Returns:
EFI_SUCCESS
--*/
{
gBS->FreePool ((VOID *) mFvbEntry);
gBS->CloseEvent (mFvbEvent);
gEfiFvbInitialized = FALSE;
return EFI_SUCCESS;
}
//
// The following functions wrap Fvb protocol in the Runtime Lib functions.
// The Instance translates into Fvb instance. The Fvb order defined by HOBs and
// thus the sequence of FVB protocol addition define Instance.
//
// EfiFvbInitialize () must be called before any of the following functions
// must be called.
//
EFI_STATUS
EfiFvbReadBlock (
IN UINTN Instance,
IN EFI_LBA Lba,
IN UINTN Offset,
IN OUT UINTN *NumBytes,
IN UINT8 *Buffer
)
/*++
Routine Description:
Reads specified number of bytes into a buffer from the specified block
Arguments:
Instance - The FV instance to be read from
Lba - The logical block address to be read from
Offset - Offset into the block at which to begin reading
NumBytes - Pointer that on input contains the total size of
the buffer. On output, it contains the total number
of bytes read
Buffer - Pointer to a caller allocated buffer that will be
used to hold the data read
Returns:
Status code
EFI_INVALID_PARAMETER - invalid parameter
--*/
{
if (Instance >= mFvbCount) {
return EFI_INVALID_PARAMETER;
}
return mFvbEntry[Instance].Fvb->Read (mFvbEntry[Instance].Fvb, Lba, Offset, NumBytes, Buffer);
}
EFI_STATUS
EfiFvbWriteBlock (
IN UINTN Instance,
IN EFI_LBA Lba,
IN UINTN Offset,
IN OUT UINTN *NumBytes,
IN UINT8 *Buffer
)
/*++
Routine Description:
Writes specified number of bytes from the input buffer to the block
Arguments:
Instance - The FV instance to be written to
Lba - The starting logical block index to write to
Offset - Offset into the block at which to begin writing
NumBytes - Pointer that on input contains the total size of
the buffer. On output, it contains the total number
of bytes actually written
Buffer - Pointer to a caller allocated buffer that contains
the source for the write
Returns:
Status code
EFI_INVALID_PARAMETER - invalid parameter
--*/
{
if (Instance >= mFvbCount) {
return EFI_INVALID_PARAMETER;
}
return mFvbEntry[Instance].Fvb->Write (mFvbEntry[Instance].Fvb, Lba, Offset, NumBytes, Buffer);
}
EFI_STATUS
EfiFvbEraseBlock (
IN UINTN Instance,
IN EFI_LBA Lba
)
/*++
Routine Description:
Erases and initializes a firmware volume block
Arguments:
Instance - The FV instance to be erased
Lba - The logical block index to be erased
Returns:
Status code
EFI_INVALID_PARAMETER - invalid parameter
--*/
{
if (Instance >= mFvbCount) {
return EFI_INVALID_PARAMETER;
}
return mFvbEntry[Instance].Fvb->EraseBlocks (mFvbEntry[Instance].Fvb, Lba, -1);
}
EFI_STATUS
EfiFvbGetVolumeAttributes (
IN UINTN Instance,
OUT EFI_FVB_ATTRIBUTES *Attributes
)
/*++
Routine Description:
Retrieves attributes, insures positive polarity of attribute bits, returns
resulting attributes in output parameter
Arguments:
Instance - The FV instance whose attributes is going to be
returned
Attributes - Output buffer which contains attributes
Returns:
Status code
EFI_INVALID_PARAMETER - invalid parameter
--*/
{
if (Instance >= mFvbCount) {
return EFI_INVALID_PARAMETER;
}
return mFvbEntry[Instance].Fvb->GetVolumeAttributes (mFvbEntry[Instance].Fvb, Attributes);
}
EFI_STATUS
EfiFvbSetVolumeAttributes (
IN UINTN Instance,
IN EFI_FVB_ATTRIBUTES Attributes
)
/*++
Routine Description:
Modifies the current settings of the firmware volume according to the
input parameter.
Arguments:
Instance - The FV instance whose attributes is going to be
modified
Attributes - It is a pointer to EFI_FVB_ATTRIBUTES
containing the desired firmware volume settings.
Returns:
Status code
EFI_INVALID_PARAMETER - invalid parameter
--*/
{
if (Instance >= mFvbCount) {
return EFI_INVALID_PARAMETER;
}
return mFvbEntry[Instance].Fvb->SetVolumeAttributes (mFvbEntry[Instance].Fvb, &Attributes);
}
EFI_STATUS
EfiFvbGetPhysicalAddress (
IN UINTN Instance,
OUT EFI_PHYSICAL_ADDRESS *BaseAddress
)
/*++
Routine Description:
Retrieves the physical address of a memory mapped FV
Arguments:
Instance - The FV instance whose base address is going to be
returned
BaseAddress - Pointer to a caller allocated EFI_PHYSICAL_ADDRESS
that on successful return, contains the base address
of the firmware volume.
Returns:
Status code
EFI_INVALID_PARAMETER - invalid parameter
--*/
{
if (Instance >= mFvbCount) {
return EFI_INVALID_PARAMETER;
}
return mFvbEntry[Instance].Fvb->GetPhysicalAddress (mFvbEntry[Instance].Fvb, BaseAddress);
}
EFI_STATUS
EfiFvbGetBlockSize (
IN UINTN Instance,
IN EFI_LBA Lba,
OUT UINTN *BlockSize,
OUT UINTN *NumOfBlocks
)
/*++
Routine Description:
Retrieve the size of a logical block
Arguments:
Instance - The FV instance whose block size is going to be
returned
Lba - Indicates which block to return the size for.
