EmbeddedPkg: Apply uncrustify changes

REF: https://bugzilla.tianocore.org/show_bug.cgi?id=3737

Apply uncrustify changes to .c/.h files in the EmbeddedPkg package

Cc: Andrew Fish <afish@apple.com>
Cc: Leif Lindholm <leif@nuviainc.com>
Cc: Michael D Kinney <michael.d.kinney@intel.com>
Signed-off-by: Michael Kubacki <michael.kubacki@microsoft.com>
Reviewed-by: Andrew Fish <afish@apple.com>
This commit is contained in:
Michael Kubacki
2021-12-05 14:53:56 -08:00
committed by mergify[bot]
parent 731c67e1d7
commit e7108d0e96
106 changed files with 9242 additions and 7648 deletions

View File

@ -20,28 +20,31 @@
/* Validate the node is media hard drive type */
EFI_STATUS
ValidateAndroidMediaDevicePath (
IN EFI_DEVICE_PATH *DevicePath
IN EFI_DEVICE_PATH *DevicePath
)
{
EFI_DEVICE_PATH_PROTOCOL *Node, *NextNode;
EFI_DEVICE_PATH_PROTOCOL *Node, *NextNode;
NextNode = DevicePath;
while (NextNode != NULL) {
Node = NextNode;
if (Node->Type == MEDIA_DEVICE_PATH &&
Node->SubType == MEDIA_HARDDRIVE_DP) {
if ((Node->Type == MEDIA_DEVICE_PATH) &&
(Node->SubType == MEDIA_HARDDRIVE_DP))
{
return EFI_SUCCESS;
}
NextNode = NextDevicePathNode (Node);
}
return EFI_INVALID_PARAMETER;
}
EFI_STATUS
EFIAPI
AndroidBootAppEntryPoint (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
@ -56,9 +59,12 @@ AndroidBootAppEntryPoint (
BootPathStr = (CHAR16 *)PcdGetPtr (PcdAndroidBootDevicePath);
ASSERT (BootPathStr != NULL);
Status = gBS->LocateProtocol (&gEfiDevicePathFromTextProtocolGuid, NULL,
(VOID **)&EfiDevicePathFromTextProtocol);
ASSERT_EFI_ERROR(Status);
Status = gBS->LocateProtocol (
&gEfiDevicePathFromTextProtocolGuid,
NULL,
(VOID **)&EfiDevicePathFromTextProtocol
);
ASSERT_EFI_ERROR (Status);
DevicePath = (EFI_DEVICE_PATH *)EfiDevicePathFromTextProtocol->ConvertTextToDevicePath (BootPathStr);
ASSERT (DevicePath != NULL);
@ -67,8 +73,11 @@ AndroidBootAppEntryPoint (
return Status;
}
Status = gBS->LocateDevicePath (&gEfiDevicePathProtocolGuid,
&DevicePath, &Handle);
Status = gBS->LocateDevicePath (
&gEfiDevicePathProtocolGuid,
&DevicePath,
&Handle
);
if (EFI_ERROR (Status)) {
return Status;
}
@ -76,7 +85,7 @@ AndroidBootAppEntryPoint (
Status = gBS->OpenProtocol (
Handle,
&gEfiBlockIoProtocolGuid,
(VOID **) &BlockIo,
(VOID **)&BlockIo,
gImageHandle,
NULL,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
@ -86,12 +95,13 @@ AndroidBootAppEntryPoint (
return Status;
}
MediaId = BlockIo->Media->MediaId;
MediaId = BlockIo->Media->MediaId;
BlockSize = BlockIo->Media->BlockSize;
Buffer = AllocatePages (EFI_SIZE_TO_PAGES (sizeof(ANDROID_BOOTIMG_HEADER)));
Buffer = AllocatePages (EFI_SIZE_TO_PAGES (sizeof (ANDROID_BOOTIMG_HEADER)));
if (Buffer == NULL) {
return EFI_BUFFER_TOO_SMALL;
}
/* Load header of boot.img */
Status = BlockIo->ReadBlocks (
BlockIo,
@ -105,8 +115,9 @@ AndroidBootAppEntryPoint (
DEBUG ((DEBUG_ERROR, "Failed to get AndroidBootImg Size: %r\n", Status));
return Status;
}
BootImgSize = ALIGN_VALUE (BootImgSize, BlockSize);
FreePages (Buffer, EFI_SIZE_TO_PAGES (sizeof(ANDROID_BOOTIMG_HEADER)));
FreePages (Buffer, EFI_SIZE_TO_PAGES (sizeof (ANDROID_BOOTIMG_HEADER)));
/* Both PartitionStart and PartitionSize are counted as block size. */
Buffer = AllocatePages (EFI_SIZE_TO_PAGES (BootImgSize));

View File

@ -16,24 +16,28 @@
// present, but RamdiskSize will be set to 0.
EFI_STATUS
ParseAndroidBootImg (
IN VOID *BootImg,
IN VOID *BootImg,
OUT VOID **Kernel,
OUT UINTN *KernelSize,
OUT UINTN *KernelSize,
OUT VOID **Ramdisk,
OUT UINTN *RamdiskSize,
OUT CHAR8 *KernelArgs
OUT UINTN *RamdiskSize,
OUT CHAR8 *KernelArgs
)
{
ANDROID_BOOTIMG_HEADER *Header;
UINT8 *BootImgBytePtr;
ANDROID_BOOTIMG_HEADER *Header;
UINT8 *BootImgBytePtr;
// Cast to UINT8 so we can do pointer arithmetic
BootImgBytePtr = (UINT8 *) BootImg;
BootImgBytePtr = (UINT8 *)BootImg;
Header = (ANDROID_BOOTIMG_HEADER *) BootImg;
Header = (ANDROID_BOOTIMG_HEADER *)BootImg;
if (AsciiStrnCmp ((CONST CHAR8 *)Header->BootMagic, ANDROID_BOOT_MAGIC,
ANDROID_BOOT_MAGIC_LENGTH) != 0) {
if (AsciiStrnCmp (
(CONST CHAR8 *)Header->BootMagic,
ANDROID_BOOT_MAGIC,
ANDROID_BOOT_MAGIC_LENGTH
) != 0)
{
return EFI_INVALID_PARAMETER;
}
@ -43,18 +47,22 @@ ParseAndroidBootImg (
ASSERT (IS_VALID_ANDROID_PAGE_SIZE (Header->PageSize));
*KernelSize = Header->KernelSize;
*Kernel = BootImgBytePtr + Header->PageSize;
*KernelSize = Header->KernelSize;
*Kernel = BootImgBytePtr + Header->PageSize;
*RamdiskSize = Header->RamdiskSize;
if (Header->RamdiskSize != 0) {
*Ramdisk = (VOID *) (BootImgBytePtr
+ Header->PageSize
+ ALIGN_VALUE (Header->KernelSize, Header->PageSize));
*Ramdisk = (VOID *)(BootImgBytePtr
+ Header->PageSize
+ ALIGN_VALUE (Header->KernelSize, Header->PageSize));
}
AsciiStrnCpyS (KernelArgs, ANDROID_BOOTIMG_KERNEL_ARGS_SIZE, Header->KernelArgs,
ANDROID_BOOTIMG_KERNEL_ARGS_SIZE);
AsciiStrnCpyS (
KernelArgs,
ANDROID_BOOTIMG_KERNEL_ARGS_SIZE,
Header->KernelArgs,
ANDROID_BOOTIMG_KERNEL_ARGS_SIZE
);
return EFI_SUCCESS;
}

View File

@ -25,10 +25,10 @@
* FASTBOOT_PLATFORM_PROTOCOL to implement the Android Fastboot protocol.
*/
STATIC FASTBOOT_TRANSPORT_PROTOCOL *mTransport;
STATIC FASTBOOT_PLATFORM_PROTOCOL *mPlatform;
STATIC FASTBOOT_TRANSPORT_PROTOCOL *mTransport;
STATIC FASTBOOT_PLATFORM_PROTOCOL *mPlatform;
STATIC EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *mTextOut;
STATIC EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *mTextOut;
typedef enum {
ExpectCmdState,
@ -36,45 +36,45 @@ typedef enum {
FastbootStateMax
} ANDROID_FASTBOOT_STATE;
STATIC ANDROID_FASTBOOT_STATE mState = ExpectCmdState;
STATIC ANDROID_FASTBOOT_STATE mState = ExpectCmdState;
// When in ExpectDataState, the number of bytes of data to expect:
STATIC UINT64 mNumDataBytes;
STATIC UINT64 mNumDataBytes;
// .. and the number of bytes so far received this data phase
STATIC UINT64 mBytesReceivedSoFar;
STATIC UINT64 mBytesReceivedSoFar;
// .. and the buffer to save data into
STATIC UINT8 *mDataBuffer = NULL;
STATIC UINT8 *mDataBuffer = NULL;
// Event notify functions, from which gBS->Exit shouldn't be called, can signal
// this event when the application should exit
STATIC EFI_EVENT mFinishedEvent;
STATIC EFI_EVENT mFinishedEvent;
STATIC EFI_EVENT mFatalSendErrorEvent;
STATIC EFI_EVENT mFatalSendErrorEvent;
// This macro uses sizeof - only use it on arrays (i.e. string literals)
#define SEND_LITERAL(Str) mTransport->Send ( \
#define SEND_LITERAL(Str) mTransport->Send ( \
sizeof (Str) - 1, \
Str, \
&mFatalSendErrorEvent \
)
#define MATCH_CMD_LITERAL(Cmd, Buf) !AsciiStrnCmp (Cmd, Buf, sizeof (Cmd) - 1)
#define MATCH_CMD_LITERAL(Cmd, Buf) !AsciiStrnCmp (Cmd, Buf, sizeof (Cmd) - 1)
#define IS_LOWERCASE_ASCII(Char) (Char >= 'a' && Char <= 'z')
#define IS_LOWERCASE_ASCII(Char) (Char >= 'a' && Char <= 'z')
#define FASTBOOT_STRING_MAX_LENGTH 256
#define FASTBOOT_COMMAND_MAX_LENGTH 64
#define FASTBOOT_STRING_MAX_LENGTH 256
#define FASTBOOT_COMMAND_MAX_LENGTH 64
STATIC
VOID
HandleGetVar (
IN CHAR8 *CmdArg
IN CHAR8 *CmdArg
)
{
CHAR8 Response[FASTBOOT_COMMAND_MAX_LENGTH + 1] = "OKAY";
EFI_STATUS Status;
CHAR8 Response[FASTBOOT_COMMAND_MAX_LENGTH + 1] = "OKAY";
EFI_STATUS Status;
// Respond to getvar:version with 0.4 (version of Fastboot protocol)
if (!AsciiStrnCmp ("version", CmdArg, sizeof ("version") - 1 )) {
if (!AsciiStrnCmp ("version", CmdArg, sizeof ("version") - 1)) {
SEND_LITERAL ("OKAY" ANDROID_FASTBOOT_VERSION);
} else {
// All other variables are assumed to be platform specific
@ -90,11 +90,11 @@ HandleGetVar (
STATIC
VOID
HandleDownload (
IN CHAR8 *NumBytesString
IN CHAR8 *NumBytesString
)
{
CHAR8 Response[13];
CHAR16 OutputString[FASTBOOT_STRING_MAX_LENGTH];
CHAR8 Response[13];
CHAR16 OutputString[FASTBOOT_STRING_MAX_LENGTH];
// Argument is 8-character ASCII string hex representation of number of bytes
// that will be sent in the data phase.
@ -122,11 +122,15 @@ HandleDownload (
SEND_LITERAL ("FAILNot enough memory");
} else {
ZeroMem (Response, sizeof Response);
AsciiSPrint (Response, sizeof Response, "DATA%x",
(UINT32)mNumDataBytes);
AsciiSPrint (
Response,
sizeof Response,
"DATA%x",
(UINT32)mNumDataBytes
);
mTransport->Send (sizeof Response - 1, Response, &mFatalSendErrorEvent);
mState = ExpectDataState;
mState = ExpectDataState;
mBytesReceivedSoFar = 0;
}
}
@ -134,7 +138,7 @@ HandleDownload (
STATIC
VOID
HandleFlash (
IN CHAR8 *PartitionName
IN CHAR8 *PartitionName
)
{
EFI_STATUS Status;
@ -171,7 +175,7 @@ HandleFlash (
STATIC
VOID
HandleErase (
IN CHAR8 *PartitionName
IN CHAR8 *PartitionName
)
{
EFI_STATUS Status;
@ -196,7 +200,7 @@ HandleBoot (
VOID
)
{
EFI_STATUS Status;
EFI_STATUS Status;
mTextOut->OutputString (mTextOut, L"Booting downloaded image\r\n");
@ -214,13 +218,14 @@ HandleBoot (
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "Failed to boot downloaded image: %r\n", Status));
}
// We shouldn't get here
}
STATIC
VOID
HandleOemCommand (
IN CHAR8 *Command
IN CHAR8 *Command
)
{
EFI_STATUS Status;
@ -241,10 +246,10 @@ STATIC
VOID
AcceptCmd (
IN UINTN Size,
IN CONST CHAR8 *Data
IN CONST CHAR8 *Data
)
{
CHAR8 Command[FASTBOOT_COMMAND_MAX_LENGTH + 1];
CHAR8 Command[FASTBOOT_COMMAND_MAX_LENGTH + 1];
// Max command size is 64 bytes
if (Size > FASTBOOT_COMMAND_MAX_LENGTH) {
@ -282,6 +287,7 @@ AcceptCmd (
// Here we just reboot normally.
SEND_LITERAL ("INFOreboot-bootloader not supported, rebooting normally.");
}
SEND_LITERAL ("OKAY");
gRT->ResetSystem (EfiResetCold, EFI_SUCCESS, 0, NULL);
@ -313,12 +319,12 @@ STATIC
VOID
AcceptData (
IN UINTN Size,
IN VOID *Data
IN VOID *Data
)
{
UINT32 RemainingBytes = mNumDataBytes - mBytesReceivedSoFar;
CHAR16 OutputString[FASTBOOT_STRING_MAX_LENGTH];
STATIC UINTN Count = 0;
UINT32 RemainingBytes = mNumDataBytes - mBytesReceivedSoFar;
CHAR16 OutputString[FASTBOOT_STRING_MAX_LENGTH];
STATIC UINTN Count = 0;
// Protocol doesn't say anything about sending extra data so just ignore it.
if (Size > RemainingBytes) {
@ -331,7 +337,7 @@ AcceptData (
// Show download progress. Don't do it for every packet as outputting text
// might be time consuming - do it on the last packet and on every 32nd packet
if ((Count++ % 32) == 0 || Size == RemainingBytes) {
if (((Count++ % 32) == 0) || (Size == RemainingBytes)) {
// (Note no newline in format string - it will overwrite the line each time)
UnicodeSPrint (
OutputString,
@ -363,23 +369,24 @@ STATIC
VOID
DataReady (
IN EFI_EVENT Event,
IN VOID *Context
IN VOID *Context
)
{
UINTN Size;
VOID *Data;
VOID *Data;
EFI_STATUS Status;
do {
Status = mTransport->Receive (&Size, &Data);
if (!EFI_ERROR (Status)) {
if (mState == ExpectCmdState) {
AcceptCmd (Size, (CHAR8 *) Data);
AcceptCmd (Size, (CHAR8 *)Data);
} else if (mState == ExpectDataState) {
AcceptData (Size, Data);
} else {
ASSERT (FALSE);
}
FreePool (Data);
}
} while (!EFI_ERROR (Status));
@ -401,7 +408,7 @@ STATIC
VOID
FatalErrorNotify (
IN EFI_EVENT Event,
IN VOID *Context
IN VOID *Context
)
{
mTextOut->OutputString (mTextOut, L"Fatal error sending command response. Exiting.\r\n");
@ -411,30 +418,30 @@ FatalErrorNotify (
EFI_STATUS
EFIAPI
FastbootAppEntryPoint (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
EFI_EVENT ReceiveEvent;
EFI_EVENT WaitEventArray[2];
UINTN EventIndex;
EFI_SIMPLE_TEXT_INPUT_PROTOCOL *TextIn;
EFI_SIMPLE_TEXT_INPUT_PROTOCOL *TextIn;
EFI_INPUT_KEY Key;
mDataBuffer = NULL;
Status = gBS->LocateProtocol (
&gAndroidFastbootTransportProtocolGuid,
NULL,
(VOID **) &mTransport
);
&gAndroidFastbootTransportProtocolGuid,
NULL,
(VOID **)&mTransport
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "Fastboot: Couldn't open Fastboot Transport Protocol: %r\n", Status));
return Status;
}
Status = gBS->LocateProtocol (&gAndroidFastbootPlatformProtocolGuid, NULL, (VOID **) &mPlatform);
Status = gBS->LocateProtocol (&gAndroidFastbootPlatformProtocolGuid, NULL, (VOID **)&mPlatform);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "Fastboot: Couldn't open Fastboot Platform Protocol: %r\n", Status));
return Status;
@ -446,15 +453,17 @@ FastbootAppEntryPoint (
return Status;
}
Status = gBS->LocateProtocol (&gEfiSimpleTextOutProtocolGuid, NULL, (VOID **) &mTextOut);
Status = gBS->LocateProtocol (&gEfiSimpleTextOutProtocolGuid, NULL, (VOID **)&mTextOut);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR,
"Fastboot: Couldn't open Text Output Protocol: %r\n", Status
DEBUG ((
DEBUG_ERROR,
"Fastboot: Couldn't open Text Output Protocol: %r\n",
Status
));
return Status;
}
Status = gBS->LocateProtocol (&gEfiSimpleTextInProtocolGuid, NULL, (VOID **) &TextIn);
Status = gBS->LocateProtocol (&gEfiSimpleTextInProtocolGuid, NULL, (VOID **)&TextIn);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "Fastboot: Couldn't open Text Input Protocol: %r\n", Status));
return Status;
@ -483,27 +492,28 @@ FastbootAppEntryPoint (
// Create event to pass to FASTBOOT_TRANSPORT_PROTOCOL.Send, signalling a
// fatal error
Status = gBS->CreateEvent (
EVT_NOTIFY_SIGNAL,
TPL_CALLBACK,
FatalErrorNotify,
NULL,
&mFatalSendErrorEvent
);
EVT_NOTIFY_SIGNAL,
TPL_CALLBACK,
FatalErrorNotify,
NULL,
&mFatalSendErrorEvent
);
ASSERT_EFI_ERROR (Status);
// Start listening for data
Status = mTransport->Start (
ReceiveEvent
);
ReceiveEvent
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "Fastboot: Couldn't start transport: %r\n", Status));
return Status;
}
// Talk to the user
mTextOut->OutputString (mTextOut,
L"Android Fastboot mode - version " ANDROID_FASTBOOT_VERSION ". Press RETURN or SPACE key to quit.\r\n");
mTextOut->OutputString (
mTextOut,
L"Android Fastboot mode - version " ANDROID_FASTBOOT_VERSION ". Press RETURN or SPACE key to quit.\r\n"
);
// Quit when the user presses any key, or mFinishedEvent is signalled
WaitEventArray[0] = mFinishedEvent;
@ -513,7 +523,8 @@ FastbootAppEntryPoint (
Status = TextIn->ReadKeyStroke (gST->ConIn, &Key);
if (Key.ScanCode == SCAN_NULL) {
if ((Key.UnicodeChar == CHAR_CARRIAGE_RETURN) ||
(Key.UnicodeChar == L' ')) {
(Key.UnicodeChar == L' '))
{
break;
}
}
@ -523,6 +534,7 @@ FastbootAppEntryPoint (
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "Warning: Fastboot Transport Stop: %r\n", Status));
}
mPlatform->UnInit ();
return EFI_SUCCESS;

View File

@ -14,24 +14,24 @@
#include <Library/DebugLib.h>
#include <Library/MemoryAllocationLib.h>
#define BOOTIMG_KERNEL_ARGS_SIZE 512
#define BOOTIMG_KERNEL_ARGS_SIZE 512
#define ANDROID_FASTBOOT_VERSION "0.4"
#define ANDROID_FASTBOOT_VERSION "0.4"
EFI_STATUS
BootAndroidBootImg (
IN UINTN BufferSize,
IN VOID *Buffer
IN UINTN BufferSize,
IN VOID *Buffer
);
EFI_STATUS
ParseAndroidBootImg (
IN VOID *BootImg,
IN VOID *BootImg,
OUT VOID **Kernel,
OUT UINTN *KernelSize,
OUT UINTN *KernelSize,
OUT VOID **Ramdisk,
OUT UINTN *RamdiskSize,
OUT CHAR8 *KernelArgs
OUT UINTN *RamdiskSize,
OUT CHAR8 *KernelArgs
);
#endif //ifdef __ANDROID_FASTBOOT_APP_H__

View File

@ -18,12 +18,12 @@
// Device Path representing an image in memory
#pragma pack(1)
typedef struct {
MEMMAP_DEVICE_PATH Node1;
EFI_DEVICE_PATH_PROTOCOL End;
MEMMAP_DEVICE_PATH Node1;
EFI_DEVICE_PATH_PROTOCOL End;
} MEMORY_DEVICE_PATH;
#pragma pack()
STATIC CONST MEMORY_DEVICE_PATH MemoryDevicePathTemplate =
STATIC CONST MEMORY_DEVICE_PATH MemoryDevicePathTemplate =
{
{
{
@ -44,7 +44,6 @@ STATIC CONST MEMORY_DEVICE_PATH MemoryDevicePathTemplate =
} // End
};
/**
Start an EFI Application from a Device Path
@ -59,19 +58,25 @@ STATIC CONST MEMORY_DEVICE_PATH MemoryDevicePathTemplate =
STATIC
EFI_STATUS
StartEfiApplication (
IN EFI_HANDLE ParentImageHandle,
IN EFI_DEVICE_PATH_PROTOCOL *DevicePath,
IN UINTN LoadOptionsSize,
IN VOID* LoadOptions
IN EFI_HANDLE ParentImageHandle,
IN EFI_DEVICE_PATH_PROTOCOL *DevicePath,
IN UINTN LoadOptionsSize,
IN VOID *LoadOptions
)
{
EFI_STATUS Status;
EFI_HANDLE ImageHandle;
EFI_LOADED_IMAGE_PROTOCOL* LoadedImage;
EFI_STATUS Status;
EFI_HANDLE ImageHandle;
EFI_LOADED_IMAGE_PROTOCOL *LoadedImage;
// Load the image from the device path with Boot Services function
Status = gBS->LoadImage (TRUE, ParentImageHandle, DevicePath, NULL, 0,
&ImageHandle);
Status = gBS->LoadImage (
TRUE,
ParentImageHandle,
DevicePath,
NULL,
0,
&ImageHandle
);
if (EFI_ERROR (Status)) {
//
// With EFI_SECURITY_VIOLATION retval, the Image was loaded and an ImageHandle was created
@ -82,19 +87,23 @@ StartEfiApplication (
if (Status == EFI_SECURITY_VIOLATION) {
gBS->UnloadImage (ImageHandle);
}
return Status;
}
// Passed LoadOptions to the EFI Application
if (LoadOptionsSize != 0) {
Status = gBS->HandleProtocol (ImageHandle, &gEfiLoadedImageProtocolGuid,
(VOID **) &LoadedImage);
Status = gBS->HandleProtocol (
ImageHandle,
&gEfiLoadedImageProtocolGuid,
(VOID **)&LoadedImage
);
if (EFI_ERROR (Status)) {
return Status;
}
LoadedImage->LoadOptionsSize = LoadOptionsSize;
LoadedImage->LoadOptions = LoadOptions;
LoadedImage->LoadOptionsSize = LoadOptionsSize;
LoadedImage->LoadOptions = LoadOptions;
}
// Before calling the image, enable the Watchdog Timer for the 5 Minute period
@ -109,27 +118,27 @@ StartEfiApplication (
EFI_STATUS
BootAndroidBootImg (
IN UINTN BufferSize,
IN VOID *Buffer
IN UINTN BufferSize,
IN VOID *Buffer
)
{
EFI_STATUS Status;
CHAR8 KernelArgs[ANDROID_BOOTIMG_KERNEL_ARGS_SIZE];
VOID *Kernel;
UINTN KernelSize;
VOID *Ramdisk;
UINTN RamdiskSize;
MEMORY_DEVICE_PATH KernelDevicePath;
CHAR16 *LoadOptions, *NewLoadOptions;
EFI_STATUS Status;
CHAR8 KernelArgs[ANDROID_BOOTIMG_KERNEL_ARGS_SIZE];
VOID *Kernel;
UINTN KernelSize;
VOID *Ramdisk;
UINTN RamdiskSize;
MEMORY_DEVICE_PATH KernelDevicePath;
CHAR16 *LoadOptions, *NewLoadOptions;
Status = ParseAndroidBootImg (
Buffer,
&Kernel,
&KernelSize,
&Ramdisk,
&RamdiskSize,
KernelArgs
);
Buffer,
&Kernel,
&KernelSize,
&Ramdisk,
&RamdiskSize,
KernelArgs
);
if (EFI_ERROR (Status)) {
return Status;
}
@ -138,8 +147,8 @@ BootAndroidBootImg (
// Have to cast to UINTN before casting to EFI_PHYSICAL_ADDRESS in order to
// appease GCC.
KernelDevicePath.Node1.StartingAddress = (EFI_PHYSICAL_ADDRESS)(UINTN) Kernel;
KernelDevicePath.Node1.EndingAddress = (EFI_PHYSICAL_ADDRESS)(UINTN) Kernel + KernelSize;
KernelDevicePath.Node1.StartingAddress = (EFI_PHYSICAL_ADDRESS)(UINTN)Kernel;
KernelDevicePath.Node1.EndingAddress = (EFI_PHYSICAL_ADDRESS)(UINTN)Kernel + KernelSize;
// Initialize Linux command line
LoadOptions = CatSPrint (NULL, L"%a", KernelArgs);
@ -148,19 +157,26 @@ BootAndroidBootImg (
}
if (RamdiskSize != 0) {
NewLoadOptions = CatSPrint (LoadOptions, L" initrd=0x%x,0x%x",
(UINTN)Ramdisk, RamdiskSize);
NewLoadOptions = CatSPrint (
LoadOptions,
L" initrd=0x%x,0x%x",
(UINTN)Ramdisk,
RamdiskSize
);
FreePool (LoadOptions);
if (NewLoadOptions == NULL) {
return EFI_OUT_OF_RESOURCES;
}
LoadOptions = NewLoadOptions;
}
Status = StartEfiApplication (gImageHandle,
(EFI_DEVICE_PATH_PROTOCOL *) &KernelDevicePath,
Status = StartEfiApplication (
gImageHandle,
(EFI_DEVICE_PATH_PROTOCOL *)&KernelDevicePath,
StrSize (LoadOptions),
LoadOptions);
LoadOptions
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "Couldn't Boot Linux: %d\n", Status));
Status = EFI_DEVICE_ERROR;

View File

@ -22,7 +22,7 @@
#include <Library/UefiDriverEntryPoint.h>
#include <Library/UefiRuntimeServicesTableLib.h>
#define IP4_ADDR_TO_STRING(IpAddr, IpAddrString) UnicodeSPrint ( \
#define IP4_ADDR_TO_STRING(IpAddr, IpAddrString) UnicodeSPrint ( \
IpAddrString, \
16 * 2, \
L"%d.%d.%d.%d", \
@ -37,49 +37,49 @@
// (This isn't actually a packet size - it's just the size of the buffers we
// pass to the TCP driver to fill with received data.)
// We can achieve much better performance by doing this in larger chunks.
#define RX_FRAGMENT_SIZE 2048
#define RX_FRAGMENT_SIZE 2048
STATIC EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *mTextOut;
STATIC EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *mTextOut;
STATIC EFI_TCP4_PROTOCOL *mTcpConnection;
STATIC EFI_TCP4_PROTOCOL *mTcpListener;
STATIC EFI_TCP4_PROTOCOL *mTcpConnection;
STATIC EFI_TCP4_PROTOCOL *mTcpListener;
STATIC EFI_EVENT mReceiveEvent;
STATIC EFI_EVENT mReceiveEvent;
STATIC EFI_SERVICE_BINDING_PROTOCOL *mTcpServiceBinding;
STATIC EFI_SERVICE_BINDING_PROTOCOL *mTcpServiceBinding;
STATIC EFI_HANDLE mTcpHandle = NULL;
// We only ever use one IO token for receive and one for transmit. To save
// repeatedly allocating and freeing, just allocate statically and re-use.
#define NUM_RX_TOKENS 16
#define TOKEN_NEXT(Index) (((Index) + 1) % NUM_RX_TOKENS)
#define NUM_RX_TOKENS 16
#define TOKEN_NEXT(Index) (((Index) + 1) % NUM_RX_TOKENS)
STATIC UINTN mNextSubmitIndex;
STATIC UINTN mNextReceiveIndex;
STATIC EFI_TCP4_IO_TOKEN mReceiveToken[NUM_RX_TOKENS];
STATIC EFI_TCP4_RECEIVE_DATA mRxData[NUM_RX_TOKENS];
STATIC EFI_TCP4_IO_TOKEN mTransmitToken;
STATIC EFI_TCP4_TRANSMIT_DATA mTxData;
STATIC UINTN mNextSubmitIndex;
STATIC UINTN mNextReceiveIndex;
STATIC EFI_TCP4_IO_TOKEN mReceiveToken[NUM_RX_TOKENS];
STATIC EFI_TCP4_RECEIVE_DATA mRxData[NUM_RX_TOKENS];
STATIC EFI_TCP4_IO_TOKEN mTransmitToken;
STATIC EFI_TCP4_TRANSMIT_DATA mTxData;
// We also reuse the accept token
STATIC EFI_TCP4_LISTEN_TOKEN mAcceptToken;
STATIC EFI_TCP4_LISTEN_TOKEN mAcceptToken;
// .. and the close token
STATIC EFI_TCP4_CLOSE_TOKEN mCloseToken;
STATIC EFI_TCP4_CLOSE_TOKEN mCloseToken;
// List type for queued received packets
typedef struct _FASTBOOT_TCP_PACKET_LIST {
LIST_ENTRY Link;
VOID *Buffer;
UINTN BufferSize;
LIST_ENTRY Link;
VOID *Buffer;
UINTN BufferSize;
} FASTBOOT_TCP_PACKET_LIST;
STATIC LIST_ENTRY mPacketListHead;
STATIC LIST_ENTRY mPacketListHead;
STATIC
VOID
EFIAPI
DataReceived (
IN EFI_EVENT Event,
IN VOID *Context
IN EFI_EVENT Event,
IN VOID *Context
);
/*
@ -91,8 +91,8 @@ SubmitRecieveToken (
VOID
)
{
EFI_STATUS Status;
VOID *FragmentBuffer;
EFI_STATUS Status;
VOID *FragmentBuffer;
Status = EFI_SUCCESS;
@ -103,12 +103,12 @@ SubmitRecieveToken (
return EFI_OUT_OF_RESOURCES;
}
mRxData[mNextSubmitIndex].DataLength = RX_FRAGMENT_SIZE;
mRxData[mNextSubmitIndex].DataLength = RX_FRAGMENT_SIZE;
mRxData[mNextSubmitIndex].FragmentTable[0].FragmentLength = RX_FRAGMENT_SIZE;
mRxData[mNextSubmitIndex].FragmentTable[0].FragmentBuffer = FragmentBuffer;
Status = mTcpConnection->Receive (mTcpConnection, &mReceiveToken[mNextSubmitIndex]);
if (EFI_ERROR (Status)) {
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "TCP Receive: %r\n", Status));
FreePool (FragmentBuffer);
}
@ -125,10 +125,10 @@ STATIC
VOID
ConnectionClosed (
IN EFI_EVENT Event,
IN VOID *Context
IN VOID *Context
)
{
EFI_STATUS Status;
EFI_STATUS Status;
// Possible bug in EDK2 TCP4 driver: closing a connection doesn't remove its
// PCB from the list of live connections. Subsequent attempts to Configure()
@ -150,7 +150,7 @@ CloseReceiveEvents (
VOID
)
{
UINTN Index;
UINTN Index;
for (Index = 0; Index < NUM_RX_TOKENS; Index++) {
gBS->CloseEvent (mReceiveToken[Index].CompletionToken.Event);
@ -164,11 +164,11 @@ STATIC
VOID
EFIAPI
DataReceived (
IN EFI_EVENT Event,
IN VOID *Context
IN EFI_EVENT Event,
IN VOID *Context
)
{
EFI_STATUS Status;
EFI_STATUS Status;
FASTBOOT_TCP_PACKET_LIST *NewEntry;
EFI_TCP4_IO_TOKEN *ReceiveToken;
@ -208,11 +208,11 @@ DataReceived (
= ReceiveToken->Packet.RxData->FragmentTable[0].FragmentLength;
// Prepare to receive more data
SubmitRecieveToken();
SubmitRecieveToken ();
} else {
// Fatal receive error. Put an entry with NULL in the queue, signifying
// to return EFI_DEVICE_ERROR from TcpFastbootTransportReceive.
NewEntry->Buffer = NULL;
NewEntry->Buffer = NULL;
NewEntry->BufferSize = 0;
DEBUG ((DEBUG_ERROR, "\nTCP Fastboot Receive error: %r\n", Status));
@ -224,7 +224,6 @@ DataReceived (
ASSERT_EFI_ERROR (Status);
}
/*
Event notify function to be called when we accept an incoming TCP connection.
*/
@ -232,21 +231,22 @@ STATIC
VOID
EFIAPI
ConnectionAccepted (
IN EFI_EVENT Event,
IN VOID *Context
IN EFI_EVENT Event,
IN VOID *Context
)
{
EFI_TCP4_LISTEN_TOKEN *AcceptToken;
EFI_TCP4_LISTEN_TOKEN *AcceptToken;
EFI_STATUS Status;
UINTN Index;
AcceptToken = (EFI_TCP4_LISTEN_TOKEN *) Context;
Status = AcceptToken->CompletionToken.Status;
AcceptToken = (EFI_TCP4_LISTEN_TOKEN *)Context;
Status = AcceptToken->CompletionToken.Status;
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "TCP Fastboot: Connection Error: %r\n", Status));
return;
}
DEBUG ((DEBUG_ERROR, "TCP Fastboot: Connection Received.\n"));
//
@ -257,7 +257,7 @@ ConnectionAccepted (
Status = gBS->OpenProtocol (
AcceptToken->NewChildHandle,
&gEfiTcp4ProtocolGuid,
(VOID **) &mTcpConnection,
(VOID **)&mTcpConnection,
gImageHandle,
NULL,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
@ -267,7 +267,7 @@ ConnectionAccepted (
return;
}
mNextSubmitIndex = 0;
mNextSubmitIndex = 0;
mNextReceiveIndex = 0;
for (Index = 0; Index < NUM_RX_TOKENS; Index++) {
@ -282,7 +282,7 @@ ConnectionAccepted (
}
for (Index = 0; Index < NUM_RX_TOKENS; Index++) {
SubmitRecieveToken();
SubmitRecieveToken ();
}
}
@ -292,26 +292,32 @@ ConnectionAccepted (
*/
EFI_STATUS
TcpFastbootTransportStart (
EFI_EVENT ReceiveEvent
EFI_EVENT ReceiveEvent
)
{
EFI_STATUS Status;
EFI_HANDLE NetDeviceHandle;
EFI_HANDLE *HandleBuffer;
EFI_IP4_MODE_DATA Ip4ModeData;
UINTN NumHandles;
CHAR16 IpAddrString[16];
UINTN Index;
EFI_STATUS Status;
EFI_HANDLE NetDeviceHandle;
EFI_HANDLE *HandleBuffer;
EFI_IP4_MODE_DATA Ip4ModeData;
UINTN NumHandles;
CHAR16 IpAddrString[16];
UINTN Index;
EFI_TCP4_CONFIG_DATA TcpConfigData = {
EFI_TCP4_CONFIG_DATA TcpConfigData = {
0x00, // IPv4 Type of Service
255, // IPv4 Time to Live
{ // AccessPoint:
TRUE, // Use default address
{ {0, 0, 0, 0} }, // IP Address (ignored - use default)
{ {0, 0, 0, 0} }, // Subnet mask (ignored - use default)
{
{ 0, 0, 0, 0 }
}, // IP Address (ignored - use default)
{
{ 0, 0, 0, 0 }
}, // Subnet mask (ignored - use default)
FixedPcdGet32 (PcdAndroidFastbootTcpPort), // Station port
{ {0, 0, 0, 0} }, // Remote address: accept any
{
{ 0, 0, 0, 0 }
}, // Remote address: accept any
0, // Remote Port: accept any
FALSE // ActiveFlag: be a "server"
},
@ -343,13 +349,13 @@ TcpFastbootTransportStart (
NetDeviceHandle = HandleBuffer[0];
Status = gBS->OpenProtocol (
NetDeviceHandle,
&gEfiTcp4ServiceBindingProtocolGuid,
(VOID **) &mTcpServiceBinding,
gImageHandle,
NULL,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
NetDeviceHandle,
&gEfiTcp4ServiceBindingProtocolGuid,
(VOID **)&mTcpServiceBinding,
gImageHandle,
NULL,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "Open TCP Service Binding: %r\n", Status));
return Status;
@ -362,13 +368,13 @@ TcpFastbootTransportStart (
}
Status = gBS->OpenProtocol (
mTcpHandle,
&gEfiTcp4ProtocolGuid,
(VOID **) &mTcpListener,
gImageHandle,
NULL,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
mTcpHandle,
&gEfiTcp4ProtocolGuid,
(VOID **)&mTcpListener,
gImageHandle,
NULL,
EFI_OPEN_PROTOCOL_GET_PROTOCOL
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "Open TCP Protocol: %r\n", Status));
}
@ -378,14 +384,14 @@ TcpFastbootTransportStart (
//
for (Index = 0; Index < NUM_RX_TOKENS; Index++) {
mRxData[Index].UrgentFlag = FALSE;
mRxData[Index].FragmentCount = 1;
mRxData[Index].UrgentFlag = FALSE;
mRxData[Index].FragmentCount = 1;
mReceiveToken[Index].Packet.RxData = &mRxData[Index];
}
mTxData.Push = TRUE;
mTxData.Urgent = FALSE;
mTxData.FragmentCount = 1;
mTxData.Push = TRUE;
mTxData.Urgent = FALSE;
mTxData.FragmentCount = 1;
mTransmitToken.Packet.TxData = &mTxData;
Status = gBS->CreateEvent (
@ -414,13 +420,17 @@ TcpFastbootTransportStart (
if (Status == EFI_NO_MAPPING) {
// Wait until the IP configuration process (probably DHCP) has finished
do {
Status = mTcpListener->GetModeData (mTcpListener,
NULL, NULL,
Status = mTcpListener->GetModeData (
mTcpListener,
NULL,
NULL,
&Ip4ModeData,
NULL, NULL
NULL,
NULL
);
ASSERT_EFI_ERROR (Status);
} while (!Ip4ModeData.IsConfigured);
Status = mTcpListener->Configure (mTcpListener, &TcpConfigData);
} else if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "TCP Configure: %r\n", Status));
@ -434,7 +444,7 @@ TcpFastbootTransportStart (
mTextOut->OutputString (mTextOut, L"TCP Fastboot transport configured.");
mTextOut->OutputString (mTextOut, L"\r\nIP address: ");
mTextOut->OutputString (mTextOut ,IpAddrString);
mTextOut->OutputString (mTextOut, IpAddrString);
mTextOut->OutputString (mTextOut, L"\r\n");
//
@ -462,8 +472,8 @@ TcpFastbootTransportStop (
EFI_TCP4_CLOSE_TOKEN CloseToken;
EFI_STATUS Status;
UINTN EventIndex;
FASTBOOT_TCP_PACKET_LIST *Entry;
FASTBOOT_TCP_PACKET_LIST *NextEntry;
FASTBOOT_TCP_PACKET_LIST *Entry;
FASTBOOT_TCP_PACKET_LIST *NextEntry;
// Close any existing TCP connection, blocking until it's done.
if (mTcpConnection != NULL) {
@ -494,7 +504,6 @@ TcpFastbootTransportStop (
ASSERT_EFI_ERROR (Status);
}
gBS->CloseEvent (mAcceptToken.CompletionToken.Event);
// Stop listening for connections.
@ -506,14 +515,15 @@ TcpFastbootTransportStop (
Status = mTcpServiceBinding->DestroyChild (mTcpServiceBinding, mTcpHandle);
// Free any data the user didn't pick up
Entry = (FASTBOOT_TCP_PACKET_LIST *) GetFirstNode (&mPacketListHead);
Entry = (FASTBOOT_TCP_PACKET_LIST *)GetFirstNode (&mPacketListHead);
while (!IsNull (&mPacketListHead, &Entry->Link)) {
NextEntry = (FASTBOOT_TCP_PACKET_LIST *) GetNextNode (&mPacketListHead, &Entry->Link);
NextEntry = (FASTBOOT_TCP_PACKET_LIST *)GetNextNode (&mPacketListHead, &Entry->Link);
RemoveEntryList (&Entry->Link);
if (Entry->Buffer) {
FreePool (Entry->Buffer);
}
FreePool (Entry);
Entry = NextEntry;
@ -531,16 +541,16 @@ TcpFastbootTransportStop (
STATIC
VOID
DataSent (
EFI_EVENT Event,
VOID *Context
EFI_EVENT Event,
VOID *Context
)
{
EFI_STATUS Status;
EFI_STATUS Status;
Status = mTransmitToken.CompletionToken.Status;
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "TCP Fastboot transmit result: %r\n", Status));
gBS->SignalEvent (*(EFI_EVENT *) Context);
gBS->SignalEvent (*(EFI_EVENT *)Context);
}
FreePool (mTransmitToken.Packet.TxData->FragmentTable[0].FragmentBuffer);
@ -549,11 +559,11 @@ DataSent (
EFI_STATUS
TcpFastbootTransportSend (
IN UINTN BufferSize,
IN CONST VOID *Buffer,
IN EFI_EVENT *FatalErrorEvent
IN CONST VOID *Buffer,
IN EFI_EVENT *FatalErrorEvent
)
{
EFI_STATUS Status;
EFI_STATUS Status;
if (BufferSize > 512) {
return EFI_INVALID_PARAMETER;
@ -578,9 +588,9 @@ TcpFastbootTransportSend (
mTxData.FragmentTable[0].FragmentLength = BufferSize;
mTxData.FragmentTable[0].FragmentBuffer = AllocateCopyPool (
BufferSize,
Buffer
);
BufferSize,
Buffer
);
Status = mTcpConnection->Transmit (mTcpConnection, &mTransmitToken);
if (EFI_ERROR (Status)) {
@ -591,27 +601,26 @@ TcpFastbootTransportSend (
return EFI_SUCCESS;
}
EFI_STATUS
TcpFastbootTransportReceive (
OUT UINTN *BufferSize,
OUT VOID **Buffer
OUT VOID **Buffer
)
{
FASTBOOT_TCP_PACKET_LIST *Entry;
FASTBOOT_TCP_PACKET_LIST *Entry;
if (IsListEmpty (&mPacketListHead)) {
return EFI_NOT_READY;
}
Entry = (FASTBOOT_TCP_PACKET_LIST *) GetFirstNode (&mPacketListHead);
Entry = (FASTBOOT_TCP_PACKET_LIST *)GetFirstNode (&mPacketListHead);
if (Entry->Buffer == NULL) {
// There was an error receiving this packet.
return EFI_DEVICE_ERROR;
}
*Buffer = Entry->Buffer;
*Buffer = Entry->Buffer;
*BufferSize = Entry->BufferSize;
RemoveEntryList (&Entry->Link);
@ -620,7 +629,7 @@ TcpFastbootTransportReceive (
return EFI_SUCCESS;
}
FASTBOOT_TRANSPORT_PROTOCOL mTransportProtocol = {
FASTBOOT_TRANSPORT_PROTOCOL mTransportProtocol = {
TcpFastbootTransportStart,
TcpFastbootTransportStop,
TcpFastbootTransportSend,
@ -630,17 +639,16 @@ FASTBOOT_TRANSPORT_PROTOCOL mTransportProtocol = {
EFI_STATUS
TcpFastbootTransportEntryPoint (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
EFI_STATUS Status;
Status = gBS->LocateProtocol(
&gEfiSimpleTextOutProtocolGuid,
NULL,
(VOID **) &mTextOut
);
Status = gBS->LocateProtocol (
&gEfiSimpleTextOutProtocolGuid,
NULL,
(VOID **)&mTextOut
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "Fastboot: Open Text Output Protocol: %r\n", Status));
return Status;

View File

@ -21,45 +21,44 @@
#include <Library/UefiBootServicesTableLib.h>
#include <Library/UefiDriverEntryPoint.h>
STATIC USB_DEVICE_PROTOCOL *mUsbDevice;
STATIC USB_DEVICE_PROTOCOL *mUsbDevice;
// Configuration attributes:
// bit 7 reserved and must be 1, bit 6 means self-powered.
#define CONFIG_DESC_ATTRIBUTES (BIT7 | BIT6)
#define CONFIG_DESC_ATTRIBUTES (BIT7 | BIT6)
#define MAX_PACKET_SIZE_BULK 512
#define MAX_PACKET_SIZE_BULK 512
STATIC USB_DEVICE_PROTOCOL *mUsbDevice;
STATIC EFI_EVENT mReceiveEvent = NULL;
STATIC LIST_ENTRY mPacketList;
STATIC EFI_EVENT mReceiveEvent = NULL;
STATIC LIST_ENTRY mPacketList;
// List type for queued received packets
typedef struct _FASTBOOT_USB_PACKET_LIST {
LIST_ENTRY Link;
VOID *Buffer;
UINTN BufferSize;
LIST_ENTRY Link;
VOID *Buffer;
UINTN BufferSize;
} FASTBOOT_USB_PACKET_LIST;
/*
No string descriptors - all string descriptor members are set to 0
*/
STATIC USB_DEVICE_DESCRIPTOR mDeviceDescriptor = {
sizeof (USB_DEVICE_DESCRIPTOR), //Length
USB_DESC_TYPE_DEVICE, //DescriptorType
0x0200, //BcdUSB
0xFF, //DeviceClass
0, //DeviceSubClass
0, //DeviceProtocol
64, //MaxPacketSize0
FixedPcdGet32 (PcdAndroidFastbootUsbVendorId), //IdVendor
FixedPcdGet32 (PcdAndroidFastbootUsbProductId), //IdProduct
0, //BcdDevice
0, //StrManufacturer
0, //StrProduct
0, //StrSerialNumber
1 //NumConfigurations
STATIC USB_DEVICE_DESCRIPTOR mDeviceDescriptor = {
sizeof (USB_DEVICE_DESCRIPTOR), // Length
USB_DESC_TYPE_DEVICE, // DescriptorType
0x0200, // BcdUSB
0xFF, // DeviceClass
0, // DeviceSubClass
0, // DeviceProtocol
64, // MaxPacketSize0
FixedPcdGet32 (PcdAndroidFastbootUsbVendorId), // IdVendor
FixedPcdGet32 (PcdAndroidFastbootUsbProductId), // IdProduct
0, // BcdDevice
0, // StrManufacturer
0, // StrProduct
0, // StrSerialNumber
1 // NumConfigurations
};
/*
@ -71,69 +70,69 @@ STATIC USB_DEVICE_DESCRIPTOR mDeviceDescriptor = {
#pragma pack(1)
typedef struct {
USB_CONFIG_DESCRIPTOR ConfigDescriptor;
USB_INTERFACE_DESCRIPTOR InterfaceDescriptor;
USB_ENDPOINT_DESCRIPTOR EndpointDescriptor1;
USB_ENDPOINT_DESCRIPTOR EndpointDescriptor2;
USB_CONFIG_DESCRIPTOR ConfigDescriptor;
USB_INTERFACE_DESCRIPTOR InterfaceDescriptor;
USB_ENDPOINT_DESCRIPTOR EndpointDescriptor1;
USB_ENDPOINT_DESCRIPTOR EndpointDescriptor2;
} GET_CONFIG_DESCRIPTOR_RESPONSE;
#pragma pack()
STATIC GET_CONFIG_DESCRIPTOR_RESPONSE mGetConfigDescriptorResponse = {
{ // USB_CONFIG_DESCRIPTOR
sizeof (USB_CONFIG_DESCRIPTOR), //Length;
USB_DESC_TYPE_CONFIG, //DescriptorType;
sizeof (GET_CONFIG_DESCRIPTOR_RESPONSE), //TotalLength;
1, //NumInterfaces;
1, //ConfigurationValue;
0, //Configuration;
CONFIG_DESC_ATTRIBUTES, //Attributes;
0 //MaxPower;
STATIC GET_CONFIG_DESCRIPTOR_RESPONSE mGetConfigDescriptorResponse = {
{ // USB_CONFIG_DESCRIPTOR
sizeof (USB_CONFIG_DESCRIPTOR), // Length;
USB_DESC_TYPE_CONFIG, // DescriptorType;
sizeof (GET_CONFIG_DESCRIPTOR_RESPONSE), // TotalLength;
1, // NumInterfaces;
1, // ConfigurationValue;
0, // Configuration;
CONFIG_DESC_ATTRIBUTES, // Attributes;
0 // MaxPower;
},
{ // USB_INTERFACE_DESCRIPTOR
sizeof (USB_INTERFACE_DESCRIPTOR), //Length;
USB_DESC_TYPE_INTERFACE, //DescriptorType;
0, //InterfaceNumber;
0, //AlternateSetting;
2, //NumEndpoints;
0xFF, //InterfaceClass;
{ // USB_INTERFACE_DESCRIPTOR
sizeof (USB_INTERFACE_DESCRIPTOR), // Length;
USB_DESC_TYPE_INTERFACE, // DescriptorType;
0, // InterfaceNumber;
0, // AlternateSetting;
2, // NumEndpoints;
0xFF, // InterfaceClass;
// Vendor specific interface subclass and protocol codes.
// I found these values in the Fastboot code
// (in match_fastboot_with_serial in fastboot.c).
0x42, //InterfaceSubClass;
0x03, //InterfaceProtocol;
0 //Interface;
0x42, // InterfaceSubClass;
0x03, // InterfaceProtocol;
0 // Interface;
},
{ // USB_ENDPOINT_DESCRIPTOR (In Endpoint)
sizeof (USB_ENDPOINT_DESCRIPTOR), //Length;
USB_DESC_TYPE_ENDPOINT, //DescriptorType;
1 | BIT7, //EndpointAddress;
0x2, //Attributes;
MAX_PACKET_SIZE_BULK, //MaxPacketSize;
16 //Interval;
{ // USB_ENDPOINT_DESCRIPTOR (In Endpoint)
sizeof (USB_ENDPOINT_DESCRIPTOR), // Length;
USB_DESC_TYPE_ENDPOINT, // DescriptorType;
1 | BIT7, // EndpointAddress;
0x2, // Attributes;
MAX_PACKET_SIZE_BULK, // MaxPacketSize;
16 // Interval;
},
{ // STATIC USB_ENDPOINT_DESCRIPTOR (Out Endpoint)
sizeof (USB_ENDPOINT_DESCRIPTOR), //Length;
USB_DESC_TYPE_ENDPOINT, //DescriptorType;
1, //EndpointAddress;
0x2, //Attributes;
MAX_PACKET_SIZE_BULK, //MaxPacketSize;
16 //Interval;
{ // STATIC USB_ENDPOINT_DESCRIPTOR (Out Endpoint)
sizeof (USB_ENDPOINT_DESCRIPTOR), // Length;
USB_DESC_TYPE_ENDPOINT, // DescriptorType;
1, // EndpointAddress;
0x2, // Attributes;
MAX_PACKET_SIZE_BULK, // MaxPacketSize;
16 // Interval;
}
};
STATIC
VOID
DataReceived (
IN UINTN Size,
IN VOID *Buffer
IN UINTN Size,
IN VOID *Buffer
)
{
FASTBOOT_USB_PACKET_LIST *NewEntry;
FASTBOOT_USB_PACKET_LIST *NewEntry;
NewEntry = AllocatePool (sizeof (*NewEntry));
ASSERT (NewEntry != NULL);
NewEntry->Buffer = Buffer;
NewEntry->Buffer = Buffer;
NewEntry->BufferSize = Size;
InsertTailList (&mPacketList, &NewEntry->Link);
@ -146,7 +145,7 @@ DataReceived (
STATIC
VOID
DataSent (
IN UINT8 EndpointIndex
IN UINT8 EndpointIndex
)
{
// Don't care.
@ -158,7 +157,7 @@ DataSent (
*/
EFI_STATUS
FastbootTransportUsbStart (
EFI_EVENT ReceiveEvent
EFI_EVENT ReceiveEvent
)
{
GET_CONFIG_DESCRIPTOR_RESPONSE *Responses;
@ -166,11 +165,11 @@ FastbootTransportUsbStart (
mReceiveEvent = ReceiveEvent;
mGetConfigDescriptorResponse.ConfigDescriptor.TotalLength = sizeof (GET_CONFIG_DESCRIPTOR_RESPONSE);
Responses = &mGetConfigDescriptorResponse;
Responses = &mGetConfigDescriptorResponse;
InitializeListHead (&mPacketList);
return mUsbDevice->Start (&mDeviceDescriptor, (VOID **) &Responses, DataReceived, DataSent);
return mUsbDevice->Start (&mDeviceDescriptor, (VOID **)&Responses, DataReceived, DataSent);
}
/*
@ -196,12 +195,12 @@ FastbootTransportUsbStop (
EFI_STATUS
FastbootTransportUsbSend (
IN UINTN BufferSize,
IN CONST VOID *Buffer,
IN EFI_EVENT *FatalErrorEvent
IN CONST VOID *Buffer,
IN EFI_EVENT *FatalErrorEvent
)
{
// Current USB protocol is blocking, so ignore FatalErrorEvent
return mUsbDevice->Send(1, BufferSize, Buffer);
return mUsbDevice->Send (1, BufferSize, Buffer);
}
/*
@ -221,19 +220,19 @@ FastbootTransportUsbSend (
EFI_STATUS
FastbootTransportUsbReceive (
OUT UINTN *BufferSize,
OUT VOID **Buffer
OUT VOID **Buffer
)
{
FASTBOOT_USB_PACKET_LIST *Entry;
FASTBOOT_USB_PACKET_LIST *Entry;
if (IsListEmpty (&mPacketList)) {
return EFI_NOT_READY;
}
Entry = (FASTBOOT_USB_PACKET_LIST *) GetFirstNode (&mPacketList);
Entry = (FASTBOOT_USB_PACKET_LIST *)GetFirstNode (&mPacketList);
*BufferSize = Entry->BufferSize;
*Buffer = Entry->Buffer;
*Buffer = Entry->Buffer;
RemoveEntryList (&Entry->Link);
FreePool (Entry);
@ -241,7 +240,7 @@ FastbootTransportUsbReceive (
return EFI_SUCCESS;
}
STATIC FASTBOOT_TRANSPORT_PROTOCOL mTransportProtocol = {
STATIC FASTBOOT_TRANSPORT_PROTOCOL mTransportProtocol = {
FastbootTransportUsbStart,
FastbootTransportUsbStop,
FastbootTransportUsbSend,
@ -251,13 +250,13 @@ STATIC FASTBOOT_TRANSPORT_PROTOCOL mTransportProtocol = {
EFI_STATUS
FastbootTransportUsbEntryPoint (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
EFI_STATUS Status;
// Assume there's only one USB peripheral controller.
Status = gBS->LocateProtocol (&gUsbDeviceProtocolGuid, NULL, (VOID **) &mUsbDevice);
Status = gBS->LocateProtocol (&gUsbDeviceProtocolGuid, NULL, (VOID **)&mUsbDevice);
if (EFI_ERROR (Status)) {
return Status;
}

