Add EBC, FTW, Crc32SectionExtract, NullMemoryTest modules.

CrcSectionExtract cannot build for now for some missing definitions. 

git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@2813 6f19259b-4bc3-4df7-8a09-765794883524
This commit is contained in:
qhuang8
2007-06-27 14:52:40 +00:00
parent eb5f1a7fc7
commit d7dec593ea
40 changed files with 14183 additions and 3 deletions

View File

@@ -0,0 +1,54 @@
#****************************************************************************
#*
#* Copyright (c) 2006, Intel Corporation
#* All rights reserved. This program and the accompanying materials
#* are licensed and made available under the terms and conditions of the BSD License
#* which accompanies this distribution. The full text of the license may be found at
#* http://opensource.org/licenses/bsd-license.php
#*
#* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
#* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
#*
#****************************************************************************
.globl ASM_PFX(CopyMem)
.globl ASM_PFX(EbcLLCALLEXNative)
ASM_PFX(EbcLLCALLEXNative):
push %ebp
push %ebx
mov %esp,%ebp
mov 0xc(%esp),%ecx
mov 0x14(%esp),%eax
mov 0x10(%esp),%edx
sub %edx,%eax
sub %eax,%esp
mov %esp,%ebx
push %ecx
push %eax
push %edx
push %ebx
call ASM_PFX(CopyMem)
pop %eax
pop %eax
pop %eax
pop %ecx
call *%ecx
mov %ebp,%esp
mov %ebp,%esp
pop %ebx
pop %ebp
ret
.globl ASM_PFX(EbcLLGetEbcEntryPoint)
ASM_PFX(EbcLLGetEbcEntryPoint):
ret
.globl ASM_PFX(EbcLLGetStackPointer)
ASM_PFX(EbcLLGetStackPointer):
mov %esp,%eax
add $0x4,%eax
ret
.globl ASM_PFX(EbcLLGetReturnValue)
ASM_PFX(EbcLLGetReturnValue):
ret

View File

@@ -0,0 +1,163 @@
page ,132
title VM ASSEMBLY LANGUAGE ROUTINES
;****************************************************************************
;*
;* Copyright (c) 2006 - 2007, Intel Corporation
;* All rights reserved. This program and the accompanying materials
;* are licensed and made available under the terms and conditions of the BSD License
;* which accompanies this distribution. The full text of the license may be found at
;* http://opensource.org/licenses/bsd-license.php
;*
;* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
;* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
;*
;****************************************************************************
;****************************************************************************
; REV 1.0
;****************************************************************************
;
; Rev Date Description
; --- -------- ------------------------------------------------------------
; 1.0 03/14/01 Initial creation of file.
;
;****************************************************************************
;* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
; This code provides low level routines that support the Virtual Machine
; for option ROMs.
;* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
;---------------------------------------------------------------------------
; Equate files needed.
;---------------------------------------------------------------------------
.XLIST
.LIST
;---------------------------------------------------------------------------
; Assembler options
;---------------------------------------------------------------------------
.686p
.model flat
.code
;---------------------------------------------------------------------------
;;GenericPostSegment SEGMENT USE16
;---------------------------------------------------------------------------
CopyMem PROTO C Destination:PTR DWORD, Source:PTR DWORD, Count:DWORD
;****************************************************************************
; EbcLLCALLEXNative
;
; This function is called to execute an EBC CALLEX instruction
; to native code.
; This instruction requires that we thunk out to external native
; code. For IA32, we simply switch stacks and jump to the
; specified function. On return, we restore the stack pointer
; to its original location.
;
; Destroys no working registers.