BlockSize - A pointer to a caller allocated UINTN in which
the size of the block is returned
NumOfBlocks - a pointer to a caller allocated UINTN in which the
number of consecutive blocks starting with Lba is
returned. All blocks in this range have a size of
BlockSize
Returns:
EFI_SUCCESS - The firmware volume was read successfully and
contents are in Buffer
EFI_INVALID_PARAMETER - invalid parameter
--*/
{
if (Instance >= mFvbCount) {
return EFI_INVALID_PARAMETER;
}
return mFvbEntry[Instance].Fvb->GetBlockSize (mFvbEntry[Instance].Fvb, Lba, BlockSize, NumOfBlocks);
}
EFI_STATUS
EfiFvbEraseCustomBlockRange (
IN UINTN Instance,
IN EFI_LBA StartLba,
IN UINTN OffsetStartLba,
IN EFI_LBA LastLba,
IN UINTN OffsetLastLba
)
/*++
Routine Description:
Erases and initializes a specified range of a firmware volume
Arguments:
Instance - The FV instance to be erased
StartLba - The starting logical block index to be erased
OffsetStartLba - Offset into the starting block at which to
begin erasing
LastLba - The last logical block index to be erased
OffsetLastLba - Offset into the last block at which to end erasing
Returns:
Status code
EFI_INVALID_PARAMETER - invalid parameter
EFI_UNSUPPORTED - not support
--*/
{
if (Instance >= mFvbCount) {
return EFI_INVALID_PARAMETER;
}
if (!(mFvbEntry[Instance].FvbExtension)) {
return EFI_UNSUPPORTED;
}
if (!(mFvbEntry[Instance].FvbExtension->EraseFvbCustomBlock)) {
return EFI_UNSUPPORTED;
}
return mFvbEntry[Instance].FvbExtension->EraseFvbCustomBlock (
mFvbEntry[Instance].FvbExtension,
StartLba,
OffsetStartLba,
LastLba,
OffsetLastLba
);
}

View File

@@ -0,0 +1,130 @@
/*++
Copyright (c) 2005, Intel Corporation
All rights reserved. This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
Module Name:
IoLib.c
Abstract:
Light weight lib to support Tiano drivers.
--*/
#include "Tiano.h"
#include "EfiRuntimeLib.h"
#include EFI_PROTOCOL_DEFINITION (CpuIo)
extern EFI_CPU_IO_PROTOCOL *gCpuIo;
EFI_STATUS
EfiIoRead (
IN EFI_CPU_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
IN OUT VOID *Buffer
)
/*++
Routine Description:
Perform an IO read into Buffer.
Arguments:
Width - Width of read transaction, and repeat operation to use
Address - IO address to read
Count - Number of times to read the IO address.
Buffer - Buffer to read data into. size is Width * Count
Returns:
BugBug: Check with Mike to see if I can find this #define some ware else
--*/
{
return gCpuIo->Io.Read (gCpuIo, Width, Address, Count, Buffer);
}
EFI_STATUS
EfiIoWrite (
IN EFI_CPU_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
IN OUT VOID *Buffer
)
/*++
Routine Description:
Perform an IO write into Buffer.
Arguments:
Width - Width of write transaction, and repeat operation to use
Address - IO address to write
Count - Number of times to write the IO address.
Buffer - Buffer to write data from. size is Width * Count
Returns:
BugBug: Check with Mike to see if I can find this #define some ware else
--*/
{
return gCpuIo->Io.Write (gCpuIo, Width, Address, Count, Buffer);
}
EFI_STATUS
EfiMemRead (
IN EFI_CPU_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
IN OUT VOID *Buffer
)
/*++
Routine Description:
Perform a Memory mapped IO read into Buffer.
Arguments:
Width - Width of each read transaction.
Address - Memory mapped IO address to read
Count - Number of Width quanta to read
Buffer - Buffer to read data into. size is Width * Count
Returns:
BugBug: Check with Mike to see if I can find this #define some ware else
--*/
{
return gCpuIo->Mem.Read (gCpuIo, Width, Address, Count, Buffer);
}
EFI_STATUS
EfiMemWrite (
IN EFI_CPU_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
IN OUT VOID *Buffer
)
/*++
Routine Description:
Perform a memory mapped IO write into Buffer.
Arguments:
Width - Width of write transaction, and repeat operation to use
Address - IO address to write
Count - Number of times to write the IO address.
Buffer - Buffer to write data from. size is Width * Count
Returns:
BugBug: Check with Mike to see if I can find this #define some ware else
--*/
{
return gCpuIo->Mem.Write (gCpuIo, Width, Address, Count, Buffer);
}

View File

@@ -0,0 +1,177 @@
/*++
Copyright (c) 2005, Intel Corporation
All rights reserved. This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
Module Name:
Lock.c
Abstract:
Support for locking lib services.
--*/
#include "Tiano.h"
#include "EfiDriverLib.h"
extern
BOOLEAN
EfiAtRuntime (
VOID
);
VOID
EfiInitializeLock (
IN OUT EFI_LOCK *Lock,
IN EFI_TPL Priority
)
/*++
Routine Description:
Initialize a basic mutual exclusion lock. Each lock
provides mutual exclusion access at it's task priority
level. Since there is no-premption (at any TPL) or
multiprocessor support, acquiring the lock only consists
of raising to the locks TPL.
Note on a check build ASSERT()s are used to ensure proper
lock usage.
Arguments:
Lock - The EFI_LOCK structure to initialize
Priority - The task priority level of the lock
Returns:
An initialized Efi Lock structure.