View File

@ -24,24 +24,24 @@
#include "ConsolePrefDxe.h"
#define SPCR_SIG EFI_ACPI_2_0_SERIAL_PORT_CONSOLE_REDIRECTION_TABLE_SIGNATURE
#define SPCR_SIG EFI_ACPI_2_0_SERIAL_PORT_CONSOLE_REDIRECTION_TABLE_SIGNATURE
extern UINT8 ConsolePrefHiiBin[];
extern UINT8 ConsolePrefDxeStrings[];
extern UINT8 ConsolePrefHiiBin[];
extern UINT8 ConsolePrefDxeStrings[];
typedef struct {
VENDOR_DEVICE_PATH VendorDevicePath;
EFI_DEVICE_PATH_PROTOCOL End;
VENDOR_DEVICE_PATH VendorDevicePath;
EFI_DEVICE_PATH_PROTOCOL End;
} HII_VENDOR_DEVICE_PATH;
STATIC HII_VENDOR_DEVICE_PATH mConsolePrefDxeVendorDevicePath = {
STATIC HII_VENDOR_DEVICE_PATH mConsolePrefDxeVendorDevicePath = {
{
{
HARDWARE_DEVICE_PATH,
HW_VENDOR_DP,
{
(UINT8) (sizeof (VENDOR_DEVICE_PATH)),
(UINT8) ((sizeof (VENDOR_DEVICE_PATH)) >> 8)
(UINT8)(sizeof (VENDOR_DEVICE_PATH)),
(UINT8)((sizeof (VENDOR_DEVICE_PATH)) >> 8)
}
},
CONSOLE_PREF_FORMSET_GUID
@ -50,13 +50,13 @@ STATIC HII_VENDOR_DEVICE_PATH mConsolePrefDxeVendorDevicePath = {
END_DEVICE_PATH_TYPE,
END_ENTIRE_DEVICE_PATH_SUBTYPE,
{
(UINT8) (END_DEVICE_PATH_LENGTH),
(UINT8) ((END_DEVICE_PATH_LENGTH) >> 8)
(UINT8)(END_DEVICE_PATH_LENGTH),
(UINT8)((END_DEVICE_PATH_LENGTH) >> 8)
}
}
};
STATIC EFI_EVENT mReadyToBootEvent;
STATIC EFI_EVENT mReadyToBootEvent;
STATIC
EFI_STATUS
@ -64,32 +64,39 @@ InstallHiiPages (
VOID
)
{
EFI_STATUS Status;
EFI_HII_HANDLE HiiHandle;
EFI_HANDLE DriverHandle;
EFI_STATUS Status;
EFI_HII_HANDLE HiiHandle;
EFI_HANDLE DriverHandle;
DriverHandle = NULL;
Status = gBS->InstallMultipleProtocolInterfaces (&DriverHandle,
&gEfiDevicePathProtocolGuid,
&mConsolePrefDxeVendorDevicePath,
NULL);
Status = gBS->InstallMultipleProtocolInterfaces (
&DriverHandle,
&gEfiDevicePathProtocolGuid,
&mConsolePrefDxeVendorDevicePath,
NULL
);
if (EFI_ERROR (Status)) {
return Status;
}
HiiHandle = HiiAddPackages (&gConsolePrefFormSetGuid,
DriverHandle,
ConsolePrefDxeStrings,
ConsolePrefHiiBin,
NULL);
HiiHandle = HiiAddPackages (
&gConsolePrefFormSetGuid,
DriverHandle,
ConsolePrefDxeStrings,
ConsolePrefHiiBin,
NULL
);
if (HiiHandle == NULL) {
gBS->UninstallMultipleProtocolInterfaces (DriverHandle,
gBS->UninstallMultipleProtocolInterfaces (
DriverHandle,
&gEfiDevicePathProtocolGuid,
&mConsolePrefDxeVendorDevicePath,
NULL);
NULL
);
return EFI_OUT_OF_RESOURCES;
}
return EFI_SUCCESS;
}
@ -97,7 +104,7 @@ STATIC
VOID
RemoveDtStdoutPath (
VOID
)
)
{
VOID *Dtb;
INT32 Node;
@ -106,8 +113,12 @@ RemoveDtStdoutPath (
Status = EfiGetSystemConfigurationTable (&gFdtTableGuid, &Dtb);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_INFO, "%a: could not retrieve DT blob - %r\n", __FUNCTION__,
Status));
DEBUG ((
DEBUG_INFO,
"%a: could not retrieve DT blob - %r\n",
__FUNCTION__,
Status
));
return;
}
@ -118,8 +129,12 @@ RemoveDtStdoutPath (
Error = fdt_delprop (Dtb, Node, "stdout-path");
if (Error) {
DEBUG ((DEBUG_INFO, "%a: Failed to delete 'stdout-path' property: %a\n",
__FUNCTION__, fdt_strerror (Error)));
DEBUG ((
DEBUG_INFO,
"%a: Failed to delete 'stdout-path' property: %a\n",
__FUNCTION__,
fdt_strerror (Error)
));
}
}
@ -129,16 +144,19 @@ RemoveSpcrTable (
VOID
)
{
EFI_ACPI_SDT_PROTOCOL *Sdt;
EFI_ACPI_TABLE_PROTOCOL *AcpiTable;
EFI_STATUS Status;
UINTN TableIndex;
EFI_ACPI_SDT_HEADER *TableHeader;
EFI_ACPI_TABLE_VERSION TableVersion;
UINTN TableKey;
EFI_ACPI_SDT_PROTOCOL *Sdt;
EFI_ACPI_TABLE_PROTOCOL *AcpiTable;
EFI_STATUS Status;
UINTN TableIndex;
EFI_ACPI_SDT_HEADER *TableHeader;
EFI_ACPI_TABLE_VERSION TableVersion;
UINTN TableKey;
Status = gBS->LocateProtocol (&gEfiAcpiTableProtocolGuid, NULL,
(VOID **)&AcpiTable);
Status = gBS->LocateProtocol (
&gEfiAcpiTableProtocolGuid,
NULL,
(VOID **)&AcpiTable
);
if (EFI_ERROR (Status)) {
return;
}
@ -153,8 +171,12 @@ RemoveSpcrTable (
TableHeader = NULL;
do {
Status = Sdt->GetAcpiTable (TableIndex++, &TableHeader, &TableVersion,
&TableKey);
Status = Sdt->GetAcpiTable (
TableIndex++,
&TableHeader,
&TableVersion,
&TableKey
);
if (EFI_ERROR (Status)) {
break;
}
@ -165,9 +187,14 @@ RemoveSpcrTable (
Status = AcpiTable->UninstallAcpiTable (AcpiTable, TableKey);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_WARN, "%a: failed to uninstall SPCR table - %r\n",
__FUNCTION__, Status));
DEBUG ((
DEBUG_WARN,
"%a: failed to uninstall SPCR table - %r\n",
__FUNCTION__,
Status
));
}
break;
} while (TRUE);
}
@ -180,24 +207,35 @@ OnReadyToBoot (
IN VOID *Context
)
{
CONSOLE_PREF_VARSTORE_DATA ConsolePref;
UINTN BufferSize;
EFI_STATUS Status;
VOID *Gop;
CONSOLE_PREF_VARSTORE_DATA ConsolePref;
UINTN BufferSize;
EFI_STATUS Status;
VOID *Gop;
BufferSize = sizeof (ConsolePref);
Status = gRT->GetVariable (CONSOLE_PREF_VARIABLE_NAME,
&gConsolePrefFormSetGuid, NULL, &BufferSize, &ConsolePref);
Status = gRT->GetVariable (
CONSOLE_PREF_VARIABLE_NAME,
&gConsolePrefFormSetGuid,
NULL,
&BufferSize,
&ConsolePref
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR,
"%a: variable '%s' could not be read - bailing!\n", __FUNCTION__,
CONSOLE_PREF_VARIABLE_NAME));
DEBUG ((
DEBUG_ERROR,
"%a: variable '%s' could not be read - bailing!\n",
__FUNCTION__,
CONSOLE_PREF_VARIABLE_NAME
));
return;
}
if (ConsolePref.Console == CONSOLE_PREF_SERIAL) {
DEBUG ((DEBUG_INFO,
"%a: serial console preferred - doing nothing\n", __FUNCTION__));
DEBUG ((
DEBUG_INFO,
"%a: serial console preferred - doing nothing\n",
__FUNCTION__
));
return;
}
@ -206,9 +244,12 @@ OnReadyToBoot (
//
Status = gBS->LocateProtocol (&gEfiGraphicsOutputProtocolGuid, NULL, &Gop);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_INFO,
"%a: no GOP instances found - doing nothing (%r)\n", __FUNCTION__,
Status));
DEBUG ((
DEBUG_INFO,
"%a: no GOP instances found - doing nothing (%r)\n",
__FUNCTION__,
Status
));
return;
}
@ -232,34 +273,46 @@ OnReadyToBoot (
EFI_STATUS
EFIAPI
ConsolePrefDxeEntryPoint (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
CONSOLE_PREF_VARSTORE_DATA ConsolePref;
UINTN BufferSize;
EFI_STATUS Status;
CONSOLE_PREF_VARSTORE_DATA ConsolePref;
UINTN BufferSize;
//
// Get the current console preference from the ConsolePref variable.
//
BufferSize = sizeof (ConsolePref);
Status = gRT->GetVariable (CONSOLE_PREF_VARIABLE_NAME,
&gConsolePrefFormSetGuid, NULL, &BufferSize, &ConsolePref);
Status = gRT->GetVariable (
CONSOLE_PREF_VARIABLE_NAME,
&gConsolePrefFormSetGuid,
NULL,
&BufferSize,
&ConsolePref
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_INFO,
DEBUG ((
DEBUG_INFO,
"%a: no console preference found, defaulting to graphical\n",
__FUNCTION__));
__FUNCTION__
));
ConsolePref.Console = CONSOLE_PREF_GRAPHICAL;
}
if (!EFI_ERROR (Status) &&
ConsolePref.Console != CONSOLE_PREF_GRAPHICAL &&
ConsolePref.Console != CONSOLE_PREF_SERIAL) {
DEBUG ((DEBUG_WARN, "%a: invalid value for %s, defaulting to graphical\n",
__FUNCTION__, CONSOLE_PREF_VARIABLE_NAME));
(ConsolePref.Console != CONSOLE_PREF_GRAPHICAL) &&
(ConsolePref.Console != CONSOLE_PREF_SERIAL))
{
DEBUG ((
DEBUG_WARN,
"%a: invalid value for %s, defaulting to graphical\n",
__FUNCTION__,
CONSOLE_PREF_VARIABLE_NAME
));
ConsolePref.Console = CONSOLE_PREF_GRAPHICAL;
Status = EFI_INVALID_PARAMETER; // trigger setvar below
Status = EFI_INVALID_PARAMETER; // trigger setvar below
}
//
@ -267,21 +320,33 @@ ConsolePrefDxeEntryPoint (
//
if (EFI_ERROR (Status)) {
ZeroMem (&ConsolePref.Reserved, sizeof (ConsolePref.Reserved));
Status = gRT->SetVariable (CONSOLE_PREF_VARIABLE_NAME,
Status = gRT->SetVariable (
CONSOLE_PREF_VARIABLE_NAME,
&gConsolePrefFormSetGuid,
EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS,
sizeof (ConsolePref), &ConsolePref);
sizeof (ConsolePref),
&ConsolePref
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "%a: gRT->SetVariable () failed - %r\n",
__FUNCTION__, Status));
DEBUG ((
DEBUG_ERROR,
"%a: gRT->SetVariable () failed - %r\n",
__FUNCTION__,
Status
));
return Status;
}
}
Status = gBS->CreateEventEx (EVT_NOTIFY_SIGNAL, TPL_CALLBACK,
OnReadyToBoot, NULL, &gEfiEventReadyToBootGuid,
&mReadyToBootEvent);
Status = gBS->CreateEventEx (
EVT_NOTIFY_SIGNAL,
TPL_CALLBACK,
OnReadyToBoot,
NULL,
&gEfiEventReadyToBootGuid,
&mReadyToBootEvent
);
ASSERT_EFI_ERROR (Status);
return InstallHiiPages ();

View File

@ -12,14 +12,14 @@
#include <Guid/HiiPlatformSetupFormset.h>
#include <Guid/ConsolePrefFormSet.h>
#define CONSOLE_PREF_GRAPHICAL 0x0
#define CONSOLE_PREF_SERIAL 0x1
#define CONSOLE_PREF_GRAPHICAL 0x0
#define CONSOLE_PREF_SERIAL 0x1
#define CONSOLE_PREF_VARIABLE_NAME L"ConsolePref"
typedef struct {
UINT8 Console;
UINT8 Reserved[3];
UINT8 Console;
UINT8 Reserved[3];
} CONSOLE_PREF_VARSTORE_DATA;
#endif

View File

@ -18,22 +18,22 @@
#include "DtPlatformDxe.h"
extern UINT8 DtPlatformHiiBin[];
extern UINT8 DtPlatformDxeStrings[];
extern UINT8 DtPlatformHiiBin[];
extern UINT8 DtPlatformDxeStrings[];
typedef struct {
VENDOR_DEVICE_PATH VendorDevicePath;
EFI_DEVICE_PATH_PROTOCOL End;
VENDOR_DEVICE_PATH VendorDevicePath;
EFI_DEVICE_PATH_PROTOCOL End;
} HII_VENDOR_DEVICE_PATH;
STATIC HII_VENDOR_DEVICE_PATH mDtPlatformDxeVendorDevicePath = {
STATIC HII_VENDOR_DEVICE_PATH mDtPlatformDxeVendorDevicePath = {
{
{
HARDWARE_DEVICE_PATH,
HW_VENDOR_DP,
{
(UINT8) (sizeof (VENDOR_DEVICE_PATH)),
(UINT8) ((sizeof (VENDOR_DEVICE_PATH)) >> 8)
(UINT8)(sizeof (VENDOR_DEVICE_PATH)),
(UINT8)((sizeof (VENDOR_DEVICE_PATH)) >> 8)
}
},
DT_PLATFORM_FORMSET_GUID
@ -42,8 +42,8 @@ STATIC HII_VENDOR_DEVICE_PATH mDtPlatformDxeVendorDevicePath = {
END_DEVICE_PATH_TYPE,
END_ENTIRE_DEVICE_PATH_SUBTYPE,
{
(UINT8) (END_DEVICE_PATH_LENGTH),
(UINT8) ((END_DEVICE_PATH_LENGTH) >> 8)
(UINT8)(END_DEVICE_PATH_LENGTH),
(UINT8)((END_DEVICE_PATH_LENGTH) >> 8)
}
}
};
@ -54,32 +54,39 @@ InstallHiiPages (
VOID
)
{
EFI_STATUS Status;
EFI_HII_HANDLE HiiHandle;
EFI_HANDLE DriverHandle;
EFI_STATUS Status;
EFI_HII_HANDLE HiiHandle;
EFI_HANDLE DriverHandle;
DriverHandle = NULL;
Status = gBS->InstallMultipleProtocolInterfaces (&DriverHandle,
&gEfiDevicePathProtocolGuid,
&mDtPlatformDxeVendorDevicePath,
NULL);
Status = gBS->InstallMultipleProtocolInterfaces (
&DriverHandle,
&gEfiDevicePathProtocolGuid,
&mDtPlatformDxeVendorDevicePath,
NULL
);
if (EFI_ERROR (Status)) {
return Status;
}
HiiHandle = HiiAddPackages (&gDtPlatformFormSetGuid,
DriverHandle,
DtPlatformDxeStrings,
DtPlatformHiiBin,
NULL);
HiiHandle = HiiAddPackages (
&gDtPlatformFormSetGuid,
DriverHandle,
DtPlatformDxeStrings,
DtPlatformHiiBin,
NULL
);
if (HiiHandle == NULL) {
gBS->UninstallMultipleProtocolInterfaces (DriverHandle,
&gEfiDevicePathProtocolGuid,
&mDtPlatformDxeVendorDevicePath,
NULL);
gBS->UninstallMultipleProtocolInterfaces (
DriverHandle,
&gEfiDevicePathProtocolGuid,
&mDtPlatformDxeVendorDevicePath,
NULL
);
return EFI_OUT_OF_RESOURCES;
}
return EFI_SUCCESS;
}
@ -99,44 +106,61 @@ InstallHiiPages (
EFI_STATUS
EFIAPI
DtPlatformDxeEntryPoint (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
DT_ACPI_VARSTORE_DATA DtAcpiPref;
UINTN BufferSize;
VOID *Dtb;
UINTN DtbSize;
EFI_STATUS Status;
DT_ACPI_VARSTORE_DATA DtAcpiPref;
UINTN BufferSize;
VOID *Dtb;
UINTN DtbSize;
Dtb = NULL;
Dtb = NULL;
Status = DtPlatformLoadDtb (&Dtb, &DtbSize);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_WARN,
DEBUG ((
DEBUG_WARN,
"%a: no DTB blob could be loaded, defaulting to ACPI (Status == %r)\n",
__FUNCTION__, Status));
__FUNCTION__,
Status
));
DtAcpiPref.Pref = DT_ACPI_SELECT_ACPI;
} else {
//
// Get the current DT/ACPI preference from the DtAcpiPref variable.
//
BufferSize = sizeof (DtAcpiPref);
Status = gRT->GetVariable(DT_ACPI_VARIABLE_NAME, &gDtPlatformFormSetGuid,
NULL, &BufferSize, &DtAcpiPref);
Status = gRT->GetVariable (
DT_ACPI_VARIABLE_NAME,
&gDtPlatformFormSetGuid,
NULL,
&BufferSize,
&DtAcpiPref
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_WARN, "%a: no DT/ACPI preference found, defaulting to %a\n",
__FUNCTION__, PcdGetBool (PcdDefaultDtPref) ? "DT" : "ACPI"));
DEBUG ((
DEBUG_WARN,
"%a: no DT/ACPI preference found, defaulting to %a\n",
__FUNCTION__,
PcdGetBool (PcdDefaultDtPref) ? "DT" : "ACPI"
));
DtAcpiPref.Pref = PcdGetBool (PcdDefaultDtPref) ? DT_ACPI_SELECT_DT
: DT_ACPI_SELECT_ACPI;
}
}
if (!EFI_ERROR (Status) &&
DtAcpiPref.Pref != DT_ACPI_SELECT_ACPI &&
DtAcpiPref.Pref != DT_ACPI_SELECT_DT) {
DEBUG ((DEBUG_WARN, "%a: invalid value for %s, defaulting to %a\n",
__FUNCTION__, DT_ACPI_VARIABLE_NAME,
PcdGetBool (PcdDefaultDtPref) ? "DT" : "ACPI"));
(DtAcpiPref.Pref != DT_ACPI_SELECT_ACPI) &&
(DtAcpiPref.Pref != DT_ACPI_SELECT_DT))
{
DEBUG ((
DEBUG_WARN,
"%a: invalid value for %s, defaulting to %a\n",
__FUNCTION__,
DT_ACPI_VARIABLE_NAME,
PcdGetBool (PcdDefaultDtPref) ? "DT" : "ACPI"
));
DtAcpiPref.Pref = PcdGetBool (PcdDefaultDtPref) ? DT_ACPI_SELECT_DT
: DT_ACPI_SELECT_ACPI;
Status = EFI_INVALID_PARAMETER; // trigger setvar below
@ -146,9 +170,13 @@ DtPlatformDxeEntryPoint (
// Write the newly selected default value back to the variable store.
//
if (EFI_ERROR (Status)) {
Status = gRT->SetVariable(DT_ACPI_VARIABLE_NAME, &gDtPlatformFormSetGuid,
Status = gRT->SetVariable (
DT_ACPI_VARIABLE_NAME,
&gDtPlatformFormSetGuid,
EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS,
sizeof (DtAcpiPref), &DtAcpiPref);
sizeof (DtAcpiPref),
&DtAcpiPref
);
if (EFI_ERROR (Status)) {
goto FreeDtb;
}
@ -159,12 +187,18 @@ DtPlatformDxeEntryPoint (
// ACPI was selected: install the gEdkiiPlatformHasAcpiGuid GUID as a
// NULL protocol to unlock dispatch of ACPI related drivers.
//
Status = gBS->InstallMultipleProtocolInterfaces (&ImageHandle,
&gEdkiiPlatformHasAcpiGuid, NULL, NULL);
Status = gBS->InstallMultipleProtocolInterfaces (
&ImageHandle,
&gEdkiiPlatformHasAcpiGuid,
NULL,
NULL
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR,
DEBUG ((
DEBUG_ERROR,
"%a: failed to install gEdkiiPlatformHasAcpiGuid as a protocol\n",
__FUNCTION__));
__FUNCTION__
));
goto FreeDtb;
}
} else if (DtAcpiPref.Pref == DT_ACPI_SELECT_DT) {
@ -174,8 +208,11 @@ DtPlatformDxeEntryPoint (
//
Status = gBS->InstallConfigurationTable (&gFdtTableGuid, Dtb);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "%a: failed to install FDT configuration table\n",
__FUNCTION__));
DEBUG ((
DEBUG_ERROR,
"%a: failed to install FDT configuration table\n",
__FUNCTION__
));
goto FreeDtb;
}
} else {

View File

@ -12,14 +12,14 @@
#include <Guid/HiiPlatformSetupFormset.h>
#include <Guid/DtPlatformFormSet.h>
#define DT_ACPI_SELECT_DT 0x0
#define DT_ACPI_SELECT_ACPI 0x1
#define DT_ACPI_SELECT_DT 0x0
#define DT_ACPI_SELECT_ACPI 0x1
#define DT_ACPI_VARIABLE_NAME L"DtAcpiPref"
#define DT_ACPI_VARIABLE_NAME L"DtAcpiPref"
typedef struct {
UINT8 Pref;
UINT8 Reserved[3];
UINT8 Pref;
UINT8 Reserved[3];
} DT_ACPI_VARSTORE_DATA;
#endif

View File

@ -26,14 +26,14 @@ STATIC
EFI_STATUS
EFIAPI
GetNodeProperty (
IN FDT_CLIENT_PROTOCOL *This,
IN INT32 Node,
IN CONST CHAR8 *PropertyName,
OUT CONST VOID **Prop,
OUT UINT32 *PropSize OPTIONAL
IN FDT_CLIENT_PROTOCOL *This,
IN INT32 Node,
IN CONST CHAR8 *PropertyName,
OUT CONST VOID **Prop,
OUT UINT32 *PropSize OPTIONAL
)
{
INT32 Len;
INT32 Len;
ASSERT (mDeviceTreeBase != NULL);
ASSERT (Prop != NULL);
@ -46,6 +46,7 @@ GetNodeProperty (
if (PropSize != NULL) {
*PropSize = Len;
}
return EFI_SUCCESS;
}
@ -53,14 +54,14 @@ STATIC
EFI_STATUS
EFIAPI
SetNodeProperty (
IN FDT_CLIENT_PROTOCOL *This,
IN INT32 Node,
IN CONST CHAR8 *PropertyName,
IN CONST VOID *Prop,
IN UINT32 PropSize
IN FDT_CLIENT_PROTOCOL *This,
IN INT32 Node,
IN CONST CHAR8 *PropertyName,
IN CONST VOID *Prop,
IN UINT32 PropSize
)
{
INT32 Ret;
INT32 Ret;
ASSERT (mDeviceTreeBase != NULL);
@ -75,11 +76,11 @@ SetNodeProperty (
STATIC
BOOLEAN
IsNodeEnabled (
INT32 Node
INT32 Node
)
{
CONST CHAR8 *NodeStatus;
INT32 Len;
CONST CHAR8 *NodeStatus;
INT32 Len;
//
// A missing status property implies 'ok' so ignore any errors that
@ -90,12 +91,15 @@ IsNodeEnabled (
if (NodeStatus == NULL) {
return TRUE;
}
if (Len >= 5 && AsciiStrCmp (NodeStatus, "okay") == 0) {
if ((Len >= 5) && (AsciiStrCmp (NodeStatus, "okay") == 0)) {
return TRUE;
}
if (Len >= 3 && AsciiStrCmp (NodeStatus, "ok") == 0) {
if ((Len >= 3) && (AsciiStrCmp (NodeStatus, "ok") == 0)) {
return TRUE;
}
return FALSE;
}
@ -103,20 +107,20 @@ STATIC
EFI_STATUS
EFIAPI
FindNextCompatibleNode (
IN FDT_CLIENT_PROTOCOL *This,
IN CONST CHAR8 *CompatibleString,
IN INT32 PrevNode,
OUT INT32 *Node
IN FDT_CLIENT_PROTOCOL *This,
IN CONST CHAR8 *CompatibleString,
IN INT32 PrevNode,
OUT INT32 *Node
)
{
INT32 Prev, Next;
CONST CHAR8 *Type, *Compatible;
INT32 Len;
INT32 Prev, Next;
CONST CHAR8 *Type, *Compatible;
INT32 Len;
ASSERT (mDeviceTreeBase != NULL);
ASSERT (Node != NULL);
for (Prev = PrevNode;; Prev = Next) {
for (Prev = PrevNode; ; Prev = Next) {
Next = fdt_next_node (mDeviceTreeBase, Prev, NULL);
if (Next < 0) {
break;
@ -136,13 +140,15 @@ FindNextCompatibleNode (
// compatible strings so check each one
//
for (Compatible = Type; Compatible < Type + Len && *Compatible;
Compatible += 1 + AsciiStrLen (Compatible)) {
Compatible += 1 + AsciiStrLen (Compatible))
{
if (AsciiStrCmp (CompatibleString, Compatible) == 0) {
*Node = Next;
return EFI_SUCCESS;
}
}
}
return EFI_NOT_FOUND;
}
@ -150,9 +156,9 @@ STATIC
EFI_STATUS
EFIAPI
FindCompatibleNode (
IN FDT_CLIENT_PROTOCOL *This,
IN CONST CHAR8 *CompatibleString,
OUT INT32 *Node
IN FDT_CLIENT_PROTOCOL *This,
IN CONST CHAR8 *CompatibleString,
OUT INT32 *Node
)
{
return FindNextCompatibleNode (This, CompatibleString, 0, Node);
@ -162,15 +168,15 @@ STATIC
EFI_STATUS
EFIAPI
FindCompatibleNodeProperty (
IN FDT_CLIENT_PROTOCOL *This,
IN CONST CHAR8 *CompatibleString,
IN CONST CHAR8 *PropertyName,
OUT CONST VOID **Prop,
OUT UINT32 *PropSize OPTIONAL
IN FDT_CLIENT_PROTOCOL *This,
IN CONST CHAR8 *CompatibleString,
IN CONST CHAR8 *PropertyName,
OUT CONST VOID **Prop,
OUT UINT32 *PropSize OPTIONAL
)
{
EFI_STATUS Status;
INT32 Node;
EFI_STATUS Status;
INT32 Node;
Status = FindCompatibleNode (This, CompatibleString, &Node);
if (EFI_ERROR (Status)) {
@ -184,15 +190,15 @@ STATIC
EFI_STATUS
EFIAPI
FindCompatibleNodeReg (
IN FDT_CLIENT_PROTOCOL *This,
IN CONST CHAR8 *CompatibleString,
OUT CONST VOID **Reg,
OUT UINTN *AddressCells,
OUT UINTN *SizeCells,
OUT UINT32 *RegSize
IN FDT_CLIENT_PROTOCOL *This,
IN CONST CHAR8 *CompatibleString,
OUT CONST VOID **Reg,
OUT UINTN *AddressCells,
OUT UINTN *SizeCells,
OUT UINT32 *RegSize
)
{
EFI_STATUS Status;
EFI_STATUS Status;
ASSERT (RegSize != NULL);
@ -201,21 +207,30 @@ FindCompatibleNodeReg (
// 8 byte quantities for base and size, respectively.
// TODO use #cells root properties instead
//
Status = FindCompatibleNodeProperty (This, CompatibleString, "reg", Reg,
RegSize);
Status = FindCompatibleNodeProperty (
This,
CompatibleString,
"reg",
Reg,
RegSize
);
if (EFI_ERROR (Status)) {
return Status;
}
if ((*RegSize % 16) != 0) {
DEBUG ((DEBUG_ERROR,
DEBUG ((
DEBUG_ERROR,
"%a: '%a' compatible node has invalid 'reg' property (size == 0x%x)\n",
__FUNCTION__, CompatibleString, *RegSize));
__FUNCTION__,
CompatibleString,
*RegSize
));
return EFI_NOT_FOUND;
}
*AddressCells = 2;
*SizeCells = 2;
*SizeCells = 2;
return EFI_SUCCESS;
}
@ -224,24 +239,24 @@ STATIC
EFI_STATUS
EFIAPI
FindNextMemoryNodeReg (
IN FDT_CLIENT_PROTOCOL *This,
IN INT32 PrevNode,
OUT INT32 *Node,
OUT CONST VOID **Reg,
OUT UINTN *AddressCells,
OUT UINTN *SizeCells,
OUT UINT32 *RegSize
IN FDT_CLIENT_PROTOCOL *This,
IN INT32 PrevNode,
OUT INT32 *Node,
OUT CONST VOID **Reg,
OUT UINTN *AddressCells,
OUT UINTN *SizeCells,
OUT UINT32 *RegSize
)
{
INT32 Prev, Next;
CONST CHAR8 *DeviceType;
INT32 Len;
EFI_STATUS Status;
INT32 Prev, Next;
CONST CHAR8 *DeviceType;
INT32 Len;
EFI_STATUS Status;
ASSERT (mDeviceTreeBase != NULL);
ASSERT (Node != NULL);
for (Prev = PrevNode;; Prev = Next) {
for (Prev = PrevNode; ; Prev = Next) {
Next = fdt_next_node (mDeviceTreeBase, Prev, NULL);
if (Next < 0) {
break;
@ -253,7 +268,7 @@ FindNextMemoryNodeReg (
}
DeviceType = fdt_getprop (mDeviceTreeBase, Next, "device_type", &Len);
if (DeviceType != NULL && AsciiStrCmp (DeviceType, "memory") == 0) {
if ((DeviceType != NULL) && (AsciiStrCmp (DeviceType, "memory") == 0)) {
//
// Get the 'reg' property of this memory node. For now, we will assume
// 8 byte quantities for base and size, respectively.
@ -261,24 +276,31 @@ FindNextMemoryNodeReg (
//
Status = GetNodeProperty (This, Next, "reg", Reg, RegSize);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_WARN,
DEBUG ((
DEBUG_WARN,
"%a: ignoring memory node with no 'reg' property\n",
__FUNCTION__));
continue;
}
if ((*RegSize % 16) != 0) {
DEBUG ((DEBUG_WARN,
"%a: ignoring memory node with invalid 'reg' property (size == 0x%x)\n",
__FUNCTION__, *RegSize));
__FUNCTION__
));
continue;
}
*Node = Next;
if ((*RegSize % 16) != 0) {
DEBUG ((
DEBUG_WARN,
"%a: ignoring memory node with invalid 'reg' property (size == 0x%x)\n",
__FUNCTION__,
*RegSize
));
continue;
}
*Node = Next;
*AddressCells = 2;
*SizeCells = 2;
*SizeCells = 2;
return EFI_SUCCESS;
}
}
return EFI_NOT_FOUND;
}
@ -286,27 +308,34 @@ STATIC
EFI_STATUS
EFIAPI
FindMemoryNodeReg (
IN FDT_CLIENT_PROTOCOL *This,
OUT INT32 *Node,
OUT CONST VOID **Reg,
OUT UINTN *AddressCells,
OUT UINTN *SizeCells,
OUT UINT32 *RegSize
IN FDT_CLIENT_PROTOCOL *This,
OUT INT32 *Node,
OUT CONST VOID **Reg,
OUT UINTN *AddressCells,
OUT UINTN *SizeCells,
OUT UINT32 *RegSize
)
{
return FindNextMemoryNodeReg (This, 0, Node, Reg, AddressCells, SizeCells,
RegSize);
return FindNextMemoryNodeReg (
This,
0,
Node,
Reg,
AddressCells,
SizeCells,
RegSize
);
}
STATIC
EFI_STATUS
EFIAPI
GetOrInsertChosenNode (
IN FDT_CLIENT_PROTOCOL *This,
OUT INT32 *Node
IN FDT_CLIENT_PROTOCOL *This,
OUT INT32 *Node
)
{
INT32 NewNode;
INT32 NewNode;
ASSERT (mDeviceTreeBase != NULL);
ASSERT (Node != NULL);
@ -325,7 +354,7 @@ GetOrInsertChosenNode (
return EFI_SUCCESS;
}
STATIC FDT_CLIENT_PROTOCOL mFdtClientProtocol = {
STATIC FDT_CLIENT_PROTOCOL mFdtClientProtocol = {
GetNodeProperty,
SetNodeProperty,
FindCompatibleNode,
@ -341,13 +370,13 @@ STATIC
VOID
EFIAPI
OnPlatformHasDeviceTree (
IN EFI_EVENT Event,
IN VOID *Context
IN EFI_EVENT Event,
IN VOID *Context
)
{
EFI_STATUS Status;
VOID *Interface;
VOID *DeviceTreeBase;
EFI_STATUS Status;
VOID *Interface;
VOID *DeviceTreeBase;
Status = gBS->LocateProtocol (
&gEdkiiPlatformHasDeviceTreeGuid,
@ -374,25 +403,30 @@ OnPlatformHasDeviceTree (
EFI_STATUS
EFIAPI
InitializeFdtClientDxe (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
VOID *Hob;
VOID *DeviceTreeBase;
EFI_STATUS Status;
EFI_EVENT PlatformHasDeviceTreeEvent;
VOID *Registration;
VOID *Hob;
VOID *DeviceTreeBase;
EFI_STATUS Status;
EFI_EVENT PlatformHasDeviceTreeEvent;
VOID *Registration;
Hob = GetFirstGuidHob (&gFdtHobGuid);
if (Hob == NULL || GET_GUID_HOB_DATA_SIZE (Hob) != sizeof (UINT64)) {
if ((Hob == NULL) || (GET_GUID_HOB_DATA_SIZE (Hob) != sizeof (UINT64))) {
return EFI_NOT_FOUND;
}
DeviceTreeBase = (VOID *)(UINTN)*(UINT64 *)GET_GUID_HOB_DATA (Hob);
if (fdt_check_header (DeviceTreeBase) != 0) {
DEBUG ((DEBUG_ERROR, "%a: No DTB found @ 0x%p\n", __FUNCTION__,
DeviceTreeBase));
DEBUG ((
DEBUG_ERROR,
"%a: No DTB found @ 0x%p\n",
__FUNCTION__,
DeviceTreeBase
));
return EFI_NOT_FOUND;
}

View File

@ -107,15 +107,15 @@ STATIC
EFI_STATUS
EFIAPI
NonCoherentIoMmuMap (
IN EDKII_IOMMU_PROTOCOL *This,
IN EDKII_IOMMU_OPERATION Operation,
IN VOID *HostAddress,
IN OUT UINTN *NumberOfBytes,
OUT EFI_PHYSICAL_ADDRESS *DeviceAddress,
OUT VOID **Mapping
IN EDKII_IOMMU_PROTOCOL *This,
IN EDKII_IOMMU_OPERATION Operation,
IN VOID *HostAddress,
IN OUT UINTN *NumberOfBytes,
OUT EFI_PHYSICAL_ADDRESS *DeviceAddress,
OUT VOID **Mapping
)
{
DMA_MAP_OPERATION DmaOperation;
DMA_MAP_OPERATION DmaOperation;
switch (Operation) {
case EdkiiIoMmuOperationBusMasterRead:
@ -138,8 +138,13 @@ NonCoherentIoMmuMap (
return EFI_INVALID_PARAMETER;
}
return DmaMap (DmaOperation, HostAddress, NumberOfBytes,
DeviceAddress, Mapping);
return DmaMap (
DmaOperation,
HostAddress,
NumberOfBytes,
DeviceAddress,
Mapping
);
}
/**
@ -158,8 +163,8 @@ STATIC
EFI_STATUS
EFIAPI
NonCoherentIoMmuUnmap (
IN EDKII_IOMMU_PROTOCOL *This,
IN VOID *Mapping
IN EDKII_IOMMU_PROTOCOL *This,
IN VOID *Mapping
)
{
return DmaUnmap (Mapping);
@ -191,12 +196,12 @@ STATIC
EFI_STATUS
EFIAPI
NonCoherentIoMmuAllocateBuffer (
IN EDKII_IOMMU_PROTOCOL *This,
IN EFI_ALLOCATE_TYPE Type,
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Pages,
IN OUT VOID **HostAddress,
IN UINT64 Attributes
IN EDKII_IOMMU_PROTOCOL *This,
IN EFI_ALLOCATE_TYPE Type,
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Pages,
IN OUT VOID **HostAddress,
IN UINT64 Attributes
)
{
return DmaAllocateBuffer (MemoryType, Pages, HostAddress);
@ -219,9 +224,9 @@ STATIC
EFI_STATUS
EFIAPI
NonCoherentIoMmuFreeBuffer (
IN EDKII_IOMMU_PROTOCOL *This,
IN UINTN Pages,
IN VOID *HostAddress
IN EDKII_IOMMU_PROTOCOL *This,
IN UINTN Pages,
IN VOID *HostAddress
)
{
return DmaFreeBuffer (Pages, HostAddress);
@ -236,15 +241,17 @@ STATIC EDKII_IOMMU_PROTOCOL mNonCoherentIoMmuOps = {
NonCoherentIoMmuFreeBuffer,
};
EFI_STATUS
EFIAPI
NonCoherentIoMmuDxeEntryPoint (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
return gBS->InstallMultipleProtocolInterfaces (&ImageHandle,
&gEdkiiIoMmuProtocolGuid, &mNonCoherentIoMmuOps,
NULL);
return gBS->InstallMultipleProtocolInterfaces (
&ImageHandle,
&gEdkiiIoMmuProtocolGuid,
&mNonCoherentIoMmuOps,
NULL
);
}

View File

@ -21,14 +21,13 @@ GLOBAL_REMOVE_IF_UNREFERENCED EFI_COMPONENT_NAME_PROTOCOL gVirtualKeyboardCompo
//
// EFI Component Name 2 Protocol
//
GLOBAL_REMOVE_IF_UNREFERENCED EFI_COMPONENT_NAME2_PROTOCOL gVirtualKeyboardComponentName2 = {
(EFI_COMPONENT_NAME2_GET_DRIVER_NAME) VirtualKeyboardComponentNameGetDriverName,
(EFI_COMPONENT_NAME2_GET_CONTROLLER_NAME) VirtualKeyboardComponentNameGetControllerName,
GLOBAL_REMOVE_IF_UNREFERENCED EFI_COMPONENT_NAME2_PROTOCOL gVirtualKeyboardComponentName2 = {
(EFI_COMPONENT_NAME2_GET_DRIVER_NAME)VirtualKeyboardComponentNameGetDriverName,
(EFI_COMPONENT_NAME2_GET_CONTROLLER_NAME)VirtualKeyboardComponentNameGetControllerName,
"en"
};
GLOBAL_REMOVE_IF_UNREFERENCED EFI_UNICODE_STRING_TABLE mVirtualKeyboardDriverNameTable[] = {
GLOBAL_REMOVE_IF_UNREFERENCED EFI_UNICODE_STRING_TABLE mVirtualKeyboardDriverNameTable[] = {
{
"eng;en",
L"Virtual Keyboard Driver"
@ -170,11 +169,11 @@ VirtualKeyboardComponentNameGetDriverName (
EFI_STATUS
EFIAPI
VirtualKeyboardComponentNameGetControllerName (
IN EFI_COMPONENT_NAME_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN EFI_HANDLE ChildHandle OPTIONAL,
IN CHAR8 *Language,
OUT CHAR16 **ControllerName
IN EFI_COMPONENT_NAME_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN EFI_HANDLE ChildHandle OPTIONAL,
IN CHAR8 *Language,
OUT CHAR16 **ControllerName
)
{
return EFI_UNSUPPORTED;

View File

@ -10,13 +10,13 @@ SPDX-License-Identifier: BSD-2-Clause-Patent
#ifndef _VIRTUAL_KEYBOARD_COMPONENT_NAME_H_
#define _VIRTUAL_KEYBOARD_COMPONENT_NAME_H_
extern EFI_COMPONENT_NAME_PROTOCOL gVirtualKeyboardComponentName;
extern EFI_COMPONENT_NAME2_PROTOCOL gVirtualKeyboardComponentName2;
//
// EFI Component Name Functions
//
/**
Retrieves a Unicode string that is the user readable name of the driver.
@ -64,7 +64,6 @@ VirtualKeyboardComponentNameGetDriverName (
OUT CHAR16 **DriverName
);
/**
Retrieves a Unicode string that is the user readable name of the controller
that is being managed by a driver.
@ -136,12 +135,11 @@ VirtualKeyboardComponentNameGetDriverName (
EFI_STATUS
EFIAPI
VirtualKeyboardComponentNameGetControllerName (
IN EFI_COMPONENT_NAME_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN EFI_HANDLE ChildHandle OPTIONAL,
IN CHAR8 *Language,
OUT CHAR16 **ControllerName
IN EFI_COMPONENT_NAME_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN EFI_HANDLE ChildHandle OPTIONAL,
IN CHAR8 *Language,
OUT CHAR16 **ControllerName
);
#endif

View File

@ -13,7 +13,7 @@ SPDX-License-Identifier: BSD-2-Clause-Patent
//
// RAM Keyboard Driver Binding Protocol Instance
//
EFI_DRIVER_BINDING_PROTOCOL gVirtualKeyboardDriverBinding = {
EFI_DRIVER_BINDING_PROTOCOL gVirtualKeyboardDriverBinding = {
VirtualKeyboardDriverBindingSupported,
VirtualKeyboardDriverBindingStart,
VirtualKeyboardDriverBindingStop,
@ -45,13 +45,13 @@ VirtualKeyboardDriverBindingSupported (
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath
)
{
EFI_STATUS Status;
PLATFORM_VIRTUAL_KBD_PROTOCOL *PlatformVirtual;
EFI_STATUS Status;
PLATFORM_VIRTUAL_KBD_PROTOCOL *PlatformVirtual;
Status = gBS->OpenProtocol (
Controller,
&gPlatformVirtualKeyboardProtocolGuid,
(VOID **) &PlatformVirtual,
(VOID **)&PlatformVirtual,
This->DriverBindingHandle,
Controller,
EFI_OPEN_PROTOCOL_BY_DRIVER
@ -59,6 +59,7 @@ VirtualKeyboardDriverBindingSupported (
if (EFI_ERROR (Status)) {
return Status;
}
gBS->CloseProtocol (
Controller,
&gPlatformVirtualKeyboardProtocolGuid,
@ -88,14 +89,14 @@ VirtualKeyboardDriverBindingStart (
IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath
)
{
EFI_STATUS Status;
VIRTUAL_KEYBOARD_DEV *VirtualKeyboardPrivate;
PLATFORM_VIRTUAL_KBD_PROTOCOL *PlatformVirtual;
EFI_STATUS Status;
VIRTUAL_KEYBOARD_DEV *VirtualKeyboardPrivate;
PLATFORM_VIRTUAL_KBD_PROTOCOL *PlatformVirtual;
Status = gBS->OpenProtocol (
Controller,
&gPlatformVirtualKeyboardProtocolGuid,
(VOID **) &PlatformVirtual,
(VOID **)&PlatformVirtual,
This->DriverBindingHandle,
Controller,
EFI_OPEN_PROTOCOL_BY_DRIVER
@ -107,7 +108,7 @@ VirtualKeyboardDriverBindingStart (
//
// Allocate the private device structure
//
VirtualKeyboardPrivate = (VIRTUAL_KEYBOARD_DEV *) AllocateZeroPool (sizeof (VIRTUAL_KEYBOARD_DEV));
VirtualKeyboardPrivate = (VIRTUAL_KEYBOARD_DEV *)AllocateZeroPool (sizeof (VIRTUAL_KEYBOARD_DEV));
if (VirtualKeyboardPrivate == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto Done;
@ -116,20 +117,20 @@ VirtualKeyboardDriverBindingStart (
//
// Initialize the private device structure
//
VirtualKeyboardPrivate->Signature = VIRTUAL_KEYBOARD_DEV_SIGNATURE;
VirtualKeyboardPrivate->Handle = Controller;
VirtualKeyboardPrivate->PlatformVirtual = PlatformVirtual;
VirtualKeyboardPrivate->Queue.Front = 0;
VirtualKeyboardPrivate->Queue.Rear = 0;
VirtualKeyboardPrivate->QueueForNotify.Front = 0;
VirtualKeyboardPrivate->QueueForNotify.Rear = 0;
VirtualKeyboardPrivate->Signature = VIRTUAL_KEYBOARD_DEV_SIGNATURE;
VirtualKeyboardPrivate->Handle = Controller;
VirtualKeyboardPrivate->PlatformVirtual = PlatformVirtual;
VirtualKeyboardPrivate->Queue.Front = 0;
VirtualKeyboardPrivate->Queue.Rear = 0;
VirtualKeyboardPrivate->QueueForNotify.Front = 0;
VirtualKeyboardPrivate->QueueForNotify.Rear = 0;
VirtualKeyboardPrivate->SimpleTextIn.Reset = VirtualKeyboardReset;
VirtualKeyboardPrivate->SimpleTextIn.ReadKeyStroke = VirtualKeyboardReadKeyStroke;
VirtualKeyboardPrivate->SimpleTextInputEx.Reset = VirtualKeyboardResetEx;
VirtualKeyboardPrivate->SimpleTextInputEx.ReadKeyStrokeEx = VirtualKeyboardReadKeyStrokeEx;
VirtualKeyboardPrivate->SimpleTextInputEx.SetState = VirtualKeyboardSetState;
VirtualKeyboardPrivate->SimpleTextInputEx.Reset = VirtualKeyboardResetEx;
VirtualKeyboardPrivate->SimpleTextInputEx.ReadKeyStrokeEx = VirtualKeyboardReadKeyStrokeEx;
VirtualKeyboardPrivate->SimpleTextInputEx.SetState = VirtualKeyboardSetState;
VirtualKeyboardPrivate->SimpleTextInputEx.RegisterKeyNotify = VirtualKeyboardRegisterKeyNotify;
VirtualKeyboardPrivate->SimpleTextInputEx.UnregisterKeyNotify = VirtualKeyboardUnregisterKeyNotify;
@ -162,6 +163,7 @@ VirtualKeyboardDriverBindingStart (
(VirtualKeyboardPrivate->SimpleTextIn).WaitForKey = NULL;
goto Done;
}
Status = gBS->CreateEvent (
EVT_NOTIFY_WAIT,
TPL_NOTIFY,
@ -215,13 +217,14 @@ VirtualKeyboardDriverBindingStart (
// Reset the keyboard device
//
Status = VirtualKeyboardPrivate->SimpleTextInputEx.Reset (
&VirtualKeyboardPrivate->SimpleTextInputEx,
FALSE
);
&VirtualKeyboardPrivate->SimpleTextInputEx,
FALSE
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "[KBD]Reset Failed. Status - %r\n", Status));
goto Done;
}
//
// Install protocol interfaces for the keyboard device.
//
@ -256,6 +259,7 @@ Done:
if (VirtualKeyboardPrivate->TimerEvent != NULL) {
gBS->CloseEvent (VirtualKeyboardPrivate->TimerEvent);
}
FreePool (VirtualKeyboardPrivate);
}
}
@ -297,7 +301,6 @@ VirtualKeyboardDriverBindingStop (
return EFI_SUCCESS;
}
/**
Enqueue the key.
@ -310,8 +313,8 @@ VirtualKeyboardDriverBindingStop (
**/
EFI_STATUS
Enqueue (
IN SIMPLE_QUEUE *Queue,
IN EFI_KEY_DATA *KeyData
IN SIMPLE_QUEUE *Queue,
IN EFI_KEY_DATA *KeyData
)
{
if ((Queue->Rear + 1) % QUEUE_MAX_COUNT == Queue->Front) {
@ -336,8 +339,8 @@ Enqueue (
**/
EFI_STATUS
Dequeue (
IN SIMPLE_QUEUE *Queue,
IN EFI_KEY_DATA *KeyData
IN SIMPLE_QUEUE *Queue,
IN EFI_KEY_DATA *KeyData
)
{
if (Queue->Front == Queue->Rear) {
@ -345,7 +348,7 @@ Dequeue (
}
CopyMem (KeyData, &Queue->Buffer[Queue->Front], sizeof (EFI_KEY_DATA));
Queue->Front = (Queue->Front + 1) % QUEUE_MAX_COUNT;
Queue->Front = (Queue->Front + 1) % QUEUE_MAX_COUNT;
return EFI_SUCCESS;
}
@ -361,7 +364,7 @@ Dequeue (
**/
EFI_STATUS
CheckQueue (
IN SIMPLE_QUEUE *Queue
IN SIMPLE_QUEUE *Queue
)
{
if (Queue->Front == Queue->Rear) {
@ -386,7 +389,7 @@ VirtualKeyboardCheckForKey (
IN EFI_SIMPLE_TEXT_INPUT_PROTOCOL *This
)
{
VIRTUAL_KEYBOARD_DEV *VirtualKeyboardPrivate;
VIRTUAL_KEYBOARD_DEV *VirtualKeyboardPrivate;
VirtualKeyboardPrivate = VIRTUAL_KEYBOARD_DEV_FROM_THIS (This);
@ -404,14 +407,15 @@ VirtualKeyboardCheckForKey (
**/
EFI_STATUS
VirtualKeyboardFreeNotifyList (
IN OUT LIST_ENTRY *ListHead
IN OUT LIST_ENTRY *ListHead
)
{
VIRTUAL_KEYBOARD_CONSOLE_IN_EX_NOTIFY *NotifyNode;
VIRTUAL_KEYBOARD_CONSOLE_IN_EX_NOTIFY *NotifyNode;
if (ListHead == NULL) {
return EFI_INVALID_PARAMETER;
}
while (!IsListEmpty (ListHead)) {
NotifyNode = CR (
ListHead->ForwardLink,
@ -450,7 +454,8 @@ IsKeyRegistered (
ASSERT (RegsiteredData != NULL && InputData != NULL);
if ((RegsiteredData->Key.ScanCode != InputData->Key.ScanCode) ||
(RegsiteredData->Key.UnicodeChar != InputData->Key.UnicodeChar)) {
(RegsiteredData->Key.UnicodeChar != InputData->Key.UnicodeChar))
{
return FALSE;
}
@ -459,16 +464,18 @@ IsKeyRegistered (
// these state could be ignored.
//
if ((RegsiteredData->KeyState.KeyShiftState != 0) &&
(RegsiteredData->KeyState.KeyShiftState != InputData->KeyState.KeyShiftState)) {
(RegsiteredData->KeyState.KeyShiftState != InputData->KeyState.KeyShiftState))
{
return FALSE;
}
if ((RegsiteredData->KeyState.KeyToggleState != 0) &&
(RegsiteredData->KeyState.KeyToggleState != InputData->KeyState.KeyToggleState)) {
(RegsiteredData->KeyState.KeyToggleState != InputData->KeyState.KeyToggleState))
{
return FALSE;
}
return TRUE;
}
/**
@ -482,8 +489,8 @@ IsKeyRegistered (
VOID
EFIAPI
VirtualKeyboardWaitForKey (
IN EFI_EVENT Event,
IN VOID *Context
IN EFI_EVENT Event,
IN VOID *Context
)
{
//
@ -519,21 +526,21 @@ VirtualKeyboardWaitForKey (
VOID
EFIAPI
VirtualKeyboardWaitForKeyEx (
IN EFI_EVENT Event,
IN VOID *Context
IN EFI_EVENT Event,
IN VOID *Context
)
{
VIRTUAL_KEYBOARD_DEV *VirtualKeyboardPrivate;
VIRTUAL_KEYBOARD_DEV *VirtualKeyboardPrivate;
VirtualKeyboardPrivate = TEXT_INPUT_EX_VIRTUAL_KEYBOARD_DEV_FROM_THIS (Context);
VirtualKeyboardWaitForKey (Event, &VirtualKeyboardPrivate->SimpleTextIn);
}
//
// EFI Simple Text In Protocol Functions
//
/**
Reset the Keyboard and do BAT test for it, if (ExtendedVerification == TRUE)
then do some extra keyboard validations.
@ -553,9 +560,9 @@ VirtualKeyboardReset (
IN BOOLEAN ExtendedVerification
)
{
VIRTUAL_KEYBOARD_DEV *VirtualKeyboardPrivate;
EFI_STATUS Status;
EFI_TPL OldTpl;
VIRTUAL_KEYBOARD_DEV *VirtualKeyboardPrivate;
EFI_STATUS Status;
EFI_TPL OldTpl;
VirtualKeyboardPrivate = VIRTUAL_KEYBOARD_DEV_FROM_THIS (This);
@ -565,7 +572,8 @@ VirtualKeyboardReset (
OldTpl = gBS->RaiseTPL (TPL_NOTIFY);
if (VirtualKeyboardPrivate->PlatformVirtual &&
VirtualKeyboardPrivate->PlatformVirtual->Reset) {
VirtualKeyboardPrivate->PlatformVirtual->Reset)
{
Status = VirtualKeyboardPrivate->PlatformVirtual->Reset ();
} else {
Status = EFI_INVALID_PARAMETER;
@ -597,16 +605,16 @@ VirtualKeyboardResetEx (
IN BOOLEAN ExtendedVerification
)
{
VIRTUAL_KEYBOARD_DEV *VirtualKeyboardPrivate;
EFI_STATUS Status;
EFI_TPL OldTpl;
VIRTUAL_KEYBOARD_DEV *VirtualKeyboardPrivate;
EFI_STATUS Status;
EFI_TPL OldTpl;
VirtualKeyboardPrivate = TEXT_INPUT_EX_VIRTUAL_KEYBOARD_DEV_FROM_THIS (This);
Status = VirtualKeyboardPrivate->SimpleTextIn.Reset (
&VirtualKeyboardPrivate->SimpleTextIn,
ExtendedVerification
);
&VirtualKeyboardPrivate->SimpleTextIn,
ExtendedVerification
);
if (EFI_ERROR (Status)) {
return EFI_DEVICE_ERROR;
}
@ -616,7 +624,6 @@ VirtualKeyboardResetEx (
gBS->RestoreTPL (OldTpl);
return EFI_SUCCESS;
}
/**
@ -638,11 +645,12 @@ VirtualKeyboardResetEx (
EFI_STATUS
KeyboardReadKeyStrokeWorker (
IN VIRTUAL_KEYBOARD_DEV *VirtualKeyboardPrivate,
OUT EFI_KEY_DATA *KeyData
OUT EFI_KEY_DATA *KeyData
)
{
EFI_STATUS Status;
EFI_TPL OldTpl;
EFI_STATUS Status;
EFI_TPL OldTpl;
if (KeyData == NULL) {
return EFI_INVALID_PARAMETER;
}
@ -700,9 +708,9 @@ VirtualKeyboardReadKeyStroke (
OUT EFI_INPUT_KEY *Key
)
{
VIRTUAL_KEYBOARD_DEV *VirtualKeyboardPrivate;
EFI_STATUS Status;
EFI_KEY_DATA KeyData;
VIRTUAL_KEYBOARD_DEV *VirtualKeyboardPrivate;
EFI_STATUS Status;
EFI_KEY_DATA KeyData;
VirtualKeyboardPrivate = VIRTUAL_KEYBOARD_DEV_FROM_THIS (This);
@ -715,12 +723,14 @@ VirtualKeyboardReadKeyStroke (
// Convert the Ctrl+[a-z] to Ctrl+[1-26]
//
if ((KeyData.KeyState.KeyShiftState & (EFI_LEFT_CONTROL_PRESSED | EFI_RIGHT_CONTROL_PRESSED)) != 0) {
if (KeyData.Key.UnicodeChar >= L'a' &&
KeyData.Key.UnicodeChar <= L'z') {
KeyData.Key.UnicodeChar = (CHAR16) (KeyData.Key.UnicodeChar - L'a' + 1);
} else if (KeyData.Key.UnicodeChar >= L'A' &&
KeyData.Key.UnicodeChar <= L'Z') {
KeyData.Key.UnicodeChar = (CHAR16) (KeyData.Key.UnicodeChar - L'A' + 1);
if ((KeyData.Key.UnicodeChar >= L'a') &&
(KeyData.Key.UnicodeChar <= L'z'))
{
KeyData.Key.UnicodeChar = (CHAR16)(KeyData.Key.UnicodeChar - L'a' + 1);
} else if ((KeyData.Key.UnicodeChar >= L'A') &&
(KeyData.Key.UnicodeChar <= L'Z'))
{
KeyData.Key.UnicodeChar = (CHAR16)(KeyData.Key.UnicodeChar - L'A' + 1);
}
}
@ -747,11 +757,11 @@ VirtualKeyboardReadKeyStroke (
EFI_STATUS
EFIAPI
VirtualKeyboardReadKeyStrokeEx (
IN EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL *This,
OUT EFI_KEY_DATA *KeyData
IN EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL *This,
OUT EFI_KEY_DATA *KeyData
)
{
VIRTUAL_KEYBOARD_DEV *VirtualKeyboardPrivate;
VIRTUAL_KEYBOARD_DEV *VirtualKeyboardPrivate;
if (KeyData == NULL) {
return EFI_INVALID_PARAMETER;
@ -760,7 +770,6 @@ VirtualKeyboardReadKeyStrokeEx (
VirtualKeyboardPrivate = TEXT_INPUT_EX_VIRTUAL_KEYBOARD_DEV_FROM_THIS (This);
return KeyboardReadKeyStrokeWorker (VirtualKeyboardPrivate, KeyData);
}
/**
@ -822,16 +831,17 @@ VirtualKeyboardRegisterKeyNotify (
OUT VOID **NotifyHandle
)
{
EFI_STATUS Status;
VIRTUAL_KEYBOARD_DEV *VirtualKeyboardPrivate;
EFI_TPL OldTpl;
VIRTUAL_KEYBOARD_CONSOLE_IN_EX_NOTIFY *NewNotify;
LIST_ENTRY *Link;
VIRTUAL_KEYBOARD_CONSOLE_IN_EX_NOTIFY *CurrentNotify;
EFI_STATUS Status;
VIRTUAL_KEYBOARD_DEV *VirtualKeyboardPrivate;
EFI_TPL OldTpl;
VIRTUAL_KEYBOARD_CONSOLE_IN_EX_NOTIFY *NewNotify;
LIST_ENTRY *Link;
VIRTUAL_KEYBOARD_CONSOLE_IN_EX_NOTIFY *CurrentNotify;
if (KeyData == NULL ||
NotifyHandle == NULL ||
KeyNotificationFunction == NULL) {
if ((KeyData == NULL) ||
(NotifyHandle == NULL) ||
(KeyNotificationFunction == NULL))
{
return EFI_INVALID_PARAMETER;
}
@ -848,7 +858,8 @@ VirtualKeyboardRegisterKeyNotify (
//
for (Link = VirtualKeyboardPrivate->NotifyList.ForwardLink;
Link != &VirtualKeyboardPrivate->NotifyList;
Link = Link->ForwardLink) {
Link = Link->ForwardLink)
{
CurrentNotify = CR (
Link,
VIRTUAL_KEYBOARD_CONSOLE_IN_EX_NOTIFY,
@ -858,7 +869,7 @@ VirtualKeyboardRegisterKeyNotify (
if (IsKeyRegistered (&CurrentNotify->KeyData, KeyData)) {
if (CurrentNotify->KeyNotificationFn == KeyNotificationFunction) {
*NotifyHandle = CurrentNotify;
Status = EFI_SUCCESS;
Status = EFI_SUCCESS;
goto Exit;
}
}
@ -868,7 +879,7 @@ VirtualKeyboardRegisterKeyNotify (
// Allocate resource to save the notification function
//
NewNotify = (VIRTUAL_KEYBOARD_CONSOLE_IN_EX_NOTIFY *) AllocateZeroPool (sizeof (VIRTUAL_KEYBOARD_CONSOLE_IN_EX_NOTIFY));
NewNotify = (VIRTUAL_KEYBOARD_CONSOLE_IN_EX_NOTIFY *)AllocateZeroPool (sizeof (VIRTUAL_KEYBOARD_CONSOLE_IN_EX_NOTIFY));
if (NewNotify == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto Exit;
@ -879,8 +890,8 @@ VirtualKeyboardRegisterKeyNotify (
CopyMem (&NewNotify->KeyData, KeyData, sizeof (EFI_KEY_DATA));
InsertTailList (&VirtualKeyboardPrivate->NotifyList, &NewNotify->NotifyEntry);
*NotifyHandle = NewNotify;
Status = EFI_SUCCESS;
*NotifyHandle = NewNotify;
Status = EFI_SUCCESS;
Exit:
//
@ -888,7 +899,6 @@ Exit:
//
gBS->RestoreTPL (OldTpl);
return Status;
}
/**
@ -910,11 +920,11 @@ VirtualKeyboardUnregisterKeyNotify (
IN VOID *NotificationHandle
)
{
EFI_STATUS Status;
VIRTUAL_KEYBOARD_DEV *VirtualKeyboardPrivate;
EFI_TPL OldTpl;
LIST_ENTRY *Link;
VIRTUAL_KEYBOARD_CONSOLE_IN_EX_NOTIFY *CurrentNotify;
EFI_STATUS Status;
VIRTUAL_KEYBOARD_DEV *VirtualKeyboardPrivate;
EFI_TPL OldTpl;
LIST_ENTRY *Link;
VIRTUAL_KEYBOARD_CONSOLE_IN_EX_NOTIFY *CurrentNotify;
//
// Check incoming notification handle
@ -923,8 +933,9 @@ VirtualKeyboardUnregisterKeyNotify (
return EFI_INVALID_PARAMETER;
}
if (((VIRTUAL_KEYBOARD_CONSOLE_IN_EX_NOTIFY *) NotificationHandle)->Signature !=
VIRTUAL_KEYBOARD_CONSOLE_IN_EX_NOTIFY_SIGNATURE) {
if (((VIRTUAL_KEYBOARD_CONSOLE_IN_EX_NOTIFY *)NotificationHandle)->Signature !=
VIRTUAL_KEYBOARD_CONSOLE_IN_EX_NOTIFY_SIGNATURE)
{
return EFI_INVALID_PARAMETER;
}
@ -937,7 +948,8 @@ VirtualKeyboardUnregisterKeyNotify (
for (Link = VirtualKeyboardPrivate->NotifyList.ForwardLink;
Link != &VirtualKeyboardPrivate->NotifyList;
Link = Link->ForwardLink) {
Link = Link->ForwardLink)
{
CurrentNotify = CR (
Link,
VIRTUAL_KEYBOARD_CONSOLE_IN_EX_NOTIFY,
@ -982,8 +994,8 @@ Exit:
VOID
EFIAPI
VirtualKeyboardTimerHandler (
IN EFI_EVENT Event,
IN VOID *Context
IN EFI_EVENT Event,
IN VOID *Context
)
{
EFI_TPL OldTpl;
@ -1001,14 +1013,17 @@ VirtualKeyboardTimerHandler (
OldTpl = gBS->RaiseTPL (TPL_NOTIFY);
if (VirtualKeyboardPrivate->PlatformVirtual &&
VirtualKeyboardPrivate->PlatformVirtual->Query) {
VirtualKeyboardPrivate->PlatformVirtual->Query)
{
if (VirtualKeyboardPrivate->PlatformVirtual->Query (&VirtualKey) ==
FALSE) {
FALSE)
{
goto Exit;
}
// Found key
KeyData.Key.ScanCode = VirtualKey.Key.ScanCode;
KeyData.Key.UnicodeChar = VirtualKey.Key.UnicodeChar;
KeyData.Key.ScanCode = VirtualKey.Key.ScanCode;
KeyData.Key.UnicodeChar = VirtualKey.Key.UnicodeChar;
KeyData.KeyState.KeyShiftState = EFI_SHIFT_STATE_VALID;
KeyData.KeyState.KeyToggleState = EFI_TOGGLE_STATE_VALID;
if (VirtualKeyboardPrivate->PlatformVirtual->Clear) {
@ -1023,7 +1038,8 @@ VirtualKeyboardTimerHandler (
//
for (Link = VirtualKeyboardPrivate->NotifyList.ForwardLink;
Link != &VirtualKeyboardPrivate->NotifyList;
Link = Link->ForwardLink) {
Link = Link->ForwardLink)
{
CurrentNotify = CR (
Link,
VIRTUAL_KEYBOARD_CONSOLE_IN_EX_NOTIFY,
@ -1060,19 +1076,19 @@ Exit:
VOID
EFIAPI
KeyNotifyProcessHandler (
IN EFI_EVENT Event,
IN VOID *Context
IN EFI_EVENT Event,
IN VOID *Context
)
{
EFI_STATUS Status;
VIRTUAL_KEYBOARD_DEV *VirtualKeyboardPrivate;
EFI_KEY_DATA KeyData;
LIST_ENTRY *Link;
LIST_ENTRY *NotifyList;
VIRTUAL_KEYBOARD_CONSOLE_IN_EX_NOTIFY *CurrentNotify;
EFI_TPL OldTpl;
EFI_STATUS Status;
VIRTUAL_KEYBOARD_DEV *VirtualKeyboardPrivate;
EFI_KEY_DATA KeyData;
LIST_ENTRY *Link;
LIST_ENTRY *NotifyList;
VIRTUAL_KEYBOARD_CONSOLE_IN_EX_NOTIFY *CurrentNotify;
EFI_TPL OldTpl;
VirtualKeyboardPrivate = (VIRTUAL_KEYBOARD_DEV *) Context;
VirtualKeyboardPrivate = (VIRTUAL_KEYBOARD_DEV *)Context;
//
// Invoke notification functions.
@ -1091,10 +1107,13 @@ KeyNotifyProcessHandler (
if (EFI_ERROR (Status)) {
break;
}
for (Link = GetFirstNode (NotifyList);
!IsNull (NotifyList, Link);
Link = GetNextNode (NotifyList, Link)) {
CurrentNotify = CR (Link,
Link = GetNextNode (NotifyList, Link))
{
CurrentNotify = CR (
Link,
VIRTUAL_KEYBOARD_CONSOLE_IN_EX_NOTIFY,
NotifyEntry,
VIRTUAL_KEYBOARD_CONSOLE_IN_EX_NOTIFY_SIGNATURE
@ -1119,12 +1138,12 @@ KeyNotifyProcessHandler (
**/
EFI_STATUS
EFIAPI
InitializeVirtualKeyboard(
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
InitializeVirtualKeyboard (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
EFI_STATUS Status;
//
// Install driver model protocol(s).

