BaseTools: Update Brotli Compress to the latest one 1.0.6

https://bugzilla.tianocore.org/show_bug.cgi?id=1201
Update Brotli to the latest version 1.0.6
https://github.com/google/brotli
Verify VS2017, GCC5 build.
Verify Decompression boot functionality.

Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Liming Gao <liming.gao@intel.com>
Reviewed-by: Star Zeng <star.zeng@intel.com>
This commit is contained in:
Liming Gao
2018-08-09 14:55:19 +08:00
parent 78af0984b4
commit dd4f667e70
99 changed files with 21720 additions and 30845 deletions

View File

@ -14,49 +14,54 @@
#include <string.h> /* memcmp, memcpy, memset */
#include "../common/types.h"
#include "../common/constants.h"
#include "../common/platform.h"
#include <brotli/types.h>
#include "./bit_cost.h"
#include "./brotli_bit_stream.h"
#include "./entropy_encode.h"
#include "./fast_log.h"
#include "./find_match_length.h"
#include "./memory.h"
#include "./port.h"
#include "./write_bits.h"
#if defined(__cplusplus) || defined(c_plusplus)
extern "C" {
#endif
#define MAX_DISTANCE (long)BROTLI_MAX_BACKWARD_LIMIT(18)
/* kHashMul32 multiplier has these properties:
* The multiplier must be odd. Otherwise we may lose the highest bit.
* No long streaks of 1s or 0s.
* No long streaks of ones or zeros.
* There is no effort to ensure that it is a prime, the oddity is enough
for this use.
* The number has been tuned heuristically against compression benchmarks. */
static const uint32_t kHashMul32 = 0x1e35a7bd;
static const uint32_t kHashMul32 = 0x1E35A7BD;
static BROTLI_INLINE uint32_t Hash(const uint8_t* p, size_t shift) {
const uint64_t h = (BROTLI_UNALIGNED_LOAD64(p) << 16) * kHashMul32;
static BROTLI_INLINE uint32_t Hash(const uint8_t* p,
size_t shift, size_t length) {
const uint64_t h =
(BROTLI_UNALIGNED_LOAD64LE(p) << ((8 - length) * 8)) * kHashMul32;
return (uint32_t)(h >> shift);
}
static BROTLI_INLINE uint32_t HashBytesAtOffset(
uint64_t v, int offset, size_t shift) {
assert(offset >= 0);
assert(offset <= 2);
static BROTLI_INLINE uint32_t HashBytesAtOffset(uint64_t v, size_t offset,
size_t shift, size_t length) {
BROTLI_DCHECK(offset <= 8 - length);
{
const uint64_t h = ((v >> (8 * offset)) << 16) * kHashMul32;
const uint64_t h = ((v >> (8 * offset)) << ((8 - length) * 8)) * kHashMul32;
return (uint32_t)(h >> shift);
}
}
static BROTLI_INLINE BROTLI_BOOL IsMatch(const uint8_t* p1, const uint8_t* p2) {
return TO_BROTLI_BOOL(
BROTLI_UNALIGNED_LOAD32(p1) == BROTLI_UNALIGNED_LOAD32(p2) &&
p1[4] == p2[4] &&
p1[5] == p2[5]);
static BROTLI_INLINE BROTLI_BOOL IsMatch(const uint8_t* p1, const uint8_t* p2,
size_t length) {
if (BrotliUnalignedRead32(p1) == BrotliUnalignedRead32(p2)) {
if (length == 4) return BROTLI_TRUE;
return TO_BROTLI_BOOL(p1[4] == p2[4] && p1[5] == p2[5]);
}
return BROTLI_FALSE;
}
/* Builds a command and distance prefix code (each 64 symbols) into "depth" and
@ -71,7 +76,7 @@ static void BuildAndStoreCommandPrefixCode(
uint16_t cmd_bits[64];
BrotliCreateHuffmanTree(histogram, 64, 15, tree, depth);
BrotliCreateHuffmanTree(&histogram[64], 64, 14, tree, &depth[64]);
/* We have to jump through a few hoopes here in order to compute
