Added support for an EFI X64 ABI compatible UnixPkg. With an internal only compiler I've been able to run checked in X64 EFI shell binary! We are hoping to get the open source LLVM compiler working for this... Since the SEC has to be UNIX ABI to make the POSIX calls it is compiled using a different compiler and the rest of the UnixPkg is compiled with UNIXPKG tool. You just need to point UNIXPKG at your EFI X64 ABI compiler of choice, it should work like MYTOOLS. Some one may want to port this to Linux at some point. To build cd into UnixPkg and ./build64.sh

git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@10806 6f19259b-4bc3-4df7-8a09-765794883524
This commit is contained in:
andrewfish
2010-08-18 20:24:08 +00:00
parent 6989af7168
commit bb111c2346
18 changed files with 316 additions and 200 deletions

View File

@@ -1,7 +1,7 @@
/** @file
Math worker functions.
Copyright (c) 2006 - 2008, Intel Corporation. All rights reserved.<BR>
Copyright (c) 2006 - 2010, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
@@ -40,5 +40,5 @@ GetPowerOfTwo64 (
return 0;
}
return LShiftU64 (1, HighBitSet64 (Operand));
return LShiftU64 (1, (UINTN) HighBitSet64 (Operand));
}

View File

@@ -38,5 +38,5 @@ MultS64x64 (
IN INT64 Multiplier
)
{
return (INT64)MultU64x64 (Multiplicand, Multiplier);
return (INT64)MultU64x64 ((UINT64) Multiplicand, (UINT64) Multiplier);
}