View File

@ -10,7 +10,6 @@ SPDX-License-Identifier: BSD-2-Clause-Patent
#ifndef _VIRTUAL_KEYBOARD_H_
#define _VIRTUAL_KEYBOARD_H_
#include <Guid/StatusCodeDataTypeId.h>
#include <Protocol/DevicePath.h>
#include <Protocol/PlatformVirtualKeyboard.h>
@ -31,70 +30,69 @@ SPDX-License-Identifier: BSD-2-Clause-Patent
//
// Driver Binding Externs
//
extern EFI_DRIVER_BINDING_PROTOCOL gVirtualKeyboardDriverBinding;
extern EFI_COMPONENT_NAME_PROTOCOL gVirtualKeyboardComponentName;
extern EFI_COMPONENT_NAME2_PROTOCOL gVirtualKeyboardComponentName2;
extern EFI_DRIVER_BINDING_PROTOCOL gVirtualKeyboardDriverBinding;
extern EFI_COMPONENT_NAME_PROTOCOL gVirtualKeyboardComponentName;
extern EFI_COMPONENT_NAME2_PROTOCOL gVirtualKeyboardComponentName2;
//
// VIRTUAL Keyboard Defines
//
#define CHAR_SCANCODE 0xe0
#define CHAR_ESC 0x1b
#define CHAR_SCANCODE 0xe0
#define CHAR_ESC 0x1b
#define KEYBOARD_TIMEOUT 65536 // 0.07s
#define KEYBOARD_WAITFORVALUE_TIMEOUT 1000000 // 1s
#define KEYBOARD_BAT_TIMEOUT 4000000 // 4s
#define KEYBOARD_TIMER_INTERVAL 500000 // 0.5s
#define KEYBOARD_TIMEOUT 65536 // 0.07s
#define KEYBOARD_WAITFORVALUE_TIMEOUT 1000000 // 1s
#define KEYBOARD_BAT_TIMEOUT 4000000 // 4s
#define KEYBOARD_TIMER_INTERVAL 500000 // 0.5s
#define QUEUE_MAX_COUNT 32
#define QUEUE_MAX_COUNT 32
#define KEYBOARD_SCAN_CODE_MAX_COUNT 32
#define KEYBOARD_SCAN_CODE_MAX_COUNT 32
//
// VIRTUAL Keyboard Device Structure
//
#define VIRTUAL_KEYBOARD_DEV_SIGNATURE SIGNATURE_32 ('V', 'K', 'B', 'D')
#define VIRTUAL_KEYBOARD_CONSOLE_IN_EX_NOTIFY_SIGNATURE SIGNATURE_32 ('v', 'k', 'c', 'n')
#define VIRTUAL_KEYBOARD_DEV_SIGNATURE SIGNATURE_32 ('V', 'K', 'B', 'D')
#define VIRTUAL_KEYBOARD_CONSOLE_IN_EX_NOTIFY_SIGNATURE SIGNATURE_32 ('v', 'k', 'c', 'n')
typedef struct _VIRTUAL_KEYBOARD_CONSOLE_IN_EX_NOTIFY {
UINTN Signature;
EFI_KEY_DATA KeyData;
EFI_KEY_NOTIFY_FUNCTION KeyNotificationFn;
LIST_ENTRY NotifyEntry;
UINTN Signature;
EFI_KEY_DATA KeyData;
EFI_KEY_NOTIFY_FUNCTION KeyNotificationFn;
LIST_ENTRY NotifyEntry;
} VIRTUAL_KEYBOARD_CONSOLE_IN_EX_NOTIFY;
typedef struct {
UINTN Front;
UINTN Rear;
EFI_KEY_DATA Buffer[QUEUE_MAX_COUNT];
UINTN Front;
UINTN Rear;
EFI_KEY_DATA Buffer[QUEUE_MAX_COUNT];
} SIMPLE_QUEUE;
typedef struct {
UINT8 Buffer[KEYBOARD_SCAN_CODE_MAX_COUNT];
UINTN Head;
UINTN Tail;
UINT8 Buffer[KEYBOARD_SCAN_CODE_MAX_COUNT];
UINTN Head;
UINTN Tail;
} SCAN_CODE_QUEUE;
typedef struct {
UINTN Signature;
EFI_HANDLE Handle;
PLATFORM_VIRTUAL_KBD_PROTOCOL *PlatformVirtual;
EFI_SIMPLE_TEXT_INPUT_PROTOCOL SimpleTextIn;
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL SimpleTextInputEx;
UINTN Signature;
EFI_HANDLE Handle;
PLATFORM_VIRTUAL_KBD_PROTOCOL *PlatformVirtual;
EFI_SIMPLE_TEXT_INPUT_PROTOCOL SimpleTextIn;
EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL SimpleTextInputEx;
//
// Buffer storing EFI_KEY_DATA
//
SIMPLE_QUEUE Queue;
SIMPLE_QUEUE QueueForNotify;
SIMPLE_QUEUE Queue;
SIMPLE_QUEUE QueueForNotify;
//
// Notification Function List
//
LIST_ENTRY NotifyList;
EFI_EVENT KeyNotifyProcessEvent;
EFI_EVENT TimerEvent;
LIST_ENTRY NotifyList;
EFI_EVENT KeyNotifyProcessEvent;
EFI_EVENT TimerEvent;
} VIRTUAL_KEYBOARD_DEV;
#define VIRTUAL_KEYBOARD_DEV_FROM_THIS(a) CR (a, VIRTUAL_KEYBOARD_DEV, SimpleTextIn, VIRTUAL_KEYBOARD_DEV_SIGNATURE)
@ -108,7 +106,7 @@ typedef struct {
//
// Global Variables
//
extern EFI_DRIVER_BINDING_PROTOCOL gVirtualKeyboardDriverBinding;
extern EFI_DRIVER_BINDING_PROTOCOL gVirtualKeyboardDriverBinding;
//
// Driver Binding Protocol functions
@ -222,7 +220,6 @@ VirtualKeyboardComponentNameGetDriverName (
OUT CHAR16 **DriverName
);
/**
Retrieves a Unicode string that is the user readable name of the controller
that is being managed by a driver.
@ -294,17 +291,17 @@ VirtualKeyboardComponentNameGetDriverName (
EFI_STATUS
EFIAPI
VirtualKeyboardComponentNameGetControllerName (
IN EFI_COMPONENT_NAME_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN EFI_HANDLE ChildHandle OPTIONAL,
IN CHAR8 *Language,
OUT CHAR16 **ControllerName
IN EFI_COMPONENT_NAME_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN EFI_HANDLE ChildHandle OPTIONAL,
IN CHAR8 *Language,
OUT CHAR16 **ControllerName
);
//
// Simple Text Input Protocol functions
//
/**
Reset the Keyboard and do BAT test for it, if (ExtendedVerification == TRUE) then do some extra keyboard validations.
@ -406,6 +403,7 @@ VirtualKeyboardUnregisterKeyNotify (
//
// Private worker functions
//
/**
Free keyboard notify list.
@ -417,7 +415,7 @@ VirtualKeyboardUnregisterKeyNotify (
**/
EFI_STATUS
VirtualKeyboardFreeNotifyList (
IN OUT LIST_ENTRY *ListHead
IN OUT LIST_ENTRY *ListHead
);
/**
@ -478,8 +476,8 @@ VirtualKeyboardWaitForKeyEx (
VOID
EFIAPI
VirtualKeyboardTimerHandler (
IN EFI_EVENT Event,
IN VOID *Context
IN EFI_EVENT Event,
IN VOID *Context
);
/**
@ -491,8 +489,8 @@ VirtualKeyboardTimerHandler (
VOID
EFIAPI
KeyNotifyProcessHandler (
IN EFI_EVENT Event,
IN VOID *Context
IN EFI_EVENT Event,
IN VOID *Context
);
/**
@ -530,8 +528,8 @@ VirtualKeyboardReadKeyStroke (
EFI_STATUS
EFIAPI
VirtualKeyboardReadKeyStrokeEx (
IN EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL *This,
OUT EFI_KEY_DATA *KeyData
IN EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL *This,
OUT EFI_KEY_DATA *KeyData
);
#endif /* _VIRTUAL_KEYBOARD_H_ */

View File

@ -15,7 +15,7 @@
#include <Protocol/MonotonicCounter.h>
UINT64 gCurrentMonotonicCount = 0;
UINT64 gCurrentMonotonicCount = 0;
EFI_STATUS
EFIAPI
@ -48,7 +48,6 @@ GetNextHighMonotonicCount (
return EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
MonotonicCounterDriverInitialize (
@ -60,7 +59,7 @@ MonotonicCounterDriverInitialize (
EFI_HANDLE Handle = NULL;
// Make sure the Monotonic Counter Architectural Protocol is not already installed in the system
ASSERT_PROTOCOL_ALREADY_INSTALLED(NULL, &gEfiMonotonicCounterArchProtocolGuid);
ASSERT_PROTOCOL_ALREADY_INSTALLED (NULL, &gEfiMonotonicCounterArchProtocolGuid);
// Fill in the EFI Boot Services and EFI Runtime Services Monotonic Counter Fields
gBS->GetNextMonotonicCount = GetNextMonotonicCount;
@ -69,7 +68,8 @@ MonotonicCounterDriverInitialize (
// Install the Monotonic Counter Architectural Protocol onto a new handle
Status = gBS->InstallMultipleProtocolInterfaces (
&Handle,
&gEfiMonotonicCounterArchProtocolGuid, NULL,
&gEfiMonotonicCounterArchProtocolGuid,
NULL,
NULL
);
return Status;

View File

@ -15,67 +15,67 @@
// Array of exception types that need to be hooked by the debugger
// (efi, gdb) //efi number
//
EFI_EXCEPTION_TYPE_ENTRY gExceptionType[] = {
{ EXCEPT_ARM_SOFTWARE_INTERRUPT, GDB_SIGTRAP }
// { EXCEPT_ARM_UNDEFINED_INSTRUCTION, GDB_SIGTRAP },
// { EXCEPT_ARM_PREFETCH_ABORT, GDB_SIGTRAP },
// { EXCEPT_ARM_DATA_ABORT, GDB_SIGEMT },
// { EXCEPT_ARM_RESERVED, GDB_SIGILL }
EFI_EXCEPTION_TYPE_ENTRY gExceptionType[] = {
{ EXCEPT_ARM_SOFTWARE_INTERRUPT, GDB_SIGTRAP }
// { EXCEPT_ARM_UNDEFINED_INSTRUCTION, GDB_SIGTRAP },
// { EXCEPT_ARM_PREFETCH_ABORT, GDB_SIGTRAP },
// { EXCEPT_ARM_DATA_ABORT, GDB_SIGEMT },
// { EXCEPT_ARM_RESERVED, GDB_SIGILL }
};
// Shut up some annoying RVCT warnings
#ifdef __CC_ARM
#pragma diag_suppress 1296
#pragma diag_suppress 1296
#endif
UINTN gRegisterOffsets[] = {
OFFSET_OF(EFI_SYSTEM_CONTEXT_ARM, R0),
OFFSET_OF(EFI_SYSTEM_CONTEXT_ARM, R1),
OFFSET_OF(EFI_SYSTEM_CONTEXT_ARM, R2),
OFFSET_OF(EFI_SYSTEM_CONTEXT_ARM, R3),
OFFSET_OF(EFI_SYSTEM_CONTEXT_ARM, R4),
OFFSET_OF(EFI_SYSTEM_CONTEXT_ARM, R5),
OFFSET_OF(EFI_SYSTEM_CONTEXT_ARM, R6),
OFFSET_OF(EFI_SYSTEM_CONTEXT_ARM, R7),
OFFSET_OF(EFI_SYSTEM_CONTEXT_ARM, R8),
OFFSET_OF(EFI_SYSTEM_CONTEXT_ARM, R9),
OFFSET_OF(EFI_SYSTEM_CONTEXT_ARM, R10),
OFFSET_OF(EFI_SYSTEM_CONTEXT_ARM, R11),
OFFSET_OF(EFI_SYSTEM_CONTEXT_ARM, R12),
OFFSET_OF(EFI_SYSTEM_CONTEXT_ARM, SP),
OFFSET_OF(EFI_SYSTEM_CONTEXT_ARM, LR),
OFFSET_OF(EFI_SYSTEM_CONTEXT_ARM, PC),
0x00000F01, // f0
UINTN gRegisterOffsets[] = {
OFFSET_OF (EFI_SYSTEM_CONTEXT_ARM, R0),
OFFSET_OF (EFI_SYSTEM_CONTEXT_ARM, R1),
OFFSET_OF (EFI_SYSTEM_CONTEXT_ARM, R2),
OFFSET_OF (EFI_SYSTEM_CONTEXT_ARM, R3),
OFFSET_OF (EFI_SYSTEM_CONTEXT_ARM, R4),
OFFSET_OF (EFI_SYSTEM_CONTEXT_ARM, R5),
OFFSET_OF (EFI_SYSTEM_CONTEXT_ARM, R6),
OFFSET_OF (EFI_SYSTEM_CONTEXT_ARM, R7),
OFFSET_OF (EFI_SYSTEM_CONTEXT_ARM, R8),
OFFSET_OF (EFI_SYSTEM_CONTEXT_ARM, R9),
OFFSET_OF (EFI_SYSTEM_CONTEXT_ARM, R10),
OFFSET_OF (EFI_SYSTEM_CONTEXT_ARM, R11),
OFFSET_OF (EFI_SYSTEM_CONTEXT_ARM, R12),
OFFSET_OF (EFI_SYSTEM_CONTEXT_ARM, SP),
OFFSET_OF (EFI_SYSTEM_CONTEXT_ARM, LR),
OFFSET_OF (EFI_SYSTEM_CONTEXT_ARM, PC),
0x00000F01, // f0
0x00000F02,
0x00000F03,
0x00000F11, // f1
0x00000F11, // f1
0x00000F12,
0x00000F13,
0x00000F21, // f2
0x00000F21, // f2
0x00000F22,
0x00000F23,
0x00000F31, // f3
0x00000F31, // f3
0x00000F32,
0x00000F33,
0x00000F41, // f4
0x00000F41, // f4
0x00000F42,
0x00000F43,
0x00000F51, // f5
0x00000F51, // f5
0x00000F52,
0x00000F53,
0x00000F61, // f6
0x00000F61, // f6
0x00000F62,
0x00000F63,
0x00000F71, // f7
0x00000F71, // f7
0x00000F72,
0x00000F73,
0x00000FFF, // fps
OFFSET_OF(EFI_SYSTEM_CONTEXT_ARM, CPSR)
0x00000FFF, // fps
OFFSET_OF (EFI_SYSTEM_CONTEXT_ARM, CPSR)
};
// restore warnings for RVCT
#ifdef __CC_ARM
#pragma diag_default 1296
#pragma diag_default 1296
#endif
/**
@ -91,7 +91,6 @@ MaxEfiException (
return sizeof (gExceptionType) / sizeof (EFI_EXCEPTION_TYPE_ENTRY);
}
/**
Return the number of entries in the gRegisters[]
@ -105,7 +104,6 @@ MaxRegisterCount (
return sizeof (gRegisterOffsets) / sizeof (UINTN);
}
/**
Check to see if the ISA is supported.
ISA = Instruction Set Architecture
@ -125,7 +123,6 @@ CheckIsa (
}
}
/**
This takes in the register number and the System Context, and returns a pointer to the RegNumber-th register in gdb ordering
It is, by default, set to find the register pointer of the ARM member
@ -135,17 +132,17 @@ CheckIsa (
**/
UINTN *
FindPointerToRegister (
IN EFI_SYSTEM_CONTEXT SystemContext,
IN UINTN RegNumber
IN EFI_SYSTEM_CONTEXT SystemContext,
IN UINTN RegNumber
)
{
UINT8 *TempPtr;
ASSERT(gRegisterOffsets[RegNumber] < 0xF00);
UINT8 *TempPtr;
ASSERT (gRegisterOffsets[RegNumber] < 0xF00);
TempPtr = ((UINT8 *)SystemContext.SystemContextArm) + gRegisterOffsets[RegNumber];
return (UINT32 *)TempPtr;
}
/**
Adds the RegNumber-th register's value to the output buffer, starting at the given OutBufPtr
@param SystemContext Register content at time of the exception
@ -160,8 +157,8 @@ BasicReadRegister (
IN CHAR8 *OutBufPtr
)
{
UINTN RegSize;
CHAR8 Char;
UINTN RegSize;
CHAR8 Char;
if (gRegisterOffsets[RegNumber] > 0xF00) {
AsciiSPrint (OutBufPtr, 9, "00000000");
@ -175,20 +172,22 @@ BasicReadRegister (
if ((Char >= 'A') && (Char <= 'F')) {
Char = Char - 'A' + 'a';
}
*OutBufPtr++ = Char;
Char = mHexToStr[(UINT8)((*FindPointerToRegister (SystemContext, RegNumber) >> RegSize) & 0xf)];
if ((Char >= 'A') && (Char <= 'F')) {
Char = Char - 'A' + 'a';
}
*OutBufPtr++ = Char;
RegSize = RegSize + 8;
}
return OutBufPtr;
}
/**
Reads the n-th register's value into an output buffer and sends it as a packet
@param SystemContext Register content at time of the exception
@ -200,9 +199,9 @@ ReadNthRegister (
IN CHAR8 *InBuffer
)
{
UINTN RegNumber;
CHAR8 OutBuffer[9]; // 1 reg=8 hex chars, and the end '\0' (escape seq)
CHAR8 *OutBufPtr; // pointer to the output buffer
UINTN RegNumber;
CHAR8 OutBuffer[9]; // 1 reg=8 hex chars, and the end '\0' (escape seq)
CHAR8 *OutBufPtr; // pointer to the output buffer
RegNumber = AsciiStrHexToUintn (&InBuffer[1]);
@ -218,7 +217,6 @@ ReadNthRegister (
SendPacket (OutBuffer);
}
/**
Reads the general registers into an output buffer and sends it as a packet
@param SystemContext Register content at time of the exception
@ -226,13 +224,13 @@ ReadNthRegister (
VOID
EFIAPI
ReadGeneralRegisters (
IN EFI_SYSTEM_CONTEXT SystemContext
IN EFI_SYSTEM_CONTEXT SystemContext
)
{
UINTN Index;
CHAR8 *OutBuffer;
CHAR8 *OutBufPtr;
UINTN RegisterCount = MaxRegisterCount ();
UINTN Index;
CHAR8 *OutBuffer;
CHAR8 *OutBufPtr;
UINTN RegisterCount = MaxRegisterCount ();
// It is not safe to allocate pool here....
OutBuffer = AllocatePool ((RegisterCount * 8) + 1); // 8 bytes per register in string format plus a null to terminate
@ -246,7 +244,6 @@ ReadGeneralRegisters (
FreePool (OutBuffer);
}
/**
Adds the RegNumber-th register's value to the output buffer, starting at the given OutBufPtr
@param SystemContext Register content at time of the exception
@ -255,22 +252,23 @@ ReadGeneralRegisters (
@retval the pointer to the next character of the input buffer that can be used
**/
CHAR8
*BasicWriteRegister (
IN EFI_SYSTEM_CONTEXT SystemContext,
IN UINTN RegNumber,
IN CHAR8 *InBufPtr
*
BasicWriteRegister (
IN EFI_SYSTEM_CONTEXT SystemContext,
IN UINTN RegNumber,
IN CHAR8 *InBufPtr
)
{
UINTN RegSize;
UINTN TempValue; // the value transferred from a hex char
UINT32 NewValue; // the new value of the RegNumber-th Register
UINTN RegSize;
UINTN TempValue; // the value transferred from a hex char
UINT32 NewValue; // the new value of the RegNumber-th Register
if (gRegisterOffsets[RegNumber] > 0xF00) {
return InBufPtr + 8;
}
NewValue = 0;
RegSize = 0;
RegSize = 0;
while (RegSize < 32) {
TempValue = HexCharToInt (*InBufPtr++);
@ -288,13 +286,13 @@ CHAR8
}
NewValue += (TempValue << RegSize);
RegSize = RegSize + 8;
RegSize = RegSize + 8;
}
*(FindPointerToRegister (SystemContext, RegNumber)) = NewValue;
return InBufPtr;
}
/** P n...=r...
Writes the new value of n-th register received into the input buffer to the n-th register
@param SystemContext Register content at time of the exception
@ -302,41 +300,41 @@ CHAR8
**/
VOID
WriteNthRegister (
IN EFI_SYSTEM_CONTEXT SystemContext,
IN CHAR8 *InBuffer
IN EFI_SYSTEM_CONTEXT SystemContext,
IN CHAR8 *InBuffer
)
{
UINTN RegNumber;
CHAR8 RegNumBuffer[MAX_REG_NUM_BUF_SIZE]; // put the 'n..' part of the message into this array
CHAR8 *RegNumBufPtr;
CHAR8 *InBufPtr; // pointer to the input buffer
UINTN RegNumber;
CHAR8 RegNumBuffer[MAX_REG_NUM_BUF_SIZE]; // put the 'n..' part of the message into this array
CHAR8 *RegNumBufPtr;
CHAR8 *InBufPtr; // pointer to the input buffer
// find the register number to write
InBufPtr = &InBuffer[1];
InBufPtr = &InBuffer[1];
RegNumBufPtr = RegNumBuffer;
while (*InBufPtr != '=') {
*RegNumBufPtr++ = *InBufPtr++;
}
*RegNumBufPtr = '\0';
RegNumber = AsciiStrHexToUintn (RegNumBuffer);
RegNumber = AsciiStrHexToUintn (RegNumBuffer);
// check if this is a valid Register Number
if (RegNumber >= MaxRegisterCount ()) {
SendError (GDB_EINVALIDREGNUM);
return;
}
InBufPtr++; // skips the '=' character
BasicWriteRegister (SystemContext, RegNumber, InBufPtr);
SendSuccess();
SendSuccess ();
}
/** G XX...
Writes the new values received into the input buffer to the general registers
@param SystemContext Register content at time of the exception
@param InBuffer Pointer to the input buffer received from gdb server
**/
VOID
EFIAPI
WriteGeneralRegisters (
@ -352,7 +350,7 @@ WriteGeneralRegisters (
MinLength = (RegisterCount * 8) + 1; // 'G' plus the registers in ASCII format
if (AsciiStrLen (InBuffer) < MinLength) {
//Bad message. Message is not the right length
// Bad message. Message is not the right length
SendError (GDB_EBADBUFSIZE);
return;
}
@ -370,21 +368,21 @@ WriteGeneralRegisters (
// What about Thumb?
// Use SWI 0xdbdbdb as the debug instruction
#define GDB_ARM_BKPT 0xefdbdbdb
#define GDB_ARM_BKPT 0xefdbdbdb
BOOLEAN mSingleStepActive = FALSE;
UINT32 mSingleStepPC;
UINT32 mSingleStepData;
UINTN mSingleStepDataSize;
BOOLEAN mSingleStepActive = FALSE;
UINT32 mSingleStepPC;
UINT32 mSingleStepData;
UINTN mSingleStepDataSize;
typedef struct {
LIST_ENTRY Link;
UINT64 Signature;
UINT32 Address;
UINT32 Instruction;
LIST_ENTRY Link;
UINT64 Signature;
UINT32 Address;
UINT32 Instruction;
} ARM_SOFTWARE_BREAKPOINT;
#define ARM_SOFTWARE_BREAKPOINT_SIGNATURE SIGNATURE_64('A', 'R', 'M', 'B', 'R', 'K', 'P', 'T')
#define ARM_SOFTWARE_BREAKPOINT_SIGNATURE SIGNATURE_64('A', 'R', 'M', 'B', 'R', 'K', 'P', 'T')
#define ARM_SOFTWARE_BREAKPOINT_FROM_LINK(a) CR(a, ARM_SOFTWARE_BREAKPOINT, Link, ARM_SOFTWARE_BREAKPOINT_SIGNATURE)
LIST_ENTRY BreakpointList;
@ -396,19 +394,20 @@ LIST_ENTRY BreakpointList;
**/
VOID
AddSingleStep (
IN EFI_SYSTEM_CONTEXT SystemContext
IN EFI_SYSTEM_CONTEXT SystemContext
)
{
if (mSingleStepActive) {
// Currently don't support nesting
return;
}
mSingleStepActive = TRUE;
mSingleStepPC = SystemContext.SystemContextArm->PC;
mSingleStepDataSize = sizeof (UINT32);
mSingleStepData = (*(UINT32 *)mSingleStepPC);
mSingleStepDataSize = sizeof (UINT32);
mSingleStepData = (*(UINT32 *)mSingleStepPC);
*(UINT32 *)mSingleStepPC = GDB_ARM_BKPT;
if (*(UINT32 *)mSingleStepPC != GDB_ARM_BKPT) {
// For some reason our breakpoint did not take
@ -416,10 +415,9 @@ AddSingleStep (
}
InvalidateInstructionCacheRange ((VOID *)mSingleStepPC, mSingleStepDataSize);
//DEBUG((DEBUG_ERROR, "AddSingleStep at 0x%08x (was: 0x%08x is:0x%08x)\n", SystemContext.SystemContextArm->PC, mSingleStepData, *(UINT32 *)mSingleStepPC));
// DEBUG((DEBUG_ERROR, "AddSingleStep at 0x%08x (was: 0x%08x is:0x%08x)\n", SystemContext.SystemContextArm->PC, mSingleStepData, *(UINT32 *)mSingleStepPC));
}
/**
Remove Single Step in the SystemContext
@ -437,15 +435,14 @@ RemoveSingleStep (
if (mSingleStepDataSize == sizeof (UINT16)) {
*(UINT16 *)mSingleStepPC = (UINT16)mSingleStepData;
} else {
//DEBUG((DEBUG_ERROR, "RemoveSingleStep at 0x%08x (was: 0x%08x is:0x%08x)\n", SystemContext.SystemContextArm->PC, *(UINT32 *)mSingleStepPC, mSingleStepData));
// DEBUG((DEBUG_ERROR, "RemoveSingleStep at 0x%08x (was: 0x%08x is:0x%08x)\n", SystemContext.SystemContextArm->PC, *(UINT32 *)mSingleStepPC, mSingleStepData));
*(UINT32 *)mSingleStepPC = mSingleStepData;
}
InvalidateInstructionCacheRange ((VOID *)mSingleStepPC, mSingleStepDataSize);
mSingleStepActive = FALSE;
}
/**
Continue. addr is Address to resume. If addr is omitted, resume at current
Address.
@ -455,8 +452,8 @@ RemoveSingleStep (
VOID
EFIAPI
ContinueAtAddress (
IN EFI_SYSTEM_CONTEXT SystemContext,
IN CHAR8 *PacketData
IN EFI_SYSTEM_CONTEXT SystemContext,
IN CHAR8 *PacketData
)
{
if (PacketData[1] != '\0') {
@ -464,7 +461,6 @@ ContinueAtAddress (
}
}
/** s [addr ]
Single step. addr is the Address at which to resume. If addr is omitted, resume
at same Address.
@ -474,8 +470,8 @@ ContinueAtAddress (
VOID
EFIAPI
SingleStep (
IN EFI_SYSTEM_CONTEXT SystemContext,
IN CHAR8 *PacketData
IN EFI_SYSTEM_CONTEXT SystemContext,
IN CHAR8 *PacketData
)
{
SendNotSupported ();
@ -512,12 +508,12 @@ SearchBreakpointList (
IN UINT32 Address
)
{
LIST_ENTRY *Current;
ARM_SOFTWARE_BREAKPOINT *Breakpoint;
LIST_ENTRY *Current;
ARM_SOFTWARE_BREAKPOINT *Breakpoint;
Current = GetFirstNode (&BreakpointList);
while (!IsNull (&BreakpointList, Current)) {
Breakpoint = ARM_SOFTWARE_BREAKPOINT_FROM_LINK(Current);
Breakpoint = ARM_SOFTWARE_BREAKPOINT_FROM_LINK (Current);
if (Address == Breakpoint->Address) {
return Breakpoint;
@ -531,10 +527,10 @@ SearchBreakpointList (
VOID
SetBreakpoint (
IN UINT32 Address
IN UINT32 Address
)
{
ARM_SOFTWARE_BREAKPOINT *Breakpoint;
ARM_SOFTWARE_BREAKPOINT *Breakpoint;
Breakpoint = SearchBreakpointList (Address);
@ -543,7 +539,7 @@ SetBreakpoint (
}
// create and fill breakpoint structure
Breakpoint = AllocatePool (sizeof(ARM_SOFTWARE_BREAKPOINT));
Breakpoint = AllocatePool (sizeof (ARM_SOFTWARE_BREAKPOINT));
Breakpoint->Signature = ARM_SOFTWARE_BREAKPOINT_SIGNATURE;
Breakpoint->Address = Address;
@ -556,15 +552,15 @@ SetBreakpoint (
*(UINT32 *)Address = GDB_ARM_BKPT;
InvalidateInstructionCacheRange ((VOID *)Address, 4);
//DEBUG((DEBUG_ERROR, "SetBreakpoint at 0x%08x (was: 0x%08x is:0x%08x)\n", Address, Breakpoint->Instruction, *(UINT32 *)Address));
// DEBUG((DEBUG_ERROR, "SetBreakpoint at 0x%08x (was: 0x%08x is:0x%08x)\n", Address, Breakpoint->Instruction, *(UINT32 *)Address));
}
VOID
ClearBreakpoint (
IN UINT32 Address
IN UINT32 Address
)
{
ARM_SOFTWARE_BREAKPOINT *Breakpoint;
ARM_SOFTWARE_BREAKPOINT *Breakpoint;
Breakpoint = SearchBreakpointList (Address);
@ -579,7 +575,7 @@ ClearBreakpoint (
*(UINT32 *)Address = Breakpoint->Instruction;
InvalidateInstructionCacheRange ((VOID *)Address, 4);
//DEBUG((DEBUG_ERROR, "ClearBreakpoint at 0x%08x (was: 0x%08x is:0x%08x)\n", Address, GDB_ARM_BKPT, *(UINT32 *)Address));
// DEBUG((DEBUG_ERROR, "ClearBreakpoint at 0x%08x (was: 0x%08x is:0x%08x)\n", Address, GDB_ARM_BKPT, *(UINT32 *)Address));
FreePool (Breakpoint);
}
@ -588,13 +584,13 @@ VOID
EFIAPI
InsertBreakPoint (
IN EFI_SYSTEM_CONTEXT SystemContext,
IN CHAR8 *PacketData
IN CHAR8 *PacketData
)
{
UINTN Type;
UINTN Address;
UINTN Length;
UINTN ErrorCode;
UINTN Type;
UINTN Address;
UINTN Length;
UINTN ErrorCode;
ErrorCode = ParseBreakpointPacket (PacketData, &Type, &Address, &Length);
if (ErrorCode > 0) {
@ -603,11 +599,11 @@ InsertBreakPoint (
}
switch (Type) {
case 0: //Software breakpoint
case 0: // Software breakpoint
break;
default :
DEBUG((DEBUG_ERROR, "Insert breakpoint default: %x\n", Type));
default:
DEBUG ((DEBUG_ERROR, "Insert breakpoint default: %x\n", Type));
SendError (GDB_EINVALIDBRKPOINTTYPE);
return;
}
@ -624,12 +620,12 @@ RemoveBreakPoint (
IN CHAR8 *PacketData
)
{
UINTN Type;
UINTN Address;
UINTN Length;
UINTN ErrorCode;
UINTN Type;
UINTN Address;
UINTN Length;
UINTN ErrorCode;
//Parse breakpoint packet data
// Parse breakpoint packet data
ErrorCode = ParseBreakpointPacket (PacketData, &Type, &Address, &Length);
if (ErrorCode > 0) {
SendError ((UINT8)ErrorCode);
@ -637,7 +633,7 @@ RemoveBreakPoint (
}
switch (Type) {
case 0: //Software breakpoint
case 0: // Software breakpoint
break;
default:
@ -673,8 +669,8 @@ ValidateAddress (
BOOLEAN
ValidateException (
IN EFI_EXCEPTION_TYPE ExceptionType,
IN OUT EFI_SYSTEM_CONTEXT SystemContext
IN EFI_EXCEPTION_TYPE ExceptionType,
IN OUT EFI_SYSTEM_CONTEXT SystemContext
)
{
UINT32 ExceptionAddress;

File diff suppressed because it is too large Load Diff

View File

@ -28,54 +28,51 @@
#include <Guid/DebugImageInfoTable.h>
#include <IndustryStandard/PeImage.h>
extern CONST CHAR8 mHexToStr[];
extern CONST CHAR8 mHexToStr[];
// maximum size of input and output buffers
// This value came from the show remote command of the gdb we tested against
#define MAX_BUF_SIZE 2000
#define MAX_BUF_SIZE 2000
// maximum size of address buffer
#define MAX_ADDR_SIZE 32
#define MAX_ADDR_SIZE 32
// maximum size of register number buffer
#define MAX_REG_NUM_BUF_SIZE 32
#define MAX_REG_NUM_BUF_SIZE 32
// maximum size of length buffer
#define MAX_LENGTH_SIZE 32
#define MAX_LENGTH_SIZE 32
// maximum size of T signal members
#define MAX_T_SIGNAL_SIZE 64
#define MAX_T_SIGNAL_SIZE 64
// the mask used to clear all the cache
#define TF_BIT 0x00000100
#define TF_BIT 0x00000100
//
// GDB Signal definitions - generic names for interrupts
//
#define GDB_SIGILL 4 // Illegal instruction
#define GDB_SIGTRAP 5 // Trace Trap (Breakpoint and SingleStep)
#define GDB_SIGEMT 7 // Emulator Trap
#define GDB_SIGFPE 8 // Floating point exception
#define GDB_SIGSEGV 11 // Segment violation, page fault
#define GDB_SIGILL 4 // Illegal instruction
#define GDB_SIGTRAP 5 // Trace Trap (Breakpoint and SingleStep)
#define GDB_SIGEMT 7 // Emulator Trap
#define GDB_SIGFPE 8 // Floating point exception
#define GDB_SIGSEGV 11 // Segment violation, page fault
//
// GDB File I/O Error values, zero means no error
// Includes all general GDB Unix like error values
//
#define GDB_EBADMEMADDRBUFSIZE 11 // the buffer that stores memory Address to be read from/written to is not the right size
#define GDB_EBADMEMLENGBUFSIZE 12 // the buffer that stores Length is not the right size
#define GDB_EBADMEMLENGTH 13 // Length, the given number of bytes to read or write, is not the right size
#define GDB_EBADMEMDATA 14 // one of the bytes or nibbles of the memory is less than 0
#define GDB_EBADMEMDATASIZE 15 // the memory data, 'XX..', is too short or too long
#define GDB_EBADBUFSIZE 21 // the buffer created is not the correct size
#define GDB_EINVALIDARG 31 // argument is invalid
#define GDB_ENOSPACE 41 //
#define GDB_EINVALIDBRKPOINTTYPE 51 // the breakpoint type is not recognized
#define GDB_EINVALIDREGNUM 61 // given register number is not valid: either <0 or >=Number of Registers
#define GDB_EUNKNOWN 255 // unknown
#define GDB_EBADMEMADDRBUFSIZE 11 // the buffer that stores memory Address to be read from/written to is not the right size
#define GDB_EBADMEMLENGBUFSIZE 12 // the buffer that stores Length is not the right size
#define GDB_EBADMEMLENGTH 13 // Length, the given number of bytes to read or write, is not the right size
#define GDB_EBADMEMDATA 14 // one of the bytes or nibbles of the memory is less than 0
#define GDB_EBADMEMDATASIZE 15 // the memory data, 'XX..', is too short or too long
#define GDB_EBADBUFSIZE 21 // the buffer created is not the correct size
#define GDB_EINVALIDARG 31 // argument is invalid
#define GDB_ENOSPACE 41 //
#define GDB_EINVALIDBRKPOINTTYPE 51 // the breakpoint type is not recognized
#define GDB_EINVALIDREGNUM 61 // given register number is not valid: either <0 or >=Number of Registers
#define GDB_EUNKNOWN 255 // unknown
//
// These devices are open by GDB so we can just read and write to them
@ -85,7 +82,7 @@ extern CONST CHAR8 mHexToStr[];
#define GDB_STDERR 0x02
//
//Define Register size for different architectures
// Define Register size for different architectures
//
#if defined (MDE_CPU_IA32)
#define REG_SIZE 32
@ -95,12 +92,12 @@ extern CONST CHAR8 mHexToStr[];
#define REG_SIZE 32
#endif
#define GDB_SERIAL_DEV_SIGNATURE SIGNATURE_32 ('g', 'd', 'b', 's')
#define GDB_SERIAL_DEV_SIGNATURE SIGNATURE_32 ('g', 'd', 'b', 's')
typedef struct {
VENDOR_DEVICE_PATH VendorDevice;
UINT32 Index; // Support more than one
EFI_DEVICE_PATH_PROTOCOL End;
VENDOR_DEVICE_PATH VendorDevice;
UINT32 Index; // Support more than one
EFI_DEVICE_PATH_PROTOCOL End;
} GDB_SERIAL_DEVICE_PATH;
//
@ -113,25 +110,22 @@ typedef struct {
// DevicePath EFI_DEVICE_PATH_PROTOCOL *: Device path of the serial device
//
typedef struct {
UINTN Signature;
EFI_HANDLE Handle;
EFI_SERIAL_IO_PROTOCOL SerialIo;
EFI_SERIAL_IO_MODE SerialMode;
GDB_SERIAL_DEVICE_PATH DevicePath;
INTN InFileDescriptor;
INTN OutFileDescriptor;
UINTN Signature;
EFI_HANDLE Handle;
EFI_SERIAL_IO_PROTOCOL SerialIo;
EFI_SERIAL_IO_MODE SerialMode;
GDB_SERIAL_DEVICE_PATH DevicePath;
INTN InFileDescriptor;
INTN OutFileDescriptor;
} GDB_SERIAL_DEV;
#define GDB_SERIAL_DEV_FROM_THIS(a) CR (a, GDB_SERIAL_DEV, SerialIo, GDB_SERIAL_DEV_SIGNATURE)
#define GDB_SERIAL_DEV_FROM_THIS(a) CR (a, GDB_SERIAL_DEV, SerialIo, GDB_SERIAL_DEV_SIGNATURE)
typedef struct {
EFI_EXCEPTION_TYPE Exception;
UINT8 SignalNo;
EFI_EXCEPTION_TYPE Exception;
UINT8 SignalNo;
} EFI_EXCEPTION_TYPE_ENTRY;
#if defined (MDE_CPU_IA32) || defined (MDE_CPU_X64)
//
@ -141,17 +135,17 @@ typedef struct {
//
typedef union {
struct {
UINT32 B0:1; // Breakpoint condition detected
UINT32 B1:1; // Breakpoint condition detected
UINT32 B2:1; // Breakpoint condition detected
UINT32 B3:1; // Breakpoint condition detected
UINT32 Reserved_1:9; // Reserved
UINT32 BD:1; // Debug register access detected
UINT32 BS:1; // Single step
UINT32 BT:1; // Task switch
UINT32 Reserved_2:16; // Reserved
UINT32 B0 : 1; // Breakpoint condition detected
UINT32 B1 : 1; // Breakpoint condition detected
UINT32 B2 : 1; // Breakpoint condition detected
UINT32 B3 : 1; // Breakpoint condition detected
UINT32 Reserved_1 : 9; // Reserved
UINT32 BD : 1; // Debug register access detected
UINT32 BS : 1; // Single step
UINT32 BT : 1; // Task switch
UINT32 Reserved_2 : 16; // Reserved
} Bits;
UINTN UintN;
UINTN UintN;
} IA32_DR6;
//
@ -161,65 +155,64 @@ typedef union {
//
typedef union {
struct {
UINT32 L0:1; // Local breakpoint enable
UINT32 G0:1; // Global breakpoint enable
UINT32 L1:1; // Local breakpoint enable
UINT32 G1:1; // Global breakpoint enable
UINT32 L2:1; // Local breakpoint enable
UINT32 G2:1; // Global breakpoint enable
UINT32 L3:1; // Local breakpoint enable
UINT32 G3:1; // Global breakpoint enable
UINT32 LE:1; // Local exact breakpoint enable
UINT32 GE:1; // Global exact breakpoint enable
UINT32 Reserved_1:3; // Reserved
UINT32 GD:1; // Global detect enable
UINT32 Reserved_2:2; // Reserved
UINT32 RW0:2; // Read/Write field
UINT32 LEN0:2; // Length field
UINT32 RW1:2; // Read/Write field
UINT32 LEN1:2; // Length field
UINT32 RW2:2; // Read/Write field
UINT32 LEN2:2; // Length field
UINT32 RW3:2; // Read/Write field
UINT32 LEN3:2; // Length field
UINT32 L0 : 1; // Local breakpoint enable
UINT32 G0 : 1; // Global breakpoint enable
UINT32 L1 : 1; // Local breakpoint enable
UINT32 G1 : 1; // Global breakpoint enable
UINT32 L2 : 1; // Local breakpoint enable
UINT32 G2 : 1; // Global breakpoint enable
UINT32 L3 : 1; // Local breakpoint enable
UINT32 G3 : 1; // Global breakpoint enable
UINT32 LE : 1; // Local exact breakpoint enable
UINT32 GE : 1; // Global exact breakpoint enable
UINT32 Reserved_1 : 3; // Reserved
UINT32 GD : 1; // Global detect enable
UINT32 Reserved_2 : 2; // Reserved
UINT32 RW0 : 2; // Read/Write field
UINT32 LEN0 : 2; // Length field
UINT32 RW1 : 2; // Read/Write field
UINT32 LEN1 : 2; // Length field
UINT32 RW2 : 2; // Read/Write field
UINT32 LEN2 : 2; // Length field
UINT32 RW3 : 2; // Read/Write field
UINT32 LEN3 : 2; // Length field
} Bits;
UINTN UintN;
UINTN UintN;
} IA32_DR7;
#endif /* if defined (MDE_CPU_IA32) || defined (MDE_CPU_X64) */
typedef enum {
InstructionExecution, //Hardware breakpoint
DataWrite, //watch
DataRead, //rwatch
DataReadWrite, //awatch
SoftwareBreakpoint, //Software breakpoint
InstructionExecution, // Hardware breakpoint
DataWrite, // watch
DataRead, // rwatch
DataReadWrite, // awatch
SoftwareBreakpoint, // Software breakpoint
NotSupported
} BREAK_TYPE;
//
// Array of exception types that need to be hooked by the debugger
//
extern EFI_EXCEPTION_TYPE_ENTRY gExceptionType[];
extern EFI_EXCEPTION_TYPE_ENTRY gExceptionType[];
//
// Set TRUE if F Reply package signals a ctrl-c. We can not process the Ctrl-c
// here we need to wait for the periodic callback to do this.
//
extern BOOLEAN gCtrlCBreakFlag;
extern BOOLEAN gCtrlCBreakFlag;
//
// If the periodic callback is called while we are processing an F packet we need
// to let the callback know to not read from the serial stream as it could steal
// characters from the F response packet
//
extern BOOLEAN gProcessingFPacket;
extern BOOLEAN gProcessingFPacket;
// The offsets of registers SystemContext.
// The fields in the array are in the gdb ordering.
//
extern UINTN gRegisterOffsets[];
extern UINTN gRegisterOffsets[];
/**
Return the number of entries in the gExceptionType[]
@ -231,7 +224,6 @@ MaxEfiException (
VOID
);
/**
Return the number of entries in the gRegisters[]
@ -242,7 +234,6 @@ MaxRegisterCount (
VOID
);
/**
Check to see if the ISA is supported.
ISA = Instruction Set Architecture
@ -252,10 +243,9 @@ MaxRegisterCount (
**/
BOOLEAN
CheckIsa (
IN EFI_INSTRUCTION_SET_ARCHITECTURE Isa
IN EFI_INSTRUCTION_SET_ARCHITECTURE Isa
);
/**
Send the T signal with the given exception type (in gdb order) and possibly with n:r pairs related to the watchpoints
@ -269,7 +259,6 @@ GdbSendTSignal (
IN UINT8 GdbExceptionType
);
/**
Translates the EFI mapping to GDB mapping
@ -278,10 +267,9 @@ GdbSendTSignal (
**/
UINT8
ConvertEFItoGDBtype (
IN EFI_EXCEPTION_TYPE EFIExceptionType
IN EFI_EXCEPTION_TYPE EFIExceptionType
);
/**
Empties the given buffer
@param *Buf pointer to the first element in buffer to be emptied
@ -291,7 +279,6 @@ EmptyBuffer (
IN CHAR8 *Buf
);
/**
Converts an 8-bit Hex Char into a INTN.
@ -301,10 +288,9 @@ EmptyBuffer (
**/
INTN
HexCharToInt (
IN CHAR8 Char
IN CHAR8 Char
);
/** 'E NN'
Send an error with the given error number after converting to hex.
The error number is put into the buffer in hex. '255' is the biggest errno we can send.
@ -315,10 +301,9 @@ HexCharToInt (
VOID
EFIAPI
SendError (
IN UINT8 ErrorNum
IN UINT8 ErrorNum
);
/**
Send 'OK' when the function is done executing successfully.
**/
@ -328,7 +313,6 @@ SendSuccess (
VOID
);
/**
Send empty packet to specify that particular command/functionality is not supported.
**/
@ -349,7 +333,6 @@ ReadNthRegister (
IN CHAR8 *InBuffer
);
/** g
Reads the general registers into an output buffer and sends it as a packet
@param SystemContext Register content at time of the exception
@ -360,7 +343,6 @@ ReadGeneralRegisters (
IN EFI_SYSTEM_CONTEXT SystemContext
);
/** P n...=r...
Writes the new value of n-th register received into the input buffer to the n-th register
@param SystemContext Register content at time of the exception
@ -373,7 +355,6 @@ WriteNthRegister (
IN CHAR8 *InBuffer
);
/** G XX...
Writes the new values received into the input buffer to the general registers
@param SystemContext Register content at time of the exception
@ -387,7 +368,6 @@ WriteGeneralRegisters (
IN CHAR8 *InBuffer
);
/** m addr,length
Find the Length of the area to read and the start address. Finally, pass them to
another function, TransferFromMemToOutBufAndSend, that will read from that memory space and
@ -401,7 +381,6 @@ ReadFromMemory (
IN CHAR8 *PacketData
);
/** M addr,length :XX...
Find the Length of the area in bytes to write and the start address. Finally, pass them to
another function, TransferFromInBufToMem, that will write to that memory space the info in
@ -412,10 +391,9 @@ ReadFromMemory (
VOID
EFIAPI
WriteToMemory (
IN CHAR8 *PacketData
IN CHAR8 *PacketData
);
/** c [addr ]
Continue. addr is Address to resume. If addr is omitted, resume at current
Address.
@ -427,11 +405,10 @@ WriteToMemory (
VOID
EFIAPI
ContinueAtAddress (
IN EFI_SYSTEM_CONTEXT SystemContext,
IN CHAR8 *PacketData
IN EFI_SYSTEM_CONTEXT SystemContext,
IN CHAR8 *PacketData
);
/** s [addr ]
Single step. addr is the Address at which to resume. If addr is omitted, resume
at same Address.
@ -466,7 +443,6 @@ RemoveSingleStep (
IN EFI_SYSTEM_CONTEXT SystemContext
);
/**
Z1, [addr], [length]
Z2, [addr], [length]
@ -481,12 +457,11 @@ RemoveSingleStep (
**/
VOID
EFIAPI
InsertBreakPoint(
InsertBreakPoint (
IN EFI_SYSTEM_CONTEXT SystemContext,
IN CHAR8 *PacketData
);
/**
z1, [addr], [length]
z2, [addr], [length]
@ -501,12 +476,11 @@ InsertBreakPoint(
**/
VOID
EFIAPI
RemoveBreakPoint(
RemoveBreakPoint (
IN EFI_SYSTEM_CONTEXT SystemContext,
IN CHAR8 *PacketData
);
/**
Exception Handler for GDB. It will be called for all exceptions
registered via the gExceptionType[] array.
@ -522,7 +496,6 @@ GdbExceptionHandler (
IN OUT EFI_SYSTEM_CONTEXT SystemContext
);
/**
Periodic callback for GDB. This function is used to catch a ctrl-c or other
break in type command from GDB.
@ -536,7 +509,6 @@ GdbPeriodicCallBack (
IN OUT EFI_SYSTEM_CONTEXT SystemContext
);
/**
Make two serial consoles: 1) StdIn and StdOut via GDB. 2) StdErr via GDB.
@ -549,7 +521,6 @@ GdbInitializeSerialConsole (
VOID
);
/**
Send a GDB Remote Serial Protocol Packet
@ -566,10 +537,9 @@ GdbInitializeSerialConsole (
**/
UINTN
SendPacket (
IN CHAR8 *PacketData
IN CHAR8 *PacketData
);
/**
Receive a GDB Remote Serial Protocol Packet
@ -588,10 +558,9 @@ SendPacket (
**/
UINTN
ReceivePacket (
OUT CHAR8 *PacketData,
IN UINTN PacketDataSize
);
OUT CHAR8 *PacketData,
IN UINTN PacketDataSize
);
/**
Read data from a FileDescriptor. On success number of bytes read is returned. Zero indicates
@ -607,12 +576,11 @@ ReceivePacket (
**/
INTN
GdbRead (
IN INTN FileDescriptor,
OUT VOID *Buffer,
IN UINTN Count
IN INTN FileDescriptor,
OUT VOID *Buffer,
IN UINTN Count
);
/**
Write data to a FileDescriptor. On success number of bytes written is returned. Zero indicates
nothing was written. On error -1 is returned.
@ -627,29 +595,29 @@ GdbRead (
**/
INTN
GdbWrite (
IN INTN FileDescriptor,
OUT CONST VOID *Buffer,
IN UINTN Count
IN INTN FileDescriptor,
OUT CONST VOID *Buffer,
IN UINTN Count
);
UINTN *
FindPointerToRegister (
IN EFI_SYSTEM_CONTEXT SystemContext,
IN UINTN RegNumber
IN EFI_SYSTEM_CONTEXT SystemContext,
IN UINTN RegNumber
);
CHAR8 *
BasicReadRegister (
IN EFI_SYSTEM_CONTEXT SystemContext,
IN UINTN RegNumber,
IN CHAR8 *OutBufPtr
IN EFI_SYSTEM_CONTEXT SystemContext,
IN UINTN RegNumber,
IN CHAR8 *OutBufPtr
);
VOID
TransferFromInBufToMem (
IN UINTN Length,
IN UINT8 *Address,
IN CHAR8 *NewData
IN UINTN Length,
IN UINT8 *Address,
IN CHAR8 *NewData
);
VOID
@ -660,22 +628,22 @@ TransferFromMemToOutBufAndSend (
CHAR8 *
BasicWriteRegister (
IN EFI_SYSTEM_CONTEXT SystemContext,
IN UINTN RegNumber,
IN CHAR8 *InBufPtr
IN EFI_SYSTEM_CONTEXT SystemContext,
IN UINTN RegNumber,
IN CHAR8 *InBufPtr
);
VOID
PrintReg (
EFI_SYSTEM_CONTEXT SystemContext
EFI_SYSTEM_CONTEXT SystemContext
);
UINTN
ParseBreakpointPacket (
IN CHAR8 *PacketData,
OUT UINTN *Type,
OUT UINTN *Address,
OUT UINTN *Length
IN CHAR8 *PacketData,
OUT UINTN *Type,
OUT UINTN *Address,
OUT UINTN *Length
);
UINTN
@ -717,18 +685,18 @@ EnableDebugRegister (
EFI_STATUS
FindMatchingDebugRegister (
IN EFI_SYSTEM_CONTEXT SystemContext,
IN UINTN Address,
IN UINTN Length,
IN UINTN Type,
OUT UINTN *Register
);
IN EFI_SYSTEM_CONTEXT SystemContext,
IN UINTN Address,
IN UINTN Length,
IN UINTN Type,
OUT UINTN *Register
);
EFI_STATUS
DisableDebugRegister (
IN EFI_SYSTEM_CONTEXT SystemContext,
IN UINTN Register
);
IN EFI_SYSTEM_CONTEXT SystemContext,
IN UINTN Register
);
VOID
InitializeProcessor (
@ -742,8 +710,8 @@ ValidateAddress (
BOOLEAN
ValidateException (
IN EFI_EXCEPTION_TYPE ExceptionType,
IN OUT EFI_SYSTEM_CONTEXT SystemContext
IN EFI_EXCEPTION_TYPE ExceptionType,
IN OUT EFI_SYSTEM_CONTEXT SystemContext
);
#endif