;****************************************************************************
; VOID EbcLLCALLEXNative(UINTN FuncAddr, UINTN NewStackPointer, VOID *FramePtr)
_EbcLLCALLEXNative PROC NEAR PUBLIC
push ebp
push ebx
mov ebp, esp ; standard function prolog
; Get function address in a register
; mov ecx, FuncAddr => mov ecx, dword ptr [FuncAddr]
mov ecx, dword ptr [esp]+0Ch
; Set stack pointer to new value
; mov eax, NewStackPointer => mov eax, dword ptr [NewSp]
mov eax, dword ptr [esp] + 14h
mov edx, dword ptr [esp] + 10h
sub eax, edx
sub esp, eax
mov ebx, esp
push ecx
push eax
push edx
push ebx
call CopyMem
pop eax
pop eax
pop eax
pop ecx
; Now call the external routine
call ecx
; ebp is preserved by the callee. In this function it
; equals the original esp, so set them equal
mov esp, ebp
; Standard function epilog
mov esp, ebp
pop ebx
pop ebp
ret
_EbcLLCALLEXNative ENDP
; UINTN EbcLLGetEbcEntryPoint(VOID);
; Routine Description:
; The VM thunk code stuffs an EBC entry point into a processor
; register. Since we can't use inline assembly to get it from
; the interpreter C code, stuff it into the return value
; register and return.
;
; Arguments:
; None.
;
; Returns:
; The contents of the register in which the entry point is passed.
;
_EbcLLGetEbcEntryPoint PROC NEAR PUBLIC
ret
_EbcLLGetEbcEntryPoint ENDP
;/*++
;
;Routine Description:
;
; Return the caller's value of the stack pointer.
;
;Arguments:
;
; None.
;
;Returns:
;
; The current value of the stack pointer for the caller. We
; adjust it by 4 here because when they called us, the return address
; is put on the stack, thereby lowering it by 4 bytes.
;
;--*/
; UINTN EbcLLGetStackPointer()
_EbcLLGetStackPointer PROC NEAR PUBLIC
mov eax, esp ; get current stack pointer
add eax, 4 ; stack adjusted by this much when we were called
ret
_EbcLLGetStackPointer ENDP
; UINT64 EbcLLGetReturnValue(VOID);
; Routine Description:
; When EBC calls native, on return the VM has to stuff the return
; value into a VM register. It's assumed here that the value is still
; in the register, so simply return and the caller should get the
; return result properly.
;
; Arguments:
; None.
;
; Returns:
; The unmodified value returned by the native code.
;
_EbcLLGetReturnValue PROC NEAR PUBLIC
ret
_EbcLLGetReturnValue ENDP
END

View File

@@ -0,0 +1,545 @@
/*++
Copyright (c) 2006, Intel Corporation
All rights reserved. This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
Module Name:
EbcSupport.c
Abstract:
This module contains EBC support routines that are customized based on
the target processor.
--*/
#include "EbcInt.h"
#include "EbcExecute.h"
//
// NOTE: This is the stack size allocated for the interpreter
// when it executes an EBC image. The requirements can change
// based on whether or not a debugger is present, and other
// platform-specific configurations.
//
#define VM_STACK_SIZE (1024 * 4)
#define EBC_THUNK_SIZE 32
#define STACK_REMAIN_SIZE (1024 * 4)
VOID
EbcLLCALLEX (
IN VM_CONTEXT *VmPtr,
IN UINTN FuncAddr,
IN UINTN NewStackPointer,
IN VOID *FramePtr,
IN UINT8 Size
)
/*++
Routine Description:
This function is called to execute an EBC CALLEX instruction.
The function check the callee's content to see whether it is common native
code or a thunk to another piece of EBC code.
If the callee is common native code, use EbcLLCAllEXASM to manipulate,
otherwise, set the VM->IP to target EBC code directly to avoid another VM
be startup which cost time and stack space.
Arguments:
VmPtr - Pointer to a VM context.
FuncAddr - Callee's address
NewStackPointer - New stack pointer after the call
FramePtr - New frame pointer after the call
Size - The size of call instruction
Returns:
None.