--*/
{
Lock->Tpl = Priority;
Lock->OwnerTpl = 0;
Lock->Lock = 0;
}
EFI_STATUS
EfiAcquireLockOrFail (
IN EFI_LOCK *Lock
)
/*++
Routine Description:
Initialize a basic mutual exclusion lock. Each lock
provides mutual exclusion access at it's task priority
level. Since there is no-premption (at any TPL) or
multiprocessor support, acquiring the lock only consists
of raising to the locks TPL.
Arguments:
Lock - The EFI_LOCK structure to initialize
Returns:
EFI_SUCCESS - Lock Owned.
EFI_ACCESS_DENIED - Reentrant Lock Acquisition, Lock not Owned.
--*/
{
if (Lock->Lock != 0) {
//
// Lock is already owned, so bail out
//
return EFI_ACCESS_DENIED;
}
if (!EfiAtRuntime ()) {
//
// The check is just debug code for core inplementation. It must
// always be true in a driver
//
Lock->OwnerTpl = gBS->RaiseTPL (Lock->Tpl);
}
Lock->Lock += 1;
return EFI_SUCCESS;
}
VOID
EfiAcquireLock (
IN EFI_LOCK *Lock
)
/*++
Routine Description:
Raising to the task priority level of the mutual exclusion
lock, and then acquires ownership of the lock.
Arguments:
Lock - The lock to acquire
Returns:
Lock owned
--*/
{
EFI_STATUS Status;
Status = EfiAcquireLockOrFail (Lock);
//
// Lock was already locked.
//
ASSERT_EFI_ERROR (Status);
}
VOID
EfiReleaseLock (
IN EFI_LOCK *Lock
)
/*++
Routine Description:
Releases ownership of the mutual exclusion lock, and
restores the previous task priority level.
Arguments:
Lock - The lock to release
Returns:
Lock unowned
--*/
{
EFI_TPL Tpl;
Tpl = Lock->OwnerTpl;
ASSERT (Lock->Lock == 1);
Lock->Lock -= 1;
if (!EfiAtRuntime ()) {
//
// The check is just debug code for core inplementation. It must
// always be true in a driver
//
gBS->RestoreTPL (Tpl);
}
}

View File

@@ -0,0 +1,409 @@
/*++
Copyright (c) 2005 - 2006, Intel Corporation
All rights reserved. This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
Module Name:
PlatformIoLib.c
Abstract:
--*/
#include "Tiano.h"
#include "EfiRuntimeLib.h"
#include EFI_PROTOCOL_DEFINITION (CpuIo)
#define PCI_CONFIG_INDEX_PORT 0xcf8
#define PCI_CONFIG_DATA_PORT 0xcfc
#define REFRESH_CYCLE_TOGGLE_BIT 0x10
UINT32
GetPciAddress (
UINT8 Segment,
UINT8 Bus,
UINT8 DevFunc,
UINT8 Register
)
/*++
Routine Description:
Constructs PCI Address 32 bits
Arguments:
Segment - PCI Segment ACPI _SEG
Bus - PCI Bus
DevFunc - PCI Device(7:3) and Func(2:0)
Register - PCI config space register
Returns:
PciAddress to be written to Config Port
--*/
{
UINT32 Data;
Data = 0;
Data = (((UINT32) Segment) << 24);
Data |= (((UINT32) Bus) << 16);
Data |= (((UINT32) DevFunc) << 8);
Data |= (UINT32) Register;
return Data;
}
UINT8
PciRead8 (
UINT8 Segment,
UINT8 Bus,
UINT8 DevFunc,
UINT8 Register
)
/*++
Routine Description:
Perform an one byte PCI config cycle read
Arguments:
Segment - PCI Segment ACPI _SEG
Bus - PCI Bus
DevFunc - PCI Device(7:3) and Func(2:0)
Register - PCI config space register
Returns:
Data read from PCI config space
--*/
{
EFI_STATUS Status;
UINT32 PciAddress;
UINT32 PciAddress1;
UINT8 Data;
PciAddress = GetPciAddress (Segment, Bus, DevFunc, Register);
//
// Set bit 31 for PCI config access
//
PciAddress1 = PciAddress;
PciAddress = ((PciAddress & 0xFFFFFFFC) | (0x80000000));
Status = EfiIoWrite (EfiCpuIoWidthUint32, PCI_CONFIG_INDEX_PORT, 1, &PciAddress);
if (EFI_ERROR (Status)) {
return 0;
}
EfiIoRead (EfiCpuIoWidthUint8, (PCI_CONFIG_DATA_PORT + (PciAddress1 & 0x3)), 1, &Data);
return Data;
}
UINT16
PciRead16 (
UINT8 Segment,
UINT8 Bus,
UINT8 DevFunc,
UINT8 Register
)
/*++
Routine Description:
Perform an two byte PCI config cycle read
Arguments:
Segment - PCI Segment ACPI _SEG
Bus - PCI Bus
DevFunc - PCI Device(7:3) and Func(2:0)
Register - PCI config space register
Returns:
Data read from PCI config space
--*/
{
EFI_STATUS Status;
UINT32 PciAddress;
UINT32 PciAddress1;
UINT16 Data;
PciAddress = GetPciAddress (Segment, Bus, DevFunc, Register);
//
// Set bit 31 for PCI config access
//
PciAddress1 = PciAddress;
PciAddress = ((PciAddress & 0xFFFFFFFC) | (0x80000000));