View File

@ -13,52 +13,50 @@
// Array of exception types that need to be hooked by the debugger
// {EFI mapping, GDB mapping}
//
EFI_EXCEPTION_TYPE_ENTRY gExceptionType[] = {
{ EXCEPT_IA32_DIVIDE_ERROR, GDB_SIGFPE },
{ EXCEPT_IA32_DEBUG, GDB_SIGTRAP },
{ EXCEPT_IA32_NMI, GDB_SIGEMT },
{ EXCEPT_IA32_BREAKPOINT, GDB_SIGTRAP },
{ EXCEPT_IA32_OVERFLOW, GDB_SIGSEGV },
{ EXCEPT_IA32_BOUND, GDB_SIGSEGV },
{ EXCEPT_IA32_INVALID_OPCODE, GDB_SIGILL },
{ EXCEPT_IA32_DOUBLE_FAULT, GDB_SIGEMT },
{ EXCEPT_IA32_STACK_FAULT, GDB_SIGSEGV },
{ EXCEPT_IA32_GP_FAULT, GDB_SIGSEGV },
{ EXCEPT_IA32_PAGE_FAULT, GDB_SIGSEGV },
{ EXCEPT_IA32_FP_ERROR, GDB_SIGEMT },
{ EXCEPT_IA32_ALIGNMENT_CHECK, GDB_SIGEMT },
{ EXCEPT_IA32_MACHINE_CHECK, GDB_SIGEMT }
EFI_EXCEPTION_TYPE_ENTRY gExceptionType[] = {
{ EXCEPT_IA32_DIVIDE_ERROR, GDB_SIGFPE },
{ EXCEPT_IA32_DEBUG, GDB_SIGTRAP },
{ EXCEPT_IA32_NMI, GDB_SIGEMT },
{ EXCEPT_IA32_BREAKPOINT, GDB_SIGTRAP },
{ EXCEPT_IA32_OVERFLOW, GDB_SIGSEGV },
{ EXCEPT_IA32_BOUND, GDB_SIGSEGV },
{ EXCEPT_IA32_INVALID_OPCODE, GDB_SIGILL },
{ EXCEPT_IA32_DOUBLE_FAULT, GDB_SIGEMT },
{ EXCEPT_IA32_STACK_FAULT, GDB_SIGSEGV },
{ EXCEPT_IA32_GP_FAULT, GDB_SIGSEGV },
{ EXCEPT_IA32_PAGE_FAULT, GDB_SIGSEGV },
{ EXCEPT_IA32_FP_ERROR, GDB_SIGEMT },
{ EXCEPT_IA32_ALIGNMENT_CHECK, GDB_SIGEMT },
{ EXCEPT_IA32_MACHINE_CHECK, GDB_SIGEMT }
};
// The offsets of registers SystemContext.
// The fields in the array are in the gdb ordering.
//
//16 regs
UINTN gRegisterOffsets[] = {
OFFSET_OF(EFI_SYSTEM_CONTEXT_IA32, Eax),
OFFSET_OF(EFI_SYSTEM_CONTEXT_IA32, Ecx),
OFFSET_OF(EFI_SYSTEM_CONTEXT_IA32, Edx),
OFFSET_OF(EFI_SYSTEM_CONTEXT_IA32, Ebx),
OFFSET_OF(EFI_SYSTEM_CONTEXT_IA32, Esp),
OFFSET_OF(EFI_SYSTEM_CONTEXT_IA32, Ebp),
OFFSET_OF(EFI_SYSTEM_CONTEXT_IA32, Esi),
OFFSET_OF(EFI_SYSTEM_CONTEXT_IA32, Edi),
OFFSET_OF(EFI_SYSTEM_CONTEXT_IA32, Eip),
OFFSET_OF(EFI_SYSTEM_CONTEXT_IA32, Eflags),
OFFSET_OF(EFI_SYSTEM_CONTEXT_IA32, Cs),
OFFSET_OF(EFI_SYSTEM_CONTEXT_IA32, Ss),
OFFSET_OF(EFI_SYSTEM_CONTEXT_IA32, Ds),
OFFSET_OF(EFI_SYSTEM_CONTEXT_IA32, Es),
OFFSET_OF(EFI_SYSTEM_CONTEXT_IA32, Fs),
OFFSET_OF(EFI_SYSTEM_CONTEXT_IA32, Gs)
// 16 regs
UINTN gRegisterOffsets[] = {
OFFSET_OF (EFI_SYSTEM_CONTEXT_IA32, Eax),
OFFSET_OF (EFI_SYSTEM_CONTEXT_IA32, Ecx),
OFFSET_OF (EFI_SYSTEM_CONTEXT_IA32, Edx),
OFFSET_OF (EFI_SYSTEM_CONTEXT_IA32, Ebx),
OFFSET_OF (EFI_SYSTEM_CONTEXT_IA32, Esp),
OFFSET_OF (EFI_SYSTEM_CONTEXT_IA32, Ebp),
OFFSET_OF (EFI_SYSTEM_CONTEXT_IA32, Esi),
OFFSET_OF (EFI_SYSTEM_CONTEXT_IA32, Edi),
OFFSET_OF (EFI_SYSTEM_CONTEXT_IA32, Eip),
OFFSET_OF (EFI_SYSTEM_CONTEXT_IA32, Eflags),
OFFSET_OF (EFI_SYSTEM_CONTEXT_IA32, Cs),
OFFSET_OF (EFI_SYSTEM_CONTEXT_IA32, Ss),
OFFSET_OF (EFI_SYSTEM_CONTEXT_IA32, Ds),
OFFSET_OF (EFI_SYSTEM_CONTEXT_IA32, Es),
OFFSET_OF (EFI_SYSTEM_CONTEXT_IA32, Fs),
OFFSET_OF (EFI_SYSTEM_CONTEXT_IA32, Gs)
};
//Debug only..
// Debug only..
VOID
PrintReg (
IN EFI_SYSTEM_CONTEXT SystemContext
IN EFI_SYSTEM_CONTEXT SystemContext
)
{
Print ((CHAR16 *)L"EAX: %x ", SystemContext.SystemContextIa32->Eax);
@ -73,10 +71,10 @@ PrintReg (
Print ((CHAR16 *)L"EFlags: %x\n", SystemContext.SystemContextIa32->Eflags);
}
//Debug only..
// Debug only..
VOID
PrintDRreg (
IN EFI_SYSTEM_CONTEXT SystemContext
IN EFI_SYSTEM_CONTEXT SystemContext
)
{
Print ((CHAR16 *)L"DR0: %x ", SystemContext.SystemContextIa32->Dr0);
@ -87,7 +85,6 @@ PrintDRreg (
Print ((CHAR16 *)L"DR7: %x\n", SystemContext.SystemContextIa32->Dr7);
}
/**
Return the number of entries in the gExceptionType[]
@ -101,7 +98,6 @@ MaxEfiException (
return sizeof (gExceptionType)/sizeof (EFI_EXCEPTION_TYPE_ENTRY);
}
/**
Return the number of entries in the gRegisters[]
@ -115,7 +111,6 @@ MaxRegisterCount (
return sizeof (gRegisterOffsets)/sizeof (UINTN);
}
/**
Check to see if the ISA is supported.
ISA = Instruction Set Architecture
@ -131,7 +126,6 @@ CheckIsa (
return (BOOLEAN)(Isa == IsaIa32);
}
/**
This takes in the register number and the System Context, and returns a pointer to the RegNumber-th register in gdb ordering
It is, by default, set to find the register pointer of the IA32 member
@ -146,12 +140,12 @@ FindPointerToRegister (
IN UINTN RegNumber
)
{
UINT8 *TempPtr;
UINT8 *TempPtr;
TempPtr = ((UINT8 *)SystemContext.SystemContextIa32) + gRegisterOffsets[RegNumber];
return (UINTN *)TempPtr;
}
/**
Adds the RegNumber-th register's value to the output buffer, starting at the given OutBufPtr
@ -162,23 +156,23 @@ FindPointerToRegister (
**/
CHAR8 *
BasicReadRegister (
IN EFI_SYSTEM_CONTEXT SystemContext,
IN UINTN RegNumber,
IN CHAR8 *OutBufPtr
IN EFI_SYSTEM_CONTEXT SystemContext,
IN UINTN RegNumber,
IN CHAR8 *OutBufPtr
)
{
UINTN RegSize;
UINTN RegSize;
RegSize = 0;
while (RegSize < REG_SIZE) {
*OutBufPtr++ = mHexToStr[((*FindPointerToRegister (SystemContext, RegNumber) >> (RegSize+4)) & 0xf)];
*OutBufPtr++ = mHexToStr[((*FindPointerToRegister (SystemContext, RegNumber) >> RegSize) & 0xf)];
RegSize = RegSize + 8;
RegSize = RegSize + 8;
}
return OutBufPtr;
}
/** p n
Reads the n-th register's value into an output buffer and sends it as a packet
@ -188,17 +182,17 @@ BasicReadRegister (
VOID
EFIAPI
ReadNthRegister (
IN EFI_SYSTEM_CONTEXT SystemContext,
IN CHAR8 *InBuffer
IN EFI_SYSTEM_CONTEXT SystemContext,
IN CHAR8 *InBuffer
)
{
UINTN RegNumber;
CHAR8 OutBuffer[9]; // 1 reg=8 hex chars, and the end '\0' (escape seq)
CHAR8 *OutBufPtr; // pointer to the output buffer
UINTN RegNumber;
CHAR8 OutBuffer[9]; // 1 reg=8 hex chars, and the end '\0' (escape seq)
CHAR8 *OutBufPtr; // pointer to the output buffer
RegNumber = AsciiStrHexToUintn (&InBuffer[1]);
if ((RegNumber < 0) || (RegNumber >= MaxRegisterCount())) {
if ((RegNumber < 0) || (RegNumber >= MaxRegisterCount ())) {
SendError (GDB_EINVALIDREGNUM);
return;
}
@ -207,10 +201,9 @@ ReadNthRegister (
OutBufPtr = BasicReadRegister (SystemContext, RegNumber, OutBufPtr);
*OutBufPtr = '\0'; // the end of the buffer
SendPacket(OutBuffer);
SendPacket (OutBuffer);
}
/** g
Reads the general registers into an output buffer and sends it as a packet
@ -219,23 +212,23 @@ ReadNthRegister (
VOID
EFIAPI
ReadGeneralRegisters (
IN EFI_SYSTEM_CONTEXT SystemContext
IN EFI_SYSTEM_CONTEXT SystemContext
)
{
UINTN i;
CHAR8 OutBuffer[129]; // 16 regs, 8 hex chars each, and the end '\0' (escape seq)
CHAR8 *OutBufPtr; // pointer to the output buffer
UINTN i;
CHAR8 OutBuffer[129]; // 16 regs, 8 hex chars each, and the end '\0' (escape seq)
CHAR8 *OutBufPtr; // pointer to the output buffer
OutBufPtr = OutBuffer;
for (i = 0 ; i < MaxRegisterCount() ; i++) { // there are only 16 registers to read
for (i = 0; i < MaxRegisterCount (); i++) {
// there are only 16 registers to read
OutBufPtr = BasicReadRegister (SystemContext, i, OutBufPtr);
}
*OutBufPtr = '\0'; // the end of the buffer
SendPacket(OutBuffer);
SendPacket (OutBuffer);
}
/**
Adds the RegNumber-th register's value to the output buffer, starting at the given OutBufPtr
@ -246,27 +239,27 @@ ReadGeneralRegisters (
**/
CHAR8 *
BasicWriteRegister (
IN EFI_SYSTEM_CONTEXT SystemContext,
IN UINTN RegNumber,
IN CHAR8 *InBufPtr
IN EFI_SYSTEM_CONTEXT SystemContext,
IN UINTN RegNumber,
IN CHAR8 *InBufPtr
)
{
UINTN RegSize;
UINTN TempValue; // the value transferred from a hex char
UINT32 NewValue; // the new value of the RegNumber-th Register
UINTN RegSize;
UINTN TempValue; // the value transferred from a hex char
UINT32 NewValue; // the new value of the RegNumber-th Register
NewValue = 0;
RegSize = 0;
RegSize = 0;
while (RegSize < REG_SIZE) {
TempValue = HexCharToInt(*InBufPtr++);
TempValue = HexCharToInt (*InBufPtr++);
if (TempValue < 0) {
if (TempValue < 0) {
SendError (GDB_EBADMEMDATA);
return NULL;
}
NewValue += (TempValue << (RegSize+4));
TempValue = HexCharToInt(*InBufPtr++);
TempValue = HexCharToInt (*InBufPtr++);
if (TempValue < 0) {
SendError (GDB_EBADMEMDATA);
@ -274,13 +267,13 @@ BasicWriteRegister (
}
NewValue += (TempValue << RegSize);
RegSize = RegSize + 8;
RegSize = RegSize + 8;
}
*(FindPointerToRegister (SystemContext, RegNumber)) = NewValue;
return InBufPtr;
}
/** P n...=r...
Writes the new value of n-th register received into the input buffer to the n-th register
@ -290,35 +283,36 @@ BasicWriteRegister (
VOID
EFIAPI
WriteNthRegister (
IN EFI_SYSTEM_CONTEXT SystemContext,
IN CHAR8 *InBuffer
IN EFI_SYSTEM_CONTEXT SystemContext,
IN CHAR8 *InBuffer
)
{
UINTN RegNumber;
CHAR8 RegNumBuffer[MAX_REG_NUM_BUF_SIZE]; // put the 'n..' part of the message into this array
CHAR8 *RegNumBufPtr;
CHAR8 *InBufPtr; // pointer to the input buffer
UINTN RegNumber;
CHAR8 RegNumBuffer[MAX_REG_NUM_BUF_SIZE]; // put the 'n..' part of the message into this array
CHAR8 *RegNumBufPtr;
CHAR8 *InBufPtr; // pointer to the input buffer
// find the register number to write
InBufPtr = &InBuffer[1];
InBufPtr = &InBuffer[1];
RegNumBufPtr = RegNumBuffer;
while (*InBufPtr != '=') {
*RegNumBufPtr++ = *InBufPtr++;
}
*RegNumBufPtr = '\0';
RegNumber = AsciiStrHexToUintn (RegNumBuffer);
RegNumber = AsciiStrHexToUintn (RegNumBuffer);
// check if this is a valid Register Number
if ((RegNumber < 0) || (RegNumber >= MaxRegisterCount())) {
if ((RegNumber < 0) || (RegNumber >= MaxRegisterCount ())) {
SendError (GDB_EINVALIDREGNUM);
return;
}
InBufPtr++; // skips the '=' character
BasicWriteRegister (SystemContext, RegNumber, InBufPtr);
SendSuccess();
SendSuccess ();
}
/** G XX...
Writes the new values received into the input buffer to the general registers
@ -328,17 +322,18 @@ WriteNthRegister (
VOID
EFIAPI
WriteGeneralRegisters (
IN EFI_SYSTEM_CONTEXT SystemContext,
IN CHAR8 *InBuffer
IN EFI_SYSTEM_CONTEXT SystemContext,
IN CHAR8 *InBuffer
)
{
UINTN i;
CHAR8 *InBufPtr; /// pointer to the input buffer
CHAR8 *InBufPtr; /// pointer to the input buffer
// check to see if the buffer is the right size which is
// 1 (for 'G') + 16 (for 16 registers) * 8 ( for 8 hex chars each) = 129
if (AsciiStrLen(InBuffer) != 129) { // 16 regs, 8 hex chars each, and the end '\0' (escape seq)
//Bad message. Message is not the right length
if (AsciiStrLen (InBuffer) != 129) {
// 16 regs, 8 hex chars each, and the end '\0' (escape seq)
// Bad message. Message is not the right length
SendError (GDB_EBADBUFSIZE);
return;
}
@ -347,14 +342,14 @@ WriteGeneralRegisters (
// Read the new values for the registers from the input buffer to an array, NewValueArray.
// The values in the array are in the gdb ordering
for (i=0; i < MaxRegisterCount(); i++) { // there are only 16 registers to write
for (i = 0; i < MaxRegisterCount (); i++) {
// there are only 16 registers to write
InBufPtr = BasicWriteRegister (SystemContext, i, InBufPtr);
}
SendSuccess();
SendSuccess ();
}
/**
Insert Single Step in the SystemContext
@ -365,10 +360,9 @@ AddSingleStep (
IN EFI_SYSTEM_CONTEXT SystemContext
)
{
SystemContext.SystemContextIa32->Eflags |= TF_BIT; //Setting the TF bit.
SystemContext.SystemContextIa32->Eflags |= TF_BIT; // Setting the TF bit.
}
/**
Remove Single Step in the SystemContext
@ -382,8 +376,6 @@ RemoveSingleStep (
SystemContext.SystemContextIa32->Eflags &= ~TF_BIT; // clearing the TF bit.
}
/** c [addr ]
Continue. addr is Address to resume. If addr is omitted, resume at current
Address.
@ -393,8 +385,8 @@ RemoveSingleStep (
VOID
EFIAPI
ContinueAtAddress (
IN EFI_SYSTEM_CONTEXT SystemContext,
IN CHAR8 *PacketData
IN EFI_SYSTEM_CONTEXT SystemContext,
IN CHAR8 *PacketData
)
{
if (PacketData[1] != '\0') {
@ -402,7 +394,6 @@ ContinueAtAddress (
}
}
/** s [addr ]
Single step. addr is the Address at which to resume. If addr is omitted, resume
at same Address.
@ -412,8 +403,8 @@ ContinueAtAddress (
VOID
EFIAPI
SingleStep (
IN EFI_SYSTEM_CONTEXT SystemContext,
IN CHAR8 *PacketData
IN EFI_SYSTEM_CONTEXT SystemContext,
IN CHAR8 *PacketData
)
{
if (PacketData[1] != '\0') {
@ -423,7 +414,6 @@ SingleStep (
AddSingleStep (SystemContext);
}
/**
Returns breakpoint data address from DR0-DR3 based on the input breakpoint number
@ -439,7 +429,7 @@ GetBreakpointDataAddress (
IN UINTN BreakpointNumber
)
{
UINTN Address;
UINTN Address;
if (BreakpointNumber == 1) {
Address = SystemContext.SystemContextIa32->Dr0;
@ -456,7 +446,6 @@ GetBreakpointDataAddress (
return Address;
}
/**
Returns currently detected breakpoint value based on the register DR6 B0-B3 field.
If no breakpoint is detected then it returns 0.
@ -472,8 +461,8 @@ GetBreakpointDetected (
IN EFI_SYSTEM_CONTEXT SystemContext
)
{
IA32_DR6 Dr6;
UINTN BreakpointNumber;
IA32_DR6 Dr6;
UINTN BreakpointNumber;
Dr6.UintN = SystemContext.SystemContextIa32->Dr6;
@ -486,13 +475,12 @@ GetBreakpointDetected (
} else if (Dr6.Bits.B3 == 1) {
BreakpointNumber = 4;
} else {
BreakpointNumber = 0; //No breakpoint detected
BreakpointNumber = 0; // No breakpoint detected
}
return BreakpointNumber;
}
/**
Returns Breakpoint type (InstructionExecution, DataWrite, DataRead or DataReadWrite)
based on the Breakpoint number
@ -510,25 +498,24 @@ GetBreakpointType (
IN UINTN BreakpointNumber
)
{
IA32_DR7 Dr7;
BREAK_TYPE Type = NotSupported; //Default is NotSupported type
IA32_DR7 Dr7;
BREAK_TYPE Type = NotSupported; // Default is NotSupported type
Dr7.UintN = SystemContext.SystemContextIa32->Dr7;
if (BreakpointNumber == 1) {
Type = (BREAK_TYPE) Dr7.Bits.RW0;
Type = (BREAK_TYPE)Dr7.Bits.RW0;
} else if (BreakpointNumber == 2) {
Type = (BREAK_TYPE) Dr7.Bits.RW1;
Type = (BREAK_TYPE)Dr7.Bits.RW1;
} else if (BreakpointNumber == 3) {
Type = (BREAK_TYPE) Dr7.Bits.RW2;
Type = (BREAK_TYPE)Dr7.Bits.RW2;
} else if (BreakpointNumber == 4) {
Type = (BREAK_TYPE) Dr7.Bits.RW3;
Type = (BREAK_TYPE)Dr7.Bits.RW3;
}
return Type;
}
/**
Parses Length and returns the length which DR7 LENn field accepts.
For example: If we receive 1-Byte length then we should return 0.
@ -541,21 +528,24 @@ GetBreakpointType (
**/
UINTN
ConvertLengthData (
IN UINTN Length
IN UINTN Length
)
{
if (Length == 1) { //1-Byte length
if (Length == 1) {
// 1-Byte length
return 0;
} else if (Length == 2) { //2-Byte length
} else if (Length == 2) {
// 2-Byte length
return 1;
} else if (Length == 4) { //4-Byte length
} else if (Length == 4) {
// 4-Byte length
return 3;
} else { //Undefined or 8-byte length
} else {
// Undefined or 8-byte length
return 2;
}
}
/**
Finds the next free debug register. If all the registers are occupied then
EFI_OUT_OF_RESOURCES is returned.
@ -572,7 +562,7 @@ FindNextFreeDebugRegister (
OUT UINTN *Register
)
{
IA32_DR7 Dr7;
IA32_DR7 Dr7;
Dr7.UintN = SystemContext.SystemContextIa32->Dr7;
@ -591,7 +581,6 @@ FindNextFreeDebugRegister (
return EFI_SUCCESS;
}
/**
Enables the debug register. Writes Address value to appropriate DR0-3 register.
Sets LENn, Gn, RWn bits in DR7 register.
@ -616,56 +605,56 @@ EnableDebugRegister (
{
IA32_DR7 Dr7;
//Convert length data
// Convert length data
Length = ConvertLengthData (Length);
//For Instruction execution, length should be 0
//(Ref. Intel reference manual 18.2.4)
// For Instruction execution, length should be 0
// (Ref. Intel reference manual 18.2.4)
if ((Type == 0) && (Length != 0)) {
return EFI_INVALID_PARAMETER;
}
//Hardware doesn't support ReadWatch (z3 packet) type. GDB can handle
//software breakpoint. We should send empty packet in both these cases.
// Hardware doesn't support ReadWatch (z3 packet) type. GDB can handle
// software breakpoint. We should send empty packet in both these cases.
if ((Type == (BREAK_TYPE)DataRead) ||
(Type == (BREAK_TYPE)SoftwareBreakpoint)) {
(Type == (BREAK_TYPE)SoftwareBreakpoint))
{
return EFI_UNSUPPORTED;
}
//Read DR7 so appropriate Gn, RWn and LENn bits can be modified.
// Read DR7 so appropriate Gn, RWn and LENn bits can be modified.
Dr7.UintN = SystemContext.SystemContextIa32->Dr7;
if (Register == 0) {
SystemContext.SystemContextIa32->Dr0 = Address;
Dr7.Bits.G0 = 1;
Dr7.Bits.RW0 = Type;
Dr7.Bits.LEN0 = Length;
Dr7.Bits.G0 = 1;
Dr7.Bits.RW0 = Type;
Dr7.Bits.LEN0 = Length;
} else if (Register == 1) {
SystemContext.SystemContextIa32->Dr1 = Address;
Dr7.Bits.G1 = 1;
Dr7.Bits.RW1 = Type;
Dr7.Bits.LEN1 = Length;
Dr7.Bits.G1 = 1;
Dr7.Bits.RW1 = Type;
Dr7.Bits.LEN1 = Length;
} else if (Register == 2) {
SystemContext.SystemContextIa32->Dr2 = Address;
Dr7.Bits.G2 = 1;
Dr7.Bits.RW2 = Type;
Dr7.Bits.LEN2 = Length;
Dr7.Bits.G2 = 1;
Dr7.Bits.RW2 = Type;
Dr7.Bits.LEN2 = Length;
} else if (Register == 3) {
SystemContext.SystemContextIa32->Dr3 = Address;
Dr7.Bits.G3 = 1;
Dr7.Bits.RW3 = Type;
Dr7.Bits.LEN3 = Length;
Dr7.Bits.G3 = 1;
Dr7.Bits.RW3 = Type;
Dr7.Bits.LEN3 = Length;
} else {
return EFI_INVALID_PARAMETER;
}
//Update Dr7 with appropriate Gn, RWn and LENn bits
// Update Dr7 with appropriate Gn, RWn and LENn bits
SystemContext.SystemContextIa32->Dr7 = Dr7.UintN;
return EFI_SUCCESS;
}
/**
Returns register number 0 - 3 for the matching debug register.
This function compares incoming Address, Type, Length and
@ -684,46 +673,51 @@ EnableDebugRegister (
**/
EFI_STATUS
FindMatchingDebugRegister (
IN EFI_SYSTEM_CONTEXT SystemContext,
IN UINTN Address,
IN UINTN Length,
IN UINTN Type,
OUT UINTN *Register
)
IN EFI_SYSTEM_CONTEXT SystemContext,
IN UINTN Address,
IN UINTN Length,
IN UINTN Type,
OUT UINTN *Register
)
{
IA32_DR7 Dr7;
IA32_DR7 Dr7;
//Hardware doesn't support ReadWatch (z3 packet) type. GDB can handle
//software breakpoint. We should send empty packet in both these cases.
// Hardware doesn't support ReadWatch (z3 packet) type. GDB can handle
// software breakpoint. We should send empty packet in both these cases.
if ((Type == (BREAK_TYPE)DataRead) ||
(Type == (BREAK_TYPE)SoftwareBreakpoint)) {
(Type == (BREAK_TYPE)SoftwareBreakpoint))
{
return EFI_UNSUPPORTED;
}
//Convert length data
Length = ConvertLengthData(Length);
// Convert length data
Length = ConvertLengthData (Length);
Dr7.UintN = SystemContext.SystemContextIa32->Dr7;
if ((Dr7.Bits.G0 == 1) &&
(Dr7.Bits.LEN0 == Length) &&
(Dr7.Bits.RW0 == Type) &&
(Address == SystemContext.SystemContextIa32->Dr0)) {
(Address == SystemContext.SystemContextIa32->Dr0))
{
*Register = 0;
} else if ((Dr7.Bits.G1 == 1) &&
(Dr7.Bits.LEN1 == Length) &&
(Dr7.Bits.RW1 == Type) &&
(Address == SystemContext.SystemContextIa32->Dr1)) {
(Address == SystemContext.SystemContextIa32->Dr1))
{
*Register = 1;
} else if ((Dr7.Bits.G2 == 1) &&
(Dr7.Bits.LEN2 == Length) &&
(Dr7.Bits.RW2 == Type) &&
(Address == SystemContext.SystemContextIa32->Dr2)) {
(Address == SystemContext.SystemContextIa32->Dr2))
{
*Register = 2;
} else if ((Dr7.Bits.G3 == 1) &&
(Dr7.Bits.LEN3 == Length) &&
(Dr7.Bits.RW3 == Type) &&
(Address == SystemContext.SystemContextIa32->Dr3)) {
(Address == SystemContext.SystemContextIa32->Dr3))
{
*Register = 3;
} else {
Print ((CHAR16 *)L"No match found..\n");
@ -733,7 +727,6 @@ FindMatchingDebugRegister (
return EFI_SUCCESS;
}
/**
Disables the particular debug register.
@ -745,47 +738,46 @@ FindMatchingDebugRegister (
**/
EFI_STATUS
DisableDebugRegister (
IN EFI_SYSTEM_CONTEXT SystemContext,
IN UINTN Register
)
IN EFI_SYSTEM_CONTEXT SystemContext,
IN UINTN Register
)
{
IA32_DR7 Dr7;
UINTN Address = 0;
UINTN Address = 0;
//Read DR7 register so appropriate Gn, RWn and LENn bits can be turned off.
// Read DR7 register so appropriate Gn, RWn and LENn bits can be turned off.
Dr7.UintN = SystemContext.SystemContextIa32->Dr7;
if (Register == 0) {
SystemContext.SystemContextIa32->Dr0 = Address;
Dr7.Bits.G0 = 0;
Dr7.Bits.RW0 = 0;
Dr7.Bits.LEN0 = 0;
Dr7.Bits.G0 = 0;
Dr7.Bits.RW0 = 0;
Dr7.Bits.LEN0 = 0;
} else if (Register == 1) {
SystemContext.SystemContextIa32->Dr1 = Address;
Dr7.Bits.G1 = 0;
Dr7.Bits.RW1 = 0;
Dr7.Bits.LEN1 = 0;
Dr7.Bits.G1 = 0;
Dr7.Bits.RW1 = 0;
Dr7.Bits.LEN1 = 0;
} else if (Register == 2) {
SystemContext.SystemContextIa32->Dr2 = Address;
Dr7.Bits.G2 = 0;
Dr7.Bits.RW2 = 0;
Dr7.Bits.LEN2 = 0;
Dr7.Bits.G2 = 0;
Dr7.Bits.RW2 = 0;
Dr7.Bits.LEN2 = 0;
} else if (Register == 3) {
SystemContext.SystemContextIa32->Dr3 = Address;
Dr7.Bits.G3 = 0;
Dr7.Bits.RW3 = 0;
Dr7.Bits.LEN3 = 0;
Dr7.Bits.G3 = 0;
Dr7.Bits.RW3 = 0;
Dr7.Bits.LEN3 = 0;
} else {
return EFI_INVALID_PARAMETER;
}
//Update DR7 register so appropriate Gn, RWn and LENn bits can be turned off.
// Update DR7 register so appropriate Gn, RWn and LENn bits can be turned off.
SystemContext.SystemContextIa32->Dr7 = Dr7.UintN;
return EFI_SUCCESS;
}
/**
Z1, [addr], [length]
Z2, [addr], [length]
@ -802,16 +794,16 @@ VOID
EFIAPI
InsertBreakPoint (
IN EFI_SYSTEM_CONTEXT SystemContext,
IN CHAR8 *PacketData
IN CHAR8 *PacketData
)
{
UINTN Type;
UINTN Address;
UINTN Length;
UINTN Register;
EFI_STATUS Status;
BREAK_TYPE BreakType = NotSupported;
UINTN ErrorCode;
UINTN Type;
UINTN Address;
UINTN Length;
UINTN Register;
EFI_STATUS Status;
BREAK_TYPE BreakType = NotSupported;
UINTN ErrorCode;
ErrorCode = ParseBreakpointPacket (PacketData, &Type, &Address, &Length);
if (ErrorCode > 0) {
@ -820,28 +812,27 @@ InsertBreakPoint (
}
switch (Type) {
case 0: //Software breakpoint
case 0: // Software breakpoint
BreakType = SoftwareBreakpoint;
break;
case 1: //Hardware breakpoint
case 1: // Hardware breakpoint
BreakType = InstructionExecution;
break;
case 2: //Write watchpoint
case 2: // Write watchpoint
BreakType = DataWrite;
break;
case 3: //Read watchpoint
case 3: // Read watchpoint
BreakType = DataRead;
break;
case 4: //Access watchpoint
case 4: // Access watchpoint
BreakType = DataReadWrite;
break;
default :
default:
Print ((CHAR16 *)L"Insert breakpoint default: %x\n", Type);
SendError (GDB_EINVALIDBRKPOINTTYPE);
return;
@ -849,7 +840,7 @@ InsertBreakPoint (
// Find next free debug register
Status = FindNextFreeDebugRegister (SystemContext, &Register);
if (EFI_ERROR(Status)) {
if (EFI_ERROR (Status)) {
Print ((CHAR16 *)L"No space left on device\n");
SendError (GDB_ENOSPACE);
return;
@ -857,8 +848,7 @@ InsertBreakPoint (
// Write Address, length data at particular DR register
Status = EnableDebugRegister (SystemContext, Register, Address, Length, (UINTN)BreakType);
if (EFI_ERROR(Status)) {
if (EFI_ERROR (Status)) {
if (Status == EFI_UNSUPPORTED) {
Print ((CHAR16 *)L"Not supported\n");
SendNotSupported ();
@ -873,7 +863,6 @@ InsertBreakPoint (
SendSuccess ();
}
/**
z1, [addr], [length]
z2, [addr], [length]
@ -892,15 +881,15 @@ RemoveBreakPoint (
IN CHAR8 *PacketData
)
{
UINTN Type;
UINTN Address;
UINTN Length;
UINTN Register;
BREAK_TYPE BreakType = NotSupported;
EFI_STATUS Status;
UINTN ErrorCode;
UINTN Type;
UINTN Address;
UINTN Length;
UINTN Register;
BREAK_TYPE BreakType = NotSupported;
EFI_STATUS Status;
UINTN ErrorCode;
//Parse breakpoint packet data
// Parse breakpoint packet data
ErrorCode = ParseBreakpointPacket (PacketData, &Type, &Address, &Length);
if (ErrorCode > 0) {
SendError ((UINT8)ErrorCode);
@ -908,36 +897,34 @@ RemoveBreakPoint (
}
switch (Type) {
case 0: //Software breakpoint
case 0: // Software breakpoint
BreakType = SoftwareBreakpoint;
break;
case 1: //Hardware breakpoint
case 1: // Hardware breakpoint
BreakType = InstructionExecution;
break;
case 2: //Write watchpoint
case 2: // Write watchpoint
BreakType = DataWrite;
break;
case 3: //Read watchpoint
case 3: // Read watchpoint
BreakType = DataRead;
break;
case 4: //Access watchpoint
case 4: // Access watchpoint
BreakType = DataReadWrite;
break;
default :
default:
SendError (GDB_EINVALIDBRKPOINTTYPE);
return;
}
//Find matching debug register
// Find matching debug register
Status = FindMatchingDebugRegister (SystemContext, Address, Length, (UINTN)BreakType, &Register);
if (EFI_ERROR(Status)) {
if (EFI_ERROR (Status)) {
if (Status == EFI_UNSUPPORTED) {
Print ((CHAR16 *)L"Not supported.\n");
SendNotSupported ();
@ -949,9 +936,9 @@ RemoveBreakPoint (
return;
}
//Remove breakpoint
// Remove breakpoint
Status = DisableDebugRegister (SystemContext, Register);
if (EFI_ERROR(Status)) {
if (EFI_ERROR (Status)) {
Print ((CHAR16 *)L"Invalid argument.\n");
SendError (GDB_EINVALIDARG);
return;
@ -960,7 +947,6 @@ RemoveBreakPoint (
SendSuccess ();
}
VOID
InitializeProcessor (
VOID
@ -978,10 +964,9 @@ ValidateAddress (
BOOLEAN
ValidateException (
IN EFI_EXCEPTION_TYPE ExceptionType,
IN OUT EFI_SYSTEM_CONTEXT SystemContext
IN EFI_EXCEPTION_TYPE ExceptionType,
IN OUT EFI_SYSTEM_CONTEXT SystemContext
)
{
return TRUE;
}

View File

@ -18,14 +18,14 @@
// Set TRUE if F Reply package signals a ctrl-c. We can not process the Ctrl-c
// here we need to wait for the periodic callback to do this.
//
BOOLEAN gCtrlCBreakFlag = FALSE;
BOOLEAN gCtrlCBreakFlag = FALSE;
//
// If the periodic callback is called while we are processing an F packet we need
// to let the callback know to not read from the serial stream as it could steal
// characters from the F response packet
//
BOOLEAN gProcessingFPacket = FALSE;
BOOLEAN gProcessingFPacket = FALSE;
/**
Process a control-C break message.
@ -35,21 +35,19 @@ BOOLEAN gProcessingFPacket = FALSE;
@param ErrNo Error information from the F reply packet or other source
**/
VOID
GdbCtrlCBreakMessage (
IN UINTN ErrNo
IN UINTN ErrNo
)
{
// See D.10.5 of gdb.pdf
// This should look like a break message. Should look like SIGINT
/* TODO: Make sure if we should do anything with ErrNo */
//Turn on the global Ctrl-C flag.
// Turn on the global Ctrl-C flag.
gCtrlCBreakFlag = TRUE;
}
/**
Parse the F reply packet and extract the return value and an ErrNo if it exists.
@ -62,11 +60,11 @@ GdbCtrlCBreakMessage (
**/
INTN
GdbParseFReplyPacket (
IN CHAR8 *Packet,
OUT UINTN *ErrNo
IN CHAR8 *Packet,
OUT UINTN *ErrNo
)
{
INTN RetCode;
INTN RetCode;
if (Packet[0] != 'F') {
// A valid response would be an F packet
@ -76,7 +74,9 @@ GdbParseFReplyPacket (
RetCode = AsciiStrHexToUintn (&Packet[1]);
// Find 1st comma
for (;*Packet != '\0' && *Packet != ','; Packet++);
for ( ; *Packet != '\0' && *Packet != ','; Packet++) {
}
if (*Packet == '\0') {
*ErrNo = 0;
return RetCode;
@ -85,7 +85,9 @@ GdbParseFReplyPacket (
*ErrNo = AsciiStrHexToUintn (++Packet);
// Find 2nd comma
for (;*Packet != '\0' && *Packet != ','; Packet++);
for ( ; *Packet != '\0' && *Packet != ','; Packet++) {
}
if (*Packet == '\0') {
return RetCode;
}
@ -97,7 +99,6 @@ GdbParseFReplyPacket (
return RetCode;
}
/**
Read data from a FileDescriptor. On success number of bytes read is returned. Zero indicates
the end of a file. On error -1 is returned. If count is zero, GdbRead returns zero.
@ -112,16 +113,16 @@ GdbParseFReplyPacket (
**/
INTN
GdbRead (
IN INTN FileDescriptor,
OUT VOID *Buffer,
IN UINTN Count
IN INTN FileDescriptor,
OUT VOID *Buffer,
IN UINTN Count
)
{
CHAR8 Packet[128];
UINTN Size;
INTN RetCode;
UINTN ErrNo;
BOOLEAN ReceiveDone = FALSE;
CHAR8 Packet[128];
UINTN Size;
INTN RetCode;
UINTN ErrNo;
BOOLEAN ReceiveDone = FALSE;
// Send:
// "Fread,XX,YYYYYYYY,XX
@ -146,23 +147,23 @@ GdbRead (
// Process GDB commands
switch (Packet[0]) {
//Write memory command.
//M addr,length:XX...
// Write memory command.
// M addr,length:XX...
case 'M':
WriteToMemory (Packet);
break;
//Fretcode, errno, Ctrl-C flag
//retcode - Count read
// Fretcode, errno, Ctrl-C flag
// retcode - Count read
case 'F':
//Once target receives F reply packet that means the previous
//transactions are finished.
// Once target receives F reply packet that means the previous
// transactions are finished.
ReceiveDone = TRUE;
break;
//Send empty buffer
default :
SendNotSupported();
// Send empty buffer
default:
SendNotSupported ();
break;
}
} while (ReceiveDone == FALSE);
@ -171,7 +172,7 @@ GdbRead (
Print ((CHAR16 *)L"RetCode: %x..ErrNo: %x..\n", RetCode, ErrNo);
if (ErrNo > 0) {
//Send error to the host if there is any.
// Send error to the host if there is any.
SendError ((UINT8)ErrNo);
}
@ -180,7 +181,6 @@ GdbRead (
return RetCode;
}
/**
Write data to a FileDescriptor. On success number of bytes written is returned. Zero indicates
nothing was written. On error -1 is returned.
@ -195,16 +195,16 @@ GdbRead (
**/
INTN
GdbWrite (
IN INTN FileDescriptor,
OUT CONST VOID *Buffer,
IN UINTN Count
IN INTN FileDescriptor,
OUT CONST VOID *Buffer,
IN UINTN Count
)
{
CHAR8 Packet[128];
UINTN Size;
INTN RetCode;
UINTN ErrNo;
BOOLEAN ReceiveDone = FALSE;
CHAR8 Packet[128];
UINTN Size;
INTN RetCode;
UINTN ErrNo;
BOOLEAN ReceiveDone = FALSE;
// Send:
// #Fwrite,XX,YYYYYYYY,XX$SS
@ -228,23 +228,23 @@ GdbWrite (
// Process GDB commands
switch (Packet[0]) {
//Read memory command.
//m addr,length.
// Read memory command.
// m addr,length.
case 'm':
ReadFromMemory (Packet);
break;
//Fretcode, errno, Ctrl-C flag
//retcode - Count read
// Fretcode, errno, Ctrl-C flag
// retcode - Count read
case 'F':
//Once target receives F reply packet that means the previous
//transactions are finished.
// Once target receives F reply packet that means the previous
// transactions are finished.
ReceiveDone = TRUE;
break;
//Send empty buffer
default :
SendNotSupported();
// Send empty buffer
default:
SendNotSupported ();
break;
}
} while (ReceiveDone == FALSE);
@ -252,15 +252,14 @@ GdbWrite (
RetCode = GdbParseFReplyPacket (Packet, &ErrNo);
Print ((CHAR16 *)L"RetCode: %x..ErrNo: %x..\n", RetCode, ErrNo);
//Send error to the host if there is any.
// Send error to the host if there is any.
if (ErrNo > 0) {
SendError((UINT8)ErrNo);
SendError ((UINT8)ErrNo);
}
return RetCode;
}
/**
Reset the serial device.
@ -279,7 +278,6 @@ GdbSerialReset (
return EFI_SUCCESS;
}
/**
Sets the baud rate, receive FIFO depth, transmit/receive time out, parity,
data buts, and stop bits on a serial device.
@ -321,7 +319,6 @@ GdbSerialSetAttributes (
return EFI_UNSUPPORTED;
}
/**
Set the control bits on a serial device
@ -343,7 +340,6 @@ GdbSerialSetControl (
return EFI_UNSUPPORTED;
}
/**
Retrieves the status of the control bits on a serial device
@ -364,7 +360,6 @@ GdbSerialGetControl (
return EFI_UNSUPPORTED;
}
/**
Writes data to a serial device.
@ -387,7 +382,7 @@ GdbSerialWrite (
)
{
GDB_SERIAL_DEV *SerialDev;
UINTN Return;
UINTN Return;
SerialDev = GDB_SERIAL_DEV_FROM_THIS (This);
@ -416,7 +411,6 @@ GdbSerialWrite (
@retval EFI_TIMEOUT The data write was stopped due to a timeout.
**/
EFI_STATUS
EFIAPI
GdbSerialRead (
@ -426,7 +420,7 @@ GdbSerialRead (
)
{
GDB_SERIAL_DEV *SerialDev;
UINTN Return;
UINTN Return;
SerialDev = GDB_SERIAL_DEV_FROM_THIS (This);
@ -442,11 +436,10 @@ GdbSerialRead (
return EFI_SUCCESS;
}
//
// Template used to initialize the GDB Serial IO protocols
//
GDB_SERIAL_DEV gdbSerialDevTemplate = {
GDB_SERIAL_DEV gdbSerialDevTemplate = {
GDB_SERIAL_DEV_SIGNATURE,
NULL,
@ -460,14 +453,14 @@ GDB_SERIAL_DEV gdbSerialDevTemplate = {
GdbSerialRead,
NULL
},
{ // SerialMode
0, // ControlMask
0, // Timeout
0, // BaudRate
1, // RceiveFifoDepth
0, // DataBits
0, // Parity
0 // StopBits
{ // SerialMode
0, // ControlMask
0, // Timeout
0, // BaudRate
1, // RceiveFifoDepth
0, // DataBits
0, // Parity
0 // StopBits
},
{
{
@ -475,8 +468,8 @@ GDB_SERIAL_DEV gdbSerialDevTemplate = {
HARDWARE_DEVICE_PATH,
HW_VENDOR_DP,
{
(UINT8) (sizeof (VENDOR_DEVICE_PATH) + sizeof (UINT32)),
(UINT8) ((sizeof (VENDOR_DEVICE_PATH) + sizeof (UINT32)) >> 8)
(UINT8)(sizeof (VENDOR_DEVICE_PATH) + sizeof (UINT32)),
(UINT8)((sizeof (VENDOR_DEVICE_PATH) + sizeof (UINT32)) >> 8)
},
},
EFI_SERIAL_IO_PROTOCOL_GUID
@ -486,8 +479,8 @@ GDB_SERIAL_DEV gdbSerialDevTemplate = {
END_DEVICE_PATH_TYPE,
END_ENTIRE_DEVICE_PATH_SUBTYPE,
{
(UINT8) (sizeof (EFI_DEVICE_PATH_PROTOCOL)),
(UINT8) (sizeof (EFI_DEVICE_PATH_PROTOCOL) >> 8)
(UINT8)(sizeof (EFI_DEVICE_PATH_PROTOCOL)),
(UINT8)(sizeof (EFI_DEVICE_PATH_PROTOCOL) >> 8)
}
},
},
@ -495,7 +488,6 @@ GDB_SERIAL_DEV gdbSerialDevTemplate = {
GDB_STDOUT
};
/**
Make two serial consoles: 1) StdIn and StdOut via GDB. 2) StdErr via GDB.
@ -512,25 +504,27 @@ GdbInitializeSerialConsole (
GDB_SERIAL_DEV *StdErrSerialDev;
// Use the template to make a copy of the Serial Console private data structure.
StdOutSerialDev = AllocateCopyPool (sizeof (GDB_SERIAL_DEV), &gdbSerialDevTemplate);
StdOutSerialDev = AllocateCopyPool (sizeof (GDB_SERIAL_DEV), &gdbSerialDevTemplate);
ASSERT (StdOutSerialDev != NULL);
// Fixup pointer after the copy
StdOutSerialDev->SerialIo.Mode = &StdOutSerialDev->SerialMode;
StdErrSerialDev = AllocateCopyPool (sizeof (GDB_SERIAL_DEV), &gdbSerialDevTemplate);
StdErrSerialDev = AllocateCopyPool (sizeof (GDB_SERIAL_DEV), &gdbSerialDevTemplate);
ASSERT (StdErrSerialDev != NULL);
// Fixup pointer and modify stuff that is different for StdError
StdErrSerialDev->SerialIo.Mode = &StdErrSerialDev->SerialMode;
StdErrSerialDev->DevicePath.Index = 1;
StdErrSerialDev->SerialIo.Mode = &StdErrSerialDev->SerialMode;
StdErrSerialDev->DevicePath.Index = 1;
StdErrSerialDev->OutFileDescriptor = GDB_STDERR;
// Make a new handle with Serial IO protocol and its device path on it.
Status = gBS->InstallMultipleProtocolInterfaces (
&StdOutSerialDev->Handle,
&gEfiSerialIoProtocolGuid, &StdOutSerialDev->SerialIo,
&gEfiDevicePathProtocolGuid, &StdOutSerialDev->DevicePath,
&gEfiSerialIoProtocolGuid,
&StdOutSerialDev->SerialIo,
&gEfiDevicePathProtocolGuid,
&StdOutSerialDev->DevicePath,
NULL
);
ASSERT_EFI_ERROR (Status);
@ -538,10 +532,11 @@ GdbInitializeSerialConsole (
// Make a new handle with Serial IO protocol and its device path on it.
Status = gBS->InstallMultipleProtocolInterfaces (
&StdErrSerialDev->Handle,
&gEfiSerialIoProtocolGuid, &StdErrSerialDev->SerialIo,
&gEfiDevicePathProtocolGuid, &StdErrSerialDev->DevicePath,
&gEfiSerialIoProtocolGuid,
&StdErrSerialDev->SerialIo,
&gEfiDevicePathProtocolGuid,
&StdErrSerialDev->DevicePath,
NULL
);
ASSERT_EFI_ERROR (Status);
}