/* We have to jump through a few hoops here in order to compute
the command bits because the symbols are in a different order than in
the full alphabet. This looks complicated, but having the symbols
in this order in the command bits saves a few branches in the Emit*
@ -213,31 +218,31 @@ static BROTLI_INLINE void EmitDistance(uint32_t distance, uint32_t** commands) {
++(*commands);
}
/* REQUIRES: len <= 1 << 20. */
/* REQUIRES: len <= 1 << 24. */
static void BrotliStoreMetaBlockHeader(
size_t len, BROTLI_BOOL is_uncompressed, size_t* storage_ix,
uint8_t* storage) {
size_t nibbles = 6;
/* ISLAST */
BrotliWriteBits(1, 0, storage_ix, storage);
if (len <= (1U << 16)) {
/* MNIBBLES is 4 */
BrotliWriteBits(2, 0, storage_ix, storage);
BrotliWriteBits(16, len - 1, storage_ix, storage);
} else {
/* MNIBBLES is 5 */
BrotliWriteBits(2, 1, storage_ix, storage);
BrotliWriteBits(20, len - 1, storage_ix, storage);
nibbles = 4;
} else if (len <= (1U << 20)) {
nibbles = 5;
}
BrotliWriteBits(2, nibbles - 4, storage_ix, storage);
BrotliWriteBits(nibbles * 4, len - 1, storage_ix, storage);
/* ISUNCOMPRESSED */
BrotliWriteBits(1, (uint64_t)is_uncompressed, storage_ix, storage);
}
static void CreateCommands(const uint8_t* input, size_t block_size,
size_t input_size, const uint8_t* base_ip, int* table, size_t table_size,
static BROTLI_INLINE void CreateCommands(const uint8_t* input,
size_t block_size, size_t input_size, const uint8_t* base_ip, int* table,
size_t table_bits, size_t min_match,
uint8_t** literals, uint32_t** commands) {
/* "ip" is the input pointer. */
const uint8_t* ip = input;
const size_t shift = 64u - Log2FloorNonZero(table_size);
const size_t shift = 64u - table_bits;
const uint8_t* ip_end = input + block_size;
/* "next_emit" is a pointer to the first byte that is not covered by a
previous copy. Bytes between "next_emit" and the start of the next copy or
@ -245,27 +250,19 @@ static void CreateCommands(const uint8_t* input, size_t block_size,
const uint8_t* next_emit = input;
int last_distance = -1;
const size_t kInputMarginBytes = 16;
const size_t kMinMatchLen = 6;
const size_t kInputMarginBytes = BROTLI_WINDOW_GAP;
assert(table_size);
assert(table_size <= (1u << 31));
/* table must be power of two */
assert((table_size & (table_size - 1)) == 0);
assert(table_size - 1 ==
(size_t)(MAKE_UINT64_T(0xFFFFFFFF, 0xFFFFFF) >> shift));
if (PREDICT_TRUE(block_size >= kInputMarginBytes)) {
if (BROTLI_PREDICT_TRUE(block_size >= kInputMarginBytes)) {
/* For the last block, we need to keep a 16 bytes margin so that we can be
sure that all distances are at most window size - 16.
For all other blocks, we only need to keep a margin of 5 bytes so that
we don't go over the block size with a copy. */
const size_t len_limit = BROTLI_MIN(size_t, block_size - kMinMatchLen,
const size_t len_limit = BROTLI_MIN(size_t, block_size - min_match,
input_size - kInputMarginBytes);
const uint8_t* ip_limit = input + len_limit;
uint32_t next_hash;
for (next_hash = Hash(++ip, shift); ; ) {
for (next_hash = Hash(++ip, shift, min_match); ; ) {
/* Step 1: Scan forward in the input looking for a 6-byte-long match.
If we get close to exhausting the input then goto emit_remainder.