--*/
{
UINTN IsThunk;
UINTN TargetEbcAddr;
IsThunk = 1;
TargetEbcAddr = 0;
//
// Processor specific code to check whether the callee is a thunk to EBC.
//
if (*((UINT8 *)FuncAddr) != 0xB8) {
IsThunk = 0;
goto Action;
}
if (*((UINT8 *)FuncAddr + 1) != 0xBC) {
IsThunk = 0;
goto Action;
}
if (*((UINT8 *)FuncAddr + 2) != 0x2E) {
IsThunk = 0;
goto Action;
}
if (*((UINT8 *)FuncAddr + 3) != 0x11) {
IsThunk = 0;
goto Action;
}
if (*((UINT8 *)FuncAddr + 4) != 0xCA) {
IsThunk = 0;
goto Action;
}
if (*((UINT8 *)FuncAddr + 5) != 0xB8) {
IsThunk = 0;
goto Action;
}
if (*((UINT8 *)FuncAddr + 10) != 0xB9) {
IsThunk = 0;
goto Action;
}
if (*((UINT8 *)FuncAddr + 15) != 0xFF) {
IsThunk = 0;
goto Action;
}
if (*((UINT8 *)FuncAddr + 16) != 0xE1) {
IsThunk = 0;
goto Action;
}
TargetEbcAddr = ((UINTN)(*((UINT8 *)FuncAddr + 9)) << 24) + ((UINTN)(*((UINT8 *)FuncAddr + 8)) << 16) +
((UINTN)(*((UINT8 *)FuncAddr + 7)) << 8) + ((UINTN)(*((UINT8 *)FuncAddr + 6)));
Action:
if (IsThunk == 1){
//
// The callee is a thunk to EBC, adjust the stack pointer down 16 bytes and
// put our return address and frame pointer on the VM stack.
// Then set the VM's IP to new EBC code.
//
VmPtr->R[0] -= 8;
VmWriteMemN (VmPtr, (UINTN) VmPtr->R[0], (UINTN) FramePtr);
VmPtr->FramePtr = (VOID *) (UINTN) VmPtr->R[0];
VmPtr->R[0] -= 8;
VmWriteMem64 (VmPtr, (UINTN) VmPtr->R[0], (UINT64) (UINTN) (VmPtr->Ip + Size));
VmPtr->Ip = (VMIP) (UINTN) TargetEbcAddr;
} else {
//
// The callee is not a thunk to EBC, call native code.
//
EbcLLCALLEXNative (FuncAddr, NewStackPointer, FramePtr);
//
// Get return value and advance the IP.
//
VmPtr->R[7] = EbcLLGetReturnValue ();
VmPtr->Ip += Size;
}
}
STATIC
UINT64
EbcInterpret (
IN OUT UINTN Arg1,
IN OUT UINTN Arg2,
IN OUT UINTN Arg3,
IN OUT UINTN Arg4,
IN OUT UINTN Arg5,
IN OUT UINTN Arg6,
IN OUT UINTN Arg7,
IN OUT UINTN Arg8,
IN OUT UINTN Arg9,
IN OUT UINTN Arg10,
IN OUT UINTN Arg11,
IN OUT UINTN Arg12,
IN OUT UINTN Arg13,
IN OUT UINTN Arg14,
IN OUT UINTN Arg15,
IN OUT UINTN Arg16
)
/*++
Routine Description:
Begin executing an EBC image. The address of the entry point is passed
in via a processor register, so we'll need to make a call to get the
value.
Arguments:
None. Since we're called from a fixed up thunk (which we want to keep
small), our only so-called argument is the EBC entry point passed in
to us in a processor register.
Returns:
The value returned by the EBC application we're going to run.
--*/
{
//
// Create a new VM context on the stack
//
VM_CONTEXT VmContext;
UINTN Addr;
EFI_STATUS Status;
UINTN StackIndex;
//
// Get the EBC entry point from the processor register.