View File

@ -12,7 +12,7 @@
//
// Array of exception types that need to be hooked by the debugger
//
EFI_EXCEPTION_TYPE_ENTRY gExceptionType[] = {
EFI_EXCEPTION_TYPE_ENTRY gExceptionType[] = {
{ EXCEPT_X64_DIVIDE_ERROR, GDB_SIGFPE },
{ EXCEPT_X64_DEBUG, GDB_SIGTRAP },
{ EXCEPT_X64_NMI, GDB_SIGEMT },
@ -29,39 +29,37 @@ EFI_EXCEPTION_TYPE_ENTRY gExceptionType[] = {
{ EXCEPT_X64_MACHINE_CHECK, GDB_SIGEMT }
};
// The offsets of registers SystemContextX64.
// The fields in the array are in the gdb ordering.
// HAVE TO DOUBLE-CHECK THE ORDER of the 24 regs
//
UINTN gRegisterOffsets[] = {
OFFSET_OF(EFI_SYSTEM_CONTEXT_X64, Rax),
OFFSET_OF(EFI_SYSTEM_CONTEXT_X64, Rcx),
OFFSET_OF(EFI_SYSTEM_CONTEXT_X64, Rdx),
OFFSET_OF(EFI_SYSTEM_CONTEXT_X64, Rbx),
OFFSET_OF(EFI_SYSTEM_CONTEXT_X64, Rsp),
OFFSET_OF(EFI_SYSTEM_CONTEXT_X64, Rbp),
OFFSET_OF(EFI_SYSTEM_CONTEXT_X64, Rsi),
OFFSET_OF(EFI_SYSTEM_CONTEXT_X64, Rdi),
OFFSET_OF(EFI_SYSTEM_CONTEXT_X64, Rip),
OFFSET_OF(EFI_SYSTEM_CONTEXT_X64, Rflags),
OFFSET_OF(EFI_SYSTEM_CONTEXT_X64, Cs),
OFFSET_OF(EFI_SYSTEM_CONTEXT_X64, Ss),
OFFSET_OF(EFI_SYSTEM_CONTEXT_X64, Ds),
OFFSET_OF(EFI_SYSTEM_CONTEXT_X64, Es),
OFFSET_OF(EFI_SYSTEM_CONTEXT_X64, Fs),
OFFSET_OF(EFI_SYSTEM_CONTEXT_X64, Gs),
OFFSET_OF(EFI_SYSTEM_CONTEXT_X64, R8),
OFFSET_OF(EFI_SYSTEM_CONTEXT_X64, R9),
OFFSET_OF(EFI_SYSTEM_CONTEXT_X64, R10),
OFFSET_OF(EFI_SYSTEM_CONTEXT_X64, R11),
OFFSET_OF(EFI_SYSTEM_CONTEXT_X64, R12),
OFFSET_OF(EFI_SYSTEM_CONTEXT_X64, R13),
OFFSET_OF(EFI_SYSTEM_CONTEXT_X64, R14),
OFFSET_OF(EFI_SYSTEM_CONTEXT_X64, R15)
UINTN gRegisterOffsets[] = {
OFFSET_OF (EFI_SYSTEM_CONTEXT_X64, Rax),
OFFSET_OF (EFI_SYSTEM_CONTEXT_X64, Rcx),
OFFSET_OF (EFI_SYSTEM_CONTEXT_X64, Rdx),
OFFSET_OF (EFI_SYSTEM_CONTEXT_X64, Rbx),
OFFSET_OF (EFI_SYSTEM_CONTEXT_X64, Rsp),
OFFSET_OF (EFI_SYSTEM_CONTEXT_X64, Rbp),
OFFSET_OF (EFI_SYSTEM_CONTEXT_X64, Rsi),
OFFSET_OF (EFI_SYSTEM_CONTEXT_X64, Rdi),
OFFSET_OF (EFI_SYSTEM_CONTEXT_X64, Rip),
OFFSET_OF (EFI_SYSTEM_CONTEXT_X64, Rflags),
OFFSET_OF (EFI_SYSTEM_CONTEXT_X64, Cs),
OFFSET_OF (EFI_SYSTEM_CONTEXT_X64, Ss),
OFFSET_OF (EFI_SYSTEM_CONTEXT_X64, Ds),
OFFSET_OF (EFI_SYSTEM_CONTEXT_X64, Es),
OFFSET_OF (EFI_SYSTEM_CONTEXT_X64, Fs),
OFFSET_OF (EFI_SYSTEM_CONTEXT_X64, Gs),
OFFSET_OF (EFI_SYSTEM_CONTEXT_X64, R8),
OFFSET_OF (EFI_SYSTEM_CONTEXT_X64, R9),
OFFSET_OF (EFI_SYSTEM_CONTEXT_X64, R10),
OFFSET_OF (EFI_SYSTEM_CONTEXT_X64, R11),
OFFSET_OF (EFI_SYSTEM_CONTEXT_X64, R12),
OFFSET_OF (EFI_SYSTEM_CONTEXT_X64, R13),
OFFSET_OF (EFI_SYSTEM_CONTEXT_X64, R14),
OFFSET_OF (EFI_SYSTEM_CONTEXT_X64, R15)
};
/**
Return the number of entries in the gExceptionType[]
@ -75,7 +73,6 @@ MaxEfiException (
return sizeof (gExceptionType)/sizeof (EFI_EXCEPTION_TYPE_ENTRY);
}
/**
Return the number of entries in the gRegisters[]
@ -89,7 +86,6 @@ MaxRegisterCount (
return sizeof (gRegisterOffsets)/sizeof (UINTN);
}
/**
Check to see if the ISA is supported.
ISA = Instruction Set Architecture
@ -104,7 +100,6 @@ CheckIsa (
return (BOOLEAN)(Isa == IsaX64);
}
/**
This takes in the register number and the System Context, and returns a pointer to the RegNumber-th register in gdb ordering
It is, by default, set to find the register pointer of the X64 member
@ -113,17 +108,17 @@ CheckIsa (
@retval the pointer to the RegNumber-th pointer
**/
UINTN *
FindPointerToRegister(
FindPointerToRegister (
IN EFI_SYSTEM_CONTEXT SystemContext,
IN UINTN RegNumber
)
{
UINT8 *TempPtr;
UINT8 *TempPtr;
TempPtr = ((UINT8 *)SystemContext.SystemContextX64) + gRegisterOffsets[RegNumber];
return (UINTN *)TempPtr;
}
/**
Adds the RegNumber-th register's value to the output buffer, starting at the given OutBufPtr
@param SystemContext Register content at time of the exception
@ -133,23 +128,23 @@ FindPointerToRegister(
**/
CHAR8 *
BasicReadRegister (
IN EFI_SYSTEM_CONTEXT SystemContext,
IN UINTN RegNumber,
IN CHAR8 *OutBufPtr
IN EFI_SYSTEM_CONTEXT SystemContext,
IN UINTN RegNumber,
IN CHAR8 *OutBufPtr
)
{
UINTN RegSize;
UINTN RegSize;
RegSize = 0;
while (RegSize < 64) {
*OutBufPtr++ = mHexToStr[((*FindPointerToRegister(SystemContext, RegNumber) >> (RegSize+4)) & 0xf)];
*OutBufPtr++ = mHexToStr[((*FindPointerToRegister(SystemContext, RegNumber) >> RegSize) & 0xf)];
RegSize = RegSize + 8;
*OutBufPtr++ = mHexToStr[((*FindPointerToRegister (SystemContext, RegNumber) >> (RegSize+4)) & 0xf)];
*OutBufPtr++ = mHexToStr[((*FindPointerToRegister (SystemContext, RegNumber) >> RegSize) & 0xf)];
RegSize = RegSize + 8;
}
return OutBufPtr;
}
/** p n
Reads the n-th register's value into an output buffer and sends it as a packet
@param SystemContext Register content at time of the exception
@ -157,29 +152,28 @@ BasicReadRegister (
**/
VOID
ReadNthRegister (
IN EFI_SYSTEM_CONTEXT SystemContext,
IN CHAR8 *InBuffer
IN EFI_SYSTEM_CONTEXT SystemContext,
IN CHAR8 *InBuffer
)
{
UINTN RegNumber;
CHAR8 OutBuffer[17]; // 1 reg=16 hex chars, and the end '\0' (escape seq)
CHAR8 *OutBufPtr; // pointer to the output buffer
UINTN RegNumber;
CHAR8 OutBuffer[17]; // 1 reg=16 hex chars, and the end '\0' (escape seq)
CHAR8 *OutBufPtr; // pointer to the output buffer
RegNumber = AsciiStrHexToUintn (&InBuffer[1]);
if ((RegNumber < 0) || (RegNumber >= MaxRegisterCount())) {
if ((RegNumber < 0) || (RegNumber >= MaxRegisterCount ())) {
SendError (GDB_EINVALIDREGNUM);
return;
}
OutBufPtr = OutBuffer;
OutBufPtr = BasicReadRegister(SystemContext, RegNumber, OutBufPtr);
OutBufPtr = BasicReadRegister (SystemContext, RegNumber, OutBufPtr);
*OutBufPtr = '\0'; // the end of the buffer
SendPacket (OutBuffer);
}
/** g
Reads the general registers into an output buffer and sends it as a packet
@ -188,23 +182,23 @@ ReadNthRegister (
VOID
EFIAPI
ReadGeneralRegisters (
IN EFI_SYSTEM_CONTEXT SystemContext
IN EFI_SYSTEM_CONTEXT SystemContext
)
{
UINTN i;
CHAR8 OutBuffer[385]; // 24 regs, 16 hex chars each, and the end '\0' (escape seq)
CHAR8 *OutBufPtr; // pointer to the output buffer
UINTN i;
CHAR8 OutBuffer[385]; // 24 regs, 16 hex chars each, and the end '\0' (escape seq)
CHAR8 *OutBufPtr; // pointer to the output buffer
OutBufPtr = OutBuffer;
for(i = 0 ; i < MaxRegisterCount() ; i++) { // there are only 24 registers to read
OutBufPtr = BasicReadRegister(SystemContext, i, OutBufPtr);
for (i = 0; i < MaxRegisterCount (); i++) {
// there are only 24 registers to read
OutBufPtr = BasicReadRegister (SystemContext, i, OutBufPtr);
}
*OutBufPtr = '\0'; // the end of the buffer
SendPacket (OutBuffer);
}
/**
Adds the RegNumber-th register's value to the output buffer, starting at the given OutBufPtr
@ -220,14 +214,14 @@ BasicWriteRegister (
IN CHAR8 *InBufPtr
)
{
UINTN RegSize;
UINTN TempValue; // the value transferred from a hex char
UINT64 NewValue; // the new value of the RegNumber-th Register
UINTN RegSize;
UINTN TempValue; // the value transferred from a hex char
UINT64 NewValue; // the new value of the RegNumber-th Register
NewValue = 0;
RegSize = 0;
RegSize = 0;
while (RegSize < 64) {
TempValue = HexCharToInt(*InBufPtr++);
TempValue = HexCharToInt (*InBufPtr++);
if (TempValue < 0) {
SendError (GDB_EBADMEMDATA);
@ -235,21 +229,21 @@ BasicWriteRegister (
}
NewValue += (TempValue << (RegSize+4));
TempValue = HexCharToInt(*InBufPtr++);
TempValue = HexCharToInt (*InBufPtr++);
if (TempValue < 0) {
SendError (GDB_EBADMEMDATA);
return NULL;
}
}
NewValue += (TempValue << RegSize);
RegSize = RegSize + 8;
RegSize = RegSize + 8;
}
*(FindPointerToRegister(SystemContext, RegNumber)) = NewValue;
*(FindPointerToRegister (SystemContext, RegNumber)) = NewValue;
return InBufPtr;
}
/** P n...=r...
Writes the new value of n-th register received into the input buffer to the n-th register
@ -259,35 +253,36 @@ BasicWriteRegister (
VOID
EFIAPI
WriteNthRegister (
IN EFI_SYSTEM_CONTEXT SystemContext,
IN CHAR8 *InBuffer
IN EFI_SYSTEM_CONTEXT SystemContext,
IN CHAR8 *InBuffer
)
{
UINTN RegNumber;
CHAR8 RegNumBuffer[MAX_REG_NUM_BUF_SIZE]; // put the 'n..' part of the message into this array
CHAR8 *RegNumBufPtr;
CHAR8 *InBufPtr; // pointer to the input buffer
UINTN RegNumber;
CHAR8 RegNumBuffer[MAX_REG_NUM_BUF_SIZE]; // put the 'n..' part of the message into this array
CHAR8 *RegNumBufPtr;
CHAR8 *InBufPtr; // pointer to the input buffer
// find the register number to write
InBufPtr = &InBuffer[1];
InBufPtr = &InBuffer[1];
RegNumBufPtr = RegNumBuffer;
while (*InBufPtr != '=') {
*RegNumBufPtr++ = *InBufPtr++;
}
*RegNumBufPtr = '\0';
RegNumber = AsciiStrHexToUintn (RegNumBuffer);
RegNumber = AsciiStrHexToUintn (RegNumBuffer);
// check if this is a valid Register Number
if ((RegNumber < 0) || (RegNumber >= MaxRegisterCount())) {
if ((RegNumber < 0) || (RegNumber >= MaxRegisterCount ())) {
SendError (GDB_EINVALIDREGNUM);
return;
}
InBufPtr++; // skips the '=' character
BasicWriteRegister (SystemContext, RegNumber, InBufPtr);
SendSuccess();
SendSuccess ();
}
/** G XX...
Writes the new values received into the input buffer to the general registers
@ -297,17 +292,18 @@ WriteNthRegister (
VOID
EFIAPI
WriteGeneralRegisters (
IN EFI_SYSTEM_CONTEXT SystemContext,
IN CHAR8 *InBuffer
IN EFI_SYSTEM_CONTEXT SystemContext,
IN CHAR8 *InBuffer
)
{
UINTN i;
CHAR8 *InBufPtr; /// pointer to the input buffer
CHAR8 *InBufPtr; /// pointer to the input buffer
// check to see if the buffer is the right size which is
// 1 (for 'G') + 16 (for 16 registers) * 8 ( for 8 hex chars each) = 385
if (AsciiStrLen(InBuffer) != 385) { // 24 regs, 16 hex chars each, and the end '\0' (escape seq)
//Bad message. Message is not the right length
if (AsciiStrLen (InBuffer) != 385) {
// 24 regs, 16 hex chars each, and the end '\0' (escape seq)
// Bad message. Message is not the right length
SendError (GDB_EBADBUFSIZE);
return;
}
@ -316,29 +312,27 @@ WriteGeneralRegisters (
// Read the new values for the registers from the input buffer to an array, NewValueArray.
// The values in the array are in the gdb ordering
for(i=0; i < MaxRegisterCount(); i++) { // there are only 16 registers to write
InBufPtr = BasicWriteRegister(SystemContext, i, InBufPtr);
for (i = 0; i < MaxRegisterCount (); i++) {
// there are only 16 registers to write
InBufPtr = BasicWriteRegister (SystemContext, i, InBufPtr);
}
SendSuccess();
SendSuccess ();
}
/**
Insert Single Step in the SystemContext
/**
Insert Single Step in the SystemContext
@param SystemContext Register content at time of the exception
**/
@param SystemContext Register content at time of the exception
**/
VOID
AddSingleStep (
IN EFI_SYSTEM_CONTEXT SystemContext
)
{
SystemContext.SystemContextX64->Rflags |= TF_BIT; //Setting the TF bit.
SystemContext.SystemContextX64->Rflags |= TF_BIT; // Setting the TF bit.
}
/**
Remove Single Step in the SystemContext
@ -352,8 +346,6 @@ RemoveSingleStep (
SystemContext.SystemContextX64->Rflags &= ~TF_BIT; // clearing the TF bit.
}
/** c [addr ]
Continue. addr is Address to resume. If addr is omitted, resume at current
Address.
@ -363,16 +355,15 @@ RemoveSingleStep (
VOID
EFIAPI
ContinueAtAddress (
IN EFI_SYSTEM_CONTEXT SystemContext,
IN CHAR8 *PacketData
IN EFI_SYSTEM_CONTEXT SystemContext,
IN CHAR8 *PacketData
)
{
if (PacketData[1] != '\0') {
SystemContext.SystemContextX64->Rip = AsciiStrHexToUintn(&PacketData[1]);
SystemContext.SystemContextX64->Rip = AsciiStrHexToUintn (&PacketData[1]);
}
}
/** s [addr ]
Single step. addr is the Address at which to resume. If addr is omitted, resume
at same Address.
@ -382,8 +373,8 @@ ContinueAtAddress (
VOID
EFIAPI
SingleStep (
IN EFI_SYSTEM_CONTEXT SystemContext,
IN CHAR8 *PacketData
IN EFI_SYSTEM_CONTEXT SystemContext,
IN CHAR8 *PacketData
)
{
if (PacketData[1] != '\0') {
@ -393,7 +384,6 @@ SingleStep (
AddSingleStep (SystemContext);
}
/**
Returns breakpoint data address from DR0-DR3 based on the input breakpoint
number
@ -411,7 +401,7 @@ GetBreakpointDataAddress (
IN UINTN BreakpointNumber
)
{
UINTN Address;
UINTN Address;
if (BreakpointNumber == 1) {
Address = SystemContext.SystemContextIa32->Dr0;
@ -444,8 +434,8 @@ GetBreakpointDetected (
IN EFI_SYSTEM_CONTEXT SystemContext
)
{
IA32_DR6 Dr6;
UINTN BreakpointNumber;
IA32_DR6 Dr6;
UINTN BreakpointNumber;
Dr6.UintN = SystemContext.SystemContextIa32->Dr6;
@ -458,7 +448,7 @@ GetBreakpointDetected (
} else if (Dr6.Bits.B3 == 1) {
BreakpointNumber = 4;
} else {
BreakpointNumber = 0; //No breakpoint detected
BreakpointNumber = 0; // No breakpoint detected
}
return BreakpointNumber;
@ -481,25 +471,24 @@ GetBreakpointType (
IN UINTN BreakpointNumber
)
{
IA32_DR7 Dr7;
BREAK_TYPE Type = NotSupported; //Default is NotSupported type
IA32_DR7 Dr7;
BREAK_TYPE Type = NotSupported; // Default is NotSupported type
Dr7.UintN = SystemContext.SystemContextIa32->Dr7;
if (BreakpointNumber == 1) {
Type = (BREAK_TYPE) Dr7.Bits.RW0;
Type = (BREAK_TYPE)Dr7.Bits.RW0;
} else if (BreakpointNumber == 2) {
Type = (BREAK_TYPE) Dr7.Bits.RW1;
Type = (BREAK_TYPE)Dr7.Bits.RW1;
} else if (BreakpointNumber == 3) {
Type = (BREAK_TYPE) Dr7.Bits.RW2;
Type = (BREAK_TYPE)Dr7.Bits.RW2;
} else if (BreakpointNumber == 4) {
Type = (BREAK_TYPE) Dr7.Bits.RW3;
Type = (BREAK_TYPE)Dr7.Bits.RW3;
}
return Type;
}
/**
Parses Length and returns the length which DR7 LENn field accepts.
For example: If we receive 1-Byte length then we should return 0.
@ -512,21 +501,24 @@ GetBreakpointType (
**/
UINTN
ConvertLengthData (
IN UINTN Length
IN UINTN Length
)
{
if (Length == 1) { //1-Byte length
if (Length == 1) {
// 1-Byte length
return 0;
} else if (Length == 2) { //2-Byte length
} else if (Length == 2) {
// 2-Byte length
return 1;
} else if (Length == 4) { //4-Byte length
} else if (Length == 4) {
// 4-Byte length
return 3;
} else { //Undefined or 8-byte length
} else {
// Undefined or 8-byte length
return 2;
}
}
/**
Finds the next free debug register. If all the registers are occupied then
EFI_OUT_OF_RESOURCES is returned.
@ -543,7 +535,7 @@ FindNextFreeDebugRegister (
OUT UINTN *Register
)
{
IA32_DR7 Dr7;
IA32_DR7 Dr7;
Dr7.UintN = SystemContext.SystemContextIa32->Dr7;
@ -562,7 +554,6 @@ FindNextFreeDebugRegister (
return EFI_SUCCESS;
}
/**
Enables the debug register. Writes Address value to appropriate DR0-3 register.
Sets LENn, Gn, RWn bits in DR7 register.
@ -587,56 +578,56 @@ EnableDebugRegister (
{
IA32_DR7 Dr7;
//Convert length data
// Convert length data
Length = ConvertLengthData (Length);
//For Instruction execution, length should be 0
//(Ref. Intel reference manual 18.2.4)
// For Instruction execution, length should be 0
// (Ref. Intel reference manual 18.2.4)
if ((Type == 0) && (Length != 0)) {
return EFI_INVALID_PARAMETER;
}
//Hardware doesn't support ReadWatch (z3 packet) type. GDB can handle
//software breakpoint. We should send empty packet in both these cases.
// Hardware doesn't support ReadWatch (z3 packet) type. GDB can handle
// software breakpoint. We should send empty packet in both these cases.
if ((Type == (BREAK_TYPE)DataRead) ||
(Type == (BREAK_TYPE)SoftwareBreakpoint)) {
(Type == (BREAK_TYPE)SoftwareBreakpoint))
{
return EFI_UNSUPPORTED;
}
//Read DR7 so appropriate Gn, RWn and LENn bits can be modified.
// Read DR7 so appropriate Gn, RWn and LENn bits can be modified.
Dr7.UintN = SystemContext.SystemContextIa32->Dr7;
if (Register == 0) {
SystemContext.SystemContextIa32->Dr0 = Address;
Dr7.Bits.G0 = 1;
Dr7.Bits.RW0 = Type;
Dr7.Bits.LEN0 = Length;
Dr7.Bits.G0 = 1;
Dr7.Bits.RW0 = Type;
Dr7.Bits.LEN0 = Length;
} else if (Register == 1) {
SystemContext.SystemContextIa32->Dr1 = Address;
Dr7.Bits.G1 = 1;
Dr7.Bits.RW1 = Type;
Dr7.Bits.LEN1 = Length;
Dr7.Bits.G1 = 1;
Dr7.Bits.RW1 = Type;
Dr7.Bits.LEN1 = Length;
} else if (Register == 2) {
SystemContext.SystemContextIa32->Dr2 = Address;
Dr7.Bits.G2 = 1;
Dr7.Bits.RW2 = Type;
Dr7.Bits.LEN2 = Length;
Dr7.Bits.G2 = 1;
Dr7.Bits.RW2 = Type;
Dr7.Bits.LEN2 = Length;
} else if (Register == 3) {
SystemContext.SystemContextIa32->Dr3 = Address;
Dr7.Bits.G3 = 1;
Dr7.Bits.RW3 = Type;
Dr7.Bits.LEN3 = Length;
Dr7.Bits.G3 = 1;
Dr7.Bits.RW3 = Type;
Dr7.Bits.LEN3 = Length;
} else {
return EFI_INVALID_PARAMETER;
}
//Update Dr7 with appropriate Gn, RWn and LENn bits
// Update Dr7 with appropriate Gn, RWn and LENn bits
SystemContext.SystemContextIa32->Dr7 = Dr7.UintN;
return EFI_SUCCESS;
}
/**
Returns register number 0 - 3 for the matching debug register.
This function compares incoming Address, Type, Length and
@ -655,46 +646,51 @@ EnableDebugRegister (
**/
EFI_STATUS
FindMatchingDebugRegister (
IN EFI_SYSTEM_CONTEXT SystemContext,
IN UINTN Address,
IN UINTN Length,
IN UINTN Type,
OUT UINTN *Register
)
IN EFI_SYSTEM_CONTEXT SystemContext,
IN UINTN Address,
IN UINTN Length,
IN UINTN Type,
OUT UINTN *Register
)
{
IA32_DR7 Dr7;
IA32_DR7 Dr7;
//Hardware doesn't support ReadWatch (z3 packet) type. GDB can handle
//software breakpoint. We should send empty packet in both these cases.
// Hardware doesn't support ReadWatch (z3 packet) type. GDB can handle
// software breakpoint. We should send empty packet in both these cases.
if ((Type == (BREAK_TYPE)DataRead) ||
(Type == (BREAK_TYPE)SoftwareBreakpoint)) {
(Type == (BREAK_TYPE)SoftwareBreakpoint))
{
return EFI_UNSUPPORTED;
}
//Convert length data
Length = ConvertLengthData(Length);
// Convert length data
Length = ConvertLengthData (Length);
Dr7.UintN = SystemContext.SystemContextIa32->Dr7;
if ((Dr7.Bits.G0 == 1) &&
(Dr7.Bits.LEN0 == Length) &&
(Dr7.Bits.RW0 == Type) &&
(Address == SystemContext.SystemContextIa32->Dr0)) {
(Address == SystemContext.SystemContextIa32->Dr0))
{
*Register = 0;
} else if ((Dr7.Bits.G1 == 1) &&
(Dr7.Bits.LEN1 == Length) &&
(Dr7.Bits.RW1 == Type) &&
(Address == SystemContext.SystemContextIa32->Dr1)) {
(Address == SystemContext.SystemContextIa32->Dr1))
{
*Register = 1;
} else if ((Dr7.Bits.G2 == 1) &&
(Dr7.Bits.LEN2 == Length) &&
(Dr7.Bits.RW2 == Type) &&
(Address == SystemContext.SystemContextIa32->Dr2)) {
(Address == SystemContext.SystemContextIa32->Dr2))
{
*Register = 2;
} else if ((Dr7.Bits.G3 == 1) &&
(Dr7.Bits.LEN3 == Length) &&
(Dr7.Bits.RW3 == Type) &&
(Address == SystemContext.SystemContextIa32->Dr3)) {
(Address == SystemContext.SystemContextIa32->Dr3))
{
*Register = 3;
} else {
Print ((CHAR16 *)L"No match found..\n");
@ -704,7 +700,6 @@ FindMatchingDebugRegister (
return EFI_SUCCESS;
}
/**
Disables the particular debug register.
@ -716,41 +711,41 @@ FindMatchingDebugRegister (
**/
EFI_STATUS
DisableDebugRegister (
IN EFI_SYSTEM_CONTEXT SystemContext,
IN UINTN Register
)
IN EFI_SYSTEM_CONTEXT SystemContext,
IN UINTN Register
)
{
IA32_DR7 Dr7;
UINTN Address = 0;
UINTN Address = 0;
//Read DR7 register so appropriate Gn, RWn and LENn bits can be turned off.
// Read DR7 register so appropriate Gn, RWn and LENn bits can be turned off.
Dr7.UintN = SystemContext.SystemContextIa32->Dr7;
if (Register == 0) {
SystemContext.SystemContextIa32->Dr0 = Address;
Dr7.Bits.G0 = 0;
Dr7.Bits.RW0 = 0;
Dr7.Bits.LEN0 = 0;
Dr7.Bits.G0 = 0;
Dr7.Bits.RW0 = 0;
Dr7.Bits.LEN0 = 0;
} else if (Register == 1) {
SystemContext.SystemContextIa32->Dr1 = Address;
Dr7.Bits.G1 = 0;
Dr7.Bits.RW1 = 0;
Dr7.Bits.LEN1 = 0;
Dr7.Bits.G1 = 0;
Dr7.Bits.RW1 = 0;
Dr7.Bits.LEN1 = 0;
} else if (Register == 2) {
SystemContext.SystemContextIa32->Dr2 = Address;
Dr7.Bits.G2 = 0;
Dr7.Bits.RW2 = 0;
Dr7.Bits.LEN2 = 0;
Dr7.Bits.G2 = 0;
Dr7.Bits.RW2 = 0;
Dr7.Bits.LEN2 = 0;
} else if (Register == 3) {
SystemContext.SystemContextIa32->Dr3 = Address;
Dr7.Bits.G3 = 0;
Dr7.Bits.RW3 = 0;
Dr7.Bits.LEN3 = 0;
Dr7.Bits.G3 = 0;
Dr7.Bits.RW3 = 0;
Dr7.Bits.LEN3 = 0;
} else {
return EFI_INVALID_PARAMETER;
}
//Update DR7 register so appropriate Gn, RWn and LENn bits can be turned off.
// Update DR7 register so appropriate Gn, RWn and LENn bits can be turned off.
SystemContext.SystemContextIa32->Dr7 = Dr7.UintN;
return EFI_SUCCESS;
@ -772,16 +767,16 @@ VOID
EFIAPI
InsertBreakPoint (
IN EFI_SYSTEM_CONTEXT SystemContext,
IN CHAR8 *PacketData
IN CHAR8 *PacketData
)
{
UINTN Type;
UINTN Address;
UINTN Length;
UINTN Register;
EFI_STATUS Status;
BREAK_TYPE BreakType = NotSupported;
UINTN ErrorCode;
UINTN Type;
UINTN Address;
UINTN Length;
UINTN Register;
EFI_STATUS Status;
BREAK_TYPE BreakType = NotSupported;
UINTN ErrorCode;
ErrorCode = ParseBreakpointPacket (PacketData, &Type, &Address, &Length);
if (ErrorCode > 0) {
@ -790,28 +785,27 @@ InsertBreakPoint (
}
switch (Type) {
case 0: //Software breakpoint
case 0: // Software breakpoint
BreakType = SoftwareBreakpoint;
break;
case 1: //Hardware breakpoint
case 1: // Hardware breakpoint
BreakType = InstructionExecution;
break;
case 2: //Write watchpoint
case 2: // Write watchpoint
BreakType = DataWrite;
break;
case 3: //Read watchpoint
case 3: // Read watchpoint
BreakType = DataRead;
break;
case 4: //Access watchpoint
case 4: // Access watchpoint
BreakType = DataReadWrite;
break;
default :
default:
Print ((CHAR16 *)L"Insert breakpoint default: %x\n", Type);
SendError (GDB_EINVALIDBRKPOINTTYPE);
return;
@ -819,7 +813,7 @@ InsertBreakPoint (
// Find next free debug register
Status = FindNextFreeDebugRegister (SystemContext, &Register);
if (EFI_ERROR(Status)) {
if (EFI_ERROR (Status)) {
Print ((CHAR16 *)L"No space left on device\n");
SendError (GDB_ENOSPACE);
return;
@ -827,11 +821,10 @@ InsertBreakPoint (
// Write Address, length data at particular DR register
Status = EnableDebugRegister (SystemContext, Register, Address, Length, (UINTN)BreakType);
if (EFI_ERROR(Status)) {
if (EFI_ERROR (Status)) {
if (Status == EFI_UNSUPPORTED) {
Print ((CHAR16 *)L"Not supported\n");
SendNotSupported();
SendNotSupported ();
return;
}
@ -843,7 +836,6 @@ InsertBreakPoint (
SendSuccess ();
}
/**
z1, [addr], [length]
z2, [addr], [length]
@ -862,15 +854,15 @@ RemoveBreakPoint (
IN CHAR8 *PacketData
)
{
UINTN Type;
UINTN Address;
UINTN Length;
UINTN Register;
BREAK_TYPE BreakType = NotSupported;
EFI_STATUS Status;
UINTN ErrorCode;
UINTN Type;
UINTN Address;
UINTN Length;
UINTN Register;
BREAK_TYPE BreakType = NotSupported;
EFI_STATUS Status;
UINTN ErrorCode;
//Parse breakpoint packet data
// Parse breakpoint packet data
ErrorCode = ParseBreakpointPacket (PacketData, &Type, &Address, &Length);
if (ErrorCode > 0) {
SendError ((UINT8)ErrorCode);
@ -878,39 +870,37 @@ RemoveBreakPoint (
}
switch (Type) {
case 0: //Software breakpoint
case 0: // Software breakpoint
BreakType = SoftwareBreakpoint;
break;
case 1: //Hardware breakpoint
case 1: // Hardware breakpoint
BreakType = InstructionExecution;
break;
case 2: //Write watchpoint
case 2: // Write watchpoint
BreakType = DataWrite;
break;
case 3: //Read watchpoint
case 3: // Read watchpoint
BreakType = DataRead;
break;
case 4: //Access watchpoint
case 4: // Access watchpoint
BreakType = DataReadWrite;
break;
default :
default:
SendError (GDB_EINVALIDBRKPOINTTYPE);
return;
}
//Find matching debug register
// Find matching debug register
Status = FindMatchingDebugRegister (SystemContext, Address, Length, (UINTN)BreakType, &Register);
if (EFI_ERROR(Status)) {
if (EFI_ERROR (Status)) {
if (Status == EFI_UNSUPPORTED) {
Print ((CHAR16 *)L"Not supported.\n");
SendNotSupported();
SendNotSupported ();
return;
}
@ -919,9 +909,9 @@ RemoveBreakPoint (
return;
}
//Remove breakpoint
Status = DisableDebugRegister(SystemContext, Register);
if (EFI_ERROR(Status)) {
// Remove breakpoint
Status = DisableDebugRegister (SystemContext, Register);
if (EFI_ERROR (Status)) {
Print ((CHAR16 *)L"Invalid argument.\n");
SendError (GDB_EINVALIDARG);
return;
@ -930,7 +920,6 @@ RemoveBreakPoint (
SendSuccess ();
}
VOID
InitializeProcessor (
VOID
@ -948,10 +937,9 @@ ValidateAddress (
BOOLEAN
ValidateException (
IN EFI_EXCEPTION_TYPE ExceptionType,
IN OUT EFI_SYSTEM_CONTEXT SystemContext
IN EFI_EXCEPTION_TYPE ExceptionType,
IN OUT EFI_SYSTEM_CONTEXT SystemContext
)
{
return TRUE;
}

View File

@ -12,6 +12,6 @@
#define CONSOLE_PREF_FORMSET_GUID \
{ 0x2d2358b4, 0xe96c, 0x484d, { 0xb2, 0xdd, 0x7c, 0x2e, 0xdf, 0xc7, 0xd5, 0x6f } }
extern EFI_GUID gConsolePrefFormSetGuid;
extern EFI_GUID gConsolePrefFormSetGuid;
#endif

View File

@ -12,6 +12,6 @@
#define DT_PLATFORM_DEFAULT_DTB_FILE_GUID \
{ 0x25462cda, 0x221f, 0x47df, { 0xac, 0x1d, 0x25, 0x9c, 0xfa, 0xa4, 0xe3, 0x26 } }
extern EFI_GUID gDtPlatformDefaultDtbFileGuid;
extern EFI_GUID gDtPlatformDefaultDtbFileGuid;
#endif

View File

@ -12,6 +12,6 @@
#define DT_PLATFORM_FORMSET_GUID \
{ 0x2b7a240d, 0xd5ad, 0x4fd6, { 0xbe, 0x1c, 0xdf, 0xa4, 0x41, 0x5f, 0x55, 0x26 } }
extern EFI_GUID gDtPlatformFormSetGuid;
extern EFI_GUID gDtPlatformFormSetGuid;
#endif

View File

@ -11,20 +11,18 @@
#include <Library/ExtractGuidedSectionLib.h>
//
// The GUID for this protocol mathes the Decompression scheme being used
// So for example LZMA would be gLzmaCustomDecompressGuid
//
typedef struct {
EXTRACT_GUIDED_SECTION_GET_INFO_HANDLER SectionGetInfo;
EXTRACT_GUIDED_SECTION_DECODE_HANDLER SectionExtraction;
EXTRACT_GUIDED_SECTION_GET_INFO_HANDLER SectionGetInfo;
EXTRACT_GUIDED_SECTION_DECODE_HANDLER SectionExtraction;
} EXTRACT_SECTION_DATA;
typedef struct {
EFI_HOB_GUID_TYPE Hob;
EXTRACT_SECTION_DATA Data;
EFI_HOB_GUID_TYPE Hob;
EXTRACT_SECTION_DATA Data;
} EXTRACT_SECTION_HOB;
#endif

View File

@ -12,11 +12,11 @@
#define FDT_TABLE_GUID \
{ 0xb1b621d5, 0xf19c, 0x41a5, { 0x83, 0x0b, 0xd9, 0x15, 0x2c, 0x69, 0xaa, 0xe0 } }
extern EFI_GUID gFdtTableGuid;
extern EFI_GUID gFdtTableGuid;
#define FDT_VARIABLE_GUID \
{ 0x25a4fd4a, 0x9703, 0x4ba9, { 0xa1, 0x90, 0xb7, 0xc8, 0x4e, 0xfb, 0x3e, 0x57 } }
extern EFI_GUID gFdtVariableGuid;
extern EFI_GUID gFdtVariableGuid;
#endif /* __FDT_H__ */

View File

@ -10,11 +10,11 @@
#ifndef __FDT_HOB_H__
#define __FDT_HOB_H__
#define FDT_HOB_GUID { \
#define FDT_HOB_GUID {\
0x16958446, 0x19B7, 0x480B, \
{ 0xB0, 0x47, 0x74, 0x85, 0xAD, 0x3F, 0x71, 0x6D } \
}
extern EFI_GUID gFdtHobGuid;
extern EFI_GUID gFdtHobGuid;
#endif

View File

@ -18,7 +18,6 @@
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#ifndef __EDKII_NV_VAR_STORE_FORMATTED_H__
#define __EDKII_NV_VAR_STORE_FORMATTED_H__
@ -28,6 +27,6 @@
{ 0x83, 0xcd, 0xdc, 0x2c, 0x29, 0xc8, 0x91, 0xa3 } \
}
extern EFI_GUID gEdkiiNvVarStoreFormattedGuid;
extern EFI_GUID gEdkiiNvVarStoreFormattedGuid;
#endif

View File

@ -14,7 +14,6 @@
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#ifndef __EDKII_PLATFORM_HAS_DEVICE_TREE_H__
#define __EDKII_PLATFORM_HAS_DEVICE_TREE_H__
@ -24,6 +23,6 @@
{ 0xb2, 0xaf, 0x54, 0x1e, 0x1d, 0xce, 0x14, 0x8b } \
}
extern EFI_GUID gEdkiiPlatformHasDeviceTreeGuid;
extern EFI_GUID gEdkiiPlatformHasDeviceTreeGuid;
#endif

View File

@ -17,11 +17,11 @@
//
// Macros for the Generic Address Space
//
#define NULL_GAS { EFI_ACPI_5_0_SYSTEM_MEMORY, 0, 0, EFI_ACPI_5_0_UNDEFINED, 0L }
#define ARM_GAS8(Address) { EFI_ACPI_5_0_SYSTEM_MEMORY, 8, 0, EFI_ACPI_5_0_BYTE, Address }
#define ARM_GAS16(Address) { EFI_ACPI_5_0_SYSTEM_MEMORY, 16, 0, EFI_ACPI_5_0_WORD, Address }
#define ARM_GAS32(Address) { EFI_ACPI_5_0_SYSTEM_MEMORY, 32, 0, EFI_ACPI_5_0_DWORD, Address }
#define ARM_GASN(Address) { EFI_ACPI_5_0_SYSTEM_MEMORY, 0, 0, EFI_ACPI_5_0_DWORD, Address }
#define NULL_GAS { EFI_ACPI_5_0_SYSTEM_MEMORY, 0, 0, EFI_ACPI_5_0_UNDEFINED, 0L }
#define ARM_GAS8(Address) { EFI_ACPI_5_0_SYSTEM_MEMORY, 8, 0, EFI_ACPI_5_0_BYTE, Address }
#define ARM_GAS16(Address) { EFI_ACPI_5_0_SYSTEM_MEMORY, 16, 0, EFI_ACPI_5_0_WORD, Address }
#define ARM_GAS32(Address) { EFI_ACPI_5_0_SYSTEM_MEMORY, 32, 0, EFI_ACPI_5_0_DWORD, Address }
#define ARM_GASN(Address) { EFI_ACPI_5_0_SYSTEM_MEMORY, 0, 0, EFI_ACPI_5_0_DWORD, Address }
//
// Macros for the Multiple APIC Description Table (MADT)
@ -48,7 +48,7 @@
// Note the parking protocol is configured by UEFI if required
#define EFI_ACPI_5_1_GICC_STRUCTURE_INIT(GicId, AcpiCpuUid, Mpidr, Flags, PmuIrq, \
GicBase, GicVBase, GicHBase, GsivId, GicRBase) \
GicBase, GicVBase, GicHBase, GsivId, GicRBase) \
{ \
EFI_ACPI_5_1_GIC, sizeof (EFI_ACPI_5_1_GIC_STRUCTURE), EFI_ACPI_RESERVED_WORD, \
GicId, AcpiCpuUid, Flags, 0, PmuIrq, 0, GicBase, GicVBase, GicHBase, \
@ -56,7 +56,7 @@
}
#define EFI_ACPI_6_0_GICC_STRUCTURE_INIT(GicId, AcpiCpuUid, Mpidr, Flags, PmuIrq, \
GicBase, GicVBase, GicHBase, GsivId, GicRBase, Efficiency) \
GicBase, GicVBase, GicHBase, GsivId, GicRBase, Efficiency) \
{ \
EFI_ACPI_6_0_GIC, sizeof (EFI_ACPI_6_0_GIC_STRUCTURE), EFI_ACPI_RESERVED_WORD, \
GicId, AcpiCpuUid, Flags, 0, PmuIrq, 0, GicBase, GicVBase, GicHBase, \
@ -65,7 +65,7 @@
}
#define EFI_ACPI_6_3_GICC_STRUCTURE_INIT(GicId, AcpiCpuUid, Mpidr, Flags, PmuIrq, \
GicBase, GicVBase, GicHBase, GsivId, GicRBase, Efficiency, SpeOvflIrq) \
GicBase, GicVBase, GicHBase, GsivId, GicRBase, Efficiency, SpeOvflIrq) \
{ \
EFI_ACPI_6_0_GIC, sizeof (EFI_ACPI_6_3_GIC_STRUCTURE), EFI_ACPI_RESERVED_WORD, \
GicId, AcpiCpuUid, Flags, 0, PmuIrq, 0, GicBase, GicVBase, GicHBase, \
@ -82,7 +82,7 @@
// SBSA Generic Watchdog
//
#define EFI_ACPI_5_1_SBSA_GENERIC_WATCHDOG_STRUCTURE_INIT(RefreshFramePhysicalAddress, \
ControlFramePhysicalAddress, WatchdogTimerGSIV, WatchdogTimerFlags) \
ControlFramePhysicalAddress, WatchdogTimerGSIV, WatchdogTimerFlags) \
{ \
EFI_ACPI_5_1_GTDT_SBSA_GENERIC_WATCHDOG, sizeof(EFI_ACPI_5_1_GTDT_SBSA_GENERIC_WATCHDOG_STRUCTURE), \
EFI_ACPI_RESERVED_BYTE, RefreshFramePhysicalAddress, ControlFramePhysicalAddress, \
@ -91,7 +91,7 @@
typedef
BOOLEAN
(EFIAPI *EFI_LOCATE_ACPI_CHECK) (
(EFIAPI *EFI_LOCATE_ACPI_CHECK)(
IN EFI_ACPI_DESCRIPTION_HEADER *AcpiHeader
);
@ -109,7 +109,7 @@ BOOLEAN
**/
EFI_STATUS
LocateAndInstallAcpiFromFvConditional (
IN CONST EFI_GUID* AcpiFile,
IN CONST EFI_GUID *AcpiFile,
IN EFI_LOCATE_ACPI_CHECK CheckAcpiTableFunction
);
@ -125,7 +125,7 @@ LocateAndInstallAcpiFromFvConditional (
**/
EFI_STATUS
LocateAndInstallAcpiFromFv (
IN CONST EFI_GUID* AcpiFile
IN CONST EFI_GUID *AcpiFile
);
#endif // __ACPI_LIB_H__

View File

@ -19,32 +19,33 @@
#define ANDROID_BOOTIMG_KERNEL_ARGS_SIZE 512
#define ANDROID_BOOT_MAGIC "ANDROID!"
#define ANDROID_BOOT_MAGIC_LENGTH (sizeof (ANDROID_BOOT_MAGIC) - 1)
#define ANDROID_BOOT_MAGIC "ANDROID!"
#define ANDROID_BOOT_MAGIC_LENGTH (sizeof (ANDROID_BOOT_MAGIC) - 1)
// No documentation for this really - sizes of fields has been determined
// empirically.
#pragma pack(1)
/* https://android.googlesource.com/platform/system/core/+/master/mkbootimg/bootimg.h */
typedef struct {
UINT8 BootMagic[ANDROID_BOOT_MAGIC_LENGTH];
UINT32 KernelSize;
UINT32 KernelAddress;
UINT32 RamdiskSize;
UINT32 RamdiskAddress;
UINT32 SecondStageBootloaderSize;
UINT32 SecondStageBootloaderAddress;
UINT32 KernelTaggsAddress;
UINT32 PageSize;
UINT32 Reserved[2];
CHAR8 ProductName[16];
CHAR8 KernelArgs[ANDROID_BOOTIMG_KERNEL_ARGS_SIZE];
UINT32 Id[32];
UINT8 BootMagic[ANDROID_BOOT_MAGIC_LENGTH];
UINT32 KernelSize;
UINT32 KernelAddress;
UINT32 RamdiskSize;
UINT32 RamdiskAddress;
UINT32 SecondStageBootloaderSize;
UINT32 SecondStageBootloaderAddress;
UINT32 KernelTaggsAddress;
UINT32 PageSize;
UINT32 Reserved[2];
CHAR8 ProductName[16];
CHAR8 KernelArgs[ANDROID_BOOTIMG_KERNEL_ARGS_SIZE];
UINT32 Id[32];
} ANDROID_BOOTIMG_HEADER;
#pragma pack ()
/* Check Val (unsigned) is a power of 2 (has only one bit set) */
#define IS_POWER_OF_2(Val) ((Val) != 0 && (((Val) & ((Val) - 1)) == 0))
#define IS_POWER_OF_2(Val) ((Val) != 0 && (((Val) & ((Val) - 1)) == 0))
/* Android boot image page size is not specified, but it should be power of 2
* and larger than boot header */
#define IS_VALID_ANDROID_PAGE_SIZE(Val) \
@ -52,14 +53,14 @@ typedef struct {
EFI_STATUS
AndroidBootImgGetImgSize (
IN VOID *BootImg,
OUT UINTN *ImgSize
IN VOID *BootImg,
OUT UINTN *ImgSize
);
EFI_STATUS
AndroidBootImgBoot (
IN VOID *Buffer,
IN UINTN BufferSize
IN VOID *Buffer,
IN UINTN BufferSize
);
#endif /* __ABOOTIMG_H__ */

View File

@ -12,8 +12,6 @@
#ifndef __GDB_TIMER_LIB__
#define __GDB_TIMER_LIB__
/**
Setup all the hardware needed for the debug agents timer.
@ -26,7 +24,6 @@ DebugAgentTimerIntialize (
VOID
);
/**
Set the period for the debug agent timer. Zero means disable the timer.
@ -39,7 +36,6 @@ DebugAgentTimerSetPeriod (
IN UINT32 TimerPeriodMilliseconds
);
/**
Perform End Of Interrupt for the debug agent timer. This is called in the
interrupt handler after the interrupt has been processed.
@ -52,5 +48,3 @@ DebugAgentTimerEndOfInterrupt (
);
#endif

View File

@ -51,9 +51,6 @@ typedef enum {
MapOperationMaximum
} DMA_MAP_OPERATION;
/**
Provides the DMA controller-specific addresses needed to access system memory.
@ -77,16 +74,13 @@ typedef enum {
EFI_STATUS
EFIAPI
DmaMap (
IN DMA_MAP_OPERATION Operation,
IN VOID *HostAddress,
IN OUT UINTN *NumberOfBytes,
OUT PHYSICAL_ADDRESS *DeviceAddress,
OUT VOID **Mapping
IN DMA_MAP_OPERATION Operation,
IN VOID *HostAddress,
IN OUT UINTN *NumberOfBytes,
OUT PHYSICAL_ADDRESS *DeviceAddress,
OUT VOID **Mapping
);
/**
Completes the DmaMapBusMasterRead, DmaMapBusMasterWrite, or DmaMapBusMasterCommonBuffer
operation and releases any corresponding resources.
@ -100,10 +94,9 @@ DmaMap (
EFI_STATUS
EFIAPI
DmaUnmap (
IN VOID *Mapping
IN VOID *Mapping
);
/**
Allocates pages that are suitable for an DmaMap() of type MapOperationBusMasterCommonBuffer.
mapping.
@ -124,12 +117,11 @@ DmaUnmap (
EFI_STATUS
EFIAPI
DmaAllocateBuffer (
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Pages,
OUT VOID **HostAddress
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Pages,
OUT VOID **HostAddress
);
/**
Frees memory that was allocated with DmaAllocateBuffer().
@ -144,11 +136,10 @@ DmaAllocateBuffer (
EFI_STATUS
EFIAPI
DmaFreeBuffer (
IN UINTN Pages,
IN VOID *HostAddress
IN UINTN Pages,
IN VOID *HostAddress
);
/**
Allocates pages that are suitable for an DmaMap() of type
MapOperationBusMasterCommonBuffer mapping, at the requested alignment.
@ -171,11 +162,10 @@ DmaFreeBuffer (
EFI_STATUS
EFIAPI
DmaAllocateAlignedBuffer (
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Pages,
IN UINTN Alignment,
OUT VOID **HostAddress
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Pages,
IN UINTN Alignment,
OUT VOID **HostAddress
);
#endif

View File

@ -26,8 +26,8 @@
EFI_STATUS
EFIAPI
DtPlatformLoadDtb (
OUT VOID **Dtb,
OUT UINTN *DtbSize
OUT VOID **Dtb,
OUT UINTN *DtbSize
);
#endif

View File

@ -42,7 +42,7 @@
#include <Guid/FileInfo.h>
#include <Guid/FileSystemInfo.h>
#define MAX_PATHNAME 0x200
#define MAX_PATHNAME 0x200
/// Type of the file that has been opened
typedef enum {
@ -55,52 +55,49 @@ typedef enum {
EfiOpenMaxValue
} EFI_OPEN_FILE_TYPE;
/// Public information about the open file
typedef struct {
UINTN Version; // Common information
EFI_OPEN_FILE_TYPE Type;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
EFI_STATUS LastError;
EFI_HANDLE EfiHandle;
CHAR8 *DeviceName;
CHAR8 *FileName;
UINTN Version; // Common information
EFI_OPEN_FILE_TYPE Type;
EFI_DEVICE_PATH_PROTOCOL *DevicePath;
EFI_STATUS LastError;
EFI_HANDLE EfiHandle;
CHAR8 *DeviceName;
CHAR8 *FileName;
UINT64 CurrentPosition; // Information for Seek
UINT64 MaxPosition;
UINT64 CurrentPosition; // Information for Seek
UINT64 MaxPosition;
UINTN BaseOffset; // Base offset for hexdump command
UINTN BaseOffset; // Base offset for hexdump command
UINTN Size; // Valid for all types other than l#:
UINT8 *Buffer; // Information valid for A#:
UINTN Size; // Valid for all types other than l#:
UINT8 *Buffer; // Information valid for A#:
EFI_FIRMWARE_VOLUME2_PROTOCOL *Fv; // Information valid for Fv#:
EFI_GUID FvNameGuid;
EFI_SECTION_TYPE FvSectionType;
EFI_FV_FILETYPE FvType;
EFI_FV_FILE_ATTRIBUTES FvAttributes;
EFI_FIRMWARE_VOLUME2_PROTOCOL *Fv; // Information valid for Fv#:
EFI_GUID FvNameGuid;
EFI_SECTION_TYPE FvSectionType;
EFI_FV_FILETYPE FvType;
EFI_FV_FILE_ATTRIBUTES FvAttributes;
EFI_PHYSICAL_ADDRESS FvStart;
UINTN FvSize;
UINTN FvHeaderSize;
EFI_PHYSICAL_ADDRESS FvStart;
UINTN FvSize;
UINTN FvHeaderSize;
EFI_FILE *FsFileHandle; // Information valid for Fs#:
EFI_FILE_SYSTEM_INFO *FsInfo;
EFI_FILE_INFO *FsFileInfo;
EFI_BLOCK_IO_MEDIA *FsBlockIoMedia; // Information valid for Fs#: or B#:
EFI_BLOCK_IO_PROTOCOL *FsBlockIo; // Information valid for Fs#: or B#:
EFI_FILE *FsFileHandle; // Information valid for Fs#:
EFI_FILE_SYSTEM_INFO *FsInfo;
EFI_FILE_INFO *FsFileInfo;
EFI_BLOCK_IO_MEDIA *FsBlockIoMedia; // Information valid for Fs#: or B#:
EFI_BLOCK_IO_PROTOCOL *FsBlockIo; // Information valid for Fs#: or B#:
UINTN DiskOffset; // Information valid for B#:
UINTN DiskOffset; // Information valid for B#:
EFI_LOAD_FILE_PROTOCOL *LoadFile; // Information valid for l#:
EFI_IP_ADDRESS ServerIp; // Information valid for t:
BOOLEAN IsDirty;
BOOLEAN IsBufferValid;
EFI_LOAD_FILE_PROTOCOL *LoadFile; // Information valid for l#:
EFI_IP_ADDRESS ServerIp; // Information valid for t:
BOOLEAN IsDirty;
BOOLEAN IsBufferValid;
} EFI_OPEN_FILE;
/// Type of Seek to perform
typedef enum {
EfiSeekStart,
@ -109,7 +106,6 @@ typedef enum {
EfiSeekMax
} EFI_SEEK_TYPE;
/**
Open a device named by PathName. The PathName includes a device name and
path separated by a :. See file header for more details on the PathName
@ -131,15 +127,15 @@ typedef enum {
**/
EFI_OPEN_FILE *
EfiOpen (
IN CHAR8 *PathName,
IN CONST UINT64 OpenMode,
IN CONST EFI_SECTION_TYPE SectionType
IN CHAR8 *PathName,
IN CONST UINT64 OpenMode,
IN CONST EFI_SECTION_TYPE SectionType
);
EFI_STATUS
EfiCopyFile (
IN CHAR8 *DestinationFile,
IN CHAR8 *SourceFile
IN CHAR8 *DestinationFile,
IN CHAR8 *SourceFile
);
/**
@ -154,11 +150,10 @@ EfiCopyFile (
**/
EFI_OPEN_FILE *
EfiDeviceOpenByType (
IN EFI_OPEN_FILE_TYPE DeviceType,
IN UINTN Index
IN EFI_OPEN_FILE_TYPE DeviceType,
IN UINTN Index
);
/**
Close a file handle opened by EfiOpen() and free all resources allocated by
EfiOpen().
@ -171,10 +166,9 @@ EfiDeviceOpenByType (
**/
EFI_STATUS
EfiClose (
IN EFI_OPEN_FILE *Stream
IN EFI_OPEN_FILE *Stream
);
/**
Return the size of the file represented by Stream. Also return the current
Seek position. Opening a file will enable a valid file size to be returned.
@ -187,11 +181,10 @@ EfiClose (
**/
UINTN
EfiTell (
IN EFI_OPEN_FILE *Stream,
OUT UINT64 *CurrentPosition OPTIONAL
IN EFI_OPEN_FILE *Stream,
OUT UINT64 *CurrentPosition OPTIONAL
);
/**
Seek to the Offset location in the file. LoadFile and FV device types do
not support EfiSeek(). It is not possible to grow the file size using
@ -215,12 +208,11 @@ EfiTell (
**/
EFI_STATUS
EfiSeek (
IN EFI_OPEN_FILE *Stream,
IN EFI_LBA Offset,
IN EFI_SEEK_TYPE SeekType
IN EFI_OPEN_FILE *Stream,
IN EFI_LBA Offset,
IN EFI_SEEK_TYPE SeekType
);
/**
Read BufferSize bytes from the current location in the file. For load file
and FV case you must read the entire file.
@ -239,12 +231,11 @@ EfiSeek (
**/
EFI_STATUS
EfiRead (
IN EFI_OPEN_FILE *Stream,
OUT VOID *Buffer,
OUT UINTN *BufferSize
IN EFI_OPEN_FILE *Stream,
OUT VOID *Buffer,
OUT UINTN *BufferSize
);
/**
Read the entire file into a buffer. This routine allocates the buffer and
returns it to the user full of the read data.
@ -266,12 +257,11 @@ EfiRead (
**/
EFI_STATUS
EfiReadAllocatePool (
IN EFI_OPEN_FILE *Stream,
OUT VOID **Buffer,
OUT UINTN *BufferSize
IN EFI_OPEN_FILE *Stream,
OUT VOID **Buffer,
OUT UINTN *BufferSize
);
/**
Write data back to the file.
@ -289,12 +279,11 @@ EfiReadAllocatePool (
**/
EFI_STATUS
EfiWrite (
IN EFI_OPEN_FILE *Stream,
OUT VOID *Buffer,
OUT UINTN *BufferSize
IN EFI_OPEN_FILE *Stream,
OUT VOID *Buffer,
OUT UINTN *BufferSize
);
/**
Return the number of devices of the current type active in the system
@ -305,10 +294,9 @@ EfiWrite (
**/
UINTN
EfiGetDeviceCounts (
IN EFI_OPEN_FILE_TYPE Type
IN EFI_OPEN_FILE_TYPE Type
);
/**
Set the Current Working Directory (CWD). If a call is made to EfiOpen () and
the path does not contain a device name, The CWD is prepended to the path.
@ -322,7 +310,7 @@ EfiGetDeviceCounts (
**/
EFI_STATUS
EfiSetCwd (
IN CHAR8 *Cwd
IN CHAR8 *Cwd
);
/**

View File

@ -6,11 +6,9 @@
**/
#ifndef __EFI_RESET_SYSTEM_LIB_H___
#define __EFI_RESET_SYSTEM_LIB_H___
/**
Resets the entire platform.
@ -25,14 +23,12 @@
EFI_STATUS
EFIAPI
LibResetSystem (
IN EFI_RESET_TYPE ResetType,
IN EFI_STATUS ResetStatus,
IN UINTN DataSize,
IN CHAR16 *ResetData OPTIONAL
IN EFI_RESET_TYPE ResetType,
IN EFI_STATUS ResetStatus,
IN UINTN DataSize,
IN CHAR16 *ResetData OPTIONAL
);
/**
Initialize any infrastructure required for LibResetSystem () to function.