@ -286,34 +283,38 @@ static void CreateCommands(const uint8_t* input, size_t block_size,
const uint8_t* next_ip = ip;
const uint8_t* candidate;
assert(next_emit < ip);
BROTLI_DCHECK(next_emit < ip);
trawl:
do {
uint32_t hash = next_hash;
uint32_t bytes_between_hash_lookups = skip++ >> 5;
ip = next_ip;
assert(hash == Hash(ip, shift));
BROTLI_DCHECK(hash == Hash(ip, shift, min_match));
next_ip = ip + bytes_between_hash_lookups;
if (PREDICT_FALSE(next_ip > ip_limit)) {
if (BROTLI_PREDICT_FALSE(next_ip > ip_limit)) {
goto emit_remainder;
}
next_hash = Hash(next_ip, shift);
next_hash = Hash(next_ip, shift, min_match);
candidate = ip - last_distance;
if (IsMatch(ip, candidate)) {
if (PREDICT_TRUE(candidate < ip)) {
if (IsMatch(ip, candidate, min_match)) {
if (BROTLI_PREDICT_TRUE(candidate < ip)) {
table[hash] = (int)(ip - base_ip);
break;
}
}
candidate = base_ip + table[hash];
assert(candidate >= base_ip);
assert(candidate < ip);
BROTLI_DCHECK(candidate >= base_ip);
BROTLI_DCHECK(candidate < ip);
table[hash] = (int)(ip - base_ip);
} while (PREDICT_TRUE(!IsMatch(ip, candidate)));
} while (BROTLI_PREDICT_TRUE(!IsMatch(ip, candidate, min_match)));
/* Check copy distance. If candidate is not feasible, continue search.
Checking is done outside of hot loop to reduce overhead. */
if (ip - candidate > MAX_DISTANCE) goto trawl;
/* Step 2: Emit the found match together with the literal bytes from
"next_emit", and then see if we can find a next macth immediately
"next_emit", and then see if we can find a next match immediately
afterwards. Repeat until we find no match for the input
without emitting some literal bytes. */
@ -321,12 +322,13 @@ static void CreateCommands(const uint8_t* input, size_t block_size,
/* We have a 6-byte match at ip, and we need to emit bytes in
[next_emit, ip). */
const uint8_t* base = ip;
size_t matched = 6 + FindMatchLengthWithLimit(
candidate + 6, ip + 6, (size_t)(ip_end - ip) - 6);
size_t matched = min_match + FindMatchLengthWithLimit(
candidate + min_match, ip + min_match,
(size_t)(ip_end - ip) - min_match);
int distance = (int)(base - candidate); /* > 0 */
int insert = (int)(base - next_emit);
ip += matched;
assert(0 == memcmp(base, candidate, matched));
BROTLI_DCHECK(0 == memcmp(base, candidate, matched));
EmitInsertLen((uint32_t)insert, commands);
memcpy(*literals, next_emit, (size_t)insert);
*literals += insert;
@ -340,79 +342,107 @@ static void CreateCommands(const uint8_t* input, size_t block_size,
EmitCopyLenLastDistance(matched, commands);
next_emit = ip;
if (PREDICT_FALSE(ip >= ip_limit)) {
if (BROTLI_PREDICT_FALSE(ip >= ip_limit)) {
goto emit_remainder;
}
{
/* We could immediately start working at ip now, but to improve
compression we first update "table" with the hashes of some
positions within the last copy. */
uint64_t input_bytes = BROTLI_UNALIGNED_LOAD64(ip - 5);
uint32_t prev_hash = HashBytesAtOffset(input_bytes, 0, shift);
uint64_t input_bytes;
uint32_t cur_hash;
table[prev_hash] = (int)(ip - base_ip - 5);
prev_hash = HashBytesAtOffset(input_bytes, 1, shift);
table[prev_hash] = (int)(ip - base_ip - 4);
prev_hash = HashBytesAtOffset(input_bytes, 2, shift);
table[prev_hash] = (int)(ip - base_ip - 3);
input_bytes = BROTLI_UNALIGNED_LOAD64(ip - 2);
cur_hash = HashBytesAtOffset(input_bytes, 2, shift);
prev_hash = HashBytesAtOffset(input_bytes, 0, shift);