//
Addr = EbcLLGetEbcEntryPoint ();
//
// Now clear out our context
//
ZeroMem ((VOID *) &VmContext, sizeof (VM_CONTEXT));
//
// Set the VM instruction pointer to the correct location in memory.
//
VmContext.Ip = (VMIP) Addr;
//
// Initialize the stack pointer for the EBC. Get the current system stack
// pointer and adjust it down by the max needed for the interpreter.
//
//
// Align the stack on a natural boundary
//
//
// Allocate stack pool
//
Status = GetEBCStack((EFI_HANDLE)-1, &VmContext.StackPool, &StackIndex);
if (EFI_ERROR(Status)) {
return Status;
}
VmContext.StackTop = (UINT8*)VmContext.StackPool + (STACK_REMAIN_SIZE);
VmContext.R[0] = (UINT64)(UINTN) ((UINT8*)VmContext.StackPool + STACK_POOL_SIZE);
VmContext.HighStackBottom = (UINTN)VmContext.R[0];
VmContext.R[0] &= ~(sizeof (UINTN) - 1);
VmContext.R[0] -= sizeof (UINTN);
//
// Put a magic value in the stack gap, then adjust down again
//
*(UINTN *) (UINTN) (VmContext.R[0]) = (UINTN) VM_STACK_KEY_VALUE;
VmContext.StackMagicPtr = (UINTN *) (UINTN) VmContext.R[0];
VmContext.LowStackTop = (UINTN) VmContext.R[0];
//
// For IA32, this is where we say our return address is
//
VmContext.R[0] -= sizeof (UINTN);
*(UINTN *) (UINTN) (VmContext.R[0]) = (UINTN) Arg16;
VmContext.R[0] -= sizeof (UINTN);
*(UINTN *) (UINTN) (VmContext.R[0]) = (UINTN) Arg15;
VmContext.R[0] -= sizeof (UINTN);
*(UINTN *) (UINTN) (VmContext.R[0]) = (UINTN) Arg14;
VmContext.R[0] -= sizeof (UINTN);
*(UINTN *) (UINTN) (VmContext.R[0]) = (UINTN) Arg13;
VmContext.R[0] -= sizeof (UINTN);
*(UINTN *) (UINTN) (VmContext.R[0]) = (UINTN) Arg12;
VmContext.R[0] -= sizeof (UINTN);
*(UINTN *) (UINTN) (VmContext.R[0]) = (UINTN) Arg11;
VmContext.R[0] -= sizeof (UINTN);
*(UINTN *) (UINTN) (VmContext.R[0]) = (UINTN) Arg10;
VmContext.R[0] -= sizeof (UINTN);
*(UINTN *) (UINTN) (VmContext.R[0]) = (UINTN) Arg9;
VmContext.R[0] -= sizeof (UINTN);
*(UINTN *) (UINTN) (VmContext.R[0]) = (UINTN) Arg8;
VmContext.R[0] -= sizeof (UINTN);
*(UINTN *) (UINTN) (VmContext.R[0]) = (UINTN) Arg7;
VmContext.R[0] -= sizeof (UINTN);
*(UINTN *) (UINTN) (VmContext.R[0]) = (UINTN) Arg6;
VmContext.R[0] -= sizeof (UINTN);
*(UINTN *) (UINTN) (VmContext.R[0]) = (UINTN) Arg5;
VmContext.R[0] -= sizeof (UINTN);
*(UINTN *) (UINTN) (VmContext.R[0]) = (UINTN) Arg4;
VmContext.R[0] -= sizeof (UINTN);
*(UINTN *) (UINTN) (VmContext.R[0]) = (UINTN) Arg3;
VmContext.R[0] -= sizeof (UINTN);
*(UINTN *) (UINTN) (VmContext.R[0]) = (UINTN) Arg2;
VmContext.R[0] -= sizeof (UINTN);
*(UINTN *) (UINTN) (VmContext.R[0]) = (UINTN) Arg1;
VmContext.R[0] -= 16;
VmContext.StackRetAddr = (UINT64) VmContext.R[0];
//
// We need to keep track of where the EBC stack starts. This way, if the EBC
// accesses any stack variables above its initial stack setting, then we know
// it's accessing variables passed into it, which means the data is on the
// VM's stack.
