MdeModulePkg: strip trailing whitespace

Cc: Jian J Wang <jian.j.wang@intel.com>
Cc: Hao A Wu <hao.a.wu@intel.com>
Cc: Dandan Bi <dandan.bi@intel.com>
Cc: Liming Gao <liming.gao@intel.com>
Cc: Eric Dong <eric.dong@intel.com>
Cc: Zhichao Gao <zhichao.gao@intel.com>
Cc: Ray Ni <ray.ni@intel.com>
Signed-off-by: Leif Lindholm <leif.lindholm@linaro.org>
Reviewed-by: Hao A Wu <hao.a.wu@intel.com>
This commit is contained in:
Leif Lindholm
2019-09-19 13:04:53 +01:00
parent 89c2e2b1d3
commit ba39402f34
15 changed files with 170 additions and 170 deletions

View File

@@ -2,15 +2,15 @@ LZMA SDK 18.05
--------------
LZMA SDK provides the documentation, samples, header files,
libraries, and tools you need to develop applications that
libraries, and tools you need to develop applications that
use 7z / LZMA / LZMA2 / XZ compression.
LZMA is an improved version of famous LZ77 compression algorithm.
LZMA is an improved version of famous LZ77 compression algorithm.
It was improved in way of maximum increasing of compression ratio,
keeping high decompression speed and low memory requirements for
keeping high decompression speed and low memory requirements for
decompressing.
LZMA2 is a LZMA based compression method. LZMA2 provides better
LZMA2 is a LZMA based compression method. LZMA2 provides better
multithreading support for compression than LZMA and some other improvements.
7z is a file format for data compression and file archiving.
@@ -19,7 +19,7 @@ multithreading support for compression than LZMA and some other improvements.
7z also supports AES-256 based encryption.
XZ is a file format for data compression that uses LZMA2 compression.
XZ format provides additional features: SHA/CRC check, filters for
XZ format provides additional features: SHA/CRC check, filters for
improved compression ratio, splitting to blocks and streams,
@@ -33,11 +33,11 @@ Some code in LZMA SDK is based on public domain code from another developers:
1) PPMd var.H (2001): Dmitry Shkarin
2) SHA-256: Wei Dai (Crypto++ library)
Anyone is free to copy, modify, publish, use, compile, sell, or distribute the
original LZMA SDK code, either in source code form or as a compiled binary, for
Anyone is free to copy, modify, publish, use, compile, sell, or distribute the
original LZMA SDK code, either in source code form or as a compiled binary, for
any purpose, commercial or non-commercial, and by any means.
LZMA SDK code is compatible with open source licenses, for example, you can
LZMA SDK code is compatible with open source licenses, for example, you can
include it to GNU GPL or GNU LGPL code.
@@ -60,7 +60,7 @@ LZMA SDK Contents
- SFX modules for installers.
UNIX/Linux version
UNIX/Linux version
------------------
To compile C++ version of file->file LZMA encoding, go to directory
CPP/7zip/Bundles/LzmaCon
@@ -68,11 +68,11 @@ and call make to recompile it:
make -f makefile.gcc clean all
In some UNIX/Linux versions you must compile LZMA with static libraries.
To compile with static libraries, you can use
To compile with static libraries, you can use
LIB = -lm -static
Also you can use p7zip (port of 7-Zip for POSIX systems like Unix or Linux):
http://p7zip.sourceforge.net/
@@ -120,7 +120,7 @@ C/ - C files (compression / decompression and other)
7z - 7z decoder program (decoding 7z files)
Lzma - LZMA program (file->file LZMA encoder/decoder).
LzmaLib - LZMA library (.DLL for Windows)
SfxSetup - small SFX module for installers
SfxSetup - small SFX module for installers
CPP/ -- CPP files
@@ -135,7 +135,7 @@ CPP/ -- CPP files
7z - 7z C++ Encoder/Decoder
Bundles - Modules that are bundles of other modules (files)
Alone7z - 7zr.exe: Standalone 7-Zip console program (reduced version)
Format7zExtractR - 7zxr.dll: Reduced version of 7z DLL: extracting from 7z/LZMA/BCJ/BCJ2.