table[prev_hash] = (int)(ip - base_ip - 2);
prev_hash = HashBytesAtOffset(input_bytes, 1, shift);
table[prev_hash] = (int)(ip - base_ip - 1);
uint32_t prev_hash;
if (min_match == 4) {
input_bytes = BROTLI_UNALIGNED_LOAD64LE(ip - 3);
cur_hash = HashBytesAtOffset(input_bytes, 3, shift, min_match);
prev_hash = HashBytesAtOffset(input_bytes, 0, shift, min_match);
table[prev_hash] = (int)(ip - base_ip - 3);
prev_hash = HashBytesAtOffset(input_bytes, 1, shift, min_match);
table[prev_hash] = (int)(ip - base_ip - 2);
prev_hash = HashBytesAtOffset(input_bytes, 0, shift, min_match);
table[prev_hash] = (int)(ip - base_ip - 1);
} else {
input_bytes = BROTLI_UNALIGNED_LOAD64LE(ip - 5);
prev_hash = HashBytesAtOffset(input_bytes, 0, shift, min_match);
table[prev_hash] = (int)(ip - base_ip - 5);
prev_hash = HashBytesAtOffset(input_bytes, 1, shift, min_match);
table[prev_hash] = (int)(ip - base_ip - 4);
prev_hash = HashBytesAtOffset(input_bytes, 2, shift, min_match);
table[prev_hash] = (int)(ip - base_ip - 3);
input_bytes = BROTLI_UNALIGNED_LOAD64LE(ip - 2);
cur_hash = HashBytesAtOffset(input_bytes, 2, shift, min_match);
prev_hash = HashBytesAtOffset(input_bytes, 0, shift, min_match);
table[prev_hash] = (int)(ip - base_ip - 2);
prev_hash = HashBytesAtOffset(input_bytes, 1, shift, min_match);
table[prev_hash] = (int)(ip - base_ip - 1);
}
candidate = base_ip + table[cur_hash];
table[cur_hash] = (int)(ip - base_ip);
}
}
while (IsMatch(ip, candidate)) {
while (ip - candidate <= MAX_DISTANCE &&
IsMatch(ip, candidate, min_match)) {
/* We have a 6-byte match at ip, and no need to emit any
literal bytes prior to ip. */
const uint8_t* base = ip;
size_t matched = 6 + FindMatchLengthWithLimit(
candidate + 6, ip + 6, (size_t)(ip_end - ip) - 6);
size_t matched = min_match + FindMatchLengthWithLimit(
candidate + min_match, ip + min_match,
(size_t)(ip_end - ip) - min_match);
ip += matched;
last_distance = (int)(base - candidate); /* > 0 */
assert(0 == memcmp(base, candidate, matched));
BROTLI_DCHECK(0 == memcmp(base, candidate, matched));
EmitCopyLen(matched, commands);
EmitDistance((uint32_t)last_distance, commands);
next_emit = ip;
if (PREDICT_FALSE(ip >= ip_limit)) {
if (BROTLI_PREDICT_FALSE(ip >= ip_limit)) {
goto emit_remainder;
}
{
/* We could immediately start working at ip now, but to improve
compression we first update "table" with the hashes of some
positions within the last copy. */
uint64_t input_bytes = BROTLI_UNALIGNED_LOAD64(ip - 5);
uint32_t prev_hash = HashBytesAtOffset(input_bytes, 0, shift);
uint64_t input_bytes;
uint32_t cur_hash;
table[prev_hash] = (int)(ip - base_ip - 5);
prev_hash = HashBytesAtOffset(input_bytes, 1, shift);
table[prev_hash] = (int)(ip - base_ip - 4);
prev_hash = HashBytesAtOffset(input_bytes, 2, shift);
table[prev_hash] = (int)(ip - base_ip - 3);
input_bytes = BROTLI_UNALIGNED_LOAD64(ip - 2);
cur_hash = HashBytesAtOffset(input_bytes, 2, shift);
prev_hash = HashBytesAtOffset(input_bytes, 0, shift);
table[prev_hash] = (int)(ip - base_ip - 2);
prev_hash = HashBytesAtOffset(input_bytes, 1, shift);
table[prev_hash] = (int)(ip - base_ip - 1);
uint32_t prev_hash;
if (min_match == 4) {
input_bytes = BROTLI_UNALIGNED_LOAD64LE(ip - 3);
cur_hash = HashBytesAtOffset(input_bytes, 3, shift, min_match);
prev_hash = HashBytesAtOffset(input_bytes, 0, shift, min_match);