// When we're called, on the stack (high to low) we have the parameters, the
// return address, then the saved ebp. Save the pointer to the return address.
// EBC code knows that's there, so should look above it for function parameters.
// The offset is the size of locals (VMContext + Addr + saved ebp).
// Note that the interpreter assumes there is a 16 bytes of return address on
// the stack too, so adjust accordingly.
// VmContext.HighStackBottom = (UINTN)(Addr + sizeof (VmContext) + sizeof (Addr));
//
//
// Begin executing the EBC code
//
EbcExecute (&VmContext);
//
// Return the value in R[7] unless there was an error
//
ReturnEBCStack(StackIndex);
return (UINT64) VmContext.R[7];
}
STATIC
UINT64
ExecuteEbcImageEntryPoint (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
/*++
Routine Description:
Begin executing an EBC image. The address of the entry point is passed
in via a processor register, so we'll need to make a call to get the
value.
Arguments:
ImageHandle - image handle for the EBC application we're executing
SystemTable - standard system table passed into an driver's entry point
Returns:
The value returned by the EBC application we're going to run.
--*/
{
//
// Create a new VM context on the stack
//
VM_CONTEXT VmContext;
UINTN Addr;
EFI_STATUS Status;
UINTN StackIndex;
//
// Get the EBC entry point from the processor register. Make sure you don't
// call any functions before this or you could mess up the register the
// entry point is passed in.
//
Addr = EbcLLGetEbcEntryPoint ();
//
// Print(L"*** Thunked into EBC entry point - ImageHandle = 0x%X\n", (UINTN)ImageHandle);
// Print(L"EBC entry point is 0x%X\n", (UINT32)(UINTN)Addr);
//
// Now clear out our context
//
ZeroMem ((VOID *) &VmContext, sizeof (VM_CONTEXT));
//
// Save the image handle so we can track the thunks created for this image
//
VmContext.ImageHandle = ImageHandle;
VmContext.SystemTable = SystemTable;
//
// Set the VM instruction pointer to the correct location in memory.
//
VmContext.Ip = (VMIP) Addr;
//
// Initialize the stack pointer for the EBC. Get the current system stack
// pointer and adjust it down by the max needed for the interpreter.
//
//
// Allocate stack pool
//
Status = GetEBCStack(ImageHandle, &VmContext.StackPool, &StackIndex);
if (EFI_ERROR(Status)) {
return Status;
}
VmContext.StackTop = (UINT8*)VmContext.StackPool + (STACK_REMAIN_SIZE);
VmContext.R[0] = (UINT64)(UINTN) ((UINT8*)VmContext.StackPool + STACK_POOL_SIZE);
VmContext.HighStackBottom = (UINTN)VmContext.R[0];
VmContext.R[0] -= sizeof (UINTN);
//
// Put a magic value in the stack gap, then adjust down again
//
*(UINTN *) (UINTN) (VmContext.R[0]) = (UINTN) VM_STACK_KEY_VALUE;
VmContext.StackMagicPtr = (UINTN *) (UINTN) VmContext.R[0];
//
// Align the stack on a natural boundary
// VmContext.R[0] &= ~(sizeof(UINTN) - 1);
//
VmContext.LowStackTop = (UINTN) VmContext.R[0];
VmContext.R[0] -= sizeof (UINTN);
*(UINTN *) (UINTN) (VmContext.R[0]) = (UINTN) SystemTable;
VmContext.R[0] -= sizeof (UINTN);
*(UINTN *) (UINTN) (VmContext.R[0]) = (UINTN) ImageHandle;
VmContext.R[0] -= 16;
VmContext.StackRetAddr = (UINT64) VmContext.R[0];
//
// VM pushes 16-bytes for return address. Simulate that here.