Format7zR - 7zr.dll: Reduced version of 7z DLL: extracting/compressing to 7z/LZMA/BCJ/BCJ2
@@ -152,7 +152,7 @@ CPP/ -- CPP files
Crypto - files for encryption / decompression
UI - User Interface files
Client7z - Test application for 7za.dll, 7zr.dll, 7zxr.dll
Common - Common UI files
Console - Code for console program (7z.exe)
@@ -178,7 +178,7 @@ Java/ - Java files
RangeCoder - Range Coder (special code of compression/decompression)
Note:
Note:
Asm / C / C++ source code of LZMA SDK is part of 7-Zip's source code.
7-Zip's source code can be downloaded from 7-Zip's SourceForge page:
@@ -190,13 +190,13 @@ LZMA features
-------------
- Variable dictionary size (up to 1 GB)
- Estimated compressing speed: about 2 MB/s on 2 GHz CPU
- Estimated decompressing speed:
- Estimated decompressing speed:
- 20-30 MB/s on modern 2 GHz cpu
- 1-2 MB/s on 200 MHz simple RISC cpu: (ARM, MIPS, PowerPC)
- Small memory requirements for decompressing (16 KB + DictionarySize)
- Small code size for decompressing: 5-8 KB
LZMA decoder uses only integer operations and can be
LZMA decoder uses only integer operations and can be
implemented in any modern 32-bit CPU (or on 16-bit CPU with some conditions).
Some critical operations that affect the speed of LZMA decompression:
@@ -205,7 +205,7 @@ Some critical operations that affect the speed of LZMA decompression:
3) 32-bit shift and arithmetic operations
The speed of LZMA decompressing mostly depends from CPU speed.
Memory speed has no big meaning. But if your CPU has small data cache,
Memory speed has no big meaning. But if your CPU has small data cache,
overall weight of memory speed will slightly increase.
@@ -221,53 +221,53 @@ Usage: LZMA <e|d> inputFile outputFile [<switches>...]
d: decode file
b: Benchmark. There are two tests: compressing and decompressing
with LZMA method. Benchmark shows rating in MIPS (million
instructions per second). Rating value is calculated from
b: Benchmark. There are two tests: compressing and decompressing
with LZMA method. Benchmark shows rating in MIPS (million
instructions per second). Rating value is calculated from
measured speed and it is normalized with Intel's Core 2 results.
Also Benchmark checks possible hardware errors (RAM
Also Benchmark checks possible hardware errors (RAM
errors in most cases). Benchmark uses these settings:
(-a1, -d21, -fb32, -mfbt4). You can change only -d parameter.
(-a1, -d21, -fb32, -mfbt4). You can change only -d parameter.
Also you can change the number of iterations. Example for 30 iterations:
LZMA b 30
Default number of iterations is 10.
<Switches>
-a{N}: set compression mode 0 = fast, 1 = normal
default: 1 (normal)
d{N}: Sets Dictionary size - [0, 30], default: 23 (8MB)
The maximum value for dictionary size is 1 GB = 2^30 bytes.
Dictionary size is calculated as DictionarySize = 2^N bytes.
For decompressing file compressed by LZMA method with dictionary
Dictionary size is calculated as DictionarySize = 2^N bytes.
For decompressing file compressed by LZMA method with dictionary
size D = 2^N you need about D bytes of memory (RAM).
-fb{N}: set number of fast bytes - [5, 273], default: 128
Usually big number gives a little bit better compression ratio
Usually big number gives a little bit better compression ratio
and slower compression process.
-lc{N}: set number of literal context bits - [0, 8], default: 3
Sometimes lc=4 gives gain for big files.
-lp{N}: set number of literal pos bits - [0, 4], default: 0
lp switch is intended for periodical data when period is
equal 2^N. For example, for 32-bit (4 bytes)
periodical data you can use lp=2. Often it's better to set lc0,
lp switch is intended for periodical data when period is
equal 2^N. For example, for 32-bit (4 bytes)
periodical data you can use lp=2. Often it's better to set lc0,
if you change lp switch.
