NetworkPkg: Apply uncrustify changes

REF: https://bugzilla.tianocore.org/show_bug.cgi?id=3737

Apply uncrustify changes to .c/.h files in the NetworkPkg package

Cc: Andrew Fish <afish@apple.com>
Cc: Leif Lindholm <leif@nuviainc.com>
Cc: Michael D Kinney <michael.d.kinney@intel.com>
Signed-off-by: Michael Kubacki <michael.kubacki@microsoft.com>
Reviewed-by: Maciej Rabeda <maciej.rabeda@linux.intel.com>
This commit is contained in:
Michael Kubacki
2021-12-05 14:54:07 -08:00
committed by mergify[bot]
parent 2f88bd3a12
commit d1050b9dff
294 changed files with 29888 additions and 30440 deletions

View File

@@ -28,13 +28,13 @@ SPDX-License-Identifier: BSD-2-Clause-Patent
VOID
EFIAPI
SnpUndi32CallbackBlock (
IN UINT64 UniqueId,
IN UINT32 Enable
IN UINT64 UniqueId,
IN UINT32 Enable
)
{
SNP_DRIVER *Snp;
Snp = (SNP_DRIVER *) (UINTN) UniqueId;
Snp = (SNP_DRIVER *)(UINTN)UniqueId;
//
// tcpip was calling snp at tpl_notify and when we acquire a lock that was
// created at a lower level (TPL_CALLBACK) it gives an assert!
@@ -60,12 +60,12 @@ SnpUndi32CallbackBlock (
VOID
EFIAPI
SnpUndi32CallbackDelay (
IN UINT64 UniqueId,
IN UINT64 MicroSeconds
IN UINT64 UniqueId,
IN UINT64 MicroSeconds
)
{
if (MicroSeconds != 0) {
gBS->Stall ((UINTN) MicroSeconds);
gBS->Stall ((UINTN)MicroSeconds);
}
}
@@ -87,92 +87,96 @@ SnpUndi32CallbackDelay (
VOID
EFIAPI
SnpUndi32CallbackMemio (
IN UINT64 UniqueId,
IN UINT8 ReadOrWrite,
IN UINT8 NumBytes,
IN UINT64 MemOrPortAddr,
IN OUT UINT64 BufferPtr
IN UINT64 UniqueId,
IN UINT8 ReadOrWrite,
IN UINT8 NumBytes,
IN UINT64 MemOrPortAddr,
IN OUT UINT64 BufferPtr
)
{
SNP_DRIVER *Snp;
EFI_PCI_IO_PROTOCOL_WIDTH Width;
SNP_DRIVER *Snp;
EFI_PCI_IO_PROTOCOL_WIDTH Width;
Snp = (SNP_DRIVER *) (UINTN) UniqueId;
Snp = (SNP_DRIVER *)(UINTN)UniqueId;
Width = (EFI_PCI_IO_PROTOCOL_WIDTH) 0;
Width = (EFI_PCI_IO_PROTOCOL_WIDTH)0;
switch (NumBytes) {
case 2:
Width = (EFI_PCI_IO_PROTOCOL_WIDTH) 1;
break;
case 2:
Width = (EFI_PCI_IO_PROTOCOL_WIDTH)1;
break;
case 4:
Width = (EFI_PCI_IO_PROTOCOL_WIDTH) 2;
break;
case 4:
Width = (EFI_PCI_IO_PROTOCOL_WIDTH)2;
break;
case 8:
Width = (EFI_PCI_IO_PROTOCOL_WIDTH) 3;
break;
case 8:
Width = (EFI_PCI_IO_PROTOCOL_WIDTH)3;
break;
}
switch (ReadOrWrite) {
case PXE_IO_READ:
ASSERT (Snp->IoBarIndex < PCI_MAX_BAR);
if (Snp->IoBarIndex < PCI_MAX_BAR) {
Snp->PciIo->Io.Read (
Snp->PciIo,
Width,
Snp->IoBarIndex, // BAR 1 (for 32bit regs), IO base address
MemOrPortAddr,
1, // count
(VOID *) (UINTN) BufferPtr
);
}
break;
case PXE_IO_READ:
ASSERT (Snp->IoBarIndex < PCI_MAX_BAR);
if (Snp->IoBarIndex < PCI_MAX_BAR) {
Snp->PciIo->Io.Read (
Snp->PciIo,
Width,
Snp->IoBarIndex, // BAR 1 (for 32bit regs), IO base address
MemOrPortAddr,
1, // count