View File

@@ -14,17 +14,6 @@
#include "BaseLibInternals.h"
#define QUOTIENT_MAX_UINTN_DIVIDED_BY_10 ((UINTN) -1 / 10)
#define REMAINDER_MAX_UINTN_DIVIDED_BY_10 ((UINTN) -1 % 10)
#define QUOTIENT_MAX_UINTN_DIVIDED_BY_16 ((UINTN) -1 / 16)
#define REMAINDER_MAX_UINTN_DIVIDED_BY_16 ((UINTN) -1 % 16)
#define QUOTIENT_MAX_UINT64_DIVIDED_BY_10 ((UINT64) -1 / 10)
#define REMAINDER_MAX_UINT64_DIVIDED_BY_10 ((UINT64) -1 % 10)
#define QUOTIENT_MAX_UINT64_DIVIDED_BY_16 ((UINT64) -1 / 16)
#define REMAINDER_MAX_UINT64_DIVIDED_BY_16 ((UINT64) -1 % 16)
/**
Copies one Null-terminated Unicode string to another Null-terminated Unicode
@@ -681,10 +670,7 @@ StrDecimalToUintn (
// If the number represented by String overflows according
// to the range defined by UINTN, then ASSERT().
//
ASSERT ((Result < QUOTIENT_MAX_UINTN_DIVIDED_BY_10) ||
((Result == QUOTIENT_MAX_UINTN_DIVIDED_BY_10) &&
(*String - L'0') <= REMAINDER_MAX_UINTN_DIVIDED_BY_10)
);
ASSERT (Result <= ((((UINTN) ~0) - (*String - L'0')) / 10));
Result = Result * 10 + (*String - L'0');
String++;
@@ -763,10 +749,7 @@ StrDecimalToUint64 (
// If the number represented by String overflows according
// to the range defined by UINTN, then ASSERT().
//
ASSERT ((Result < QUOTIENT_MAX_UINT64_DIVIDED_BY_10) ||
((Result == QUOTIENT_MAX_UINT64_DIVIDED_BY_10) &&
(*String - L'0') <= REMAINDER_MAX_UINT64_DIVIDED_BY_10)
);
ASSERT (Result <= DivU64x32 (((UINT64) ~0) - (*String - L'0') , 10));
Result = MultU64x32 (Result, 10) + (*String - L'0');
String++;
@@ -855,10 +838,7 @@ StrHexToUintn (
// If the Hex Number represented by String overflows according
// to the range defined by UINTN, then ASSERT().
//
ASSERT ((Result < QUOTIENT_MAX_UINTN_DIVIDED_BY_16) ||
((Result == QUOTIENT_MAX_UINTN_DIVIDED_BY_16) &&
(InternalHexCharToUintn (*String) <= REMAINDER_MAX_UINTN_DIVIDED_BY_16))
);
ASSERT (Result <= ((((UINTN) ~0) - InternalHexCharToUintn (*String)) >> 4));
Result = (Result << 4) + InternalHexCharToUintn (*String);
String++;
@@ -949,10 +929,7 @@ StrHexToUint64 (
// If the Hex Number represented by String overflows according
// to the range defined by UINTN, then ASSERT().
//
ASSERT ((Result < QUOTIENT_MAX_UINT64_DIVIDED_BY_16)||
((Result == QUOTIENT_MAX_UINT64_DIVIDED_BY_16) &&
(InternalHexCharToUintn (*String) <= REMAINDER_MAX_UINT64_DIVIDED_BY_16))
);
ASSERT (Result <= RShiftU64 (((UINT64) ~0) - InternalHexCharToUintn (*String) , 4));
Result = LShiftU64 (Result, 4);
Result = Result + InternalHexCharToUintn (*String);
@@ -1716,10 +1693,7 @@ AsciiStrDecimalToUintn (
// If the number represented by String overflows according
// to the range defined by UINTN, then ASSERT().
//
ASSERT ((Result < QUOTIENT_MAX_UINTN_DIVIDED_BY_10) ||
((Result == QUOTIENT_MAX_UINTN_DIVIDED_BY_10) &&
(*String - '0') <= REMAINDER_MAX_UINTN_DIVIDED_BY_10)
);
ASSERT (Result <= ((((UINTN) ~0) - (*String - L'0')) / 10));
Result = Result * 10 + (*String - '0');
String++;
@@ -1793,10 +1767,7 @@ AsciiStrDecimalToUint64 (
// If the number represented by String overflows according
// to the range defined by UINTN, then ASSERT().
//
ASSERT ((Result < QUOTIENT_MAX_UINT64_DIVIDED_BY_10) ||
((Result == QUOTIENT_MAX_UINT64_DIVIDED_BY_10) &&
(*String - '0') <= REMAINDER_MAX_UINT64_DIVIDED_BY_10)
);
ASSERT (Result <= DivU64x32 (((UINT64) ~0) - (*String - L'0') , 10));
Result = MultU64x32 (Result, 10) + (*String - '0');
String++;
@@ -1884,10 +1855,7 @@ AsciiStrHexToUintn (
// If the Hex Number represented by String overflows according
// to the range defined by UINTN, then ASSERT().
//
ASSERT ((Result < QUOTIENT_MAX_UINTN_DIVIDED_BY_16) ||
((Result == QUOTIENT_MAX_UINTN_DIVIDED_BY_16) &&
(InternalAsciiHexCharToUintn (*String) <= REMAINDER_MAX_UINTN_DIVIDED_BY_16))
);
ASSERT (Result <= ((((UINTN) ~0) - InternalHexCharToUintn (*String)) >> 4));
Result = (Result << 4) + InternalAsciiHexCharToUintn (*String);
String++;
@@ -1979,10 +1947,7 @@ AsciiStrHexToUint64 (
// If the Hex Number represented by String overflows according
// to the range defined by UINTN, then ASSERT().
//
ASSERT ((Result < QUOTIENT_MAX_UINT64_DIVIDED_BY_16) ||
((Result == QUOTIENT_MAX_UINT64_DIVIDED_BY_16) &&
(InternalAsciiHexCharToUintn (*String) <= REMAINDER_MAX_UINT64_DIVIDED_BY_16))
);
ASSERT (Result <= RShiftU64 (((UINT64) ~0) - InternalHexCharToUintn (*String) , 4));
Result = LShiftU64 (Result, 4);
Result = Result + InternalAsciiHexCharToUintn (*String);