View File

@ -21,7 +21,7 @@
**/
EFI_STATUS
InstallFdtFromSemihosting (
IN CONST CHAR16* FileName
IN CONST CHAR16 *FileName
);
/**
@ -36,7 +36,7 @@ InstallFdtFromSemihosting (
**/
EFI_STATUS
InstallFdtFromFv (
IN CONST EFI_GUID *FileName
IN CONST EFI_GUID *FileName
);
#endif

View File

@ -10,8 +10,6 @@
#ifndef __GDB_SERIAL_LIB_H__
#define __GDB_SERIAL_LIB_H__
/**
Sets the baud rate, receive FIFO depth, transmit/receive time out, parity,
data buts, and stop bits on a serial device. This call is optional as the serial
@ -34,13 +32,12 @@
RETURN_STATUS
EFIAPI
GdbSerialInit (
IN UINT64 BaudRate,
IN UINT8 Parity,
IN UINT8 DataBits,
IN UINT8 StopBits
IN UINT64 BaudRate,
IN UINT8 Parity,
IN UINT8 DataBits,
IN UINT8 StopBits
);
/**
Check to see if a character is available from GDB. Do not read the character as that is
done via GdbGetChar().
@ -67,7 +64,6 @@ GdbGetChar (
VOID
);
/**
Send a character to GDB. This function must be able to run in interrupt context.
@ -79,10 +75,9 @@ GdbGetChar (
VOID
EFIAPI
GdbPutChar (
IN CHAR8 Char
IN CHAR8 Char
);
/**
Send an ASCII string to GDB. This function must be able to run in interrupt context.
@ -96,6 +91,4 @@ GdbPutString (
IN CHAR8 *String
);
#endif

View File

@ -6,15 +6,18 @@
**/
#ifndef __RUNTIME_SERVICES_LIB_H__
#define __RUNTIME_SERVICES_LIB_H__
VOID
LibMtcInitialize (VOID);
LibMtcInitialize (
VOID
);
VOID
LibMtcVirtualAddressChangeEvent (VOID);
LibMtcVirtualAddressChangeEvent (
VOID
);
EFI_STATUS
EFIAPI
@ -27,21 +30,23 @@ LibMtcGetNextMonotonicCount (
OUT UINT64 *Count
);
VOID
LibVariableInitialize (
VOID
);
VOID
LibVariableInitialize (VOID);
VOID
LibVariableVirtualAddressChangeEvent (VOID);
LibVariableVirtualAddressChangeEvent (
VOID
);
EFI_STATUS
LibGetVariable (
IN CHAR16 *VariableName,
IN EFI_GUID *VendorGuid,
OUT UINT32 *Attributes OPTIONAL,
IN OUT UINTN *DataSize,
OUT VOID *Data
IN CHAR16 *VariableName,
IN EFI_GUID *VendorGuid,
OUT UINT32 *Attributes OPTIONAL,
IN OUT UINTN *DataSize,
OUT VOID *Data
);
EFI_STATUS
@ -53,49 +58,54 @@ LibGetNextVariableName (
EFI_STATUS
LibSetVariable (
IN CHAR16 *VariableName,
IN EFI_GUID *VendorGuid,
IN UINT32 Attributes,
IN UINTN DataSize,
IN VOID *Data
IN CHAR16 *VariableName,
IN EFI_GUID *VendorGuid,
IN UINT32 Attributes,
IN UINTN DataSize,
IN VOID *Data
);
EFI_STATUS
LibQueryVariableInfo (
IN UINT32 Attributes,
OUT UINT64 *MaximumVariableStorageSize,
OUT UINT64 *RemainingVariableStorageSize,
OUT UINT64 *MaximumVariableSize
IN UINT32 Attributes,
OUT UINT64 *MaximumVariableStorageSize,
OUT UINT64 *RemainingVariableStorageSize,
OUT UINT64 *MaximumVariableSize
);
VOID
LibResetInitializeReset (
VOID
);
VOID
LibResetInitializeReset (VOID);
VOID
LibResetVirtualAddressChangeEvent (VOID);
LibResetVirtualAddressChangeEvent (
VOID
);
VOID
LibResetSystem (
IN EFI_RESET_TYPE ResetType,
IN EFI_STATUS ResetStatus,
IN UINTN DataSize,
IN CHAR16 *ResetData OPTIONAL
IN EFI_RESET_TYPE ResetType,
IN EFI_STATUS ResetStatus,
IN UINTN DataSize,
IN CHAR16 *ResetData OPTIONAL
);
VOID
LibCapsuleInitialize (
VOID
);
VOID
LibCapsuleInitialize (VOID);
VOID
LibCapsuleVirtualAddressChangeEvent (VOID);
LibCapsuleVirtualAddressChangeEvent (
VOID
);
EFI_STATUS
LibUpdateCapsule (
IN UEFI_CAPSULE_HEADER **CapsuleHeaderArray,
IN UINTN CapsuleCount,
IN EFI_PHYSICAL_ADDRESS ScatterGatherList OPTIONAL
IN UEFI_CAPSULE_HEADER **CapsuleHeaderArray,
IN UINTN CapsuleCount,
IN EFI_PHYSICAL_ADDRESS ScatterGatherList OPTIONAL
);
EFI_STATUS
@ -106,13 +116,15 @@ QueryCapsuleCapabilities (
OUT EFI_RESET_TYPE *ResetType
);
VOID
LibRtcInitialize (
VOID
);
VOID
LibRtcInitialize (VOID);
VOID
LibRtcVirtualAddressChangeEvent (VOID);
LibRtcVirtualAddressChangeEvent (
VOID
);
EFI_STATUS
LibGetTime (
@ -122,38 +134,39 @@ LibGetTime (
EFI_STATUS
LibSetTime (
IN EFI_TIME *Time
IN EFI_TIME *Time
);
EFI_STATUS
LibGetWakeupTime (
OUT BOOLEAN *Enabled,
OUT BOOLEAN *Pending,
OUT EFI_TIME *Time
OUT BOOLEAN *Enabled,
OUT BOOLEAN *Pending,
OUT EFI_TIME *Time
);
EFI_STATUS
LibSetWakeupTime (
IN BOOLEAN Enabled,
OUT EFI_TIME *Time
IN BOOLEAN Enabled,
OUT EFI_TIME *Time
);
VOID
LibReportStatusCodeInitialize (
VOID
);
VOID
LibReportStatusCodeInitialize (VOID);
VOID
LibReportStatusCodeVirtualAddressChangeEvent (VOID);
LibReportStatusCodeVirtualAddressChangeEvent (
VOID
);
EFI_STATUS
LibReportStatusCode (
IN EFI_STATUS_CODE_TYPE CodeType,
IN EFI_STATUS_CODE_VALUE Value,
IN UINT32 Instance,
IN EFI_GUID *CallerId,
IN EFI_STATUS_CODE_DATA *Data OPTIONAL
IN EFI_STATUS_CODE_TYPE CodeType,
IN EFI_STATUS_CODE_VALUE Value,
IN UINT32 Instance,
IN EFI_GUID *CallerId,
IN EFI_STATUS_CODE_DATA *Data OPTIONAL
);
#endif

View File

@ -11,45 +11,45 @@
#include <Uefi/UefiBaseType.h>
#define NOR_FLASH_MAX_ID_LEN 6
#define NOR_FLASH_MAX_ID_LEN 6
typedef struct {
/* Device name */
UINT16 *Name;
UINT16 *Name;
/*
* JEDEC ID
*/
UINT8 Id[NOR_FLASH_MAX_ID_LEN];
UINT8 IdLen;
UINT8 Id[NOR_FLASH_MAX_ID_LEN];
UINT8 IdLen;
UINT16 PageSize;
UINT16 PageSize;
/*
* Below parameters can be referred as BlockSize
* and BlockCount, when treating the NorFlash as
* block device.
*/
UINT32 SectorSize;
UINT32 SectorCount;
UINT32 SectorSize;
UINT32 SectorCount;
UINT16 Flags;
#define NOR_FLASH_ERASE_4K (1 << 0) /* Use 4 KB erase blocks and CMD_ERASE_4K */
#define NOR_FLASH_ERASE_32K (1 << 1) /* Use 32 KB erase blocks and CMD_ERASE_32K */
#define NOR_FLASH_WRITE_FSR (1 << 2) /* Use flag status register for write */
#define NOR_FLASH_4B_ADDR (1 << 3) /* Use 4B addressing */
UINT16 Flags;
#define NOR_FLASH_ERASE_4K (1 << 0) /* Use 4 KB erase blocks and CMD_ERASE_4K */
#define NOR_FLASH_ERASE_32K (1 << 1) /* Use 32 KB erase blocks and CMD_ERASE_32K */
#define NOR_FLASH_WRITE_FSR (1 << 2) /* Use flag status register for write */
#define NOR_FLASH_4B_ADDR (1 << 3) /* Use 4B addressing */
} NOR_FLASH_INFO;
/* Vendor IDs */
#define NOR_FLASH_ID_ATMEL 0x1f
#define NOR_FLASH_ID_EON 0x1c
#define NOR_FLASH_ID_GIGADEVICE 0xc8
#define NOR_FLASH_ID_ISSI 0x9d
#define NOR_FLASH_ID_MACRONIX 0xc2
#define NOR_FLASH_ID_SPANSION 0x01
#define NOR_FLASH_ID_STMICRO 0x20
#define NOR_FLASH_ID_SST 0xbf
#define NOR_FLASH_ID_WINDBOND 0xef
#define NOR_FLASH_ID_ATMEL 0x1f
#define NOR_FLASH_ID_EON 0x1c
#define NOR_FLASH_ID_GIGADEVICE 0xc8
#define NOR_FLASH_ID_ISSI 0x9d
#define NOR_FLASH_ID_MACRONIX 0xc2
#define NOR_FLASH_ID_SPANSION 0x01
#define NOR_FLASH_ID_STMICRO 0x20
#define NOR_FLASH_ID_SST 0xbf
#define NOR_FLASH_ID_WINDBOND 0xef
/**
Return an allocated copy pool of the NOR flash information structure.
@ -70,9 +70,9 @@ typedef struct {
EFI_STATUS
EFIAPI
NorFlashGetInfo (
IN UINT8 *Id,
IN UINT8 *Id,
IN OUT NOR_FLASH_INFO **FlashInfo,
IN BOOLEAN AllocateForRuntime
IN BOOLEAN AllocateForRuntime
);
/**
@ -87,4 +87,5 @@ EFIAPI
NorFlashPrintInfo (
IN NOR_FLASH_INFO *Info
);
#endif

View File

@ -32,7 +32,7 @@ PrePeiGetHobList (
EFI_STATUS
EFIAPI
PrePeiSetHobList (
IN VOID *HobList
IN VOID *HobList
);
#endif

View File

@ -27,11 +27,10 @@
EFI_STATUS
EFIAPI
FfsFindNextVolume (
IN UINTN Instance,
IN OUT EFI_PEI_FV_HANDLE *VolumeHandle
IN UINTN Instance,
IN OUT EFI_PEI_FV_HANDLE *VolumeHandle
);
/**
This service enables discovery of additional firmware files.
@ -48,12 +47,11 @@ FfsFindNextVolume (
EFI_STATUS
EFIAPI
FfsFindNextFile (
IN EFI_FV_FILETYPE SearchType,
IN EFI_PEI_FV_HANDLE VolumeHandle,
IN OUT EFI_PEI_FILE_HANDLE *FileHandle
IN EFI_FV_FILETYPE SearchType,
IN EFI_PEI_FV_HANDLE VolumeHandle,
IN OUT EFI_PEI_FILE_HANDLE *FileHandle
);
/**
This service enables discovery sections of a given type within a valid FFS file.
@ -69,12 +67,11 @@ FfsFindNextFile (
EFI_STATUS
EFIAPI
FfsFindSectionData (
IN EFI_SECTION_TYPE SectionType,
IN EFI_PEI_FILE_HANDLE FileHandle,
OUT VOID **SectionData
IN EFI_SECTION_TYPE SectionType,
IN EFI_PEI_FILE_HANDLE FileHandle,
OUT VOID **SectionData
);
/**
Find a file in the volume by name
@ -96,12 +93,11 @@ FfsFindSectionData (
EFI_STATUS
EFIAPI
FfsFindFileByName (
IN CONST EFI_GUID *FileName,
IN CONST EFI_PEI_FV_HANDLE VolumeHandle,
OUT EFI_PEI_FILE_HANDLE *FileHandle
IN CONST EFI_GUID *FileName,
IN CONST EFI_PEI_FV_HANDLE VolumeHandle,
OUT EFI_PEI_FILE_HANDLE *FileHandle
);
/**
Get information about the file by name.
@ -121,11 +117,10 @@ FfsFindFileByName (
EFI_STATUS
EFIAPI
FfsGetFileInfo (
IN CONST EFI_PEI_FILE_HANDLE FileHandle,
OUT EFI_FV_FILE_INFO *FileInfo
IN CONST EFI_PEI_FILE_HANDLE FileHandle,
OUT EFI_FV_FILE_INFO *FileInfo
);
/**
Get Information about the volume by name
@ -145,12 +140,10 @@ FfsGetFileInfo (
EFI_STATUS
EFIAPI
FfsGetVolumeInfo (
IN EFI_PEI_FV_HANDLE VolumeHandle,
OUT EFI_FV_INFO *VolumeInfo
IN EFI_PEI_FV_HANDLE VolumeHandle,
OUT EFI_FV_INFO *VolumeInfo
);
/**
Get Fv image from the FV type file, then add FV & FV2 Hob.
@ -163,10 +156,9 @@ FfsGetVolumeInfo (
EFI_STATUS
EFIAPI
FfsProcessFvFile (
IN EFI_PEI_FILE_HANDLE FvFileHandle
IN EFI_PEI_FILE_HANDLE FvFileHandle
);
/**
Search through every FV until you find a file of type FileType
@ -181,12 +173,11 @@ FfsProcessFvFile (
EFI_STATUS
EFIAPI
FfsAnyFvFindFirstFile (
IN EFI_FV_FILETYPE FileType,
OUT EFI_PEI_FV_HANDLE *VolumeHandle,
OUT EFI_PEI_FILE_HANDLE *FileHandle
IN EFI_FV_FILETYPE FileType,
OUT EFI_PEI_FV_HANDLE *VolumeHandle,
OUT EFI_PEI_FILE_HANDLE *FileHandle
);
/**
Get Fv image from the FV type file, then add FV & FV2 Hob.
@ -200,10 +191,9 @@ FfsAnyFvFindFirstFile (
EFI_STATUS
EFIAPI
FfsProcessFvFile (
IN EFI_PEI_FILE_HANDLE FvFileHandle
IN EFI_PEI_FILE_HANDLE FvFileHandle
);
/**
This service enables PEIMs to ascertain the present value of the boot mode.
@ -217,7 +207,6 @@ GetBootMode (
VOID
);
/**
This service enables PEIMs to update the boot mode variable.
@ -229,7 +218,7 @@ GetBootMode (
EFI_STATUS
EFIAPI
SetBootMode (
IN EFI_BOOT_MODE BootMode
IN EFI_BOOT_MODE BootMode
);
/**
@ -247,7 +236,6 @@ GetHobList (
VOID
);
/**
Updates the pointer to the HOB list.
@ -257,10 +245,10 @@ GetHobList (
EFI_STATUS
EFIAPI
SetHobList (
IN VOID *HobList
IN VOID *HobList
);
EFI_HOB_HANDOFF_INFO_TABLE*
EFI_HOB_HANDOFF_INFO_TABLE *
HobConstructor (
IN VOID *EfiMemoryBegin,
IN UINTN EfiMemoryLength,
@ -280,11 +268,10 @@ HobConstructor (
**/
VOID *
CreateHob (
IN UINT16 HobType,
IN UINT16 HobLenght
IN UINT16 HobType,
IN UINT16 HobLenght
);
/**
Returns the next instance of a HOB type from the starting HOB.
@ -304,8 +291,8 @@ CreateHob (
VOID *
EFIAPI
GetNextHob (
IN UINT16 Type,
IN CONST VOID *HobStart
IN UINT16 Type,
IN CONST VOID *HobStart
);
/**
@ -322,7 +309,7 @@ GetNextHob (
VOID *
EFIAPI
GetFirstHob (
IN UINT16 Type
IN UINT16 Type
);
/**
@ -347,8 +334,8 @@ GetFirstHob (
VOID *
EFIAPI
GetNextGuidHob (
IN CONST EFI_GUID *Guid,
IN CONST VOID *HobStart
IN CONST EFI_GUID *Guid,
IN CONST VOID *HobStart
);
/**
@ -368,10 +355,9 @@ GetNextGuidHob (
VOID *
EFIAPI
GetFirstGuidHob (
IN CONST EFI_GUID *Guid
IN CONST EFI_GUID *Guid
);
/**
Builds a HOB for a loaded PE32 module.
@ -390,10 +376,10 @@ GetFirstGuidHob (
VOID
EFIAPI
BuildModuleHob (
IN CONST EFI_GUID *ModuleName,
IN EFI_PHYSICAL_ADDRESS MemoryAllocationModule,
IN UINT64 ModuleLength,
IN EFI_PHYSICAL_ADDRESS EntryPoint
IN CONST EFI_GUID *ModuleName,
IN EFI_PHYSICAL_ADDRESS MemoryAllocationModule,
IN UINT64 ModuleLength,
IN EFI_PHYSICAL_ADDRESS EntryPoint
);
/**
@ -440,8 +426,8 @@ BuildResourceDescriptorHob (
VOID *
EFIAPI
BuildGuidHob (
IN CONST EFI_GUID *Guid,
IN UINTN DataLength
IN CONST EFI_GUID *Guid,
IN UINTN DataLength
);
/**
@ -467,9 +453,9 @@ BuildGuidHob (
VOID *
EFIAPI
BuildGuidDataHob (
IN CONST EFI_GUID *Guid,
IN VOID *Data,
IN UINTN DataLength
IN CONST EFI_GUID *Guid,
IN VOID *Data,
IN UINTN DataLength
);
/**
@ -487,8 +473,8 @@ BuildGuidDataHob (
VOID
EFIAPI
BuildFvHob (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
);
/**
@ -511,7 +497,6 @@ BuildFvHobs (
IN EFI_RESOURCE_ATTRIBUTE_TYPE *ResourceAttribute OPTIONAL
);
/**
Builds a EFI_HOB_TYPE_FV2 HOB.
@ -529,10 +514,10 @@ BuildFvHobs (
VOID
EFIAPI
BuildFv2Hob (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN CONST EFI_GUID *FvName,
IN CONST EFI_GUID *FileName
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN CONST EFI_GUID *FvName,
IN CONST EFI_GUID *FileName
);
/**
@ -550,8 +535,8 @@ BuildFv2Hob (
VOID
EFIAPI
BuildCvHob (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
);
/**
@ -569,8 +554,8 @@ BuildCvHob (
VOID
EFIAPI
BuildCpuHob (
IN UINT8 SizeOfMemorySpace,
IN UINT8 SizeOfIoSpace
IN UINT8 SizeOfMemorySpace,
IN UINT8 SizeOfIoSpace
);
/**
@ -588,8 +573,8 @@ BuildCpuHob (
VOID
EFIAPI
BuildStackHob (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
);
/**
@ -601,11 +586,10 @@ BuildStackHob (
**/
VOID
UpdateStackHob (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
);
/**
Builds a HOB for the BSP store.
@ -622,9 +606,9 @@ UpdateStackHob (
VOID
EFIAPI
BuildBspStoreHob (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN EFI_MEMORY_TYPE MemoryType
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN EFI_MEMORY_TYPE MemoryType
);
/**
@ -643,18 +627,17 @@ BuildBspStoreHob (
VOID
EFIAPI
BuildMemoryAllocationHob (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN EFI_MEMORY_TYPE MemoryType
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN EFI_MEMORY_TYPE MemoryType
);
VOID
EFIAPI
BuildExtractSectionHob (
IN EFI_GUID *Guid,
IN EXTRACT_GUIDED_SECTION_GET_INFO_HANDLER SectionGetInfo,
IN EXTRACT_GUIDED_SECTION_DECODE_HANDLER SectionExtraction
IN EFI_GUID *Guid,
IN EXTRACT_GUIDED_SECTION_GET_INFO_HANDLER SectionGetInfo,
IN EXTRACT_GUIDED_SECTION_DECODE_HANDLER SectionExtraction
);
VOID
@ -663,7 +646,6 @@ BuildPeCoffLoaderHob (
VOID
);
/**
Allocates one or more 4KB pages of type EfiBootServicesData.
@ -680,7 +662,7 @@ BuildPeCoffLoaderHob (
VOID *
EFIAPI
AllocatePages (
IN UINTN Pages
IN UINTN Pages
);
/**
@ -701,7 +683,6 @@ AllocatePool (
IN UINTN AllocationSize
);
/**
Allocates one or more 4KB pages of type EfiBootServicesData at a specified alignment.
@ -725,14 +706,13 @@ AllocateAlignedPages (
IN UINTN Alignment
);
EFI_STATUS
EFIAPI
LoadPeCoffImage (
IN VOID *PeCoffImage,
OUT EFI_PHYSICAL_ADDRESS *ImageAddress,
OUT UINT64 *ImageSize,
OUT EFI_PHYSICAL_ADDRESS *EntryPoint
IN VOID *PeCoffImage,
OUT EFI_PHYSICAL_ADDRESS *ImageAddress,
OUT UINT64 *ImageSize,
OUT EFI_PHYSICAL_ADDRESS *EntryPoint
);
EFI_STATUS

View File

@ -12,7 +12,6 @@
#ifndef __REAL_TIME_CLOCK_LIB__
#define __REAL_TIME_CLOCK_LIB__
/**
Returns the current time and date information, and the time-keeping capabilities
of the hardware platform.
@ -33,7 +32,6 @@ LibGetTime (
OUT EFI_TIME_CAPABILITIES *Capabilities
);
/**
Sets the current local time and date information.
@ -47,10 +45,9 @@ LibGetTime (
EFI_STATUS
EFIAPI
LibSetTime (
IN EFI_TIME *Time
IN EFI_TIME *Time
);
/**
Returns the current wakeup alarm clock setting.
@ -66,12 +63,11 @@ LibSetTime (
EFI_STATUS
EFIAPI
LibGetWakeupTime (
OUT BOOLEAN *Enabled,
OUT BOOLEAN *Pending,
OUT EFI_TIME *Time
OUT BOOLEAN *Enabled,
OUT BOOLEAN *Pending,
OUT EFI_TIME *Time
);
/**
Sets the system wakeup alarm clock time.
@ -88,12 +84,10 @@ LibGetWakeupTime (
EFI_STATUS
EFIAPI
LibSetWakeupTime (
IN BOOLEAN Enabled,
OUT EFI_TIME *Time
IN BOOLEAN Enabled,
OUT EFI_TIME *Time
);
/**
This is the declaration of an EFI image entry point. This can be the entry point to an application
written to this specification, an EFI boot service driver, or an EFI runtime driver.
@ -107,11 +101,10 @@ LibSetWakeupTime (
EFI_STATUS
EFIAPI
LibRtcInitialize (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
);
/**
Fixup internal data so that EFI can be call in virtual mode.
Call the passed in Child Notify event and convert any pointers in
@ -123,10 +116,8 @@ LibRtcInitialize (
VOID
EFIAPI
LibRtcVirtualNotifyEvent (
IN EFI_EVENT Event,
IN VOID *Context
IN EFI_EVENT Event,
IN VOID *Context
);
#endif

View File

@ -20,13 +20,13 @@
// in which case __DATE__ is defined as a "Mmm dd yyyy" 11 chars string,
// but add an explicit filter for compilers that have been validated.
//
#if (defined(__GNUC__) || defined(_MSC_VER) || defined(__clang__))
#define TIME_BUILD_YEAR (__DATE__[7] == '?' ? 1900 \
#if (defined (__GNUC__) || defined (_MSC_VER) || defined (__clang__))
#define TIME_BUILD_YEAR (__DATE__[7] == '?' ? 1900\
: (((__DATE__[7] - '0') * 1000 ) \
+ (__DATE__[8] - '0') * 100 \
+ (__DATE__[9] - '0') * 10 \
+ __DATE__[10] - '0'))
#define TIME_BUILD_MONTH ( __DATE__ [2] == '?' ? 1 \
#define TIME_BUILD_MONTH ( __DATE__ [2] == '?' ? 1 \
: __DATE__ [2] == 'n' ? ( \
__DATE__ [1] == 'a' ? 1 : 6) \
: __DATE__ [2] == 'b' ? 2 \
@ -39,19 +39,19 @@
: __DATE__ [2] == 't' ? 10 \
: __DATE__ [2] == 'v' ? 11 \
: 12)
#define TIME_BUILD_DAY ( __DATE__[4] == '?' ? 1 \
#define TIME_BUILD_DAY ( __DATE__[4] == '?' ? 1 \
: ((__DATE__[4] == ' ' ? 0 : \
((__DATE__[4] - '0') * 10)) \
+ __DATE__[5] - '0'))
#endif
// Define EPOCH (1970-JANUARY-01) in the Julian Date representation
#define EPOCH_JULIAN_DATE 2440588
#define EPOCH_JULIAN_DATE 2440588
// Seconds per unit
#define SEC_PER_MIN ((UINTN) 60)
#define SEC_PER_HOUR ((UINTN) 3600)
#define SEC_PER_DAY ((UINTN) 86400)
#define SEC_PER_MIN ((UINTN) 60)
#define SEC_PER_HOUR ((UINTN) 3600)
#define SEC_PER_DAY ((UINTN) 86400)
/**
Check if it is a leap year.

View File

@ -13,27 +13,27 @@
//
// Protocol interface structure
//
typedef struct _EMBEDDED_GPIO_PPI EMBEDDED_GPIO_PPI;
typedef struct _EMBEDDED_GPIO_PPI EMBEDDED_GPIO_PPI;
//
// Data Types
//
typedef UINTN EMBEDDED_GPIO_PIN;
#define GPIO(Port, Pin) ((EMBEDDED_GPIO_PIN)(((Port) << (16)) | (Pin)))
#define GPIO_PIN(x) ((EMBEDDED_GPIO_PIN)(x) & (0xFFFF))
#define GPIO_PORT(x) ((EMBEDDED_GPIO_PIN)(x) >> (16))
#define GPIO(Port, Pin) ((EMBEDDED_GPIO_PIN)(((Port) << (16)) | (Pin)))
#define GPIO_PIN(x) ((EMBEDDED_GPIO_PIN)(x) & (0xFFFF))
#define GPIO_PORT(x) ((EMBEDDED_GPIO_PIN)(x) >> (16))
typedef enum {
GPIO_MODE_INPUT = 0x00,
GPIO_MODE_OUTPUT_0 = 0x0E,
GPIO_MODE_OUTPUT_1 = 0x0F,
GPIO_MODE_SPECIAL_FUNCTION_2 = 0x02,
GPIO_MODE_SPECIAL_FUNCTION_3 = 0x03,
GPIO_MODE_SPECIAL_FUNCTION_4 = 0x04,
GPIO_MODE_SPECIAL_FUNCTION_5 = 0x05,
GPIO_MODE_SPECIAL_FUNCTION_6 = 0x06,
GPIO_MODE_SPECIAL_FUNCTION_7 = 0x07
GPIO_MODE_INPUT = 0x00,
GPIO_MODE_OUTPUT_0 = 0x0E,
GPIO_MODE_OUTPUT_1 = 0x0F,
GPIO_MODE_SPECIAL_FUNCTION_2 = 0x02,
GPIO_MODE_SPECIAL_FUNCTION_3 = 0x03,
GPIO_MODE_SPECIAL_FUNCTION_4 = 0x04,
GPIO_MODE_SPECIAL_FUNCTION_5 = 0x05,
GPIO_MODE_SPECIAL_FUNCTION_6 = 0x06,
GPIO_MODE_SPECIAL_FUNCTION_7 = 0x07
} EMBEDDED_GPIO_MODE;
typedef enum {
@ -61,7 +61,7 @@ typedef enum {
**/
typedef
EFI_STATUS
(EFIAPI *EMBEDDED_GPIO_GET) (
(EFIAPI *EMBEDDED_GPIO_GET)(
IN EMBEDDED_GPIO_PPI *This,
IN EMBEDDED_GPIO_PIN Gpio,
OUT UINTN *Value
@ -82,13 +82,12 @@ EFI_STATUS
**/
typedef
EFI_STATUS
(EFIAPI *EMBEDDED_GPIO_SET) (
(EFIAPI *EMBEDDED_GPIO_SET)(
IN EMBEDDED_GPIO_PPI *This,
IN EMBEDDED_GPIO_PIN Gpio,
IN EMBEDDED_GPIO_MODE Mode
);
/**
Gets the mode (function) of a GPIO pin
@ -104,13 +103,12 @@ EFI_STATUS
**/
typedef
EFI_STATUS
(EFIAPI *EMBEDDED_GPIO_GET_MODE) (
(EFIAPI *EMBEDDED_GPIO_GET_MODE)(
IN EMBEDDED_GPIO_PPI *This,
IN EMBEDDED_GPIO_PIN Gpio,
OUT EMBEDDED_GPIO_MODE *Mode
);
/**
Sets the pull-up / pull-down resistor of a GPIO pin
@ -126,13 +124,12 @@ EFI_STATUS
**/
typedef
EFI_STATUS
(EFIAPI *EMBEDDED_GPIO_SET_PULL) (
(EFIAPI *EMBEDDED_GPIO_SET_PULL)(
IN EMBEDDED_GPIO_PPI *This,
IN EMBEDDED_GPIO_PIN Gpio,
IN EMBEDDED_GPIO_PULL Direction
);
struct _EMBEDDED_GPIO_PPI {
EMBEDDED_GPIO_GET Get;
EMBEDDED_GPIO_SET Set;
@ -140,6 +137,6 @@ struct _EMBEDDED_GPIO_PPI {
EMBEDDED_GPIO_SET_PULL SetPull;
};
extern EFI_GUID gEmbeddedGpioPpiGuid;
extern EFI_GUID gEmbeddedGpioPpiGuid;
#endif

View File

@ -12,30 +12,30 @@
//
// Protocol interface structure
//
typedef struct _ANDROID_BOOTIMG_PROTOCOL ANDROID_BOOTIMG_PROTOCOL;
typedef struct _ANDROID_BOOTIMG_PROTOCOL ANDROID_BOOTIMG_PROTOCOL;
//
// Function Prototypes
//
typedef
EFI_STATUS
(EFIAPI *ANDROID_BOOTIMG_APPEND_KERNEL_ARGS) (
(EFIAPI *ANDROID_BOOTIMG_APPEND_KERNEL_ARGS)(
IN CHAR16 *Args,
IN UINTN Size
);
typedef
EFI_STATUS
(EFIAPI *ANDROID_BOOTIMG_UPDATE_DTB) (
(EFIAPI *ANDROID_BOOTIMG_UPDATE_DTB)(
IN EFI_PHYSICAL_ADDRESS OrigDtbBase,
OUT EFI_PHYSICAL_ADDRESS *NewDtbBase
);
struct _ANDROID_BOOTIMG_PROTOCOL {
ANDROID_BOOTIMG_APPEND_KERNEL_ARGS AppendArgs;
ANDROID_BOOTIMG_UPDATE_DTB UpdateDtb;
ANDROID_BOOTIMG_APPEND_KERNEL_ARGS AppendArgs;
ANDROID_BOOTIMG_UPDATE_DTB UpdateDtb;
};
extern EFI_GUID gAndroidBootImgProtocolGuid;
extern EFI_GUID gAndroidBootImgProtocolGuid;
#endif /* __ANDROID_BOOTIMG_PROTOCOL_H__ */

View File

@ -9,7 +9,7 @@
#ifndef __ANDROID_FASTBOOT_PLATFORM_H__
#define __ANDROID_FASTBOOT_PLATFORM_H__
extern EFI_GUID gAndroidFastbootPlatformProtocolGuid;
extern EFI_GUID gAndroidFastbootPlatformProtocolGuid;
/*
Protocol for platform-specific operations initiated by Android Fastboot.
@ -58,9 +58,9 @@ VOID
typedef
EFI_STATUS
(*FASTBOOT_PLATFORM_FLASH) (
IN CHAR8 *PartitionName,
IN UINTN BufferSize,
IN VOID *Buffer
IN CHAR8 *PartitionName,
IN UINTN BufferSize,
IN VOID *Buffer
);
/*
@ -74,7 +74,7 @@ EFI_STATUS
typedef
EFI_STATUS
(*FASTBOOT_PLATFORM_ERASE) (
IN CHAR8 *PartitionName
IN CHAR8 *PartitionName
);
/*
@ -98,8 +98,8 @@ EFI_STATUS
typedef
EFI_STATUS
(*FASTBOOT_PLATFORM_GETVAR) (
IN CHAR8 *Name,
OUT CHAR8 *Value
IN CHAR8 *Name,
OUT CHAR8 *Value
);
/*
@ -124,16 +124,16 @@ EFI_STATUS
typedef
EFI_STATUS
(*FASTBOOT_PLATFORM_OEM_COMMAND) (
IN CHAR8 *Command
IN CHAR8 *Command
);
typedef struct _FASTBOOT_PLATFORM_PROTOCOL {
FASTBOOT_PLATFORM_INIT Init;
FASTBOOT_PLATFORM_UN_INIT UnInit;
FASTBOOT_PLATFORM_FLASH FlashPartition;
FASTBOOT_PLATFORM_ERASE ErasePartition;
FASTBOOT_PLATFORM_GETVAR GetVar;
FASTBOOT_PLATFORM_OEM_COMMAND DoOemCommand;
FASTBOOT_PLATFORM_INIT Init;
FASTBOOT_PLATFORM_UN_INIT UnInit;
FASTBOOT_PLATFORM_FLASH FlashPartition;
FASTBOOT_PLATFORM_ERASE ErasePartition;
FASTBOOT_PLATFORM_GETVAR GetVar;
FASTBOOT_PLATFORM_OEM_COMMAND DoOemCommand;
} FASTBOOT_PLATFORM_PROTOCOL;
#endif

View File

@ -15,7 +15,7 @@
#ifndef __ANDROID_FASTBOOT_TRANSPORT_H__
#define __ANDROID_FASTBOOT_TRANSPORT_H__
extern EFI_GUID gAndroidFastbootTransportProtocolGuid;
extern EFI_GUID gAndroidFastbootTransportProtocolGuid;
/*
Set up the transport system for use by Fastboot.
@ -43,7 +43,7 @@ extern EFI_GUID gAndroidFastbootTransportProtocolGuid;
typedef
EFI_STATUS
(*FASTBOOT_TRANSPORT_START) (
IN EFI_EVENT ReceiveEvent
IN EFI_EVENT ReceiveEvent
);
/*
@ -60,7 +60,7 @@ EFI_STATUS
*/
typedef
EFI_STATUS
(* FASTBOOT_TRANSPORT_STOP) (
(*FASTBOOT_TRANSPORT_STOP) (
VOID
);
@ -87,8 +87,8 @@ typedef
EFI_STATUS
(*FASTBOOT_TRANSPORT_SEND) (
IN UINTN BufferSize,
IN CONST VOID *Buffer,
IN EFI_EVENT *FatalErrorEvent
IN CONST VOID *Buffer,
IN EFI_EVENT *FatalErrorEvent
);
/*
@ -112,14 +112,14 @@ typedef
EFI_STATUS
(*FASTBOOT_TRANSPORT_RECEIVE) (
OUT UINTN *BufferSize,
OUT VOID **Buffer
OUT VOID **Buffer
);
typedef struct _FASTBOOT_TRANSPORT_PROTOCOL {
FASTBOOT_TRANSPORT_START Start;
FASTBOOT_TRANSPORT_STOP Stop;
FASTBOOT_TRANSPORT_SEND Send;
FASTBOOT_TRANSPORT_RECEIVE Receive;
FASTBOOT_TRANSPORT_START Start;
FASTBOOT_TRANSPORT_STOP Stop;
FASTBOOT_TRANSPORT_SEND Send;
FASTBOOT_TRANSPORT_RECEIVE Receive;
} FASTBOOT_TRANSPORT_PROTOCOL;
#endif

View File

@ -23,7 +23,6 @@
#ifndef __EMBEDDED_DEVICE_PROTOCOL_H__
#define __EMBEDDED_DEVICE_PROTOCOL_H__
//
// Protocol GUID
//
@ -32,21 +31,17 @@
#define EMBEDDED_DEVICE_PROTOCOL_GUID \
{ 0xbf4b9d10, 0x13ec, 0x43dd, { 0x88, 0x80, 0xe9, 0xb, 0x71, 0x8f, 0x27, 0xde } }
typedef struct {
UINT16 VendorId;
UINT16 DeviceId;
UINT16 RevisionId;
UINT16 SubsystemId;
UINT16 SubsystemVendorId;
UINT8 ClassCode[3];
UINT8 HeaderSize;
UINTN BaseAddress;
UINT16 VendorId;
UINT16 DeviceId;
UINT16 RevisionId;
UINT16 SubsystemId;
UINT16 SubsystemVendorId;
UINT8 ClassCode[3];
UINT8 HeaderSize;
UINTN BaseAddress;
} EMBEDDED_DEVICE_PROTOCOL;
extern EFI_GUID gEmbeddedDeviceGuid;
extern EFI_GUID gEmbeddedDeviceGuid;
#endif

View File

@ -12,7 +12,7 @@
//
// Protocol GUID
//
#define EMBEDDED_EXTERNAL_DEVICE_PROTOCOL_GUID { 0x735F8C64, 0xD696, 0x44D0, { 0xBD, 0xF2, 0x44, 0x7F, 0xD0, 0x5A, 0x54, 0x06 }}
#define EMBEDDED_EXTERNAL_DEVICE_PROTOCOL_GUID { 0x735F8C64, 0xD696, 0x44D0, { 0xBD, 0xF2, 0x44, 0x7F, 0xD0, 0x5A, 0x54, 0x06 }}
//
// Protocol interface structure
@ -24,12 +24,13 @@ typedef struct _EMBEDDED_EXTERNAL_DEVICE EMBEDDED_EXTERNAL_DEVICE;
//
typedef
EFI_STATUS
(EFIAPI *EMBEDDED_EXTERNAL_DEVICE_READ) (
IN EMBEDDED_EXTERNAL_DEVICE *This,
IN UINTN Register,
IN UINTN Length,
OUT VOID *Buffer
)
(EFIAPI *EMBEDDED_EXTERNAL_DEVICE_READ)(
IN EMBEDDED_EXTERNAL_DEVICE *This,
IN UINTN Register,
IN UINTN Length,
OUT VOID *Buffer
)
/*++
Routine Description:
@ -52,12 +53,13 @@ Returns:
typedef
EFI_STATUS
(EFIAPI *EMBEDDED_EXTERNAL_DEVICE_WRITE) (
IN EMBEDDED_EXTERNAL_DEVICE *This,
IN UINTN Register,
IN UINTN Length,
IN VOID *Buffer
)
(EFIAPI *EMBEDDED_EXTERNAL_DEVICE_WRITE)(
IN EMBEDDED_EXTERNAL_DEVICE *This,
IN UINTN Register,
IN UINTN Length,
IN VOID *Buffer
)
/*++
Routine Description:
@ -79,10 +81,10 @@ Returns:
;
struct _EMBEDDED_EXTERNAL_DEVICE {
EMBEDDED_EXTERNAL_DEVICE_READ Read;
EMBEDDED_EXTERNAL_DEVICE_WRITE Write;
EMBEDDED_EXTERNAL_DEVICE_READ Read;
EMBEDDED_EXTERNAL_DEVICE_WRITE Write;
};
extern EFI_GUID gEmbeddedExternalDeviceProtocolGuid;
extern EFI_GUID gEmbeddedExternalDeviceProtocolGuid;
#endif // __EMBEDDED_EXTERNAL_DEVICE_H__
#endif // __EMBEDDED_EXTERNAL_DEVICE_H__

View File

@ -12,27 +12,27 @@
//
// Protocol interface structure
//
typedef struct _EMBEDDED_GPIO EMBEDDED_GPIO;
typedef struct _EMBEDDED_GPIO EMBEDDED_GPIO;
//
// Data Types
//
typedef UINTN EMBEDDED_GPIO_PIN;
#define GPIO(Port, Pin) ((EMBEDDED_GPIO_PIN)(((Port) << (16)) | (Pin)))
#define GPIO_PIN(x) ((EMBEDDED_GPIO_PIN)(x) & (0xFFFF))
#define GPIO_PORT(x) ((EMBEDDED_GPIO_PIN)(x) >> (16))
#define GPIO(Port, Pin) ((EMBEDDED_GPIO_PIN)(((Port) << (16)) | (Pin)))
#define GPIO_PIN(x) ((EMBEDDED_GPIO_PIN)(x) & (0xFFFF))
#define GPIO_PORT(x) ((EMBEDDED_GPIO_PIN)(x) >> (16))
typedef enum {
GPIO_MODE_INPUT = 0x00,
GPIO_MODE_OUTPUT_0 = 0x0E,
GPIO_MODE_OUTPUT_1 = 0x0F,
GPIO_MODE_SPECIAL_FUNCTION_2 = 0x02,
GPIO_MODE_SPECIAL_FUNCTION_3 = 0x03,
GPIO_MODE_SPECIAL_FUNCTION_4 = 0x04,
GPIO_MODE_SPECIAL_FUNCTION_5 = 0x05,
GPIO_MODE_SPECIAL_FUNCTION_6 = 0x06,
GPIO_MODE_SPECIAL_FUNCTION_7 = 0x07
GPIO_MODE_INPUT = 0x00,
GPIO_MODE_OUTPUT_0 = 0x0E,
GPIO_MODE_OUTPUT_1 = 0x0F,
GPIO_MODE_SPECIAL_FUNCTION_2 = 0x02,
GPIO_MODE_SPECIAL_FUNCTION_3 = 0x03,
GPIO_MODE_SPECIAL_FUNCTION_4 = 0x04,
GPIO_MODE_SPECIAL_FUNCTION_5 = 0x05,
GPIO_MODE_SPECIAL_FUNCTION_6 = 0x06,
GPIO_MODE_SPECIAL_FUNCTION_7 = 0x07
} EMBEDDED_GPIO_MODE;
typedef enum {
@ -46,11 +46,12 @@ typedef enum {
//
typedef
EFI_STATUS
(EFIAPI *EMBEDDED_GPIO_GET) (
(EFIAPI *EMBEDDED_GPIO_GET)(
IN EMBEDDED_GPIO *This,
IN EMBEDDED_GPIO_PIN Gpio,
OUT UINTN *Value
);
/*++
Routine Description:
@ -69,14 +70,14 @@ Returns:
--*/
typedef
EFI_STATUS
(EFIAPI *EMBEDDED_GPIO_SET) (
IN EMBEDDED_GPIO *This,
IN EMBEDDED_GPIO_PIN Gpio,
IN EMBEDDED_GPIO_MODE Mode
);
(EFIAPI *EMBEDDED_GPIO_SET)(
IN EMBEDDED_GPIO *This,
IN EMBEDDED_GPIO_PIN Gpio,
IN EMBEDDED_GPIO_MODE Mode
);
/*++
Routine Description:
@ -95,14 +96,14 @@ Returns:
--*/
typedef
EFI_STATUS
(EFIAPI *EMBEDDED_GPIO_GET_MODE) (
IN EMBEDDED_GPIO *This,
IN EMBEDDED_GPIO_PIN Gpio,
OUT EMBEDDED_GPIO_MODE *Mode
);
(EFIAPI *EMBEDDED_GPIO_GET_MODE)(
IN EMBEDDED_GPIO *This,
IN EMBEDDED_GPIO_PIN Gpio,
OUT EMBEDDED_GPIO_MODE *Mode
);
/*++
Routine Description:
@ -121,14 +122,14 @@ Returns:
--*/
typedef
EFI_STATUS
(EFIAPI *EMBEDDED_GPIO_SET_PULL) (
IN EMBEDDED_GPIO *This,
IN EMBEDDED_GPIO_PIN Gpio,
IN EMBEDDED_GPIO_PULL Direction
);
(EFIAPI *EMBEDDED_GPIO_SET_PULL)(
IN EMBEDDED_GPIO *This,
IN EMBEDDED_GPIO_PIN Gpio,
IN EMBEDDED_GPIO_PULL Direction
);
/*++
Routine Description:
@ -147,32 +148,30 @@ Returns:
--*/
struct _EMBEDDED_GPIO {
EMBEDDED_GPIO_GET Get;
EMBEDDED_GPIO_SET Set;
EMBEDDED_GPIO_GET_MODE GetMode;
EMBEDDED_GPIO_SET_PULL SetPull;
EMBEDDED_GPIO_GET Get;
EMBEDDED_GPIO_SET Set;
EMBEDDED_GPIO_GET_MODE GetMode;
EMBEDDED_GPIO_SET_PULL SetPull;
};
extern EFI_GUID gEmbeddedGpioProtocolGuid;
extern EFI_GUID gEmbeddedGpioProtocolGuid;
typedef struct _GPIO_CONTROLLER GPIO_CONTROLLER;
typedef struct _PLATFORM_GPIO_CONTROLLER PLATFORM_GPIO_CONTROLLER;
typedef struct _GPIO_CONTROLLER GPIO_CONTROLLER;
typedef struct _PLATFORM_GPIO_CONTROLLER PLATFORM_GPIO_CONTROLLER;
struct _GPIO_CONTROLLER {
UINTN RegisterBase;
UINTN GpioIndex;
UINTN InternalGpioCount;
UINTN RegisterBase;
UINTN GpioIndex;
UINTN InternalGpioCount;
};
struct _PLATFORM_GPIO_CONTROLLER {
UINTN GpioCount;
UINTN GpioControllerCount;
GPIO_CONTROLLER *GpioController;
UINTN GpioCount;
UINTN GpioControllerCount;
GPIO_CONTROLLER *GpioController;
};
extern EFI_GUID gPlatformGpioProtocolGuid;
extern EFI_GUID gPlatformGpioProtocolGuid;
#endif

View File

@ -12,7 +12,7 @@
#ifndef __FDT_CLIENT_H__
#define __FDT_CLIENT_H__
#define FDT_CLIENT_PROTOCOL_GUID { \
#define FDT_CLIENT_PROTOCOL_GUID {\
0xE11FACA0, 0x4710, 0x4C8E, {0xA7, 0xA2, 0x01, 0xBA, 0xA2, 0x59, 0x1B, 0x4C} \
}
@ -23,7 +23,7 @@ typedef struct _FDT_CLIENT_PROTOCOL FDT_CLIENT_PROTOCOL;
typedef
EFI_STATUS
(EFIAPI *FDT_CLIENT_GET_NODE_PROPERTY) (
(EFIAPI *FDT_CLIENT_GET_NODE_PROPERTY)(
IN FDT_CLIENT_PROTOCOL *This,
IN INT32 Node,
IN CONST CHAR8 *PropertyName,
@ -33,7 +33,7 @@ EFI_STATUS
typedef
EFI_STATUS
(EFIAPI *FDT_CLIENT_SET_NODE_PROPERTY) (
(EFIAPI *FDT_CLIENT_SET_NODE_PROPERTY)(
IN FDT_CLIENT_PROTOCOL *This,
IN INT32 Node,
IN CONST CHAR8 *PropertyName,
@ -43,7 +43,7 @@ EFI_STATUS
typedef
EFI_STATUS
(EFIAPI *FDT_CLIENT_FIND_COMPATIBLE_NODE) (
(EFIAPI *FDT_CLIENT_FIND_COMPATIBLE_NODE)(
IN FDT_CLIENT_PROTOCOL *This,
IN CONST CHAR8 *CompatibleString,
OUT INT32 *Node
@ -51,7 +51,7 @@ EFI_STATUS
typedef
EFI_STATUS
(EFIAPI *FDT_CLIENT_FIND_NEXT_COMPATIBLE_NODE) (
(EFIAPI *FDT_CLIENT_FIND_NEXT_COMPATIBLE_NODE)(
IN FDT_CLIENT_PROTOCOL *This,
IN CONST CHAR8 *CompatibleString,
IN INT32 PrevNode,
@ -60,7 +60,7 @@ EFI_STATUS
typedef
EFI_STATUS
(EFIAPI *FDT_CLIENT_FIND_COMPATIBLE_NODE_PROPERTY) (
(EFIAPI *FDT_CLIENT_FIND_COMPATIBLE_NODE_PROPERTY)(
IN FDT_CLIENT_PROTOCOL *This,
IN CONST CHAR8 *CompatibleString,
IN CONST CHAR8 *PropertyName,
@ -70,7 +70,7 @@ EFI_STATUS
typedef
EFI_STATUS
(EFIAPI *FDT_CLIENT_FIND_COMPATIBLE_NODE_REG) (
(EFIAPI *FDT_CLIENT_FIND_COMPATIBLE_NODE_REG)(
IN FDT_CLIENT_PROTOCOL *This,
IN CONST CHAR8 *CompatibleString,
OUT CONST VOID **Reg,
@ -81,7 +81,7 @@ EFI_STATUS
typedef
EFI_STATUS
(EFIAPI *FDT_CLIENT_FIND_NEXT_MEMORY_NODE_REG) (
(EFIAPI *FDT_CLIENT_FIND_NEXT_MEMORY_NODE_REG)(
IN FDT_CLIENT_PROTOCOL *This,
IN INT32 PrevNode,
OUT INT32 *Node,
@ -93,7 +93,7 @@ EFI_STATUS
typedef
EFI_STATUS
(EFIAPI *FDT_CLIENT_FIND_MEMORY_NODE_REG) (
(EFIAPI *FDT_CLIENT_FIND_MEMORY_NODE_REG)(
IN FDT_CLIENT_PROTOCOL *This,
OUT INT32 *Node,
OUT CONST VOID **Reg,
@ -104,26 +104,26 @@ EFI_STATUS
typedef
EFI_STATUS
(EFIAPI *FDT_CLIENT_GET_OR_INSERT_CHOSEN_NODE) (
(EFIAPI *FDT_CLIENT_GET_OR_INSERT_CHOSEN_NODE)(
IN FDT_CLIENT_PROTOCOL *This,
OUT INT32 *Node
);
struct _FDT_CLIENT_PROTOCOL {
FDT_CLIENT_GET_NODE_PROPERTY GetNodeProperty;
FDT_CLIENT_SET_NODE_PROPERTY SetNodeProperty;
FDT_CLIENT_GET_NODE_PROPERTY GetNodeProperty;
FDT_CLIENT_SET_NODE_PROPERTY SetNodeProperty;
FDT_CLIENT_FIND_COMPATIBLE_NODE FindCompatibleNode;
FDT_CLIENT_FIND_NEXT_COMPATIBLE_NODE FindNextCompatibleNode;
FDT_CLIENT_FIND_COMPATIBLE_NODE_PROPERTY FindCompatibleNodeProperty;
FDT_CLIENT_FIND_COMPATIBLE_NODE_REG FindCompatibleNodeReg;
FDT_CLIENT_FIND_COMPATIBLE_NODE FindCompatibleNode;
FDT_CLIENT_FIND_NEXT_COMPATIBLE_NODE FindNextCompatibleNode;
FDT_CLIENT_FIND_COMPATIBLE_NODE_PROPERTY FindCompatibleNodeProperty;
FDT_CLIENT_FIND_COMPATIBLE_NODE_REG FindCompatibleNodeReg;
FDT_CLIENT_FIND_MEMORY_NODE_REG FindMemoryNodeReg;
FDT_CLIENT_FIND_NEXT_MEMORY_NODE_REG FindNextMemoryNodeReg;
FDT_CLIENT_FIND_MEMORY_NODE_REG FindMemoryNodeReg;
FDT_CLIENT_FIND_NEXT_MEMORY_NODE_REG FindNextMemoryNodeReg;
FDT_CLIENT_GET_OR_INSERT_CHOSEN_NODE GetOrInsertChosenNode;
FDT_CLIENT_GET_OR_INSERT_CHOSEN_NODE GetOrInsertChosenNode;
};
extern EFI_GUID gFdtClientProtocolGuid;
extern EFI_GUID gFdtClientProtocolGuid;
#endif