//
//
// Begin executing the EBC code
//
EbcExecute (&VmContext);
//
// Return the value in R[7] unless there was an error
//
return (UINT64) VmContext.R[7];
}
EFI_STATUS
EbcCreateThunks (
IN EFI_HANDLE ImageHandle,
IN VOID *EbcEntryPoint,
OUT VOID **Thunk,
IN UINT32 Flags
)
/*++
Routine Description:
Create an IA32 thunk for the given EBC entry point.
Arguments:
ImageHandle - Handle of image for which this thunk is being created
EbcEntryPoint - Address of the EBC code that the thunk is to call
Thunk - Returned thunk we create here
Returns:
Standard EFI status.
--*/
{
UINT8 *Ptr;
UINT8 *ThunkBase;
UINT32 I;
UINT32 Addr;
INT32 Size;
INT32 ThunkSize;
//
// Check alignment of pointer to EBC code
//
if ((UINT32) (UINTN) EbcEntryPoint & 0x01) {
return EFI_INVALID_PARAMETER;
}
Size = EBC_THUNK_SIZE;
ThunkSize = Size;
Ptr = AllocatePool (Size);
if (Ptr == NULL) {
return EFI_OUT_OF_RESOURCES;
}
//
// Print(L"Allocate TH: 0x%X\n", (UINT32)Ptr);
//
// Save the start address so we can add a pointer to it to a list later.
//
ThunkBase = Ptr;
//
// Give them the address of our buffer we're going to fix up
//
*Thunk = (VOID *) Ptr;
//
// Add a magic code here to help the VM recognize the thunk..
// mov eax, 0xca112ebc => B8 BC 2E 11 CA
//
*Ptr = 0xB8;
Ptr++;
Size--;
Addr = (UINT32) 0xCA112EBC;
for (I = 0; I < sizeof (Addr); I++) {
*Ptr = (UINT8) (UINTN) Addr;
Addr >>= 8;
Ptr++;
Size--;
}
//
// Add code bytes to load up a processor register with the EBC entry point.
// mov eax, 0xaa55aa55 => B8 55 AA 55 AA
// The first 8 bytes of the thunk entry is the address of the EBC
// entry point.
//
*Ptr = 0xB8;
Ptr++;
Size--;
Addr = (UINT32) EbcEntryPoint;
for (I = 0; I < sizeof (Addr); I++) {
*Ptr = (UINT8) (UINTN) Addr;
Addr >>= 8;
Ptr++;
Size--;
}
//
// Stick in a load of ecx with the address of appropriate VM function.
// mov ecx 12345678h => 0xB9 0x78 0x56 0x34 0x12
//
if (Flags & FLAG_THUNK_ENTRY_POINT) {
Addr = (UINT32) (UINTN) ExecuteEbcImageEntryPoint;
} else {
Addr = (UINT32) (UINTN) EbcInterpret;
}
//
// MOV ecx
//
*Ptr = 0xB9;
Ptr++;
Size--;
for (I = 0; I < sizeof (Addr); I++) {
*Ptr = (UINT8) Addr;
Addr >>= 8;
Ptr++;
Size--;
}
//
// Stick in jump opcode bytes for jmp ecx => 0xFF 0xE1
//
*Ptr = 0xFF;
Ptr++;
Size--;
*Ptr = 0xE1;
Size--;
//
// Double check that our defined size is ok (application error)
//
if (Size < 0) {
ASSERT (FALSE);
return EFI_BUFFER_TOO_SMALL;
}
//
// Add the thunk to the list for this image. Do this last since the add
// function flushes the cache for us.
//
EbcAddImageThunk (ImageHandle, (VOID *) ThunkBase, ThunkSize);
return EFI_SUCCESS;
}