CryptoPkg: Add instrinsics to support building openssl3 on IA32 windows
This dependency is needed to build openssl lib with openssl3 under IA32 Windows, so added implementation for _alldiv, _aulldiv, _aullrem and _alldvrm instrinsics. Signed-off-by: Yi Li <yi1.li@intel.com> Cc: Jiewen Yao <jiewen.yao@intel.com> Cc: Xiaoyu Lu <xiaoyu1.lu@intel.com> Cc: Guomin Jiang <guomin.jiang@intel.com> Reviewed-by: Jiewen Yao <jiewen.yao@intel.com> Acked-by: Ard Biesheuvel <ardb@kernel.org> Tested-by: Ard Biesheuvel <ardb@kernel.org> Tested-by: Brian J. Johnson <brian.johnson@hpe.com> Tested-by: Kenneth Lautner <klautner@microsoft.com>
This commit is contained in:
163
CryptoPkg/Library/IntrinsicLib/Ia32/MathUllrem.asm
Normal file
163
CryptoPkg/Library/IntrinsicLib/Ia32/MathUllrem.asm
Normal file
@@ -0,0 +1,163 @@
|
||||
;***
|
||||
;ullrem.asm - unsigned long remainder routine
|
||||
;
|
||||
; Copyright (c) Microsoft Corporation. All rights reserved.
|
||||
; SPDX-License-Identifier: BSD-2-Clause-Patent
|
||||
;
|
||||
;Purpose:
|
||||
; defines the unsigned long remainder routine
|
||||
; __aullrem
|
||||
;
|
||||
;Original Implemenation: MSVC 14.29.30133
|
||||
;
|
||||
;*******************************************************************************
|
||||
.686
|
||||
.model flat,C
|
||||
.code
|
||||
|
||||
|
||||
;***
|
||||
;ullrem - unsigned long remainder
|
||||
;
|
||||
;Purpose:
|
||||
; Does a unsigned long remainder of the arguments. Arguments are
|
||||
; not changed.
|
||||
;
|
||||
;Entry:
|
||||
; Arguments are passed on the stack:
|
||||
; 1st pushed: divisor (QWORD)
|
||||
; 2nd pushed: dividend (QWORD)
|
||||
;
|
||||
;Exit:
|
||||
; EDX:EAX contains the remainder (dividend%divisor)
|
||||
; NOTE: this routine removes the parameters from the stack.
|
||||
;
|
||||
;Uses:
|
||||
; ECX
|
||||
;
|
||||
;Exceptions:
|
||||
;
|
||||
;*******************************************************************************
|
||||
_aullrem PROC NEAR
|
||||
|
||||
HIWORD EQU [4] ;
|
||||
LOWORD EQU [0]
|
||||
|
||||
push ebx
|
||||
|
||||
; Set up the local stack and save the index registers. When this is done
|
||||
; the stack frame will look as follows (assuming that the expression a%b will
|
||||
; generate a call to ullrem(a, b)):
|
||||
;
|
||||
; -----------------
|
||||
; | |
|
||||
; |---------------|
|
||||
; | |
|
||||
; |--divisor (b)--|
|
||||
; | |
|
||||
; |---------------|
|
||||
; | |
|
||||
; |--dividend (a)-|
|
||||
; | |
|
||||
; |---------------|
|
||||
; | return addr** |
|
||||
; |---------------|
|
||||
; ESP---->| EBX |
|
||||
; -----------------
|
||||
;
|
||||
|
||||
DVND equ [esp + 8] ; stack address of dividend (a)
|
||||
DVSR equ [esp + 16] ; stack address of divisor (b)
|
||||
|
||||
; Now do the divide. First look to see if the divisor is less than 4194304K.
|
||||
; If so, then we can use a simple algorithm with word divides, otherwise
|
||||
; things get a little more complex.