Status = EfiIoWrite (EfiCpuIoWidthUint32, PCI_CONFIG_INDEX_PORT, 1, &PciAddress);
if (EFI_ERROR (Status)) {
return 0;
}
EfiIoRead (EfiCpuIoWidthUint16, (PCI_CONFIG_DATA_PORT + (PciAddress1 & 0x3)), 1, &Data);
return Data;
}
UINT32
PciRead32 (
UINT8 Segment,
UINT8 Bus,
UINT8 DevFunc,
UINT8 Register
)
/*++
Routine Description:
Perform an four byte PCI config cycle read
Arguments:
Segment - PCI Segment ACPI _SEG
Bus - PCI Bus
DevFunc - PCI Device(7:3) and Func(2:0)
Register - PCI config space register
Returns:
Data read from PCI config space
--*/
{
EFI_STATUS Status;
UINT32 PciAddress;
UINT32 PciAddress1;
UINT32 Data;
PciAddress = GetPciAddress (Segment, Bus, DevFunc, Register);
//
// Set bit 31 for PCI config access
//
PciAddress1 = PciAddress;
PciAddress = ((PciAddress & 0xFFFFFFFC) | (0x80000000));
Status = EfiIoWrite (EfiCpuIoWidthUint32, PCI_CONFIG_INDEX_PORT, 1, &PciAddress);
if (EFI_ERROR (Status)) {
return 0;
}
EfiIoRead (EfiCpuIoWidthUint32, (PCI_CONFIG_DATA_PORT + (PciAddress1 & 0x3)), 1, &Data);
return Data;
}
VOID
PciWrite8 (
UINT8 Segment,
UINT8 Bus,
UINT8 DevFunc,
UINT8 Register,
UINT8 Data
)
/*++
Routine Description:
Perform an one byte PCI config cycle write
Arguments:
Segment - PCI Segment ACPI _SEG
Bus - PCI Bus
DevFunc - PCI Device(7:3) and Func(2:0)
Register - PCI config space register
Data - Data to write
Returns:
NONE
--*/
{
EFI_STATUS Status;
UINT32 PciAddress;
UINT32 PciAddress1;
PciAddress = GetPciAddress (Segment, Bus, DevFunc, Register);
//
// Set bit 31 for PCI config access
//
PciAddress1 = PciAddress;
PciAddress = ((PciAddress & 0xFFFFFFFC) | (0x80000000));
Status = EfiIoWrite (EfiCpuIoWidthUint32, PCI_CONFIG_INDEX_PORT, 1, &PciAddress);
if (EFI_ERROR (Status)) {
return ;
}
EfiIoWrite (EfiCpuIoWidthUint8, (PCI_CONFIG_DATA_PORT + (PciAddress1 & 0x3)), 1, &Data);
}
VOID
PciWrite16 (
UINT8 Segment,
UINT8 Bus,
UINT8 DevFunc,
UINT8 Register,
UINT16 Data
)
/*++
Routine Description:
Perform an two byte PCI config cycle write
Arguments:
Segment - PCI Segment ACPI _SEG
Bus - PCI Bus
DevFunc - PCI Device(7:3) and Func(2:0)
Register - PCI config space register
Data - Data to write
Returns:
NONE
--*/
{
EFI_STATUS Status;
UINT32 PciAddress;
UINT32 PciAddress1;
PciAddress = GetPciAddress (Segment, Bus, DevFunc, Register);
//
// Set bit 31 for PCI config access
//
PciAddress1 = PciAddress;
PciAddress = ((PciAddress & 0xFFFFFFFC) | (0x80000000));
Status = EfiIoWrite (EfiCpuIoWidthUint32, PCI_CONFIG_INDEX_PORT, 1, &PciAddress);
if (EFI_ERROR (Status)) {
return ;
}
EfiIoWrite (EfiCpuIoWidthUint16, (PCI_CONFIG_DATA_PORT + (PciAddress1 & 0x3)), 1, &Data);
}
VOID
PciWrite32 (
UINT8 Segment,
UINT8 Bus,
UINT8 DevFunc,
UINT8 Register,
UINT32 Data
)
/*++
Routine Description:
Perform an four byte PCI config cycle write
Arguments:
Segment - PCI Segment ACPI _SEG
Bus - PCI Bus
DevFunc - PCI Device(7:3) and Func(2:0)
Register - PCI config space register
Data - Data to write
Returns:
NONE
--*/
{
EFI_STATUS Status;
UINT32 PciAddress;
UINT32 PciAddress1;
PciAddress = GetPciAddress (Segment, Bus, DevFunc, Register);
//
// Set bit 31 for PCI config access
//
PciAddress1 = PciAddress;
PciAddress = ((PciAddress & 0xFFFFFFFC) | (0x80000000));
Status = EfiIoWrite (EfiCpuIoWidthUint32, PCI_CONFIG_INDEX_PORT, 1, &PciAddress);
if (EFI_ERROR (Status)) {
return ;
}
EfiIoWrite (EfiCpuIoWidthUint32, (PCI_CONFIG_DATA_PORT + (PciAddress1 & 0x3)), 1, &Data);
}
//
// Delay Primative
//
VOID
EfiStall (
IN UINTN Microseconds
)
/*++
Routine Description:
Delay for at least the request number of microseconds
Arguments:
Microseconds - Number of microseconds to delay.
Returns:
NONE
--*/
{
UINT8 Data;
UINT8 InitialState;
UINTN CycleIterations;
CycleIterations = 0;
Data = 0;
InitialState = 0;
if (EfiAtRuntime ()) {
//
// The time-source is 30 us granular, so calibrate the timing loop
// based on this baseline
// Error is possible 30us.
//
CycleIterations = (Microseconds - 1) / 30 + 1;
//
// Use the DMA Refresh timer in port 0x61. Cheap but effective.