-pb{N}: set number of pos bits - [0, 4], default: 2
pb switch is intended for periodical data
pb switch is intended for periodical data
when period is equal 2^N.
-mf{MF_ID}: set Match Finder. Default: bt4.
Algorithms from hc* group doesn't provide good compression
ratio, but they often works pretty fast in combination with
-mf{MF_ID}: set Match Finder. Default: bt4.
Algorithms from hc* group doesn't provide good compression
ratio, but they often works pretty fast in combination with
fast mode (-a0).
Memory requirements depend from dictionary size
(parameter "d" in table below).
Memory requirements depend from dictionary size
(parameter "d" in table below).
MF_ID Memory Description
@@ -276,8 +276,8 @@ Usage: LZMA <e|d> inputFile outputFile [<switches>...]
bt4 d * 11.5 + 4MB Binary Tree with 4 bytes hashing.
hc4 d * 7.5 + 4MB Hash Chain with 4 bytes hashing.
-eos: write End Of Stream marker. By default LZMA doesn't write
eos marker, since LZMA decoder knows uncompressed size
-eos: write End Of Stream marker. By default LZMA doesn't write
eos marker, since LZMA decoder knows uncompressed size
stored in .lzma file header.
-si: Read data from stdin (it will write End Of Stream marker).
@@ -286,16 +286,16 @@ Usage: LZMA <e|d> inputFile outputFile [<switches>...]
Examples:
1) LZMA e file.bin file.lzma -d16 -lc0
1) LZMA e file.bin file.lzma -d16 -lc0
compresses file.bin to file.lzma with 64 KB dictionary (2^16=64K)
and 0 literal context bits. -lc0 allows to reduce memory requirements
compresses file.bin to file.lzma with 64 KB dictionary (2^16=64K)
and 0 literal context bits. -lc0 allows to reduce memory requirements
for decompression.
2) LZMA e file.bin file.lzma -lc0 -lp2
compresses file.bin to file.lzma with settings suitable
compresses file.bin to file.lzma with settings suitable
for 32-bit periodical data (for example, ARM or MIPS code).
3) LZMA d file.lzma file.bin
@@ -309,9 +309,9 @@ Compression ratio hints
Recommendations
---------------
To increase the compression ratio for LZMA compressing it's desirable
To increase the compression ratio for LZMA compressing it's desirable
to have aligned data (if it's possible) and also it's desirable to locate
data in such order, where code is grouped in one place and data is
data in such order, where code is grouped in one place and data is
grouped in other place (it's better than such mixing: code, data, code,
data, ...).
@@ -319,19 +319,19 @@ data, ...).
Filters
-------
You can increase the compression ratio for some data types, using
special filters before compressing. For example, it's possible to
increase the compression ratio on 5-10% for code for those CPU ISAs:
special filters before compressing. For example, it's possible to
increase the compression ratio on 5-10% for code for those CPU ISAs:
x86, IA-64, ARM, ARM-Thumb, PowerPC, SPARC.
You can find C source code of such filters in C/Bra*.* files
You can check the compression ratio gain of these filters with such
You can check the compression ratio gain of these filters with such
7-Zip commands (example for ARM code):
No filter:
7z a a1.7z a.bin -m0=lzma
With filter for little-endian ARM code:
7z a a2.7z a.bin -m0=arm -m1=lzma
7z a a2.7z a.bin -m0=arm -m1=lzma
It works in such manner:
Compressing = Filter_encoding + LZMA_encoding
@@ -339,11 +339,11 @@ Decompressing = LZMA_decoding + Filter_decoding
Compressing and decompressing speed of such filters is very high,
so it will not increase decompressing time too much.
Moreover, it reduces decompression time for LZMA_decoding,
Moreover, it reduces decompression time for LZMA_decoding,
since compression ratio with filtering is higher.
These filters convert CALL (calling procedure) instructions
from relative offsets to absolute addresses, so such data becomes more
These filters convert CALL (calling procedure) instructions
from relative offsets to absolute addresses, so such data becomes more
compressible.
For some ISAs (for example, for MIPS) it's impossible to get gain from such filter.