(VOID *)(UINTN)BufferPtr
);
}
case PXE_IO_WRITE:
ASSERT (Snp->IoBarIndex < PCI_MAX_BAR);
if (Snp->IoBarIndex < PCI_MAX_BAR) {
Snp->PciIo->Io.Write (
Snp->PciIo,
Width,
Snp->IoBarIndex, // BAR 1 (for 32bit regs), IO base address
MemOrPortAddr,
1, // count
(VOID *) (UINTN) BufferPtr
);
}
break;
break;
case PXE_MEM_READ:
ASSERT (Snp->MemoryBarIndex < PCI_MAX_BAR);
if (Snp->MemoryBarIndex < PCI_MAX_BAR) {
Snp->PciIo->Mem.Read (
Snp->PciIo,
Width,
Snp->MemoryBarIndex, // BAR 0, Memory base address
MemOrPortAddr,
1, // count
(VOID *) (UINTN) BufferPtr
);
}
break;
case PXE_IO_WRITE:
ASSERT (Snp->IoBarIndex < PCI_MAX_BAR);
if (Snp->IoBarIndex < PCI_MAX_BAR) {
Snp->PciIo->Io.Write (
Snp->PciIo,
Width,
Snp->IoBarIndex, // BAR 1 (for 32bit regs), IO base address
MemOrPortAddr,
1, // count
(VOID *)(UINTN)BufferPtr
);
}
case PXE_MEM_WRITE:
ASSERT (Snp->MemoryBarIndex < PCI_MAX_BAR);
if (Snp->MemoryBarIndex < PCI_MAX_BAR) {
Snp->PciIo->Mem.Write (
Snp->PciIo,
Width,
Snp->MemoryBarIndex, // BAR 0, Memory base address
MemOrPortAddr,
1, // count
(VOID *) (UINTN) BufferPtr
);
}
break;
break;
case PXE_MEM_READ:
ASSERT (Snp->MemoryBarIndex < PCI_MAX_BAR);
if (Snp->MemoryBarIndex < PCI_MAX_BAR) {
Snp->PciIo->Mem.Read (
Snp->PciIo,
Width,
Snp->MemoryBarIndex, // BAR 0, Memory base address
MemOrPortAddr,
1, // count
(VOID *)(UINTN)BufferPtr
);
}
break;
case PXE_MEM_WRITE:
ASSERT (Snp->MemoryBarIndex < PCI_MAX_BAR);
if (Snp->MemoryBarIndex < PCI_MAX_BAR) {
Snp->PciIo->Mem.Write (
Snp->PciIo,
Width,
Snp->MemoryBarIndex, // BAR 0, Memory base address
MemOrPortAddr,
1, // count
(VOID *)(UINTN)BufferPtr
);
}
break;
}
return ;
return;
}
/**
@@ -193,49 +197,50 @@ SnpUndi32CallbackMemio (
VOID
EFIAPI
SnpUndi32CallbackMap (
IN UINT64 UniqueId,
IN UINT64 CpuAddr,
IN UINT32 NumBytes,
IN UINT32 Direction,
IN OUT UINT64 DeviceAddrPtr
IN UINT64 UniqueId,
IN UINT64 CpuAddr,
IN UINT32 NumBytes,
IN UINT32 Direction,
IN OUT UINT64 DeviceAddrPtr
)
{
EFI_PHYSICAL_ADDRESS *DevAddrPtr;
EFI_PCI_IO_PROTOCOL_OPERATION DirectionFlag;
UINTN BuffSize;
SNP_DRIVER *Snp;
UINTN Index;
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS *DevAddrPtr;
EFI_PCI_IO_PROTOCOL_OPERATION DirectionFlag;
UINTN BuffSize;
SNP_DRIVER *Snp;
UINTN Index;
EFI_STATUS Status;
BuffSize = (UINTN) NumBytes;
Snp = (SNP_DRIVER *) (UINTN) UniqueId;
DevAddrPtr = (EFI_PHYSICAL_ADDRESS *) (UINTN) DeviceAddrPtr;
BuffSize = (UINTN)NumBytes;
Snp = (SNP_DRIVER *)(UINTN)UniqueId;
DevAddrPtr = (EFI_PHYSICAL_ADDRESS *)(UINTN)DeviceAddrPtr;
if (CpuAddr == 0) {
*DevAddrPtr = 0;
return ;
return;
}
switch (Direction) {
case TO_AND_FROM_DEVICE:
DirectionFlag = EfiPciIoOperationBusMasterCommonBuffer;
break;
case TO_AND_FROM_DEVICE:
DirectionFlag = EfiPciIoOperationBusMasterCommonBuffer;