// The only issue is that the granularity is 30us, and we want to
// guarantee "at least" one full transition to avoid races.
//
//
// _____________/----------\__________/--------
//
// |<--15us-->|<--15us-->|
//
// --------------------------------------------------> Time (us)
//
while (CycleIterations--) {
EfiIoRead (EfiCpuIoWidthUint8, 0x61, 1, &Data);
Data &= REFRESH_CYCLE_TOGGLE_BIT;
InitialState = Data;
//
// Capture first transition (strictly less than one period)
//
while (InitialState == Data) {
EfiIoRead (EfiCpuIoWidthUint8, 0x61, 1, &Data);
Data &= REFRESH_CYCLE_TOGGLE_BIT;
}
InitialState = Data;
//
// Capture next transition (guarantee at least one full pulse)
//
while (InitialState == Data) {
EfiIoRead (EfiCpuIoWidthUint8, 0x61, 1, &Data);
Data &= REFRESH_CYCLE_TOGGLE_BIT;
}
}
} else {
gBS->Stall (Microseconds);
}
}

View File

@@ -0,0 +1,819 @@
/*++
Copyright (c) 2005 - 2008, Intel Corporation
All rights reserved. This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
Module Name:
RuntimeLib.c
Abstract:
Light weight lib to support Tiano drivers.
--*/
#include "Tiano.h"
#include "EfiRuntimeLib.h"
#include EFI_PROTOCOL_DEFINITION (CpuIo)
#include EFI_PROTOCOL_DEFINITION (FirmwareVolumeBlock)
#include EFI_GUID_DEFINITION (StatusCodeCallerId)
#include EFI_ARCH_PROTOCOL_DEFINITION (StatusCode)
//
// Driver Lib Module Globals
//
static EFI_RUNTIME_SERVICES *mRT;
static EFI_EVENT mRuntimeNotifyEvent = NULL;
static EFI_EVENT mEfiVirtualNotifyEvent = NULL;
static BOOLEAN mRuntimeLibInitialized = FALSE;
static BOOLEAN mEfiGoneVirtual = FALSE;
//
// Runtime Global, but you should use the Lib functions
//
EFI_CPU_IO_PROTOCOL *gCpuIo;
BOOLEAN mEfiAtRuntime = FALSE;
FVB_ENTRY *mFvbEntry;
#if (EFI_SPECIFICATION_VERSION >= 0x00020000)
static EFI_STATUS_CODE_PROTOCOL *gStatusCode = NULL;
#endif
EFI_STATUS
EfiConvertPointer (
IN UINTN DebugDisposition,
IN OUT VOID *Address
)
/*++
Routine Description:
Determines the new virtual address that is to be used on subsequent memory accesses.
Arguments:
DebugDisposition - Supplies type information for the pointer being converted.
Address - A pointer to a pointer that is to be fixed to be the value needed
for the new virtual address mappings being applied.
Returns:
Status code
--*/
{
return mRT->ConvertPointer (DebugDisposition, Address);
}
EFI_STATUS
EfiConvertInternalPointer (
IN OUT VOID *Address
)
/*++
Routine Description:
Call EfiConvertPointer() to convert internal pointer.
Arguments:
Address - A pointer to a pointer that is to be fixed to be the value needed
for the new virtual address mappings being applied.
Returns:
Status code
--*/
{
return EfiConvertPointer (EFI_INTERNAL_POINTER, Address);
}
VOID
EFIAPI
EfiRuntimeLibFvbVirtualNotifyEvent (
IN EFI_EVENT Event,
IN VOID *Context
)
/*++
Routine Description:
Convert all pointers in mFvbEntry after ExitBootServices.
Arguments:
Event - The Event that is being processed
Context - Event Context
Returns:
None
--*/
{
UINTN Index;
if (mFvbEntry != NULL) {
for (Index = 0; Index < MAX_FVB_COUNT; Index++) {
if (NULL != mFvbEntry[Index].Fvb) {
EfiConvertInternalPointer ((VOID **) &mFvbEntry[Index].Fvb->GetBlockSize);
EfiConvertInternalPointer ((VOID **) &mFvbEntry[Index].Fvb->GetPhysicalAddress);
EfiConvertInternalPointer ((VOID **) &mFvbEntry[Index].Fvb->GetVolumeAttributes);
EfiConvertInternalPointer ((VOID **) &mFvbEntry[Index].Fvb->SetVolumeAttributes);
EfiConvertInternalPointer ((VOID **) &mFvbEntry[Index].Fvb->Read);
EfiConvertInternalPointer ((VOID **) &mFvbEntry[Index].Fvb->Write);
EfiConvertInternalPointer ((VOID **) &mFvbEntry[Index].Fvb->EraseBlocks);
EfiConvertInternalPointer ((VOID **) &mFvbEntry[Index].Fvb);
}
if (NULL != mFvbEntry[Index].FvbExtension) {
EfiConvertInternalPointer ((VOID **) &mFvbEntry[Index].FvbExtension->EraseFvbCustomBlock);
EfiConvertInternalPointer ((VOID **) &mFvbEntry[Index].FvbExtension);
}
}
EfiConvertInternalPointer ((VOID **) &mFvbEntry);
}
}
VOID
EFIAPI
RuntimeDriverExitBootServices (
IN EFI_EVENT Event,
IN VOID *Context
)
/*++
Routine Description:
Set AtRuntime flag as TRUE after ExitBootServices
Arguments:
Event - The Event that is being processed
Context - Event Context
Returns:
None
--*/
{
mEfiAtRuntime = TRUE;
}
extern BOOLEAN gEfiFvbInitialized;
VOID
EFIAPI
EfiRuntimeLibVirtualNotifyEvent (
IN EFI_EVENT Event,
IN VOID *Context
)
/*++
Routine Description:
Fixup internal data so that EFI can be call in virtual mode.