View File

@@ -23,12 +23,12 @@
# VOID
# EFIAPI
# InternalLongJump (
# IN BASE_LIBRARY_JUMP_BUFFER *JumpBuffer, // %rcx
# IN UINTN Value // %rdx
# IN BASE_LIBRARY_JUMP_BUFFER *JumpBuffer,
# IN UINTN Value
# );
#------------------------------------------------------------------------------
ASM_GLOBAL ASM_PFX(EfiInternalLongJump)
ASM_PFX(EfiInternalLongJump):
ASM_GLOBAL ASM_PFX(InternalLongJump)
ASM_PFX(InternalLongJump):
mov (%rcx), %rbx
mov 0x8(%rcx), %rsp
mov 0x10(%rcx), %rbp
@@ -52,37 +52,3 @@ ASM_PFX(EfiInternalLongJump):
movdqu 0xE8(%rcx), %xmm15
mov %rdx, %rax # set return value
jmp *0x48(%rcx)
#------------------------------------------------------------------------------
# VOID
# EFIAPI
# UnixInternalLongJump (
# IN BASE_LIBRARY_JUMP_BUFFER *JumpBuffer, // %rdi
# IN UINTN Value // %rsi
# );
#------------------------------------------------------------------------------
ASM_GLOBAL ASM_PFX(InternalLongJump)
ASM_PFX(InternalLongJump):
mov (%rdi), %rbx
mov 0x8(%rdi), %rsp
mov 0x10(%rdi), %rbp
mov 0x18(%rdi), %rdi
mov 0x20(%rdi), %rsi
mov 0x28(%rdi), %r12
mov 0x30(%rdi), %r13
mov 0x38(%rdi), %r14
mov 0x40(%rdi), %r15
# load non-volatile fp registers
ldmxcsr 0x50(%rdi)
movdqu 0x58(%rdi), %xmm6
movdqu 0x68(%rdi), %xmm7
movdqu 0x78(%rdi), %xmm8
movdqu 0x88(%rdi), %xmm9
movdqu 0x98(%rdi), %xmm10
movdqu 0xA8(%rdi), %xmm11
movdqu 0xB8(%rdi), %xmm12
movdqu 0xC8(%rdi), %xmm13
movdqu 0xD8(%rdi), %xmm14
movdqu 0xE8(%rdi), %xmm15
mov %rsi, %rax # set return value
jmp *0x48(%rdi)

View File

@@ -19,8 +19,8 @@
#
#------------------------------------------------------------------------------
ASM_GLOBAL ASM_PFX(EfiSetJump)
ASM_PFX(EfiSetJump):
ASM_GLOBAL ASM_PFX(SetJump)
ASM_PFX(SetJump):
push %rcx
add $0xffffffffffffffe0,%rsp
call ASM_PFX(InternalAssertJumpBuffer)
@@ -51,32 +51,3 @@ ASM_PFX(EfiSetJump):
movdqu %xmm15, 0xE8(%rcx)
xor %rax,%rax
jmpq *%rdx
ASM_GLOBAL ASM_PFX(SetJump)
ASM_PFX(SetJump):
pop %rdx
mov %rbx,(%rdi) # Rbx
mov %rsp,0x8(%rdi)
mov %rbp,0x10(%rdi)
mov %rcx,0x18(%rdi)
mov %rsi,0x20(%rdi)
mov %r12,0x28(%rdi)
mov %r13,0x30(%rdi)
mov %r14,0x38(%rdi)
mov %r15,0x40(%rdi)
mov %rdx,0x48(%rdi)
# save non-volatile fp registers
stmxcsr 0x50(%rdi)
movdqu %xmm6, 0x58(%rdi)
movdqu %xmm7, 0x68(%rdi)
movdqu %xmm8, 0x78(%rdi)
movdqu %xmm9, 0x88(%rdi)
movdqu %xmm10, 0x98(%rdi)
movdqu %xmm11, 0xA8(%rdi)
movdqu %xmm12, 0xB8(%rdi)
movdqu %xmm13, 0xC8(%rdi)
movdqu %xmm14, 0xD8(%rdi)
movdqu %xmm15, 0xE8(%rdi)
xor %rax,%rax
jmpq *%rdx

View File

@@ -35,45 +35,17 @@
# None
#
#------------------------------------------------------------------------------
ASM_GLOBAL ASM_PFX(EfiInternalSwitchStack)
ASM_PFX(EfiInternalSwitchStack):
mov %rcx, %rax
mov %rdx, %rcx
mov %r8, %rdx
#
# Reserve space for register parameters (rcx, rdx, r8 & r9) on the stack,
# in case the callee wishes to spill them.
#
lea -0x20(%r9), %rsp
call *%rax
#------------------------------------------------------------------------------
# Routine Description:
#
# Routine for switching stacks with 2 parameters (Unix ABI)
#
# Arguments:
#
# (rdi) EntryPoint - Entry point with new stack.
# (rsi) Context1 - Parameter1 for entry point.
# (rdx) Context2 - Parameter2 for entry point.
# (rcx) NewStack - The pointer to new stack.
#
# Returns:
#
# None
#
#------------------------------------------------------------------------------
ASM_GLOBAL ASM_PFX(InternalSwitchStack)
ASM_PFX(InternalSwitchStack):
mov %rdi, %rax
mov %rsi, %rdi
mov %rdx, %rsi
movq %rcx, %rax
movq %rdx, %rcx
movq %r8, %rdx
movq %r9, %rsp
#
# Reserve space for register parameters (rcx, rdx, r8 & r9) on the stack,
# in case the callee wishes to spill them.
#
lea -0x20(%rcx), %rsp
subq $40, %rsp // 32-byte shadow space plus alignment pad
call *%rax