View File

@ -20,7 +20,6 @@
#include <Protocol/DebugSupport.h>
//
// Protocol GUID
//
@ -29,13 +28,10 @@
#define EFI_HARDWARE_INTERRUPT_PROTOCOL_GGUID \
{ 0x2890B3EA, 0x053D, 0x1643, { 0xAD, 0x0C, 0xD6, 0x48, 0x08, 0xDA, 0x3F, 0xF1 } }
typedef struct _EFI_HARDWARE_INTERRUPT_PROTOCOL EFI_HARDWARE_INTERRUPT_PROTOCOL;
typedef UINTN HARDWARE_INTERRUPT_SOURCE;
/**
C Interrupt Handler calledin the interrupt context when Source interrupt is active.
@ -48,12 +44,11 @@ typedef UINTN HARDWARE_INTERRUPT_SOURCE;
**/
typedef
VOID
(EFIAPI *HARDWARE_INTERRUPT_HANDLER) (
(EFIAPI *HARDWARE_INTERRUPT_HANDLER)(
IN HARDWARE_INTERRUPT_SOURCE Source,
IN EFI_SYSTEM_CONTEXT SystemContext
);
/**
Register Handler for the specified interrupt source.
@ -67,13 +62,12 @@ VOID
**/
typedef
EFI_STATUS
(EFIAPI *HARDWARE_INTERRUPT_REGISTER) (
(EFIAPI *HARDWARE_INTERRUPT_REGISTER)(
IN EFI_HARDWARE_INTERRUPT_PROTOCOL *This,
IN HARDWARE_INTERRUPT_SOURCE Source,
IN HARDWARE_INTERRUPT_HANDLER Handler
);
/**
Enable interrupt source Source.
@ -86,13 +80,11 @@ EFI_STATUS
**/
typedef
EFI_STATUS
(EFIAPI *HARDWARE_INTERRUPT_ENABLE) (
(EFIAPI *HARDWARE_INTERRUPT_ENABLE)(
IN EFI_HARDWARE_INTERRUPT_PROTOCOL *This,
IN HARDWARE_INTERRUPT_SOURCE Source
);
/**
Disable interrupt source Source.
@ -105,12 +97,11 @@ EFI_STATUS
**/
typedef
EFI_STATUS
(EFIAPI *HARDWARE_INTERRUPT_DISABLE) (
(EFIAPI *HARDWARE_INTERRUPT_DISABLE)(
IN EFI_HARDWARE_INTERRUPT_PROTOCOL *This,
IN HARDWARE_INTERRUPT_SOURCE Source
);
/**
Return current state of interrupt source Source.
@ -124,7 +115,7 @@ EFI_STATUS
**/
typedef
EFI_STATUS
(EFIAPI *HARDWARE_INTERRUPT_INTERRUPT_STATE) (
(EFIAPI *HARDWARE_INTERRUPT_INTERRUPT_STATE)(
IN EFI_HARDWARE_INTERRUPT_PROTOCOL *This,
IN HARDWARE_INTERRUPT_SOURCE Source,
IN BOOLEAN *InterruptState
@ -143,22 +134,19 @@ EFI_STATUS
**/
typedef
EFI_STATUS
(EFIAPI *HARDWARE_INTERRUPT_END_OF_INTERRUPT) (
(EFIAPI *HARDWARE_INTERRUPT_END_OF_INTERRUPT)(
IN EFI_HARDWARE_INTERRUPT_PROTOCOL *This,
IN HARDWARE_INTERRUPT_SOURCE Source
);
struct _EFI_HARDWARE_INTERRUPT_PROTOCOL {
HARDWARE_INTERRUPT_REGISTER RegisterInterruptSource;
HARDWARE_INTERRUPT_ENABLE EnableInterruptSource;
HARDWARE_INTERRUPT_DISABLE DisableInterruptSource;
HARDWARE_INTERRUPT_INTERRUPT_STATE GetInterruptSourceState;
HARDWARE_INTERRUPT_END_OF_INTERRUPT EndOfInterrupt;
HARDWARE_INTERRUPT_REGISTER RegisterInterruptSource;
HARDWARE_INTERRUPT_ENABLE EnableInterruptSource;
HARDWARE_INTERRUPT_DISABLE DisableInterruptSource;
HARDWARE_INTERRUPT_INTERRUPT_STATE GetInterruptSourceState;
HARDWARE_INTERRUPT_END_OF_INTERRUPT EndOfInterrupt;
};
extern EFI_GUID gHardwareInterruptProtocolGuid;
extern EFI_GUID gHardwareInterruptProtocolGuid;
#endif

View File

@ -25,7 +25,7 @@ typedef enum {
} EFI_HARDWARE_INTERRUPT2_TRIGGER_TYPE;
typedef struct _EFI_HARDWARE_INTERRUPT2_PROTOCOL \
EFI_HARDWARE_INTERRUPT2_PROTOCOL;
EFI_HARDWARE_INTERRUPT2_PROTOCOL;
/**
Register Handler for the specified interrupt source.
@ -40,13 +40,12 @@ typedef struct _EFI_HARDWARE_INTERRUPT2_PROTOCOL \
**/
typedef
EFI_STATUS
(EFIAPI *HARDWARE_INTERRUPT2_REGISTER) (
(EFIAPI *HARDWARE_INTERRUPT2_REGISTER)(
IN EFI_HARDWARE_INTERRUPT2_PROTOCOL *This,
IN HARDWARE_INTERRUPT_SOURCE Source,
IN HARDWARE_INTERRUPT_HANDLER Handler
);
/**
Enable interrupt source Source.
@ -59,12 +58,11 @@ EFI_STATUS
**/
typedef
EFI_STATUS
(EFIAPI *HARDWARE_INTERRUPT2_ENABLE) (
(EFIAPI *HARDWARE_INTERRUPT2_ENABLE)(
IN EFI_HARDWARE_INTERRUPT2_PROTOCOL *This,
IN HARDWARE_INTERRUPT_SOURCE Source
);
/**
Disable interrupt source Source.
@ -77,12 +75,11 @@ EFI_STATUS
**/
typedef
EFI_STATUS
(EFIAPI *HARDWARE_INTERRUPT2_DISABLE) (
(EFIAPI *HARDWARE_INTERRUPT2_DISABLE)(
IN EFI_HARDWARE_INTERRUPT2_PROTOCOL *This,
IN HARDWARE_INTERRUPT_SOURCE Source
);
/**
Return current state of interrupt source Source.
@ -96,7 +93,7 @@ EFI_STATUS
**/
typedef
EFI_STATUS
(EFIAPI *HARDWARE_INTERRUPT2_INTERRUPT_STATE) (
(EFIAPI *HARDWARE_INTERRUPT2_INTERRUPT_STATE)(
IN EFI_HARDWARE_INTERRUPT2_PROTOCOL *This,
IN HARDWARE_INTERRUPT_SOURCE Source,
IN BOOLEAN *InterruptState
@ -115,7 +112,7 @@ EFI_STATUS
**/
typedef
EFI_STATUS
(EFIAPI *HARDWARE_INTERRUPT2_END_OF_INTERRUPT) (
(EFIAPI *HARDWARE_INTERRUPT2_END_OF_INTERRUPT)(
IN EFI_HARDWARE_INTERRUPT2_PROTOCOL *This,
IN HARDWARE_INTERRUPT_SOURCE Source
);
@ -133,13 +130,12 @@ EFI_STATUS
**/
typedef
EFI_STATUS
(EFIAPI *HARDWARE_INTERRUPT2_GET_TRIGGER_TYPE) (
(EFIAPI *HARDWARE_INTERRUPT2_GET_TRIGGER_TYPE)(
IN EFI_HARDWARE_INTERRUPT2_PROTOCOL *This,
IN HARDWARE_INTERRUPT_SOURCE Source,
OUT EFI_HARDWARE_INTERRUPT2_TRIGGER_TYPE *TriggerType
);
/**
Configure the trigger type for an interrupt source
@ -153,7 +149,7 @@ EFI_STATUS
**/
typedef
EFI_STATUS
(EFIAPI *HARDWARE_INTERRUPT2_SET_TRIGGER_TYPE) (
(EFIAPI *HARDWARE_INTERRUPT2_SET_TRIGGER_TYPE)(
IN EFI_HARDWARE_INTERRUPT2_PROTOCOL *This,
IN HARDWARE_INTERRUPT_SOURCE Source,
IN EFI_HARDWARE_INTERRUPT2_TRIGGER_TYPE TriggerType
@ -171,6 +167,6 @@ struct _EFI_HARDWARE_INTERRUPT2_PROTOCOL {
HARDWARE_INTERRUPT2_SET_TRIGGER_TYPE SetTriggerType;
};
extern EFI_GUID gHardwareInterrupt2ProtocolGuid;
extern EFI_GUID gHardwareInterrupt2ProtocolGuid;
#endif

View File

@ -16,169 +16,166 @@
#define EMBEDDED_MMC_HOST_PROTOCOL_GUID \
{ 0x3e591c00, 0x9e4a, 0x11df, {0x92, 0x44, 0x00, 0x02, 0xA5, 0xD5, 0xC5, 0x1B } }
#define MMC_RESPONSE_TYPE_R1 0
#define MMC_RESPONSE_TYPE_R1b 0
#define MMC_RESPONSE_TYPE_R2 1
#define MMC_RESPONSE_TYPE_R3 0
#define MMC_RESPONSE_TYPE_R6 0
#define MMC_RESPONSE_TYPE_R7 0
#define MMC_RESPONSE_TYPE_OCR 0
#define MMC_RESPONSE_TYPE_CID 1
#define MMC_RESPONSE_TYPE_CSD 1
#define MMC_RESPONSE_TYPE_RCA 0
#define MMC_RESPONSE_TYPE_R1 0
#define MMC_RESPONSE_TYPE_R1b 0
#define MMC_RESPONSE_TYPE_R2 1
#define MMC_RESPONSE_TYPE_R3 0
#define MMC_RESPONSE_TYPE_R6 0
#define MMC_RESPONSE_TYPE_R7 0
#define MMC_RESPONSE_TYPE_OCR 0
#define MMC_RESPONSE_TYPE_CID 1
#define MMC_RESPONSE_TYPE_CSD 1
#define MMC_RESPONSE_TYPE_RCA 0
typedef UINT32 MMC_RESPONSE_TYPE;
typedef UINT32 MMC_RESPONSE_TYPE;
typedef UINT32 MMC_CMD;
#define MMC_CMD_WAIT_RESPONSE (1 << 16)
#define MMC_CMD_LONG_RESPONSE (1 << 17)
#define MMC_CMD_NO_CRC_RESPONSE (1 << 18)
#define MMC_CMD_WAIT_RESPONSE (1 << 16)
#define MMC_CMD_LONG_RESPONSE (1 << 17)
#define MMC_CMD_NO_CRC_RESPONSE (1 << 18)
#define MMC_INDX(Index) ((Index) & 0xFFFF)
#define MMC_GET_INDX(MmcCmd) ((MmcCmd) & 0xFFFF)
#define MMC_CMD0 (MMC_INDX(0) | MMC_CMD_NO_CRC_RESPONSE)
#define MMC_CMD1 (MMC_INDX(1) | MMC_CMD_WAIT_RESPONSE | MMC_CMD_NO_CRC_RESPONSE)
#define MMC_CMD2 (MMC_INDX(2) | MMC_CMD_WAIT_RESPONSE | MMC_CMD_LONG_RESPONSE)
#define MMC_CMD3 (MMC_INDX(3) | MMC_CMD_WAIT_RESPONSE)
#define MMC_CMD5 (MMC_INDX(5) | MMC_CMD_WAIT_RESPONSE | MMC_CMD_NO_CRC_RESPONSE)
#define MMC_CMD6 (MMC_INDX(6) | MMC_CMD_WAIT_RESPONSE)
#define MMC_CMD7 (MMC_INDX(7) | MMC_CMD_WAIT_RESPONSE)
#define MMC_CMD8 (MMC_INDX(8) | MMC_CMD_WAIT_RESPONSE)
#define MMC_CMD9 (MMC_INDX(9) | MMC_CMD_WAIT_RESPONSE | MMC_CMD_LONG_RESPONSE)
#define MMC_CMD11 (MMC_INDX(11) | MMC_CMD_WAIT_RESPONSE)
#define MMC_CMD12 (MMC_INDX(12) | MMC_CMD_WAIT_RESPONSE)
#define MMC_CMD13 (MMC_INDX(13) | MMC_CMD_WAIT_RESPONSE)
#define MMC_CMD16 (MMC_INDX(16) | MMC_CMD_WAIT_RESPONSE)
#define MMC_CMD17 (MMC_INDX(17) | MMC_CMD_WAIT_RESPONSE)
#define MMC_CMD18 (MMC_INDX(18) | MMC_CMD_WAIT_RESPONSE)
#define MMC_CMD20 (MMC_INDX(20) | MMC_CMD_WAIT_RESPONSE)
#define MMC_CMD23 (MMC_INDX(23) | MMC_CMD_WAIT_RESPONSE)
#define MMC_CMD24 (MMC_INDX(24) | MMC_CMD_WAIT_RESPONSE)
#define MMC_CMD25 (MMC_INDX(25) | MMC_CMD_WAIT_RESPONSE)
#define MMC_CMD55 (MMC_INDX(55) | MMC_CMD_WAIT_RESPONSE)
#define MMC_ACMD41 (MMC_INDX(41) | MMC_CMD_WAIT_RESPONSE | MMC_CMD_NO_CRC_RESPONSE)
#define MMC_ACMD51 (MMC_INDX(51) | MMC_CMD_WAIT_RESPONSE)
#define MMC_CMD0 (MMC_INDX(0) | MMC_CMD_NO_CRC_RESPONSE)
#define MMC_CMD1 (MMC_INDX(1) | MMC_CMD_WAIT_RESPONSE | MMC_CMD_NO_CRC_RESPONSE)
#define MMC_CMD2 (MMC_INDX(2) | MMC_CMD_WAIT_RESPONSE | MMC_CMD_LONG_RESPONSE)
#define MMC_CMD3 (MMC_INDX(3) | MMC_CMD_WAIT_RESPONSE)
#define MMC_CMD5 (MMC_INDX(5) | MMC_CMD_WAIT_RESPONSE | MMC_CMD_NO_CRC_RESPONSE)
#define MMC_CMD6 (MMC_INDX(6) | MMC_CMD_WAIT_RESPONSE)
#define MMC_CMD7 (MMC_INDX(7) | MMC_CMD_WAIT_RESPONSE)
#define MMC_CMD8 (MMC_INDX(8) | MMC_CMD_WAIT_RESPONSE)
#define MMC_CMD9 (MMC_INDX(9) | MMC_CMD_WAIT_RESPONSE | MMC_CMD_LONG_RESPONSE)
#define MMC_CMD11 (MMC_INDX(11) | MMC_CMD_WAIT_RESPONSE)
#define MMC_CMD12 (MMC_INDX(12) | MMC_CMD_WAIT_RESPONSE)
#define MMC_CMD13 (MMC_INDX(13) | MMC_CMD_WAIT_RESPONSE)
#define MMC_CMD16 (MMC_INDX(16) | MMC_CMD_WAIT_RESPONSE)
#define MMC_CMD17 (MMC_INDX(17) | MMC_CMD_WAIT_RESPONSE)
#define MMC_CMD18 (MMC_INDX(18) | MMC_CMD_WAIT_RESPONSE)
#define MMC_CMD20 (MMC_INDX(20) | MMC_CMD_WAIT_RESPONSE)
#define MMC_CMD23 (MMC_INDX(23) | MMC_CMD_WAIT_RESPONSE)
#define MMC_CMD24 (MMC_INDX(24) | MMC_CMD_WAIT_RESPONSE)
#define MMC_CMD25 (MMC_INDX(25) | MMC_CMD_WAIT_RESPONSE)
#define MMC_CMD55 (MMC_INDX(55) | MMC_CMD_WAIT_RESPONSE)
#define MMC_ACMD41 (MMC_INDX(41) | MMC_CMD_WAIT_RESPONSE | MMC_CMD_NO_CRC_RESPONSE)
#define MMC_ACMD51 (MMC_INDX(51) | MMC_CMD_WAIT_RESPONSE)
// Valid responses for CMD1 in eMMC
#define EMMC_CMD1_CAPACITY_LESS_THAN_2GB 0x00FF8080 // Capacity <= 2GB, byte addressing used
#define EMMC_CMD1_CAPACITY_GREATER_THAN_2GB 0x40FF8080 // Capacity > 2GB, 512-byte sector addressing used
#define EMMC_CMD1_CAPACITY_LESS_THAN_2GB 0x00FF8080 // Capacity <= 2GB, byte addressing used
#define EMMC_CMD1_CAPACITY_GREATER_THAN_2GB 0x40FF8080 // Capacity > 2GB, 512-byte sector addressing used
#define MMC_STATUS_APP_CMD (1 << 5)
#define MMC_STATUS_APP_CMD (1 << 5)
typedef enum _MMC_STATE {
MmcInvalidState = 0,
MmcHwInitializationState,
MmcIdleState,
MmcReadyState,
MmcIdentificationState,
MmcStandByState,
MmcTransferState,
MmcSendingDataState,
MmcReceiveDataState,
MmcProgrammingState,
MmcDisconnectState,
MmcInvalidState = 0,
MmcHwInitializationState,
MmcIdleState,
MmcReadyState,
MmcIdentificationState,
MmcStandByState,
MmcTransferState,
MmcSendingDataState,
MmcReceiveDataState,
MmcProgrammingState,
MmcDisconnectState,
} MMC_STATE;
#define EMMCBACKWARD (0)
#define EMMCHS26 (1 << 0) // High-Speed @26MHz at rated device voltages
#define EMMCHS52 (1 << 1) // High-Speed @52MHz at rated device voltages
#define EMMCHS52DDR1V8 (1 << 2) // High-Speed Dual Data Rate @52MHz 1.8V or 3V I/O
#define EMMCHS52DDR1V2 (1 << 3) // High-Speed Dual Data Rate @52MHz 1.2V I/O
#define EMMCHS200SDR1V8 (1 << 4) // HS200 Single Data Rate @200MHz 1.8V I/O
#define EMMCHS200SDR1V2 (1 << 5) // HS200 Single Data Rate @200MHz 1.2V I/O
#define EMMCHS400DDR1V8 (1 << 6) // HS400 Dual Data Rate @400MHz 1.8V I/O
#define EMMCHS400DDR1V2 (1 << 7) // HS400 Dual Data Rate @400MHz 1.2V I/O
#define EMMCBACKWARD (0)
#define EMMCHS26 (1 << 0) // High-Speed @26MHz at rated device voltages
#define EMMCHS52 (1 << 1) // High-Speed @52MHz at rated device voltages
#define EMMCHS52DDR1V8 (1 << 2) // High-Speed Dual Data Rate @52MHz 1.8V or 3V I/O
#define EMMCHS52DDR1V2 (1 << 3) // High-Speed Dual Data Rate @52MHz 1.2V I/O
#define EMMCHS200SDR1V8 (1 << 4) // HS200 Single Data Rate @200MHz 1.8V I/O
#define EMMCHS200SDR1V2 (1 << 5) // HS200 Single Data Rate @200MHz 1.2V I/O
#define EMMCHS400DDR1V8 (1 << 6) // HS400 Dual Data Rate @400MHz 1.8V I/O
#define EMMCHS400DDR1V2 (1 << 7) // HS400 Dual Data Rate @400MHz 1.2V I/O
///
/// Forward declaration for EFI_MMC_HOST_PROTOCOL
///
typedef struct _EFI_MMC_HOST_PROTOCOL EFI_MMC_HOST_PROTOCOL;
typedef struct _EFI_MMC_HOST_PROTOCOL EFI_MMC_HOST_PROTOCOL;
typedef BOOLEAN (EFIAPI *MMC_ISCARDPRESENT) (
typedef BOOLEAN (EFIAPI *MMC_ISCARDPRESENT)(
IN EFI_MMC_HOST_PROTOCOL *This
);
typedef BOOLEAN (EFIAPI *MMC_ISREADONLY) (
typedef BOOLEAN (EFIAPI *MMC_ISREADONLY)(
IN EFI_MMC_HOST_PROTOCOL *This
);
typedef EFI_STATUS (EFIAPI *MMC_BUILDDEVICEPATH) (
typedef EFI_STATUS (EFIAPI *MMC_BUILDDEVICEPATH)(
IN EFI_MMC_HOST_PROTOCOL *This,
OUT EFI_DEVICE_PATH_PROTOCOL **DevicePath
);
typedef EFI_STATUS (EFIAPI *MMC_NOTIFYSTATE) (
typedef EFI_STATUS (EFIAPI *MMC_NOTIFYSTATE)(
IN EFI_MMC_HOST_PROTOCOL *This,
IN MMC_STATE State
);
typedef EFI_STATUS (EFIAPI *MMC_SENDCOMMAND) (
typedef EFI_STATUS (EFIAPI *MMC_SENDCOMMAND)(
IN EFI_MMC_HOST_PROTOCOL *This,
IN MMC_CMD Cmd,
IN UINT32 Argument
);
typedef EFI_STATUS (EFIAPI *MMC_RECEIVERESPONSE) (
typedef EFI_STATUS (EFIAPI *MMC_RECEIVERESPONSE)(
IN EFI_MMC_HOST_PROTOCOL *This,
IN MMC_RESPONSE_TYPE Type,
IN UINT32 *Buffer
);
typedef EFI_STATUS (EFIAPI *MMC_READBLOCKDATA) (
typedef EFI_STATUS (EFIAPI *MMC_READBLOCKDATA)(
IN EFI_MMC_HOST_PROTOCOL *This,
IN EFI_LBA Lba,
IN UINTN Length,
OUT UINT32 *Buffer
);
typedef EFI_STATUS (EFIAPI *MMC_WRITEBLOCKDATA) (
typedef EFI_STATUS (EFIAPI *MMC_WRITEBLOCKDATA)(
IN EFI_MMC_HOST_PROTOCOL *This,
IN EFI_LBA Lba,
IN UINTN Length,
IN UINT32 *Buffer
);
typedef EFI_STATUS (EFIAPI *MMC_SETIOS) (
typedef EFI_STATUS (EFIAPI *MMC_SETIOS)(
IN EFI_MMC_HOST_PROTOCOL *This,
IN UINT32 BusClockFreq,
IN UINT32 BusWidth,
IN UINT32 TimingMode
);
typedef BOOLEAN (EFIAPI *MMC_ISMULTIBLOCK) (
typedef BOOLEAN (EFIAPI *MMC_ISMULTIBLOCK)(
IN EFI_MMC_HOST_PROTOCOL *This
);
struct _EFI_MMC_HOST_PROTOCOL {
UINT32 Revision;
MMC_ISCARDPRESENT IsCardPresent;
MMC_ISREADONLY IsReadOnly;
MMC_BUILDDEVICEPATH BuildDevicePath;
UINT32 Revision;
MMC_ISCARDPRESENT IsCardPresent;
MMC_ISREADONLY IsReadOnly;
MMC_BUILDDEVICEPATH BuildDevicePath;
MMC_NOTIFYSTATE NotifyState;
MMC_NOTIFYSTATE NotifyState;
MMC_SENDCOMMAND SendCommand;
MMC_RECEIVERESPONSE ReceiveResponse;
MMC_SENDCOMMAND SendCommand;
MMC_RECEIVERESPONSE ReceiveResponse;
MMC_READBLOCKDATA ReadBlockData;
MMC_WRITEBLOCKDATA WriteBlockData;
MMC_SETIOS SetIos;
MMC_ISMULTIBLOCK IsMultiBlock;
MMC_READBLOCKDATA ReadBlockData;
MMC_WRITEBLOCKDATA WriteBlockData;
MMC_SETIOS SetIos;
MMC_ISMULTIBLOCK IsMultiBlock;
};
#define MMC_HOST_PROTOCOL_REVISION 0x00010002 // 1.2
#define MMC_HOST_PROTOCOL_REVISION 0x00010002 // 1.2
#define MMC_HOST_HAS_SETIOS(Host) (Host->Revision >= MMC_HOST_PROTOCOL_REVISION && \
#define MMC_HOST_HAS_SETIOS(Host) (Host->Revision >= MMC_HOST_PROTOCOL_REVISION &&\
Host->SetIos != NULL)
#define MMC_HOST_HAS_ISMULTIBLOCK(Host) (Host->Revision >= MMC_HOST_PROTOCOL_REVISION && \
#define MMC_HOST_HAS_ISMULTIBLOCK(Host) (Host->Revision >= MMC_HOST_PROTOCOL_REVISION &&\
Host->IsMultiBlock != NULL)
extern EFI_GUID gEmbeddedMmcHostProtocolGuid;
extern EFI_GUID gEmbeddedMmcHostProtocolGuid;
#endif

View File

@ -16,11 +16,8 @@
#define PE_COFF_LOADER_PROTOCOL_GUID \
{ 0xB323179B, 0x97FB, 0x477E, { 0xB0, 0xFE, 0xD8, 0x85, 0x91, 0xFA, 0x11, 0xAB } }
typedef struct _PE_COFF_LOADER_PROTOCOL PE_COFF_LOADER_PROTOCOL;
/**
Retrieves information about a PE/COFF image.
@ -46,11 +43,10 @@ typedef struct _PE_COFF_LOADER_PROTOCOL PE_COFF_LOADER_PROTOCOL;
**/
typedef
RETURN_STATUS
(EFIAPI *PE_COFF_LOADER_GET_IMAGE_INFO) (
(EFIAPI *PE_COFF_LOADER_GET_IMAGE_INFO)(
IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext
);
/**
Applies relocation fixups to a PE/COFF image that was loaded with PeCoffLoaderLoadImage().
@ -83,11 +79,10 @@ RETURN_STATUS
**/
typedef
RETURN_STATUS
(EFIAPI *PE_COFF_LOADER_RELOCATE_IMAGE) (
(EFIAPI *PE_COFF_LOADER_RELOCATE_IMAGE)(
IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext
);
/**
Loads a PE/COFF image into memory.
@ -121,12 +116,10 @@ RETURN_STATUS
**/
typedef
RETURN_STATUS
(EFIAPI *PE_COFF_LOADER_LOAD_IMAGE) (
(EFIAPI *PE_COFF_LOADER_LOAD_IMAGE)(
IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext
);
/**
Reads contents of a PE/COFF image from a buffer in system memory.
@ -152,15 +145,13 @@ RETURN_STATUS
**/
typedef
RETURN_STATUS
(EFIAPI *PE_COFF_LOADER_READ_FROM_MEMORY) (
(EFIAPI *PE_COFF_LOADER_READ_FROM_MEMORY)(
IN VOID *FileHandle,
IN UINTN FileOffset,
IN OUT UINTN *ReadSize,
OUT VOID *Buffer
);
/**
Reapply fixups on a fixed up PE32/PE32+ image to allow virtual calling at EFI
runtime.
@ -186,15 +177,13 @@ RETURN_STATUS
**/
typedef
VOID
(EFIAPI *PE_COFF_LOADER_RELOCATE_IMAGE_FOR_RUNTIME) (
(EFIAPI *PE_COFF_LOADER_RELOCATE_IMAGE_FOR_RUNTIME)(
IN PHYSICAL_ADDRESS ImageBase,
IN PHYSICAL_ADDRESS VirtImageBase,
IN UINTN ImageSize,
IN VOID *RelocationData
);
/**
Unloads a loaded PE/COFF image from memory and releases its taken resource.
Releases any environment specific resources that were allocated when the image
@ -213,23 +202,19 @@ VOID
**/
typedef
RETURN_STATUS
(EFIAPI *PE_COFF_LOADER_UNLOAD_IMAGE) (
(EFIAPI *PE_COFF_LOADER_UNLOAD_IMAGE)(
IN OUT PE_COFF_LOADER_IMAGE_CONTEXT *ImageContext
);
struct _PE_COFF_LOADER_PROTOCOL {
PE_COFF_LOADER_GET_IMAGE_INFO GetImageInfo;
PE_COFF_LOADER_LOAD_IMAGE LoadImage;
PE_COFF_LOADER_RELOCATE_IMAGE RelocateImage;
PE_COFF_LOADER_READ_FROM_MEMORY ReadFromMemory;
PE_COFF_LOADER_RELOCATE_IMAGE_FOR_RUNTIME RelocateImageForRuntime;
PE_COFF_LOADER_UNLOAD_IMAGE UnloadImage;
PE_COFF_LOADER_GET_IMAGE_INFO GetImageInfo;
PE_COFF_LOADER_LOAD_IMAGE LoadImage;
PE_COFF_LOADER_RELOCATE_IMAGE RelocateImage;
PE_COFF_LOADER_READ_FROM_MEMORY ReadFromMemory;
PE_COFF_LOADER_RELOCATE_IMAGE_FOR_RUNTIME RelocateImageForRuntime;
PE_COFF_LOADER_UNLOAD_IMAGE UnloadImage;
};
extern EFI_GUID gPeCoffLoaderProtocolGuid;
extern EFI_GUID gPeCoffLoaderProtocolGuid;
#endif

View File

@ -12,7 +12,7 @@
//
// Protocol interface structure
//
typedef struct _PLATFORM_BOOT_MANAGER_PROTOCOL PLATFORM_BOOT_MANAGER_PROTOCOL;
typedef struct _PLATFORM_BOOT_MANAGER_PROTOCOL PLATFORM_BOOT_MANAGER_PROTOCOL;
//
// Function Prototypes
@ -65,16 +65,16 @@ typedef struct _PLATFORM_BOOT_MANAGER_PROTOCOL PLATFORM_BOOT_MANAGER_PROTOCOL
*/
typedef
EFI_STATUS
(EFIAPI *GET_PLATFORM_BOOT_OPTIONS_AND_KEYS) (
(EFIAPI *GET_PLATFORM_BOOT_OPTIONS_AND_KEYS)(
OUT UINTN *Count,
OUT EFI_BOOT_MANAGER_LOAD_OPTION **BootOptions,
OUT EFI_INPUT_KEY **BootKeys
);
struct _PLATFORM_BOOT_MANAGER_PROTOCOL {
GET_PLATFORM_BOOT_OPTIONS_AND_KEYS GetPlatformBootOptionsAndKeys;
GET_PLATFORM_BOOT_OPTIONS_AND_KEYS GetPlatformBootOptionsAndKeys;
};
extern EFI_GUID gPlatformBootManagerProtocolGuid;
extern EFI_GUID gPlatformBootManagerProtocolGuid;
#endif /* __PLATFORM_BOOT_MANAGER_PROTOCOL_H__ */

View File

@ -12,48 +12,48 @@
//
// Protocol interface structure
//
typedef struct _PLATFORM_VIRTUAL_KBD_PROTOCOL PLATFORM_VIRTUAL_KBD_PROTOCOL;
typedef struct _PLATFORM_VIRTUAL_KBD_PROTOCOL PLATFORM_VIRTUAL_KBD_PROTOCOL;
typedef struct _VIRTUAL_KBD_KEY VIRTUAL_KBD_KEY;
typedef struct _VIRTUAL_KBD_KEY VIRTUAL_KBD_KEY;
#define VIRTUAL_KEYBOARD_KEY_SIGNATURE SIGNATURE_32 ('v', 'k', 'b', 'd')
#define VIRTUAL_KEYBOARD_KEY_SIGNATURE SIGNATURE_32 ('v', 'k', 'b', 'd')
struct _VIRTUAL_KBD_KEY {
UINTN Signature;
EFI_INPUT_KEY Key;
UINTN Signature;
EFI_INPUT_KEY Key;
};
typedef
EFI_STATUS
(EFIAPI *PLATFORM_VIRTUAL_KBD_REGISTER) (
(EFIAPI *PLATFORM_VIRTUAL_KBD_REGISTER)(
IN VOID
);
typedef
EFI_STATUS
(EFIAPI *PLATFORM_VIRTUAL_KBD_RESET) (
(EFIAPI *PLATFORM_VIRTUAL_KBD_RESET)(
IN VOID
);
typedef
BOOLEAN
(EFIAPI *PLATFORM_VIRTUAL_KBD_QUERY) (
(EFIAPI *PLATFORM_VIRTUAL_KBD_QUERY)(
IN VIRTUAL_KBD_KEY *VirtualKey
);
typedef
EFI_STATUS
(EFIAPI *PLATFORM_VIRTUAL_KBD_CLEAR) (
(EFIAPI *PLATFORM_VIRTUAL_KBD_CLEAR)(
IN VIRTUAL_KBD_KEY *VirtualKey
);
struct _PLATFORM_VIRTUAL_KBD_PROTOCOL {
PLATFORM_VIRTUAL_KBD_REGISTER Register;
PLATFORM_VIRTUAL_KBD_RESET Reset;
PLATFORM_VIRTUAL_KBD_QUERY Query;
PLATFORM_VIRTUAL_KBD_CLEAR Clear;
PLATFORM_VIRTUAL_KBD_REGISTER Register;
PLATFORM_VIRTUAL_KBD_RESET Reset;
PLATFORM_VIRTUAL_KBD_QUERY Query;
PLATFORM_VIRTUAL_KBD_CLEAR Clear;
};
extern EFI_GUID gPlatformVirtualKeyboardProtocolGuid;
extern EFI_GUID gPlatformVirtualKeyboardProtocolGuid;
#endif /* __PLATFORM_VIRTUAL_KEYBOARD_H__ */

View File

@ -11,7 +11,7 @@
#include <IndustryStandard/Usb.h>
extern EFI_GUID gUsbDeviceProtocolGuid;
extern EFI_GUID gUsbDeviceProtocolGuid;
/*
* Note: This Protocol is just the bare minimum for Android Fastboot. It
@ -30,8 +30,8 @@ extern EFI_GUID gUsbDeviceProtocolGuid;
typedef
VOID
(*USB_DEVICE_RX_CALLBACK) (
IN UINTN Size,
IN VOID *Buffer
IN UINTN Size,
IN VOID *Buffer
);
/*
@ -46,7 +46,7 @@ VOID
typedef
VOID
(*USB_DEVICE_TX_CALLBACK) (
IN UINT8 EndpointIndex
IN UINT8 EndpointIndex
);
/*
@ -64,9 +64,9 @@ VOID
typedef
EFI_STATUS
(*USB_DEVICE_SEND) (
IN UINT8 EndpointIndex,
IN UINTN Size,
IN CONST VOID *Buffer
IN UINT8 EndpointIndex,
IN UINTN Size,
IN CONST VOID *Buffer
);
/*
@ -96,15 +96,15 @@ EFI_STATUS
typedef
EFI_STATUS
(*USB_DEVICE_START) (
IN USB_DEVICE_DESCRIPTOR *DeviceDescriptor,
IN VOID **Descriptors,
IN USB_DEVICE_RX_CALLBACK RxCallback,
IN USB_DEVICE_TX_CALLBACK TxCallback
IN USB_DEVICE_DESCRIPTOR *DeviceDescriptor,
IN VOID **Descriptors,
IN USB_DEVICE_RX_CALLBACK RxCallback,
IN USB_DEVICE_TX_CALLBACK TxCallback
);
struct _USB_DEVICE_PROTOCOL {
USB_DEVICE_START Start;
USB_DEVICE_SEND Send;
USB_DEVICE_START Start;
USB_DEVICE_SEND Send;
};
typedef struct _USB_DEVICE_PROTOCOL USB_DEVICE_PROTOCOL;

View File

@ -1,5 +1,6 @@
#ifndef _FDT_H
#define _FDT_H
/*
* libfdt - Flat Device Tree manipulation
* Copyright (C) 2006 David Gibson, IBM Corporation.
@ -55,57 +56,57 @@
#ifndef __ASSEMBLY__
struct fdt_header {
fdt32_t magic; /* magic word FDT_MAGIC */
fdt32_t totalsize; /* total size of DT block */
fdt32_t off_dt_struct; /* offset to structure */
fdt32_t off_dt_strings; /* offset to strings */
fdt32_t off_mem_rsvmap; /* offset to memory reserve map */
fdt32_t version; /* format version */
fdt32_t last_comp_version; /* last compatible version */
fdt32_t magic; /* magic word FDT_MAGIC */
fdt32_t totalsize; /* total size of DT block */
fdt32_t off_dt_struct; /* offset to structure */
fdt32_t off_dt_strings; /* offset to strings */
fdt32_t off_mem_rsvmap; /* offset to memory reserve map */
fdt32_t version; /* format version */
fdt32_t last_comp_version; /* last compatible version */
/* version 2 fields below */
fdt32_t boot_cpuid_phys; /* Which physical CPU id we're
booting on */
/* version 3 fields below */
fdt32_t size_dt_strings; /* size of the strings block */
/* version 2 fields below */
fdt32_t boot_cpuid_phys; /* Which physical CPU id we're
booting on */
/* version 3 fields below */
fdt32_t size_dt_strings; /* size of the strings block */
/* version 17 fields below */
fdt32_t size_dt_struct; /* size of the structure block */
/* version 17 fields below */
fdt32_t size_dt_struct; /* size of the structure block */
};
struct fdt_reserve_entry {
fdt64_t address;
fdt64_t size;
fdt64_t address;
fdt64_t size;
};
struct fdt_node_header {
fdt32_t tag;
char name[0];
fdt32_t tag;
char name[0];
};
struct fdt_property {
fdt32_t tag;
fdt32_t len;
fdt32_t nameoff;
char data[0];
fdt32_t tag;
fdt32_t len;
fdt32_t nameoff;
char data[0];
};
#endif /* !__ASSEMBLY */
#define FDT_MAGIC 0xd00dfeed /* 4: version, 4: total size */
#define FDT_TAGSIZE sizeof(fdt32_t)
#define FDT_MAGIC 0xd00dfeed /* 4: version, 4: total size */
#define FDT_TAGSIZE sizeof(fdt32_t)
#define FDT_BEGIN_NODE 0x1 /* Start node: full name */
#define FDT_END_NODE 0x2 /* End node */
#define FDT_PROP 0x3 /* Property: name off,
size, content */
#define FDT_NOP 0x4 /* nop */
#define FDT_END 0x9
#define FDT_BEGIN_NODE 0x1 /* Start node: full name */
#define FDT_END_NODE 0x2 /* End node */
#define FDT_PROP 0x3 /* Property: name off,
size, content */
#define FDT_NOP 0x4 /* nop */
#define FDT_END 0x9
#define FDT_V1_SIZE (7*sizeof(fdt32_t))
#define FDT_V2_SIZE (FDT_V1_SIZE + sizeof(fdt32_t))
#define FDT_V3_SIZE (FDT_V2_SIZE + sizeof(fdt32_t))
#define FDT_V16_SIZE FDT_V3_SIZE
#define FDT_V17_SIZE (FDT_V16_SIZE + sizeof(fdt32_t))
#define FDT_V1_SIZE (7*sizeof(fdt32_t))
#define FDT_V2_SIZE (FDT_V1_SIZE + sizeof(fdt32_t))
#define FDT_V3_SIZE (FDT_V2_SIZE + sizeof(fdt32_t))
#define FDT_V16_SIZE FDT_V3_SIZE
#define FDT_V17_SIZE (FDT_V16_SIZE + sizeof(fdt32_t))
#endif /* _FDT_H */

File diff suppressed because it is too large Load Diff

View File

@ -12,79 +12,153 @@
#include <Library/BaseLib.h>
#include <Library/BaseMemoryLib.h>
typedef UINT16 fdt16_t;
typedef UINT32 fdt32_t;
typedef UINT64 fdt64_t;
typedef UINT16 fdt16_t;
typedef UINT32 fdt32_t;
typedef UINT64 fdt64_t;
typedef UINT8 uint8_t;
typedef UINT16 uint16_t;
typedef UINT32 uint32_t;
typedef UINT64 uint64_t;
typedef UINTN uintptr_t;
typedef UINTN size_t;
typedef UINT8 uint8_t;
typedef UINT16 uint16_t;
typedef UINT32 uint32_t;
typedef UINT64 uint64_t;
typedef UINTN uintptr_t;
typedef UINTN size_t;
static inline uint16_t fdt16_to_cpu(fdt16_t x)
static inline uint16_t
fdt16_to_cpu (
fdt16_t x
)
{
return SwapBytes16 (x);
}
#define cpu_to_fdt16(x) fdt16_to_cpu(x)
static inline uint32_t fdt32_to_cpu(fdt32_t x)
#define cpu_to_fdt16(x) fdt16_to_cpu(x)
static inline uint32_t
fdt32_to_cpu (
fdt32_t x
)
{
return SwapBytes32 (x);
}
#define cpu_to_fdt32(x) fdt32_to_cpu(x)
static inline uint64_t fdt64_to_cpu(fdt64_t x)
#define cpu_to_fdt32(x) fdt32_to_cpu(x)
static inline uint64_t
fdt64_to_cpu (
fdt64_t x
)
{
return SwapBytes64 (x);
}
#define cpu_to_fdt64(x) fdt64_to_cpu(x)
static inline void* memcpy(void* dest, const void* src, size_t len) {
#define cpu_to_fdt64(x) fdt64_to_cpu(x)
static inline void *
memcpy (
void *dest,
const void *src,
size_t len
)
{
return CopyMem (dest, src, len);
}
static inline void *memmove(void *dest, const void *src, size_t n) {
static inline void *
memmove (
void *dest,
const void *src,
size_t n
)
{
return CopyMem (dest, src, n);
}
static inline void *memset(void *s, int c, size_t n) {
static inline void *
memset (
void *s,
int c,
size_t n
)
{
return SetMem (s, n, c);
}
static inline int memcmp(const void* dest, const void* src, int len) {
static inline int
memcmp (
const void *dest,
const void *src,
int len
)
{
return CompareMem (dest, src, len);
}
static inline void *memchr(const void *s, int c, size_t n) {
static inline void *
memchr (
const void *s,
int c,
size_t n
)
{
return ScanMem8 (s, n, c);
}
static inline size_t strlen (const char* str) {
static inline size_t
strlen (
const char *str
)
{
return AsciiStrLen (str);
}
static inline char *strchr(const char *s, int c) {
char pattern[2];
static inline char *
strchr (
const char *s,
int c
)
{
char pattern[2];
pattern[0] = c;
pattern[1] = 0;
return AsciiStrStr (s, pattern);
}
static inline size_t strnlen (const char* str, size_t strsz ) {
static inline size_t
strnlen (
const char *str,
size_t strsz
)
{
return AsciiStrnLenS (str, strsz);
}
static inline size_t strcmp (const char* str1, const char* str2) {
static inline size_t
strcmp (
const char *str1,
const char *str2
)
{
return AsciiStrCmp (str1, str2);
}
static inline size_t strncmp (const char* str1, const char* str2, size_t strsz ) {
static inline size_t
strncmp (
const char *str1,
const char *str2,
size_t strsz
)
{
return AsciiStrnCmp (str1, str2, strsz);
}
static inline size_t strncpy (char* dest, const char* source, size_t dest_max) {
static inline size_t
strncpy (
char *dest,
const char *source,
size_t dest_max
)
{
return AsciiStrCpyS (dest, dest_max, source);
}

View File

@ -31,29 +31,29 @@
**/
EFI_STATUS
LocateAndInstallAcpiFromFvConditional (
IN CONST EFI_GUID* AcpiFile,
IN CONST EFI_GUID *AcpiFile,
IN EFI_LOCATE_ACPI_CHECK CheckAcpiTableFunction
)
{
EFI_STATUS Status;
EFI_ACPI_TABLE_PROTOCOL *AcpiProtocol;
EFI_HANDLE *HandleBuffer;
UINTN NumberOfHandles;
UINT32 FvStatus;
UINTN Index;
EFI_FIRMWARE_VOLUME2_PROTOCOL *FvInstance;
INTN SectionInstance;
UINTN SectionSize;
EFI_ACPI_COMMON_HEADER *AcpiTable;
UINTN AcpiTableSize;
UINTN AcpiTableKey;
BOOLEAN Valid;
EFI_STATUS Status;
EFI_ACPI_TABLE_PROTOCOL *AcpiProtocol;
EFI_HANDLE *HandleBuffer;
UINTN NumberOfHandles;
UINT32 FvStatus;
UINTN Index;
EFI_FIRMWARE_VOLUME2_PROTOCOL *FvInstance;
INTN SectionInstance;
UINTN SectionSize;
EFI_ACPI_COMMON_HEADER *AcpiTable;
UINTN AcpiTableSize;
UINTN AcpiTableKey;
BOOLEAN Valid;
// Ensure the ACPI Table is present
Status = gBS->LocateProtocol (
&gEfiAcpiTableProtocolGuid,
NULL,
(VOID**)&AcpiProtocol
(VOID **)&AcpiProtocol
);
if (EFI_ERROR (Status)) {
return Status;
@ -64,12 +64,12 @@ LocateAndInstallAcpiFromFvConditional (
// Locate all the Firmware Volume protocols.
Status = gBS->LocateHandleBuffer (
ByProtocol,
&gEfiFirmwareVolume2ProtocolGuid,
NULL,
&NumberOfHandles,
&HandleBuffer
);
ByProtocol,
&gEfiFirmwareVolume2ProtocolGuid,
NULL,
&NumberOfHandles,
&HandleBuffer
);
if (EFI_ERROR (Status)) {
return Status;
}
@ -81,10 +81,10 @@ LocateAndInstallAcpiFromFvConditional (
// This should not fail because of LocateHandleBuffer
//
Status = gBS->HandleProtocol (
HandleBuffer[Index],
&gEfiFirmwareVolume2ProtocolGuid,
(VOID**) &FvInstance
);
HandleBuffer[Index],
&gEfiFirmwareVolume2ProtocolGuid,
(VOID **)&FvInstance
);
if (EFI_ERROR (Status)) {
goto FREE_HANDLE_BUFFER;
}
@ -95,24 +95,27 @@ LocateAndInstallAcpiFromFvConditional (
// See if it has the ACPI storage file
Status = FvInstance->ReadSection (
FvInstance,
AcpiFile,
EFI_SECTION_RAW,
SectionInstance,
(VOID**) &AcpiTable,
&SectionSize,
&FvStatus
);
FvInstance,
AcpiFile,
EFI_SECTION_RAW,
SectionInstance,
(VOID **)&AcpiTable,
&SectionSize,
&FvStatus
);
if (!EFI_ERROR (Status)) {
AcpiTableKey = 0;
AcpiTableSize = ((EFI_ACPI_DESCRIPTION_HEADER *) AcpiTable)->Length;
AcpiTableKey = 0;
AcpiTableSize = ((EFI_ACPI_DESCRIPTION_HEADER *)AcpiTable)->Length;
ASSERT (SectionSize >= AcpiTableSize);
DEBUG ((DEBUG_ERROR, "- Found '%c%c%c%c' ACPI Table\n",
(((EFI_ACPI_DESCRIPTION_HEADER *) AcpiTable)->Signature & 0xFF),
((((EFI_ACPI_DESCRIPTION_HEADER *) AcpiTable)->Signature >> 8) & 0xFF),
((((EFI_ACPI_DESCRIPTION_HEADER *) AcpiTable)->Signature >> 16) & 0xFF),
((((EFI_ACPI_DESCRIPTION_HEADER *) AcpiTable)->Signature >> 24) & 0xFF)));
DEBUG ((
DEBUG_ERROR,
"- Found '%c%c%c%c' ACPI Table\n",
(((EFI_ACPI_DESCRIPTION_HEADER *)AcpiTable)->Signature & 0xFF),
((((EFI_ACPI_DESCRIPTION_HEADER *)AcpiTable)->Signature >> 8) & 0xFF),
((((EFI_ACPI_DESCRIPTION_HEADER *)AcpiTable)->Signature >> 16) & 0xFF),
((((EFI_ACPI_DESCRIPTION_HEADER *)AcpiTable)->Signature >> 24) & 0xFF)
));
// Is the ACPI table valid?
if (CheckAcpiTableFunction) {
@ -124,11 +127,11 @@ LocateAndInstallAcpiFromFvConditional (
// Install the ACPI Table
if (Valid) {
Status = AcpiProtocol->InstallAcpiTable (
AcpiProtocol,
AcpiTable,
AcpiTableSize,
&AcpiTableKey
);
AcpiProtocol,
AcpiTable,
AcpiTableSize,
&AcpiTableKey
);
}
// Free memory allocated by ReadSection
@ -165,7 +168,7 @@ FREE_HANDLE_BUFFER:
**/
EFI_STATUS
LocateAndInstallAcpiFromFv (
IN CONST EFI_GUID* AcpiFile
IN CONST EFI_GUID *AcpiFile
)
{
return LocateAndInstallAcpiFromFvConditional (AcpiFile, NULL);