Call the passed in Child Notify event and convert any pointers in
lib to virtual mode.
Arguments:
Event - The Event that is being processed
Context - Event Context
Returns:
None
--*/
{
EFI_EVENT_NOTIFY ChildNotifyEventHandler;
if (Context != NULL) {
ChildNotifyEventHandler = (EFI_EVENT_NOTIFY) (UINTN) Context;
ChildNotifyEventHandler (Event, NULL);
}
if (gEfiFvbInitialized) {
EfiRuntimeLibFvbVirtualNotifyEvent (Event, Context);
}
//
// Update global for Runtime Services Table and IO
//
EfiConvertInternalPointer ((VOID **) &gCpuIo);
#if (EFI_SPECIFICATION_VERSION >= 0x00020000)
if (gStatusCode != NULL) {
EfiConvertInternalPointer ((VOID **) &gStatusCode->ReportStatusCode);
EfiConvertInternalPointer ((VOID **) &gStatusCode);
}
#endif
EfiConvertInternalPointer ((VOID **) &mRT);
//
// Clear out BootService globals
//
gBS = NULL;
gST = NULL;
mEfiGoneVirtual = TRUE;
}
EFI_STATUS
EfiInitializeRuntimeDriverLib (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable,
IN EFI_EVENT_NOTIFY GoVirtualChildEvent
)
/*++
Routine Description:
Intialize runtime Driver Lib if it has not yet been initialized.
Arguments:
ImageHandle - The firmware allocated handle for the EFI image.
SystemTable - A pointer to the EFI System Table.
GoVirtualChildEvent - Caller can register a virtual notification event.
Returns:
EFI_STATUS always returns EFI_SUCCESS except EFI_ALREADY_STARTED if already started.
--*/
{
EFI_STATUS Status;
if (mRuntimeLibInitialized) {
return EFI_ALREADY_STARTED;
}
mRuntimeLibInitialized = TRUE;
gST = SystemTable;
ASSERT (gST != NULL);
gBS = SystemTable->BootServices;
ASSERT (gBS != NULL);
mRT = SystemTable->RuntimeServices;
ASSERT (mRT != NULL);
Status = EfiLibGetSystemConfigurationTable (&gEfiDxeServicesTableGuid, (VOID **) &gDS);
ASSERT_EFI_ERROR (Status);
#if (EFI_SPECIFICATION_VERSION >= 0x00020000)
Status = gBS->LocateProtocol (&gEfiStatusCodeRuntimeProtocolGuid, NULL, (VOID **)&gStatusCode);
if (EFI_ERROR (Status)) {
gStatusCode = NULL;
}
#endif
Status = gBS->LocateProtocol (&gEfiCpuIoProtocolGuid, NULL, (VOID **) &gCpuIo);
if (EFI_ERROR (Status)) {
gCpuIo = NULL;
}
//
// Register our ExitBootServices () notify function
//
Status = gBS->CreateEvent (
EFI_EVENT_SIGNAL_EXIT_BOOT_SERVICES,
EFI_TPL_NOTIFY,
RuntimeDriverExitBootServices,
NULL,
&mRuntimeNotifyEvent
);
ASSERT_EFI_ERROR (Status);
//
// Register SetVirtualAddressMap () notify function
//
Status = gBS->CreateEvent (
EFI_EVENT_SIGNAL_VIRTUAL_ADDRESS_CHANGE,
EFI_TPL_NOTIFY,
EfiRuntimeLibVirtualNotifyEvent,
(VOID *) (UINTN) GoVirtualChildEvent,
&mEfiVirtualNotifyEvent
);
ASSERT_EFI_ERROR (Status);
return EFI_SUCCESS;
}
EFI_STATUS
EfiShutdownRuntimeDriverLib (
VOID
)
/*++
Routine Description:
This routine will free some resources which have been allocated in
EfiInitializeRuntimeDriverLib(). If a runtime driver exits with an error,
it must call this routine to free the allocated resource before the exiting.
Arguments:
None
Returns:
EFI_SUCCESS - Shotdown the Runtime Driver Lib successfully
EFI_UNSUPPORTED - Runtime Driver lib was not initialized at all
--*/
{
EFI_STATUS Status;
if (!mRuntimeLibInitialized) {
//
// You must call EfiInitializeRuntimeDriverLib() first
//
return EFI_UNSUPPORTED;
}
mRuntimeLibInitialized = FALSE;
//
// Close our ExitBootServices () notify function
//
if (mRuntimeNotifyEvent != NULL) {
Status = gBS->CloseEvent (mRuntimeNotifyEvent);
ASSERT_EFI_ERROR (Status);
}
//
// Close SetVirtualAddressMap () notify function
//
if (mEfiVirtualNotifyEvent != NULL) {
Status = gBS->CloseEvent (mEfiVirtualNotifyEvent);
ASSERT_EFI_ERROR (Status);
}
return EFI_SUCCESS;
}
EFI_STATUS
EfiInitializeSmmDriverLib (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
/*++
Routine Description:
Intialize runtime Driver Lib if it has not yet been initialized.
Arguments:
ImageHandle - The firmware allocated handle for the EFI image.
SystemTable - A pointer to the EFI System Table.
Returns:
EFI_STATUS always returns EFI_SUCCESS except EFI_ALREADY_STARTED if already started.