|
||||
;
|
||||
|
||||
mov eax,HIWORD(DVSR) ; check to see if divisor < 4194304K
|
||||
or eax,eax
|
||||
jnz short L1 ; nope, gotta do this the hard way
|
||||
mov ecx,LOWORD(DVSR) ; load divisor
|
||||
mov eax,HIWORD(DVND) ; load high word of dividend
|
||||
xor edx,edx
|
||||
div ecx ; edx <- remainder, eax <- quotient
|
||||
mov eax,LOWORD(DVND) ; edx:eax <- remainder:lo word of dividend
|
||||
div ecx ; edx <- final remainder
|
||||
mov eax,edx ; edx:eax <- remainder
|
||||
xor edx,edx
|
||||
jmp short L2 ; restore stack and return
|
||||
|
||||
;
|
||||
; Here we do it the hard way. Remember, eax contains DVSRHI
|
||||
;
|
||||
|
||||
L1:
|
||||
mov ecx,eax ; ecx:ebx <- divisor
|
||||
mov ebx,LOWORD(DVSR)
|
||||
mov edx,HIWORD(DVND) ; edx:eax <- dividend
|
||||
mov eax,LOWORD(DVND)
|
||||
L3:
|
||||
shr ecx,1 ; shift divisor right one bit; hi bit <- 0
|
||||
rcr ebx,1
|
||||
shr edx,1 ; shift dividend right one bit; hi bit <- 0
|
||||
rcr eax,1
|
||||
or ecx,ecx
|
||||
jnz short L3 ; loop until divisor < 4194304K
|
||||
div ebx ; now divide, ignore remainder
|
||||
|
||||
;
|
||||
; We may be off by one, so to check, we will multiply the quotient
|
||||
; by the divisor and check the result against the orignal dividend
|
||||
; Note that we must also check for overflow, which can occur if the
|
||||
; dividend is close to 2**64 and the quotient is off by 1.
|
||||
;
|
||||
|
||||
mov ecx,eax ; save a copy of quotient in ECX
|
||||
mul dword ptr HIWORD(DVSR)
|
||||
xchg ecx,eax ; put partial product in ECX, get quotient in EAX
|
||||
mul dword ptr LOWORD(DVSR)
|
||||
add edx,ecx ; EDX:EAX = QUOT * DVSR
|
||||
jc short L4 ; carry means Quotient is off by 1
|
||||
|
||||
;
|
||||
; do long compare here between original dividend and the result of the
|
||||
; multiply in edx:eax. If original is larger or equal, we're ok, otherwise
|
||||
; subtract the original divisor from the result.
|
||||
;
|
||||
|
||||
cmp edx,HIWORD(DVND) ; compare hi words of result and original
|
||||
ja short L4 ; if result > original, do subtract
|
||||
jb short L5 ; if result < original, we're ok
|
||||
cmp eax,LOWORD(DVND) ; hi words are equal, compare lo words
|
||||
jbe short L5 ; if less or equal we're ok, else subtract
|
||||
L4:
|
||||
sub eax,LOWORD(DVSR) ; subtract divisor from result
|
||||
sbb edx,HIWORD(DVSR)
|
||||
L5:
|
||||
|
||||
;
|
||||
; Calculate remainder by subtracting the result from the original dividend.
|
||||
; Since the result is already in a register, we will perform the subtract in
|
||||
; the opposite direction and negate the result to make it positive.
|
||||
;
|
||||
|
||||
sub eax,LOWORD(DVND) ; subtract original dividend from result
|
||||
sbb edx,HIWORD(DVND)
|
||||
neg edx ; and negate it
|
||||
neg eax
|
||||
sbb edx,0
|
||||
|
||||
;
|
||||
; Just the cleanup left to do. dx:ax contains the remainder.
|
||||
; Restore the saved registers and return.
|
||||
;
|
||||
|
||||
L2:
|
||||
|
||||
pop ebx
|
||||
|
||||
ret 16
|
||||
|
||||
_aullrem ENDP
|
||||
|
||||
end
|
Reference in New Issue
Block a user