break;
case FROM_DEVICE:
DirectionFlag = EfiPciIoOperationBusMasterWrite;
break;
case FROM_DEVICE:
DirectionFlag = EfiPciIoOperationBusMasterWrite;
break;
case TO_DEVICE:
DirectionFlag = EfiPciIoOperationBusMasterRead;
break;
case TO_DEVICE:
DirectionFlag = EfiPciIoOperationBusMasterRead;
break;
default:
*DevAddrPtr = 0;
//
// any non zero indicates error!
//
return ;
default:
*DevAddrPtr = 0;
//
// any non zero indicates error!
//
return;
}
//
// find an unused map_list entry
//
@@ -248,15 +253,15 @@ SnpUndi32CallbackMap (
if (Index >= MAX_MAP_LENGTH) {
DEBUG ((DEBUG_INFO, "SNP maplist is FULL\n"));
*DevAddrPtr = 0;
return ;
return;
}
Snp->MapList[Index].VirtualAddress = (EFI_PHYSICAL_ADDRESS) CpuAddr;
Snp->MapList[Index].VirtualAddress = (EFI_PHYSICAL_ADDRESS)CpuAddr;
Status = Snp->PciIo->Map (
Snp->PciIo,
DirectionFlag,
(VOID *) (UINTN) CpuAddr,
(VOID *)(UINTN)CpuAddr,
&BuffSize,
DevAddrPtr,
&(Snp->MapList[Index].MapCookie)
@@ -266,7 +271,7 @@ SnpUndi32CallbackMap (
Snp->MapList[Index].VirtualAddress = 0;
}
return ;
return;
}
/**
@@ -287,17 +292,17 @@ SnpUndi32CallbackMap (
VOID
EFIAPI
SnpUndi32CallbackUnmap (
IN UINT64 UniqueId,
IN UINT64 CpuAddr,
IN UINT32 NumBytes,
IN UINT32 Direction,
IN UINT64 DeviceAddr
IN UINT64 UniqueId,
IN UINT64 CpuAddr,
IN UINT32 NumBytes,
IN UINT32 Direction,
IN UINT64 DeviceAddr
)
{
SNP_DRIVER *Snp;
UINT16 Index;
Snp = (SNP_DRIVER *) (UINTN) UniqueId;
Snp = (SNP_DRIVER *)(UINTN)UniqueId;
for (Index = 0; Index < MAX_MAP_LENGTH; Index++) {
if (Snp->MapList[Index].VirtualAddress == CpuAddr) {
@@ -307,13 +312,13 @@ SnpUndi32CallbackUnmap (
if (Index >= MAX_MAP_LENGTH) {
DEBUG ((DEBUG_ERROR, "SNP could not find a mapping, failed to unmap.\n"));
return ;
return;
}
Snp->PciIo->Unmap (Snp->PciIo, Snp->MapList[Index].MapCookie);
Snp->MapList[Index].VirtualAddress = 0;
Snp->MapList[Index].MapCookie = NULL;
return ;
return;
}
/**
@@ -341,27 +346,26 @@ SnpUndi32CallbackUnmap (
VOID
EFIAPI
SnpUndi32CallbackSync (
IN UINT64 UniqueId,
IN UINT64 CpuAddr,
IN UINT32 NumBytes,
IN UINT32 Direction,
IN UINT64 DeviceAddr
IN UINT64 UniqueId,
IN UINT64 CpuAddr,
IN UINT32 NumBytes,
IN UINT32 Direction,
IN UINT64 DeviceAddr
)
{
if ((CpuAddr == 0) || (DeviceAddr == 0) || (NumBytes == 0)) {
return ;
return;
}
switch (Direction) {
case FROM_DEVICE:
CopyMem ((UINT8 *) (UINTN) CpuAddr, (UINT8 *) (UINTN) DeviceAddr, NumBytes);
break;
case FROM_DEVICE:
CopyMem ((UINT8 *)(UINTN)CpuAddr, (UINT8 *)(UINTN)DeviceAddr, NumBytes);
break;
case TO_DEVICE:
CopyMem ((UINT8 *) (UINTN) DeviceAddr, (UINT8 *) (UINTN) CpuAddr, NumBytes);
break;
case TO_DEVICE:
CopyMem ((UINT8 *)(UINTN)DeviceAddr, (UINT8 *)(UINTN)CpuAddr, NumBytes);
break;
}
return ;
return;
}