table[prev_hash] = (int)(ip - base_ip - 3);
prev_hash = HashBytesAtOffset(input_bytes, 1, shift, min_match);
table[prev_hash] = (int)(ip - base_ip - 2);
prev_hash = HashBytesAtOffset(input_bytes, 2, shift, min_match);
table[prev_hash] = (int)(ip - base_ip - 1);
} else {
input_bytes = BROTLI_UNALIGNED_LOAD64LE(ip - 5);
prev_hash = HashBytesAtOffset(input_bytes, 0, shift, min_match);
table[prev_hash] = (int)(ip - base_ip - 5);
prev_hash = HashBytesAtOffset(input_bytes, 1, shift, min_match);
table[prev_hash] = (int)(ip - base_ip - 4);
prev_hash = HashBytesAtOffset(input_bytes, 2, shift, min_match);
table[prev_hash] = (int)(ip - base_ip - 3);
input_bytes = BROTLI_UNALIGNED_LOAD64LE(ip - 2);
cur_hash = HashBytesAtOffset(input_bytes, 2, shift, min_match);
prev_hash = HashBytesAtOffset(input_bytes, 0, shift, min_match);
table[prev_hash] = (int)(ip - base_ip - 2);
prev_hash = HashBytesAtOffset(input_bytes, 1, shift, min_match);
table[prev_hash] = (int)(ip - base_ip - 1);
}
candidate = base_ip + table[cur_hash];
table[cur_hash] = (int)(ip - base_ip);
}
}
next_hash = Hash(++ip, shift);
next_hash = Hash(++ip, shift, min_match);
}
}
emit_remainder:
assert(next_emit <= ip_end);
BROTLI_DCHECK(next_emit <= ip_end);
/* Emit the remaining bytes as literals. */
if (next_emit < ip_end) {
const uint32_t insert = (uint32_t)(ip_end - next_emit);
@ -457,7 +487,9 @@ static void StoreCommands(MemoryManager* m,
if (BROTLI_IS_OOM(m)) return;
for (i = 0; i < num_commands; ++i) {
++cmd_histo[commands[i] & 0xff];
const uint32_t code = commands[i] & 0xFF;
BROTLI_DCHECK(code < 128);
++cmd_histo[code];
}
cmd_histo[1] += 1;
cmd_histo[2] += 1;
@ -468,8 +500,9 @@ static void StoreCommands(MemoryManager* m,
for (i = 0; i < num_commands; ++i) {
const uint32_t cmd = commands[i];
const uint32_t code = cmd & 0xff;
const uint32_t code = cmd & 0xFF;
const uint32_t extra = cmd >> 8;
BROTLI_DCHECK(code < 128);
BrotliWriteBits(cmd_depths[code], cmd_bits[code], storage_ix, storage);
BrotliWriteBits(kNumExtraBits[code], extra, storage_ix, storage);
if (code < 24) {
@ -504,15 +537,32 @@ static BROTLI_BOOL ShouldCompress(
}
}
void BrotliCompressFragmentTwoPass(MemoryManager* m,
const uint8_t* input, size_t input_size,
BROTLI_BOOL is_last,
uint32_t* command_buf, uint8_t* literal_buf,
int* table, size_t table_size,
size_t* storage_ix, uint8_t* storage) {
static void RewindBitPosition(const size_t new_storage_ix,
size_t* storage_ix, uint8_t* storage) {
const size_t bitpos = new_storage_ix & 7;
const size_t mask = (1u << bitpos) - 1;
storage[new_storage_ix >> 3] &= (uint8_t)mask;
*storage_ix = new_storage_ix;
}
static void EmitUncompressedMetaBlock(const uint8_t* input, size_t input_size,
size_t* storage_ix, uint8_t* storage) {
BrotliStoreMetaBlockHeader(input_size, 1, storage_ix, storage);
*storage_ix = (*storage_ix + 7u) & ~7u;
memcpy(&storage[*storage_ix >> 3], input, input_size);
*storage_ix += input_size << 3;
storage[*storage_ix >> 3] = 0;
}
static BROTLI_INLINE void BrotliCompressFragmentTwoPassImpl(
MemoryManager* m, const uint8_t* input, size_t input_size,
BROTLI_BOOL is_last, uint32_t* command_buf, uint8_t* literal_buf,
int* table, size_t table_bits, size_t min_match,
size_t* storage_ix, uint8_t* storage) {
/* Save the start of the first block for position and distance computations.