--*/
{
EFI_STATUS Status;
if (mRuntimeLibInitialized) {
return EFI_ALREADY_STARTED;
}
mRuntimeLibInitialized = TRUE;
gST = SystemTable;
ASSERT (gST != NULL);
gBS = SystemTable->BootServices;
ASSERT (gBS != NULL);
mRT = SystemTable->RuntimeServices;
ASSERT (mRT != NULL);
#if (EFI_SPECIFICATION_VERSION >= 0x00020000)
Status = gBS->LocateProtocol (&gEfiStatusCodeRuntimeProtocolGuid, NULL, (VOID **)&gStatusCode);
if (EFI_ERROR (Status)) {
gStatusCode = NULL;
}
#endif
Status = gBS->LocateProtocol (&gEfiCpuIoProtocolGuid, NULL, (VOID **) &gCpuIo);
if (EFI_ERROR (Status)) {
gCpuIo = NULL;
}
return EFI_SUCCESS;
}
BOOLEAN
EfiAtRuntime (
VOID
)
/*++
Routine Description:
Return TRUE if ExitBootServices () has been called
Arguments:
NONE
Returns:
TRUE - If ExitBootServices () has been called
--*/
{
return mEfiAtRuntime;
}
BOOLEAN
EfiGoneVirtual (
VOID
)
/*++
Routine Description:
Return TRUE if SetVirtualAddressMap () has been called
Arguments:
NONE
Returns:
TRUE - If SetVirtualAddressMap () has been called
--*/
{
return mEfiGoneVirtual;
}
//
// The following functions hide the mRT local global from the call to
// runtime service in the EFI system table.
//
EFI_STATUS
EfiGetTime (
OUT EFI_TIME *Time,
OUT EFI_TIME_CAPABILITIES *Capabilities
)
/*++
Routine Description:
Returns the current time and date information, and the time-keeping
capabilities of the hardware platform.
Arguments:
Time - A pointer to storage to receive a snapshot of the current time.
Capabilities - An optional pointer to a buffer to receive the real time clock device's
capabilities.
Returns:
Status code
--*/
{
return mRT->GetTime (Time, Capabilities);
}
EFI_STATUS
EfiSetTime (
IN EFI_TIME *Time
)
/*++
Routine Description:
Sets the current local time and date information.
Arguments:
Time - A pointer to the current time.
Returns:
Status code
--*/
{
return mRT->SetTime (Time);
}
EFI_STATUS
EfiGetWakeupTime (
OUT BOOLEAN *Enabled,
OUT BOOLEAN *Pending,
OUT EFI_TIME *Time
)
/*++
Routine Description:
Returns the current wakeup alarm clock setting.
Arguments:
Enabled - Indicates if the alarm is currently enabled or disabled.
Pending - Indicates if the alarm signal is pending and requires acknowledgement.
Time - The current alarm setting.
Returns:
Status code
--*/
{
return mRT->GetWakeupTime (Enabled, Pending, Time);
}
EFI_STATUS
EfiSetWakeupTime (
IN BOOLEAN Enable,
IN EFI_TIME *Time
)
/*++
Routine Description:
Sets the system wakeup alarm clock time.
Arguments:
Enable - Enable or disable the wakeup alarm.
Time - If Enable is TRUE, the time to set the wakeup alarm for.
If Enable is FALSE, then this parameter is optional, and may be NULL.
Returns:
Status code
--*/
{
return mRT->SetWakeupTime (Enable, Time);
}
EFI_STATUS
EfiGetVariable (
IN CHAR16 *VariableName,
IN EFI_GUID * VendorGuid,
OUT UINT32 *Attributes OPTIONAL,
IN OUT UINTN *DataSize,
OUT VOID *Data
)
/*++
Routine Description:
Returns the value of a variable.
Arguments:
VariableName - A Null-terminated Unicode string that is the name of the
vendor's variable.
VendorGuid - A unique identifier for the vendor.
Attributes - If not NULL, a pointer to the memory location to return the
attributes bitmask for the variable.
DataSize - On input, the size in bytes of the return Data buffer.
On output the size of data returned in Data.
Data - The buffer to return the contents of the variable.
Returns:
Status code
--*/
{
return mRT->GetVariable (VariableName, VendorGuid, Attributes, DataSize, Data);
}
EFI_STATUS
EfiGetNextVariableName (
IN OUT UINTN *VariableNameSize,
IN OUT CHAR16 *VariableName,
IN OUT EFI_GUID *VendorGuid
)
/*++
Routine Description:
Enumerates the current variable names.
Arguments:
VariableNameSize - The size of the VariableName buffer.
VariableName - On input, supplies the last VariableName that was returned
by GetNextVariableName().
On output, returns the Nullterminated Unicode string of the
current variable.
VendorGuid - On input, supplies the last VendorGuid that was returned by
GetNextVariableName().
On output, returns the VendorGuid of the current variable.
Returns:
Status code
--*/
{
return mRT->GetNextVariableName (VariableNameSize, VariableName, VendorGuid);
}
EFI_STATUS
EfiSetVariable (
IN CHAR16 *VariableName,
IN EFI_GUID *VendorGuid,
IN UINT32 Attributes,
IN UINTN DataSize,
IN VOID *Data
)
/*++
Routine Description:
Sets the value of a variable.
Arguments:
VariableName - A Null-terminated Unicode string that is the name of the
vendor's variable.
VendorGuid - A unique identifier for the vendor.
Attributes - Attributes bitmask to set for the variable.
DataSize - The size in bytes of the Data buffer.
Data - The contents for the variable.