*/
const uint8_t* base_ip = input;
BROTLI_UNUSED(is_last);
while (input_size > 0) {
size_t block_size =
@ -520,8 +570,8 @@ void BrotliCompressFragmentTwoPass(MemoryManager* m,
uint32_t* commands = command_buf;
uint8_t* literals = literal_buf;
size_t num_literals;
CreateCommands(input, block_size, input_size, base_ip, table, table_size,
&literals, &commands);
CreateCommands(input, block_size, input_size, base_ip, table,
table_bits, min_match, &literals, &commands);
num_literals = (size_t)(literals - literal_buf);
if (ShouldCompress(input, block_size, num_literals)) {
const size_t num_commands = (size_t)(commands - command_buf);
@ -535,15 +585,51 @@ void BrotliCompressFragmentTwoPass(MemoryManager* m,
/* Since we did not find many backward references and the entropy of
the data is close to 8 bits, we can simply emit an uncompressed block.
This makes compression speed of uncompressible data about 3x faster. */
BrotliStoreMetaBlockHeader(block_size, 1, storage_ix, storage);
*storage_ix = (*storage_ix + 7u) & ~7u;
memcpy(&storage[*storage_ix >> 3], input, block_size);
*storage_ix += block_size << 3;
storage[*storage_ix >> 3] = 0;
EmitUncompressedMetaBlock(input, block_size, storage_ix, storage);
}
input += block_size;
input_size -= block_size;
}
}
#define FOR_TABLE_BITS_(X) \
X(8) X(9) X(10) X(11) X(12) X(13) X(14) X(15) X(16) X(17)
#define BAKE_METHOD_PARAM_(B) \
static BROTLI_NOINLINE void BrotliCompressFragmentTwoPassImpl ## B( \
MemoryManager* m, const uint8_t* input, size_t input_size, \
BROTLI_BOOL is_last, uint32_t* command_buf, uint8_t* literal_buf, \
int* table, size_t* storage_ix, uint8_t* storage) { \
size_t min_match = (B <= 15) ? 4 : 6; \
BrotliCompressFragmentTwoPassImpl(m, input, input_size, is_last, command_buf,\
literal_buf, table, B, min_match, storage_ix, storage); \
}
FOR_TABLE_BITS_(BAKE_METHOD_PARAM_)
#undef BAKE_METHOD_PARAM_
void BrotliCompressFragmentTwoPass(
MemoryManager* m, const uint8_t* input, size_t input_size,
BROTLI_BOOL is_last, uint32_t* command_buf, uint8_t* literal_buf,
int* table, size_t table_size, size_t* storage_ix, uint8_t* storage) {
const size_t initial_storage_ix = *storage_ix;
const size_t table_bits = Log2FloorNonZero(table_size);
switch (table_bits) {
#define CASE_(B) \
case B: \
BrotliCompressFragmentTwoPassImpl ## B( \
m, input, input_size, is_last, command_buf, \
literal_buf, table, storage_ix, storage); \
break;
FOR_TABLE_BITS_(CASE_)
#undef CASE_
default: BROTLI_DCHECK(0); break;
}
/* If output is larger than single uncompressed block, rewrite it. */
if (*storage_ix - initial_storage_ix > 31 + (input_size << 3)) {
RewindBitPosition(initial_storage_ix, storage_ix, storage);
EmitUncompressedMetaBlock(input, input_size, storage_ix, storage);
}
if (is_last) {
BrotliWriteBits(1, 1, storage_ix, storage); /* islast */
@ -552,6 +638,8 @@ void BrotliCompressFragmentTwoPass(MemoryManager* m,
}
}
#undef FOR_TABLE_BITS_
#if defined(__cplusplus) || defined(c_plusplus)
} /* extern "C" */
#endif