Returns:
Status code
--*/
{
return mRT->SetVariable (VariableName, VendorGuid, Attributes, DataSize, Data);
}
#if (EFI_SPECIFICATION_VERSION >= 0x00020000)
EFI_STATUS
EfiQueryVariableInfo (
IN UINT32 Attributes,
OUT UINT64 *MaximumVariableStorageSize,
OUT UINT64 *RemainingVariableStorageSize,
OUT UINT64 *MaximumVariableSize
)
/*++
Routine Description:
This code returns information about the EFI variables.
Arguments:
Attributes Attributes bitmask to specify the type of variables
on which to return information.
MaximumVariableStorageSize Pointer to the maximum size of the storage space available
for the EFI variables associated with the attributes specified.
RemainingVariableStorageSize Pointer to the remaining size of the storage space available
for the EFI variables associated with the attributes specified.
MaximumVariableSize Pointer to the maximum size of the individual EFI variables
associated with the attributes specified.
Returns:
Status code
--*/
{
return mRT->QueryVariableInfo (Attributes, MaximumVariableStorageSize, RemainingVariableStorageSize, MaximumVariableSize);
}
#endif
EFI_STATUS
EfiGetNextHighMonotonicCount (
OUT UINT32 *HighCount
)
/*++
Routine Description:
Returns the next high 32 bits of the platform's monotonic counter.
Arguments:
HighCount - Pointer to returned value.
Returns:
Status code
--*/
{
return mRT->GetNextHighMonotonicCount (HighCount);
}
VOID
EfiResetSystem (
IN EFI_RESET_TYPE ResetType,
IN EFI_STATUS ResetStatus,
IN UINTN DataSize,
IN CHAR16 *ResetData
)
/*++
Routine Description:
Resets the entire platform.
Arguments:
ResetType - The type of reset to perform.
ResetStatus - The status code for the reset.
DataSize - The size, in bytes, of ResetData.
ResetData - A data buffer that includes a Null-terminated Unicode string, optionally
followed by additional binary data.
Returns:
None
--*/
{
mRT->ResetSystem (ResetType, ResetStatus, DataSize, ResetData);
}
EFI_STATUS
EfiReportStatusCode (
IN EFI_STATUS_CODE_TYPE CodeType,
IN EFI_STATUS_CODE_VALUE Value,
IN UINT32 Instance,
IN EFI_GUID * CallerId,
IN EFI_STATUS_CODE_DATA * Data OPTIONAL
)
/*++
Routine Description:
Status Code reporter
Arguments:
CodeType - Type of Status Code.
Value - Value to output for Status Code.
Instance - Instance Number of this status code.
CallerId - ID of the caller of this status code.
Data - Optional data associated with this status code.
Returns:
Status code
--*/
{
EFI_STATUS Status;
#if (EFI_SPECIFICATION_VERSION >= 0x00020000)
if (gStatusCode == NULL) {
if (EfiAtRuntime ()) {
return EFI_UNSUPPORTED;
}
Status = gBS->LocateProtocol (&gEfiStatusCodeRuntimeProtocolGuid, NULL, (VOID **)&gStatusCode);
if (EFI_ERROR (Status) || gStatusCode == NULL) {
return EFI_UNSUPPORTED;
}
}
Status = gStatusCode->ReportStatusCode (CodeType, Value, Instance, CallerId, Data);
#else
if (mRT == NULL) {
return EFI_UNSUPPORTED;
}
//
// Check whether EFI_RUNTIME_SERVICES has Tiano Extension
//
Status = EFI_UNSUPPORTED;
if (mRT->Hdr.Revision == EFI_SPECIFICATION_VERSION &&
mRT->Hdr.HeaderSize == sizeof (EFI_RUNTIME_SERVICES) &&
mRT->ReportStatusCode != NULL) {
Status = mRT->ReportStatusCode (CodeType, Value, Instance, CallerId, Data);
}
#endif
return Status;
}

View File

@@ -0,0 +1,37 @@
#------------------------------------------------------------------------------
#
# Copyright (c) 2008, Intel Corporation
# All rights reserved. This program and the accompanying materials
# are licensed and made available under the terms and conditions of the BSD License
# which accompanies this distribution. The full text of the license may be found at
# http://opensource.org/licenses/bsd-license.php
#
# THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
# WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
#
# Module Name:
#
# RuntimeLibAsm.S
#
# Abstract:
#
#
#------------------------------------------------------------------------------
#include <EfiBind.h>
.text
.global ASM_PFX(EfiCpuFlushCache)
#------------------------------------------------------------------------------
#EFI_STATUS
#EfiCpuFlushCache (
# IN EFI_PHYSICAL_ADDRESS Start,
# IN UINT64 Length
# );
#------------------------------------------------------------------------------
ASM_PFX(EfiCpuFlushCache):
wbinvd
mov $0, %rax
ret

View File

@@ -0,0 +1,37 @@
;------------------------------------------------------------------------------
;
; Copyright (c) 2007, Intel Corporation
; All rights reserved. This program and the accompanying materials
; are licensed and made available under the terms and conditions of the BSD License
; which accompanies this distribution. The full text of the license may be found at
; http://opensource.org/licenses/bsd-license.php
;
; THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
; WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
;
; Module Name:
;
; RuntimeLibAsm.asm
;
; Abstract:
;
;
;------------------------------------------------------------------------------
.code
;------------------------------------------------------------------------------
;EFI_STATUS
;EfiCpuFlushCache (
; IN EFI_PHYSICAL_ADDRESS Start,
; IN UINT64 Length
; );
;------------------------------------------------------------------------------
EfiCpuFlushCache PROC PUBLIC
wbinvd
mov rax, 0
ret
EfiCpuFlushCache ENDP
END