View File

@ -20,24 +20,24 @@
#include <Guid/LinuxEfiInitrdMedia.h>
#define FDT_ADDITIONAL_ENTRIES_SIZE 0x400
#define FDT_ADDITIONAL_ENTRIES_SIZE 0x400
typedef struct {
MEMMAP_DEVICE_PATH Node1;
EFI_DEVICE_PATH_PROTOCOL End;
MEMMAP_DEVICE_PATH Node1;
EFI_DEVICE_PATH_PROTOCOL End;
} MEMORY_DEVICE_PATH;
typedef struct {
VENDOR_DEVICE_PATH VendorMediaNode;
EFI_DEVICE_PATH_PROTOCOL EndNode;
VENDOR_DEVICE_PATH VendorMediaNode;
EFI_DEVICE_PATH_PROTOCOL EndNode;
} RAMDISK_DEVICE_PATH;
STATIC ANDROID_BOOTIMG_PROTOCOL *mAndroidBootImg;
STATIC VOID *mRamdiskData = NULL;
STATIC UINTN mRamdiskSize = 0;
STATIC EFI_HANDLE mRamDiskLoadFileHandle = NULL;
STATIC ANDROID_BOOTIMG_PROTOCOL *mAndroidBootImg;
STATIC VOID *mRamdiskData = NULL;
STATIC UINTN mRamdiskSize = 0;
STATIC EFI_HANDLE mRamDiskLoadFileHandle = NULL;
STATIC CONST MEMORY_DEVICE_PATH mMemoryDevicePathTemplate =
STATIC CONST MEMORY_DEVICE_PATH mMemoryDevicePathTemplate =
{
{
{
@ -58,13 +58,13 @@ STATIC CONST MEMORY_DEVICE_PATH mMemoryDevicePathTemplate =
} // End
};
STATIC CONST RAMDISK_DEVICE_PATH mRamdiskDevicePath =
STATIC CONST RAMDISK_DEVICE_PATH mRamdiskDevicePath =
{
{
{
MEDIA_DEVICE_PATH,
MEDIA_VENDOR_DP,
{ sizeof (VENDOR_DEVICE_PATH), 0 }
{ sizeof (VENDOR_DEVICE_PATH), 0 }
},
LINUX_EFI_INITRD_MEDIA_GUID
},
@ -107,19 +107,20 @@ STATIC CONST RAMDISK_DEVICE_PATH mRamdiskDevicePath =
EFI_STATUS
EFIAPI
AndroidBootImgLoadFile2 (
IN EFI_LOAD_FILE2_PROTOCOL *This,
IN EFI_DEVICE_PATH_PROTOCOL *FilePath,
IN BOOLEAN BootPolicy,
IN OUT UINTN *BufferSize,
IN VOID *Buffer OPTIONAL
IN EFI_LOAD_FILE2_PROTOCOL *This,
IN EFI_DEVICE_PATH_PROTOCOL *FilePath,
IN BOOLEAN BootPolicy,
IN OUT UINTN *BufferSize,
IN VOID *Buffer OPTIONAL
)
{
// Verify if the valid parameters
if (This == NULL ||
BufferSize == NULL ||
FilePath == NULL ||
!IsDevicePathValid (FilePath, 0)) {
if ((This == NULL) ||
(BufferSize == NULL) ||
(FilePath == NULL) ||
!IsDevicePathValid (FilePath, 0))
{
return EFI_INVALID_PARAMETER;
}
@ -132,7 +133,8 @@ AndroidBootImgLoadFile2 (
if (mRamdiskSize == 0) {
return EFI_NOT_FOUND;
}
if (Buffer == NULL || *BufferSize < mRamdiskSize) {
if ((Buffer == NULL) || (*BufferSize < mRamdiskSize)) {
*BufferSize = mRamdiskSize;
return EFI_BUFFER_TOO_SMALL;
}
@ -153,16 +155,20 @@ STATIC EFI_LOAD_FILE2_PROTOCOL mAndroidBootImgLoadFile2 = {
EFI_STATUS
AndroidBootImgGetImgSize (
IN VOID *BootImg,
OUT UINTN *ImgSize
IN VOID *BootImg,
OUT UINTN *ImgSize
)
{
ANDROID_BOOTIMG_HEADER *Header;
ANDROID_BOOTIMG_HEADER *Header;
Header = (ANDROID_BOOTIMG_HEADER *) BootImg;
Header = (ANDROID_BOOTIMG_HEADER *)BootImg;
if (AsciiStrnCmp ((CONST CHAR8 *)Header->BootMagic, ANDROID_BOOT_MAGIC,
ANDROID_BOOT_MAGIC_LENGTH) != 0) {
if (AsciiStrnCmp (
(CONST CHAR8 *)Header->BootMagic,
ANDROID_BOOT_MAGIC,
ANDROID_BOOT_MAGIC_LENGTH
) != 0)
{
return EFI_INVALID_PARAMETER;
}
@ -179,17 +185,21 @@ AndroidBootImgGetImgSize (
EFI_STATUS
AndroidBootImgGetKernelInfo (
IN VOID *BootImg,
IN VOID *BootImg,
OUT VOID **Kernel,
OUT UINTN *KernelSize
OUT UINTN *KernelSize
)
{
ANDROID_BOOTIMG_HEADER *Header;
ANDROID_BOOTIMG_HEADER *Header;
Header = (ANDROID_BOOTIMG_HEADER *) BootImg;
Header = (ANDROID_BOOTIMG_HEADER *)BootImg;
if (AsciiStrnCmp ((CONST CHAR8 *)Header->BootMagic, ANDROID_BOOT_MAGIC,
ANDROID_BOOT_MAGIC_LENGTH) != 0) {
if (AsciiStrnCmp (
(CONST CHAR8 *)Header->BootMagic,
ANDROID_BOOT_MAGIC,
ANDROID_BOOT_MAGIC_LENGTH
) != 0)
{
return EFI_INVALID_PARAMETER;
}
@ -200,23 +210,27 @@ AndroidBootImgGetKernelInfo (
ASSERT (IS_VALID_ANDROID_PAGE_SIZE (Header->PageSize));
*KernelSize = Header->KernelSize;
*Kernel = (VOID *)((UINTN)BootImg + Header->PageSize);
*Kernel = (VOID *)((UINTN)BootImg + Header->PageSize);
return EFI_SUCCESS;
}
EFI_STATUS
AndroidBootImgGetRamdiskInfo (
IN VOID *BootImg,
IN VOID *BootImg,
OUT VOID **Ramdisk,
OUT UINTN *RamdiskSize
OUT UINTN *RamdiskSize
)
{
ANDROID_BOOTIMG_HEADER *Header;
ANDROID_BOOTIMG_HEADER *Header;
Header = (ANDROID_BOOTIMG_HEADER *)BootImg;
if (AsciiStrnCmp ((CONST CHAR8 *)Header->BootMagic, ANDROID_BOOT_MAGIC,
ANDROID_BOOT_MAGIC_LENGTH) != 0) {
if (AsciiStrnCmp (
(CONST CHAR8 *)Header->BootMagic,
ANDROID_BOOT_MAGIC,
ANDROID_BOOT_MAGIC_LENGTH
) != 0)
{
return EFI_INVALID_PARAMETER;
}
@ -229,22 +243,27 @@ AndroidBootImgGetRamdiskInfo (
+ Header->PageSize
+ ALIGN_VALUE (Header->KernelSize, Header->PageSize));
}
return EFI_SUCCESS;
}
EFI_STATUS
AndroidBootImgGetSecondBootLoaderInfo (
IN VOID *BootImg,
IN VOID *BootImg,
OUT VOID **Second,
OUT UINTN *SecondSize
OUT UINTN *SecondSize
)
{
ANDROID_BOOTIMG_HEADER *Header;
ANDROID_BOOTIMG_HEADER *Header;
Header = (ANDROID_BOOTIMG_HEADER *)BootImg;
if (AsciiStrnCmp ((CONST CHAR8 *)Header->BootMagic, ANDROID_BOOT_MAGIC,
ANDROID_BOOT_MAGIC_LENGTH) != 0) {
if (AsciiStrnCmp (
(CONST CHAR8 *)Header->BootMagic,
ANDROID_BOOT_MAGIC,
ANDROID_BOOT_MAGIC_LENGTH
) != 0)
{
return EFI_INVALID_PARAMETER;
}
@ -258,32 +277,37 @@ AndroidBootImgGetSecondBootLoaderInfo (
+ ALIGN_VALUE (Header->KernelSize, Header->PageSize)
+ ALIGN_VALUE (Header->RamdiskSize, Header->PageSize));
}
return EFI_SUCCESS;
}
EFI_STATUS
AndroidBootImgGetKernelArgs (
IN VOID *BootImg,
OUT CHAR8 *KernelArgs
IN VOID *BootImg,
OUT CHAR8 *KernelArgs
)
{
ANDROID_BOOTIMG_HEADER *Header;
ANDROID_BOOTIMG_HEADER *Header;
Header = (ANDROID_BOOTIMG_HEADER *) BootImg;
AsciiStrnCpyS (KernelArgs, ANDROID_BOOTIMG_KERNEL_ARGS_SIZE, Header->KernelArgs,
ANDROID_BOOTIMG_KERNEL_ARGS_SIZE);
Header = (ANDROID_BOOTIMG_HEADER *)BootImg;
AsciiStrnCpyS (
KernelArgs,
ANDROID_BOOTIMG_KERNEL_ARGS_SIZE,
Header->KernelArgs,
ANDROID_BOOTIMG_KERNEL_ARGS_SIZE
);
return EFI_SUCCESS;
}
EFI_STATUS
AndroidBootImgGetFdt (
IN VOID *BootImg,
IN VOID **FdtBase
IN VOID *BootImg,
IN VOID **FdtBase
)
{
UINTN SecondLoaderSize;
EFI_STATUS Status;
UINTN SecondLoaderSize;
EFI_STATUS Status;
/* Check whether FDT is located in second boot region as some vendor do so,
* because second loader is never used as far as I know. */
@ -291,43 +315,50 @@ AndroidBootImgGetFdt (
BootImg,
FdtBase,
&SecondLoaderSize
);
);
return Status;
}
EFI_STATUS
AndroidBootImgUpdateArgs (
IN VOID *BootImg,
OUT VOID *KernelArgs
IN VOID *BootImg,
OUT VOID *KernelArgs
)
{
CHAR8 ImageKernelArgs[ANDROID_BOOTIMG_KERNEL_ARGS_SIZE];
EFI_STATUS Status;
CHAR8 ImageKernelArgs[ANDROID_BOOTIMG_KERNEL_ARGS_SIZE];
EFI_STATUS Status;
// Get kernel arguments from Android boot image
Status = AndroidBootImgGetKernelArgs (BootImg, ImageKernelArgs);
if (EFI_ERROR (Status)) {
return Status;
}
AsciiStrToUnicodeStrS (ImageKernelArgs, KernelArgs,
ANDROID_BOOTIMG_KERNEL_ARGS_SIZE >> 1);
AsciiStrToUnicodeStrS (
ImageKernelArgs,
KernelArgs,
ANDROID_BOOTIMG_KERNEL_ARGS_SIZE >> 1
);
// Append platform kernel arguments
if(mAndroidBootImg->AppendArgs) {
Status = mAndroidBootImg->AppendArgs (KernelArgs,
ANDROID_BOOTIMG_KERNEL_ARGS_SIZE);
if (mAndroidBootImg->AppendArgs) {
Status = mAndroidBootImg->AppendArgs (
KernelArgs,
ANDROID_BOOTIMG_KERNEL_ARGS_SIZE
);
}
return Status;
}
EFI_STATUS
AndroidBootImgInstallLoadFile2 (
IN VOID *RamdiskData,
IN UINTN RamdiskSize
IN VOID *RamdiskData,
IN UINTN RamdiskSize
)
{
mRamDiskLoadFileHandle = NULL;
mRamdiskData = RamdiskData;
mRamdiskSize = RamdiskSize;
mRamdiskData = RamdiskData;
mRamdiskSize = RamdiskSize;
return gBS->InstallMultipleProtocolInterfaces (
&mRamDiskLoadFileHandle,
&gEfiLoadFile2ProtocolGuid,
@ -343,9 +374,9 @@ AndroidBootImgUninstallLoadFile2 (
VOID
)
{
EFI_STATUS Status;
EFI_STATUS Status;
Status = EFI_SUCCESS;
Status = EFI_SUCCESS;
mRamdiskData = NULL;
mRamdiskSize = 0;
if (mRamDiskLoadFileHandle != NULL) {
@ -359,15 +390,17 @@ AndroidBootImgUninstallLoadFile2 (
);
mRamDiskLoadFileHandle = NULL;
}
return Status;
}
BOOLEAN AndroidBootImgAcpiSupported (
BOOLEAN
AndroidBootImgAcpiSupported (
VOID
)
{
EFI_STATUS Status;
VOID *AcpiTable;
VOID *AcpiTable;
Status = EfiGetSystemConfigurationTable (&gEfiAcpiTableGuid, &AcpiTable);
return !EFI_ERROR (Status);
@ -375,12 +408,12 @@ BOOLEAN AndroidBootImgAcpiSupported (
EFI_STATUS
AndroidBootImgLocateFdt (
IN VOID *BootImg,
IN VOID **FdtBase
IN VOID *BootImg,
IN VOID **FdtBase
)
{
INTN Err;
EFI_STATUS Status;
INTN Err;
EFI_STATUS Status;
Status = EfiGetSystemConfigurationTable (&gFdtTableGuid, FdtBase);
if (!EFI_ERROR (Status)) {
@ -391,58 +424,77 @@ AndroidBootImgLocateFdt (
if (EFI_ERROR (Status)) {
return Status;
}
Err = fdt_check_header (*FdtBase);
if (Err != 0) {
DEBUG ((DEBUG_ERROR, "ERROR: Device Tree header not valid (Err:%d)\n",
Err));
DEBUG ((
DEBUG_ERROR,
"ERROR: Device Tree header not valid (Err:%d)\n",
Err
));
return EFI_INVALID_PARAMETER;
}
return EFI_SUCCESS;
}
INTN
AndroidBootImgGetChosenNode (
IN INTN UpdatedFdtBase
IN INTN UpdatedFdtBase
)
{
INTN ChosenNode;
INTN ChosenNode;
ChosenNode = fdt_subnode_offset ((CONST VOID *)UpdatedFdtBase, 0, "chosen");
if (ChosenNode < 0) {
ChosenNode = fdt_add_subnode((VOID *)UpdatedFdtBase, 0, "chosen");
if (ChosenNode < 0) {
DEBUG ((DEBUG_ERROR, "Fail to find fdt node chosen!\n"));
return 0;
ChosenNode = fdt_add_subnode ((VOID *)UpdatedFdtBase, 0, "chosen");
if (ChosenNode < 0) {
DEBUG ((DEBUG_ERROR, "Fail to find fdt node chosen!\n"));
return 0;
}
}
return ChosenNode;
}
EFI_STATUS
AndroidBootImgSetProperty64 (
IN INTN UpdatedFdtBase,
IN INTN ChosenNode,
IN CHAR8 *PropertyName,
IN UINT64 Val
IN INTN UpdatedFdtBase,
IN INTN ChosenNode,
IN CHAR8 *PropertyName,
IN UINT64 Val
)
{
INTN Err;
struct fdt_property *Property;
int Len;
INTN Err;
struct fdt_property *Property;
int Len;
Property = fdt_get_property_w((VOID *)UpdatedFdtBase, ChosenNode,
PropertyName, &Len);
if (NULL == Property && Len == -FDT_ERR_NOTFOUND) {
Val = cpu_to_fdt64(Val);
Err = fdt_appendprop ((VOID *)UpdatedFdtBase, ChosenNode,
PropertyName, &Val, sizeof (UINT64));
Property = fdt_get_property_w (
(VOID *)UpdatedFdtBase,
ChosenNode,
PropertyName,
&Len
);
if ((NULL == Property) && (Len == -FDT_ERR_NOTFOUND)) {
Val = cpu_to_fdt64 (Val);
Err = fdt_appendprop (
(VOID *)UpdatedFdtBase,
ChosenNode,
PropertyName,
&Val,
sizeof (UINT64)
);
if (Err) {
DEBUG ((DEBUG_ERROR, "fdt_appendprop() fail: %a\n", fdt_strerror (Err)));
return EFI_INVALID_PARAMETER;
}
} else if (Property != NULL) {
Err = fdt_setprop_u64((VOID *)UpdatedFdtBase, ChosenNode,
PropertyName, Val);
Err = fdt_setprop_u64 (
(VOID *)UpdatedFdtBase,
ChosenNode,
PropertyName,
Val
);
if (Err) {
DEBUG ((DEBUG_ERROR, "fdt_setprop_u64() fail: %a\n", fdt_strerror (Err)));
return EFI_INVALID_PARAMETER;
@ -451,33 +503,41 @@ AndroidBootImgSetProperty64 (
DEBUG ((DEBUG_ERROR, "Failed to set fdt Property %a\n", PropertyName));
return EFI_INVALID_PARAMETER;
}
return EFI_SUCCESS;
}
EFI_STATUS
AndroidBootImgUpdateFdt (
IN VOID *BootImg,
IN VOID *FdtBase,
IN VOID *RamdiskData,
IN UINTN RamdiskSize
IN VOID *BootImg,
IN VOID *FdtBase,
IN VOID *RamdiskData,
IN UINTN RamdiskSize
)
{
INTN ChosenNode, Err, NewFdtSize;
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS UpdatedFdtBase, NewFdtBase;
INTN ChosenNode, Err, NewFdtSize;
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS UpdatedFdtBase, NewFdtBase;
NewFdtSize = (UINTN)fdt_totalsize (FdtBase)
+ FDT_ADDITIONAL_ENTRIES_SIZE;
Status = gBS->AllocatePages (AllocateAnyPages, EfiBootServicesData,
EFI_SIZE_TO_PAGES (NewFdtSize), &UpdatedFdtBase);
Status = gBS->AllocatePages (
AllocateAnyPages,
EfiBootServicesData,
EFI_SIZE_TO_PAGES (NewFdtSize),
&UpdatedFdtBase
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_WARN, "Warning: Failed to reallocate FDT, err %d.\n",
Status));
DEBUG ((
DEBUG_WARN,
"Warning: Failed to reallocate FDT, err %d.\n",
Status
));
return Status;
}
// Load the Original FDT tree into the new region
Err = fdt_open_into(FdtBase, (VOID*)(INTN)UpdatedFdtBase, NewFdtSize);
Err = fdt_open_into (FdtBase, (VOID *)(INTN)UpdatedFdtBase, NewFdtSize);
if (Err) {
DEBUG ((DEBUG_ERROR, "fdt_open_into(): %a\n", fdt_strerror (Err)));
Status = EFI_INVALID_PARAMETER;
@ -490,21 +550,27 @@ AndroidBootImgUpdateFdt (
goto Fdt_Exit;
}
} else {
ChosenNode = AndroidBootImgGetChosenNode(UpdatedFdtBase);
ChosenNode = AndroidBootImgGetChosenNode (UpdatedFdtBase);
if (!ChosenNode) {
goto Fdt_Exit;
}
Status = AndroidBootImgSetProperty64 (UpdatedFdtBase, ChosenNode,
"linux,initrd-start",
(UINTN)RamdiskData);
Status = AndroidBootImgSetProperty64 (
UpdatedFdtBase,
ChosenNode,
"linux,initrd-start",
(UINTN)RamdiskData
);
if (EFI_ERROR (Status)) {
goto Fdt_Exit;
}
Status = AndroidBootImgSetProperty64 (UpdatedFdtBase, ChosenNode,
"linux,initrd-end",
(UINTN)RamdiskData + RamdiskSize);
Status = AndroidBootImgSetProperty64 (
UpdatedFdtBase,
ChosenNode,
"linux,initrd-end",
(UINTN)RamdiskData + RamdiskSize
);
if (EFI_ERROR (Status)) {
goto Fdt_Exit;
}
@ -518,6 +584,7 @@ AndroidBootImgUpdateFdt (
} else {
NewFdtBase = UpdatedFdtBase;
}
Status = gBS->InstallConfigurationTable (
&gFdtTableGuid,
(VOID *)(UINTN)NewFdtBase
@ -534,35 +601,38 @@ Fdt_Exit:
EFI_STATUS
AndroidBootImgBoot (
IN VOID *Buffer,
IN UINTN BufferSize
IN VOID *Buffer,
IN UINTN BufferSize
)
{
EFI_STATUS Status;
VOID *Kernel;
UINTN KernelSize;
MEMORY_DEVICE_PATH KernelDevicePath;
EFI_HANDLE ImageHandle;
VOID *NewKernelArg;
EFI_LOADED_IMAGE_PROTOCOL *ImageInfo;
VOID *RamdiskData;
UINTN RamdiskSize;
IN VOID *FdtBase;
EFI_STATUS Status;
VOID *Kernel;
UINTN KernelSize;
MEMORY_DEVICE_PATH KernelDevicePath;
EFI_HANDLE ImageHandle;
VOID *NewKernelArg;
EFI_LOADED_IMAGE_PROTOCOL *ImageInfo;
VOID *RamdiskData;
UINTN RamdiskSize;
IN VOID *FdtBase;
NewKernelArg = NULL;
ImageHandle = NULL;
ImageHandle = NULL;
Status = gBS->LocateProtocol (&gAndroidBootImgProtocolGuid, NULL,
(VOID **) &mAndroidBootImg);
Status = gBS->LocateProtocol (
&gAndroidBootImgProtocolGuid,
NULL,
(VOID **)&mAndroidBootImg
);
if (EFI_ERROR (Status)) {
goto Exit;
}
Status = AndroidBootImgGetKernelInfo (
Buffer,
&Kernel,
&KernelSize
);
Buffer,
&Kernel,
&KernelSize
);
if (EFI_ERROR (Status)) {
goto Exit;
}
@ -580,10 +650,10 @@ AndroidBootImgBoot (
}
Status = AndroidBootImgGetRamdiskInfo (
Buffer,
&RamdiskData,
&RamdiskSize
);
Buffer,
&RamdiskData,
&RamdiskSize
);
if (EFI_ERROR (Status)) {
goto Exit;
}
@ -607,24 +677,33 @@ AndroidBootImgBoot (
KernelDevicePath = mMemoryDevicePathTemplate;
KernelDevicePath.Node1.StartingAddress = (EFI_PHYSICAL_ADDRESS)(UINTN) Kernel;
KernelDevicePath.Node1.EndingAddress = (EFI_PHYSICAL_ADDRESS)(UINTN) Kernel
KernelDevicePath.Node1.StartingAddress = (EFI_PHYSICAL_ADDRESS)(UINTN)Kernel;
KernelDevicePath.Node1.EndingAddress = (EFI_PHYSICAL_ADDRESS)(UINTN)Kernel
+ KernelSize;
Status = gBS->LoadImage (TRUE, gImageHandle,
(EFI_DEVICE_PATH *)&KernelDevicePath,
(VOID*)(UINTN)Kernel, KernelSize, &ImageHandle);
Status = gBS->LoadImage (
TRUE,
gImageHandle,
(EFI_DEVICE_PATH *)&KernelDevicePath,
(VOID *)(UINTN)Kernel,
KernelSize,
&ImageHandle
);
if (EFI_ERROR (Status)) {
goto Exit;
}
// Set kernel arguments
Status = gBS->HandleProtocol (ImageHandle, &gEfiLoadedImageProtocolGuid,
(VOID **) &ImageInfo);
Status = gBS->HandleProtocol (
ImageHandle,
&gEfiLoadedImageProtocolGuid,
(VOID **)&ImageInfo
);
if (EFI_ERROR (Status)) {
goto Exit;
}
ImageInfo->LoadOptions = NewKernelArg;
ImageInfo->LoadOptions = NewKernelArg;
ImageInfo->LoadOptionsSize = StrLen (NewKernelArg) * sizeof (CHAR16);
// Before calling the image, enable the Watchdog Timer for the 5 Minute period
@ -635,17 +714,19 @@ AndroidBootImgBoot (
gBS->SetWatchdogTimer (0, 0x10000, 0, NULL);
Exit:
//Unload image as it will not be used anymore
// Unload image as it will not be used anymore
if (ImageHandle != NULL) {
gBS->UnloadImage (ImageHandle);
ImageHandle = NULL;
}
if (EFI_ERROR (Status)) {
if (NewKernelArg != NULL) {
FreePool (NewKernelArg);
NewKernelArg = NULL;
}
}
AndroidBootImgUninstallLoadFile2 ();
return Status;
}

View File

@ -12,11 +12,10 @@
#include <Library/DmaLib.h>
#include <Library/MemoryAllocationLib.h>
STATIC
PHYSICAL_ADDRESS
HostToDeviceAddress (
IN VOID *Address
IN VOID *Address
)
{
return (PHYSICAL_ADDRESS)(UINTN)Address + PcdGet64 (PcdDmaDeviceOffset);
@ -45,25 +44,26 @@ HostToDeviceAddress (
EFI_STATUS
EFIAPI
DmaMap (
IN DMA_MAP_OPERATION Operation,
IN VOID *HostAddress,
IN OUT UINTN *NumberOfBytes,
OUT PHYSICAL_ADDRESS *DeviceAddress,
OUT VOID **Mapping
IN DMA_MAP_OPERATION Operation,
IN VOID *HostAddress,
IN OUT UINTN *NumberOfBytes,
OUT PHYSICAL_ADDRESS *DeviceAddress,
OUT VOID **Mapping
)
{
if (HostAddress == NULL ||
NumberOfBytes == NULL ||
DeviceAddress == NULL ||
Mapping == NULL ) {
if ((HostAddress == NULL) ||
(NumberOfBytes == NULL) ||
(DeviceAddress == NULL) ||
(Mapping == NULL))
{
return EFI_INVALID_PARAMETER;
}
*DeviceAddress = HostToDeviceAddress (HostAddress);
*Mapping = NULL;
*Mapping = NULL;
return EFI_SUCCESS;
}
/**
Completes the DmaMapBusMasterRead(), DmaMapBusMasterWrite(), or DmaMapBusMasterCommonBuffer()
operation and releases any corresponding resources.
@ -77,7 +77,7 @@ DmaMap (
EFI_STATUS
EFIAPI
DmaUnmap (
IN VOID *Mapping
IN VOID *Mapping
)
{
return EFI_SUCCESS;
@ -103,15 +103,14 @@ DmaUnmap (
EFI_STATUS
EFIAPI
DmaAllocateBuffer (
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Pages,
OUT VOID **HostAddress
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Pages,
OUT VOID **HostAddress
)
{
return DmaAllocateAlignedBuffer (MemoryType, Pages, 0, HostAddress);
}
/**
Allocates pages that are suitable for an DmaMap() of type
MapOperationBusMasterCommonBuffer mapping, at the requested alignment.
@ -134,18 +133,19 @@ DmaAllocateBuffer (
EFI_STATUS
EFIAPI
DmaAllocateAlignedBuffer (
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Pages,
IN UINTN Alignment,
OUT VOID **HostAddress
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Pages,
IN UINTN Alignment,
OUT VOID **HostAddress
)
{
if (Alignment == 0) {
Alignment = EFI_PAGE_SIZE;
}
if (HostAddress == NULL ||
(Alignment & (Alignment - 1)) != 0) {
if ((HostAddress == NULL) ||
((Alignment & (Alignment - 1)) != 0))
{
return EFI_INVALID_PARAMETER;
}
@ -163,10 +163,10 @@ DmaAllocateAlignedBuffer (
if (*HostAddress == NULL) {
return EFI_OUT_OF_RESOURCES;
}
return EFI_SUCCESS;
}
/**
Frees memory that was allocated with DmaAllocateBuffer().
@ -181,15 +181,14 @@ DmaAllocateAlignedBuffer (
EFI_STATUS
EFIAPI
DmaFreeBuffer (
IN UINTN Pages,
IN VOID *HostAddress
IN UINTN Pages,
IN VOID *HostAddress
)
{
if (HostAddress == NULL) {
return EFI_INVALID_PARAMETER;
return EFI_INVALID_PARAMETER;
}
FreePages (HostAddress, Pages);
return EFI_SUCCESS;
}

View File

@ -11,7 +11,6 @@
**/
/**
Setup all the hardware needed for the debug agents timer.
@ -26,7 +25,6 @@ DebugAgentTimerIntialize (
{
}
/**
Set the period for the debug agent timer. Zero means disable the timer.
@ -41,7 +39,6 @@ DebugAgentTimerSetPeriod (
{
}
/**
Perform End Of Interrupt for the debug agent timer. This is called in the
interrupt handler after the interrupt has been processed.
@ -54,4 +51,3 @@ DebugAgentTimerEndOfInterrupt (
)
{
}

View File

@ -27,17 +27,22 @@
EFI_STATUS
EFIAPI
DtPlatformLoadDtb (
OUT VOID **Dtb,
OUT UINTN *DtbSize
OUT VOID **Dtb,
OUT UINTN *DtbSize
)
{
EFI_STATUS Status;
VOID *OrigDtb;
VOID *CopyDtb;
UINTN OrigDtbSize;
EFI_STATUS Status;
VOID *OrigDtb;
VOID *CopyDtb;
UINTN OrigDtbSize;
Status = GetSectionFromAnyFv (&gDtPlatformDefaultDtbFileGuid,
EFI_SECTION_RAW, 0, &OrigDtb, &OrigDtbSize);
Status = GetSectionFromAnyFv (
&gDtPlatformDefaultDtbFileGuid,
EFI_SECTION_RAW,
0,
&OrigDtb,
&OrigDtbSize
);
if (EFI_ERROR (Status)) {
return EFI_NOT_FOUND;
}
@ -47,7 +52,7 @@ DtPlatformLoadDtb (
return EFI_OUT_OF_RESOURCES;
}
*Dtb = CopyDtb;
*Dtb = CopyDtb;
*DtbSize = OrigDtbSize;
return EFI_SUCCESS;

View File

@ -55,197 +55,276 @@
#include "libfdt_internal.h"
int fdt_check_header(const void *fdt)
int
fdt_check_header (
const void *fdt
)
{
if (fdt_magic(fdt) == FDT_MAGIC) {
/* Complete tree */
if (fdt_version(fdt) < FDT_FIRST_SUPPORTED_VERSION)
return -FDT_ERR_BADVERSION;
if (fdt_last_comp_version(fdt) > FDT_LAST_SUPPORTED_VERSION)
return -FDT_ERR_BADVERSION;
} else if (fdt_magic(fdt) == FDT_SW_MAGIC) {
/* Unfinished sequential-write blob */
if (fdt_size_dt_struct(fdt) == 0)
return -FDT_ERR_BADSTATE;
} else {
return -FDT_ERR_BADMAGIC;
}
if (fdt_magic (fdt) == FDT_MAGIC) {
/* Complete tree */
if (fdt_version (fdt) < FDT_FIRST_SUPPORTED_VERSION) {
return -FDT_ERR_BADVERSION;
}
return 0;
if (fdt_last_comp_version (fdt) > FDT_LAST_SUPPORTED_VERSION) {
return -FDT_ERR_BADVERSION;
}
} else if (fdt_magic (fdt) == FDT_SW_MAGIC) {
/* Unfinished sequential-write blob */
if (fdt_size_dt_struct (fdt) == 0) {
return -FDT_ERR_BADSTATE;
}
} else {
return -FDT_ERR_BADMAGIC;
}
return 0;
}
const void *fdt_offset_ptr(const void *fdt, int offset, unsigned int len)
const void *
fdt_offset_ptr (
const void *fdt,
int offset,
unsigned int len
)
{
unsigned absoffset = offset + fdt_off_dt_struct(fdt);
unsigned absoffset = offset + fdt_off_dt_struct (fdt);
if ((absoffset < offset)
|| ((absoffset + len) < absoffset)
|| (absoffset + len) > fdt_totalsize(fdt))
return NULL;
if ( (absoffset < offset)
|| ((absoffset + len) < absoffset)
|| ((absoffset + len) > fdt_totalsize (fdt)))
{
return NULL;
}
if (fdt_version(fdt) >= 0x11)
if (((offset + len) < offset)
|| ((offset + len) > fdt_size_dt_struct(fdt)))
return NULL;
if (fdt_version (fdt) >= 0x11) {
if ( ((offset + len) < offset)
|| ((offset + len) > fdt_size_dt_struct (fdt)))
{
return NULL;
}
}
return _fdt_offset_ptr(fdt, offset);
return _fdt_offset_ptr (fdt, offset);
}
uint32_t fdt_next_tag(const void *fdt, int startoffset, int *nextoffset)
uint32_t
fdt_next_tag (
const void *fdt,
int startoffset,
int *nextoffset
)
{
const fdt32_t *tagp, *lenp;
uint32_t tag;
int offset = startoffset;
const char *p;
const fdt32_t *tagp, *lenp;
uint32_t tag;
int offset = startoffset;
const char *p;
*nextoffset = -FDT_ERR_TRUNCATED;
tagp = fdt_offset_ptr(fdt, offset, FDT_TAGSIZE);
if (!tagp)
return FDT_END; /* premature end */
tag = fdt32_to_cpu(*tagp);
offset += FDT_TAGSIZE;
*nextoffset = -FDT_ERR_TRUNCATED;
tagp = fdt_offset_ptr (fdt, offset, FDT_TAGSIZE);
if (!tagp) {
return FDT_END; /* premature end */
}
*nextoffset = -FDT_ERR_BADSTRUCTURE;
switch (tag) {
case FDT_BEGIN_NODE:
/* skip name */
do {
p = fdt_offset_ptr(fdt, offset++, 1);
} while (p && (*p != '\0'));
if (!p)
return FDT_END; /* premature end */
break;
tag = fdt32_to_cpu (*tagp);
offset += FDT_TAGSIZE;
case FDT_PROP:
lenp = fdt_offset_ptr(fdt, offset, sizeof(*lenp));
if (!lenp)
return FDT_END; /* premature end */
/* skip-name offset, length and value */
offset += sizeof(struct fdt_property) - FDT_TAGSIZE
+ fdt32_to_cpu(*lenp);
break;
*nextoffset = -FDT_ERR_BADSTRUCTURE;
switch (tag) {
case FDT_BEGIN_NODE:
/* skip name */
do {
p = fdt_offset_ptr (fdt, offset++, 1);
} while (p && (*p != '\0'));
case FDT_END:
case FDT_END_NODE:
case FDT_NOP:
break;
if (!p) {
return FDT_END; /* premature end */
}
default:
return FDT_END;
}
break;
if (!fdt_offset_ptr(fdt, startoffset, offset - startoffset))
return FDT_END; /* premature end */
case FDT_PROP:
lenp = fdt_offset_ptr (fdt, offset, sizeof (*lenp));
if (!lenp) {
return FDT_END; /* premature end */
}
*nextoffset = FDT_TAGALIGN(offset);
return tag;
/* skip-name offset, length and value */
offset += sizeof (struct fdt_property) - FDT_TAGSIZE
+ fdt32_to_cpu (*lenp);
break;
case FDT_END:
case FDT_END_NODE:
case FDT_NOP:
break;
default:
return FDT_END;
}
if (!fdt_offset_ptr (fdt, startoffset, offset - startoffset)) {
return FDT_END; /* premature end */
}
*nextoffset = FDT_TAGALIGN (offset);
return tag;
}
int _fdt_check_node_offset(const void *fdt, int offset)
int
_fdt_check_node_offset (
const void *fdt,
int offset
)
{
if ((offset < 0) || (offset % FDT_TAGSIZE)
|| (fdt_next_tag(fdt, offset, &offset) != FDT_BEGIN_NODE))
return -FDT_ERR_BADOFFSET;
if ( (offset < 0) || (offset % FDT_TAGSIZE)
|| (fdt_next_tag (fdt, offset, &offset) != FDT_BEGIN_NODE))
{
return -FDT_ERR_BADOFFSET;
}
return offset;
return offset;
}
int _fdt_check_prop_offset(const void *fdt, int offset)
int
_fdt_check_prop_offset (
const void *fdt,
int offset
)
{
if ((offset < 0) || (offset % FDT_TAGSIZE)
|| (fdt_next_tag(fdt, offset, &offset) != FDT_PROP))
return -FDT_ERR_BADOFFSET;
if ( (offset < 0) || (offset % FDT_TAGSIZE)
|| (fdt_next_tag (fdt, offset, &offset) != FDT_PROP))
{
return -FDT_ERR_BADOFFSET;
}
return offset;
return offset;
}
int fdt_next_node(const void *fdt, int offset, int *depth)
int
fdt_next_node (
const void *fdt,
int offset,
int *depth
)
{
int nextoffset = 0;
uint32_t tag;
int nextoffset = 0;
uint32_t tag;
if (offset >= 0)
if ((nextoffset = _fdt_check_node_offset(fdt, offset)) < 0)
return nextoffset;
if (offset >= 0) {
if ((nextoffset = _fdt_check_node_offset (fdt, offset)) < 0) {
return nextoffset;
}
}
do {
offset = nextoffset;
tag = fdt_next_tag(fdt, offset, &nextoffset);
do {
offset = nextoffset;
tag = fdt_next_tag (fdt, offset, &nextoffset);
switch (tag) {
case FDT_PROP:
case FDT_NOP:
break;
switch (tag) {
case FDT_PROP:
case FDT_NOP:
break;
case FDT_BEGIN_NODE:
if (depth)
(*depth)++;
break;
case FDT_BEGIN_NODE:
if (depth) {
(*depth)++;
}
case FDT_END_NODE:
if (depth && ((--(*depth)) < 0))
return nextoffset;
break;
break;
case FDT_END:
if ((nextoffset >= 0)
|| ((nextoffset == -FDT_ERR_TRUNCATED) && !depth))
return -FDT_ERR_NOTFOUND;
else
return nextoffset;
}
} while (tag != FDT_BEGIN_NODE);
case FDT_END_NODE:
if (depth && ((--(*depth)) < 0)) {
return nextoffset;
}
return offset;
break;
case FDT_END:
if ( (nextoffset >= 0)
|| ((nextoffset == -FDT_ERR_TRUNCATED) && !depth))
{
return -FDT_ERR_NOTFOUND;
} else {
return nextoffset;
}
}
} while (tag != FDT_BEGIN_NODE);
return offset;
}
int fdt_first_subnode(const void *fdt, int offset)
int
fdt_first_subnode (
const void *fdt,
int offset
)
{
int depth = 0;
int depth = 0;
offset = fdt_next_node(fdt, offset, &depth);
if (offset < 0 || depth != 1)
return -FDT_ERR_NOTFOUND;
offset = fdt_next_node (fdt, offset, &depth);
if ((offset < 0) || (depth != 1)) {
return -FDT_ERR_NOTFOUND;
}
return offset;
return offset;
}
int fdt_next_subnode(const void *fdt, int offset)
int
fdt_next_subnode (
const void *fdt,
int offset
)
{
int depth = 1;
int depth = 1;
/*
* With respect to the parent, the depth of the next subnode will be
* the same as the last.
*/
do {
offset = fdt_next_node(fdt, offset, &depth);
if (offset < 0 || depth < 1)
return -FDT_ERR_NOTFOUND;
} while (depth > 1);
/*
* With respect to the parent, the depth of the next subnode will be
* the same as the last.
*/
do {
offset = fdt_next_node (fdt, offset, &depth);
if ((offset < 0) || (depth < 1)) {
return -FDT_ERR_NOTFOUND;
}
} while (depth > 1);
return offset;
return offset;
}
const char *_fdt_find_string(const char *strtab, int tabsize, const char *s)
const char *
_fdt_find_string (
const char *strtab,
int tabsize,
const char *s
)
{
int len = strlen(s) + 1;
const char *last = strtab + tabsize - len;
const char *p;
int len = strlen (s) + 1;
const char *last = strtab + tabsize - len;
const char *p;
for (p = strtab; p <= last; p++)
if (memcmp(p, s, len) == 0)
return p;
return NULL;
for (p = strtab; p <= last; p++) {
if (memcmp (p, s, len) == 0) {
return p;
}
}
return NULL;
}
int fdt_move(const void *fdt, void *buf, int bufsize)
int
fdt_move (
const void *fdt,
void *buf,
int bufsize
)
{
FDT_CHECK_HEADER(fdt);
FDT_CHECK_HEADER (fdt);
if (fdt_totalsize(fdt) > bufsize)
return -FDT_ERR_NOSPACE;
if (fdt_totalsize (fdt) > bufsize) {
return -FDT_ERR_NOSPACE;
}
memmove(buf, fdt, fdt_totalsize(fdt));
return 0;
memmove (buf, fdt, fdt_totalsize (fdt));
return 0;
}

View File

@ -55,42 +55,56 @@
#include "libfdt_internal.h"
int fdt_address_cells(const void *fdt, int nodeoffset)
int
fdt_address_cells (
const void *fdt,
int nodeoffset
)
{
const fdt32_t *ac;
int val;
int len;
const fdt32_t *ac;
int val;
int len;
ac = fdt_getprop(fdt, nodeoffset, "#address-cells", &len);
if (!ac)
return 2;
ac = fdt_getprop (fdt, nodeoffset, "#address-cells", &len);
if (!ac) {
return 2;
}
if (len != sizeof(*ac))
return -FDT_ERR_BADNCELLS;
if (len != sizeof (*ac)) {
return -FDT_ERR_BADNCELLS;
}
val = fdt32_to_cpu(*ac);
if ((val <= 0) || (val > FDT_MAX_NCELLS))
return -FDT_ERR_BADNCELLS;
val = fdt32_to_cpu (*ac);
if ((val <= 0) || (val > FDT_MAX_NCELLS)) {
return -FDT_ERR_BADNCELLS;
}
return val;
return val;
}
int fdt_size_cells(const void *fdt, int nodeoffset)
int
fdt_size_cells (
const void *fdt,
int nodeoffset
)
{
const fdt32_t *sc;
int val;
int len;
const fdt32_t *sc;
int val;
int len;
sc = fdt_getprop(fdt, nodeoffset, "#size-cells", &len);
if (!sc)
return 2;
sc = fdt_getprop (fdt, nodeoffset, "#size-cells", &len);
if (!sc) {
return 2;
}
if (len != sizeof(*sc))
return -FDT_ERR_BADNCELLS;
if (len != sizeof (*sc)) {
return -FDT_ERR_BADNCELLS;
}
val = fdt32_to_cpu(*sc);
if ((val < 0) || (val > FDT_MAX_NCELLS))
return -FDT_ERR_BADNCELLS;
val = fdt32_to_cpu (*sc);
if ((val < 0) || (val > FDT_MAX_NCELLS)) {
return -FDT_ERR_BADNCELLS;
}
return val;
return val;
}

View File

@ -55,29 +55,38 @@
#include "libfdt_internal.h"
int fdt_create_empty_tree(void *buf, int bufsize)
int
fdt_create_empty_tree (
void *buf,
int bufsize
)
{
int err;
int err;
err = fdt_create(buf, bufsize);
if (err)
return err;
err = fdt_create (buf, bufsize);
if (err) {
return err;
}
err = fdt_finish_reservemap(buf);
if (err)
return err;
err = fdt_finish_reservemap (buf);
if (err) {
return err;
}
err = fdt_begin_node(buf, "");
if (err)
return err;
err = fdt_begin_node (buf, "");
if (err) {
return err;
}
err = fdt_end_node(buf);
if (err)
return err;
err = fdt_end_node (buf);
if (err) {
return err;
}
err = fdt_finish(buf);
if (err)
return err;
err = fdt_finish (buf);
if (err) {
return err;
}
return fdt_open_into(buf, buf, bufsize);
return fdt_open_into (buf, buf, bufsize);
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -55,451 +55,632 @@
#include "libfdt_internal.h"
static int _fdt_blocks_misordered(const void *fdt,
int mem_rsv_size, int struct_size)
static int
_fdt_blocks_misordered (
const void *fdt,
int mem_rsv_size,
int struct_size
)
{
return (fdt_off_mem_rsvmap(fdt) < FDT_ALIGN(sizeof(struct fdt_header), 8))
|| (fdt_off_dt_struct(fdt) <
(fdt_off_mem_rsvmap(fdt) + mem_rsv_size))
|| (fdt_off_dt_strings(fdt) <
(fdt_off_dt_struct(fdt) + struct_size))
|| (fdt_totalsize(fdt) <
(fdt_off_dt_strings(fdt) + fdt_size_dt_strings(fdt)));
return (fdt_off_mem_rsvmap (fdt) < FDT_ALIGN (sizeof (struct fdt_header), 8))
|| (fdt_off_dt_struct (fdt) <
(fdt_off_mem_rsvmap (fdt) + mem_rsv_size))
|| (fdt_off_dt_strings (fdt) <
(fdt_off_dt_struct (fdt) + struct_size))
|| (fdt_totalsize (fdt) <
(fdt_off_dt_strings (fdt) + fdt_size_dt_strings (fdt)));
}
static int _fdt_rw_check_header(void *fdt)
static int
_fdt_rw_check_header (
void *fdt
)
{
FDT_CHECK_HEADER(fdt);
FDT_CHECK_HEADER (fdt);
if (fdt_version(fdt) < 17)
return -FDT_ERR_BADVERSION;
if (_fdt_blocks_misordered(fdt, sizeof(struct fdt_reserve_entry),
fdt_size_dt_struct(fdt)))
return -FDT_ERR_BADLAYOUT;
if (fdt_version(fdt) > 17)
fdt_set_version(fdt, 17);
if (fdt_version (fdt) < 17) {
return -FDT_ERR_BADVERSION;
}
return 0;
if (_fdt_blocks_misordered (
fdt,
sizeof (struct fdt_reserve_entry),
fdt_size_dt_struct (fdt)
))
{
return -FDT_ERR_BADLAYOUT;
}
if (fdt_version (fdt) > 17) {
fdt_set_version (fdt, 17);
}
return 0;
}
#define FDT_RW_CHECK_HEADER(fdt) \
{ \
int __err; \
if ((__err = _fdt_rw_check_header(fdt)) != 0) \
return __err; \
}
{ \
int __err; \
if ((__err = _fdt_rw_check_header(fdt)) != 0) \
return __err; \
}
static inline int _fdt_data_size(void *fdt)
static inline int
_fdt_data_size (
void *fdt
)
{
return fdt_off_dt_strings(fdt) + fdt_size_dt_strings(fdt);
return fdt_off_dt_strings (fdt) + fdt_size_dt_strings (fdt);
}
static int _fdt_splice(void *fdt, void *splicepoint, int oldlen, int newlen)
static int
_fdt_splice (
void *fdt,
void *splicepoint,
int oldlen,
int newlen
)
{
char *p = splicepoint;
char *end = (char *)fdt + _fdt_data_size(fdt);
char *p = splicepoint;
char *end = (char *)fdt + _fdt_data_size (fdt);
if (((p + oldlen) < p) || ((p + oldlen) > end))
return -FDT_ERR_BADOFFSET;
if ((p < (char *)fdt) || ((end - oldlen + newlen) < (char *)fdt))
return -FDT_ERR_BADOFFSET;
if ((end - oldlen + newlen) > ((char *)fdt + fdt_totalsize(fdt)))
return -FDT_ERR_NOSPACE;
memmove(p + newlen, p + oldlen, end - p - oldlen);
return 0;
if (((p + oldlen) < p) || ((p + oldlen) > end)) {
return -FDT_ERR_BADOFFSET;
}
if ((p < (char *)fdt) || ((end - oldlen + newlen) < (char *)fdt)) {
return -FDT_ERR_BADOFFSET;
}
if ((end - oldlen + newlen) > ((char *)fdt + fdt_totalsize (fdt))) {
return -FDT_ERR_NOSPACE;
}
memmove (p + newlen, p + oldlen, end - p - oldlen);
return 0;
}
static int _fdt_splice_mem_rsv(void *fdt, struct fdt_reserve_entry *p,
int oldn, int newn)
static int
_fdt_splice_mem_rsv (
void *fdt,
struct fdt_reserve_entry *p,
int oldn,
int newn
)
{
int delta = (newn - oldn) * sizeof(*p);
int err;
err = _fdt_splice(fdt, p, oldn * sizeof(*p), newn * sizeof(*p));
if (err)
return err;
fdt_set_off_dt_struct(fdt, fdt_off_dt_struct(fdt) + delta);
fdt_set_off_dt_strings(fdt, fdt_off_dt_strings(fdt) + delta);
return 0;
int delta = (newn - oldn) * sizeof (*p);
int err;
err = _fdt_splice (fdt, p, oldn * sizeof (*p), newn * sizeof (*p));
if (err) {
return err;
}
fdt_set_off_dt_struct (fdt, fdt_off_dt_struct (fdt) + delta);
fdt_set_off_dt_strings (fdt, fdt_off_dt_strings (fdt) + delta);
return 0;
}
static int _fdt_splice_struct(void *fdt, void *p,
int oldlen, int newlen)
static int
_fdt_splice_struct (
void *fdt,
void *p,
int oldlen,
int newlen
)
{
int delta = newlen - oldlen;
int err;
int delta = newlen - oldlen;
int err;
if ((err = _fdt_splice(fdt, p, oldlen, newlen)))
return err;
if ((err = _fdt_splice (fdt, p, oldlen, newlen))) {
return err;
}
fdt_set_size_dt_struct(fdt, fdt_size_dt_struct(fdt) + delta);
fdt_set_off_dt_strings(fdt, fdt_off_dt_strings(fdt) + delta);
return 0;
fdt_set_size_dt_struct (fdt, fdt_size_dt_struct (fdt) + delta);
fdt_set_off_dt_strings (fdt, fdt_off_dt_strings (fdt) + delta);
return 0;
}
static int _fdt_splice_string(void *fdt, int newlen)
static int
_fdt_splice_string (
void *fdt,
int newlen
)
{
void *p = (char *)fdt
+ fdt_off_dt_strings(fdt) + fdt_size_dt_strings(fdt);
int err;
void *p = (char *)fdt
+ fdt_off_dt_strings (fdt) + fdt_size_dt_strings (fdt);
int err;
if ((err = _fdt_splice(fdt, p, 0, newlen)))
return err;
if ((err = _fdt_splice (fdt, p, 0, newlen))) {
return err;
}
fdt_set_size_dt_strings(fdt, fdt_size_dt_strings(fdt) + newlen);
return 0;
fdt_set_size_dt_strings (fdt, fdt_size_dt_strings (fdt) + newlen);
return 0;
}
static int _fdt_find_add_string(void *fdt, const char *s)
static int
_fdt_find_add_string (
void *fdt,
const char *s
)
{
char *strtab = (char *)fdt + fdt_off_dt_strings(fdt);
const char *p;
char *new;
int len = strlen(s) + 1;
int err;
char *strtab = (char *)fdt + fdt_off_dt_strings (fdt);
const char *p;
char *new;
int len = strlen (s) + 1;
int err;
p = _fdt_find_string(strtab, fdt_size_dt_strings(fdt), s);
if (p)
/* found it */
return (p - strtab);
p = _fdt_find_string (strtab, fdt_size_dt_strings (fdt), s);
if (p) {
/* found it */
return (p - strtab);
}
new = strtab + fdt_size_dt_strings(fdt);
err = _fdt_splice_string(fdt, len);
if (err)
return err;
new = strtab + fdt_size_dt_strings (fdt);
err = _fdt_splice_string (fdt, len);
if (err) {
return err;
}
memcpy(new, s, len);
return (new - strtab);
memcpy (new, s, len);
return (new - strtab);
}
int fdt_add_mem_rsv(void *fdt, uint64_t address, uint64_t size)
int
fdt_add_mem_rsv (
void *fdt,
uint64_t address,
uint64_t size
)
{
struct fdt_reserve_entry *re;
int err;
struct fdt_reserve_entry *re;
int err;
FDT_RW_CHECK_HEADER(fdt);
FDT_RW_CHECK_HEADER (fdt);
re = _fdt_mem_rsv_w(fdt, fdt_num_mem_rsv(fdt));
err = _fdt_splice_mem_rsv(fdt, re, 0, 1);
if (err)
return err;
re = _fdt_mem_rsv_w (fdt, fdt_num_mem_rsv (fdt));
err = _fdt_splice_mem_rsv (fdt, re, 0, 1);
if (err) {
return err;
}
re->address = cpu_to_fdt64(address);
re->size = cpu_to_fdt64(size);
return 0;
re->address = cpu_to_fdt64 (address);
re->size = cpu_to_fdt64 (size);
return 0;
}
int fdt_del_mem_rsv(void *fdt, int n)
int
fdt_del_mem_rsv (
void *fdt,
int n
)
{
struct fdt_reserve_entry *re = _fdt_mem_rsv_w(fdt, n);
struct fdt_reserve_entry *re = _fdt_mem_rsv_w (fdt, n);
FDT_RW_CHECK_HEADER(fdt);
FDT_RW_CHECK_HEADER (fdt);
if (n >= fdt_num_mem_rsv(fdt))
return -FDT_ERR_NOTFOUND;
if (n >= fdt_num_mem_rsv (fdt)) {
return -FDT_ERR_NOTFOUND;
}
return _fdt_splice_mem_rsv(fdt, re, 1, 0);
return _fdt_splice_mem_rsv (fdt, re, 1, 0);
}
static int _fdt_resize_property(void *fdt, int nodeoffset, const char *name,
int len, struct fdt_property **prop)
static int
_fdt_resize_property (
void *fdt,
int nodeoffset,
const char *name,
int len,
struct fdt_property **prop
)
{
int oldlen;
int err;
int oldlen;
int err;
*prop = fdt_get_property_w(fdt, nodeoffset, name, &oldlen);
if (!*prop)
return oldlen;
*prop = fdt_get_property_w (fdt, nodeoffset, name, &oldlen);
if (!*prop) {
return oldlen;
}
if ((err = _fdt_splice_struct(fdt, (*prop)->data, FDT_TAGALIGN(oldlen),
FDT_TAGALIGN(len))))
return err;
if ((err = _fdt_splice_struct (
fdt,
(*prop)->data,
FDT_TAGALIGN (oldlen),
FDT_TAGALIGN (len)
)))
{
return err;
}
(*prop)->len = cpu_to_fdt32(len);
return 0;
(*prop)->len = cpu_to_fdt32 (len);
return 0;
}
static int _fdt_add_property(void *fdt, int nodeoffset, const char *name,
int len, struct fdt_property **prop)
static int
_fdt_add_property (
void *fdt,
int nodeoffset,
const char *name,
int len,
struct fdt_property **prop
)
{
int proplen;
int nextoffset;
int namestroff;
int err;
int proplen;
int nextoffset;
int namestroff;
int err;
if ((nextoffset = _fdt_check_node_offset(fdt, nodeoffset)) < 0)
return nextoffset;
if ((nextoffset = _fdt_check_node_offset (fdt, nodeoffset)) < 0) {
return nextoffset;
}
namestroff = _fdt_find_add_string(fdt, name);
if (namestroff < 0)
return namestroff;
namestroff = _fdt_find_add_string (fdt, name);
if (namestroff < 0) {
return namestroff;
}
*prop = _fdt_offset_ptr_w(fdt, nextoffset);
proplen = sizeof(**prop) + FDT_TAGALIGN(len);
*prop = _fdt_offset_ptr_w (fdt, nextoffset);
proplen = sizeof (**prop) + FDT_TAGALIGN (len);
err = _fdt_splice_struct(fdt, *prop, 0, proplen);
if (err)
return err;
err = _fdt_splice_struct (fdt, *prop, 0, proplen);
if (err) {
return err;
}
(*prop)->tag = cpu_to_fdt32(FDT_PROP);
(*prop)->nameoff = cpu_to_fdt32(namestroff);
(*prop)->len = cpu_to_fdt32(len);
return 0;
(*prop)->tag = cpu_to_fdt32 (FDT_PROP);
(*prop)->nameoff = cpu_to_fdt32 (namestroff);
(*prop)->len = cpu_to_fdt32 (len);
return 0;
}
int fdt_set_name(void *fdt, int nodeoffset, const char *name)
int
fdt_set_name (
void *fdt,
int nodeoffset,
const char *name
)
{
char *namep;
int oldlen, newlen;
int err;
char *namep;
int oldlen, newlen;
int err;
FDT_RW_CHECK_HEADER(fdt);
FDT_RW_CHECK_HEADER (fdt);
namep = (char *)(uintptr_t)fdt_get_name(fdt, nodeoffset, &oldlen);
if (!namep)
return oldlen;
namep = (char *)(uintptr_t)fdt_get_name (fdt, nodeoffset, &oldlen);
if (!namep) {
return oldlen;
}
newlen = strlen(name);
newlen = strlen (name);
err = _fdt_splice_struct(fdt, namep, FDT_TAGALIGN(oldlen+1),
FDT_TAGALIGN(newlen+1));
if (err)
return err;
err = _fdt_splice_struct (
fdt,
namep,
FDT_TAGALIGN (oldlen+1),
FDT_TAGALIGN (newlen+1)
);
if (err) {
return err;
}
memcpy(namep, name, newlen+1);
return 0;
memcpy (namep, name, newlen+1);
return 0;
}
int fdt_setprop_placeholder(void *fdt, int nodeoffset, const char *name,
int len, void **prop_data)
int
fdt_setprop_placeholder (
void *fdt,
int nodeoffset,
const char *name,
int len,
void **prop_data
)
{
struct fdt_property *prop;
int err;
struct fdt_property *prop;
int err;
FDT_RW_CHECK_HEADER(fdt);
FDT_RW_CHECK_HEADER (fdt);
err = _fdt_resize_property(fdt, nodeoffset, name, len, &prop);
if (err == -FDT_ERR_NOTFOUND)
err = _fdt_add_property(fdt, nodeoffset, name, len, &prop);
if (err)
return err;
err = _fdt_resize_property (fdt, nodeoffset, name, len, &prop);
if (err == -FDT_ERR_NOTFOUND) {
err = _fdt_add_property (fdt, nodeoffset, name, len, &prop);
}
*prop_data = prop->data;
return 0;
if (err) {
return err;
}
*prop_data = prop->data;
return 0;
}
int fdt_setprop(void *fdt, int nodeoffset, const char *name,
const void *val, int len)
int
fdt_setprop (
void *fdt,
int nodeoffset,
const char *name,
const void *val,
int len
)
{
void *prop_data;
int err;
void *prop_data;
int err;
err = fdt_setprop_placeholder(fdt, nodeoffset, name, len, &prop_data);
if (err)
return err;
err = fdt_setprop_placeholder (fdt, nodeoffset, name, len, &prop_data);
if (err) {
return err;
}
if (len)
memcpy(prop_data, val, len);
return 0;
if (len) {
memcpy (prop_data, val, len);
}
return 0;
}
int fdt_appendprop(void *fdt, int nodeoffset, const char *name,
const void *val, int len)
int
fdt_appendprop (
void *fdt,
int nodeoffset,
const char *name,
const void *val,
int len
)
{
struct fdt_property *prop;
int err, oldlen, newlen;
struct fdt_property *prop;
int err, oldlen, newlen;
FDT_RW_CHECK_HEADER(fdt);
FDT_RW_CHECK_HEADER (fdt);
prop = fdt_get_property_w(fdt, nodeoffset, name, &oldlen);
if (prop) {
newlen = len + oldlen;
err = _fdt_splice_struct(fdt, prop->data,
FDT_TAGALIGN(oldlen),
FDT_TAGALIGN(newlen));
if (err)
return err;
prop->len = cpu_to_fdt32(newlen);
memcpy(prop->data + oldlen, val, len);
} else {
err = _fdt_add_property(fdt, nodeoffset, name, len, &prop);
if (err)
return err;
memcpy(prop->data, val, len);
}
return 0;
prop = fdt_get_property_w (fdt, nodeoffset, name, &oldlen);
if (prop) {
newlen = len + oldlen;
err = _fdt_splice_struct (
fdt,
prop->data,
FDT_TAGALIGN (oldlen),
FDT_TAGALIGN (newlen)
);
if (err) {
return err;
}
prop->len = cpu_to_fdt32 (newlen);
memcpy (prop->data + oldlen, val, len);
} else {
err = _fdt_add_property (fdt, nodeoffset, name, len, &prop);
if (err) {
return err;
}
memcpy (prop->data, val, len);
}
return 0;
}
int fdt_delprop(void *fdt, int nodeoffset, const char *name)
int
fdt_delprop (
void *fdt,
int nodeoffset,
const char *name
)
{
struct fdt_property *prop;
int len, proplen;
struct fdt_property *prop;
int len, proplen;
FDT_RW_CHECK_HEADER(fdt);
FDT_RW_CHECK_HEADER (fdt);
prop = fdt_get_property_w(fdt, nodeoffset, name, &len);
if (!prop)
return len;
prop = fdt_get_property_w (fdt, nodeoffset, name, &len);
if (!prop) {
return len;
}
proplen = sizeof(*prop) + FDT_TAGALIGN(len);
return _fdt_splice_struct(fdt, prop, proplen, 0);
proplen = sizeof (*prop) + FDT_TAGALIGN (len);
return _fdt_splice_struct (fdt, prop, proplen, 0);
}
int fdt_add_subnode_namelen(void *fdt, int parentoffset,
const char *name, int namelen)
int
fdt_add_subnode_namelen (
void *fdt,
int parentoffset,
const char *name,
int namelen
)
{
struct fdt_node_header *nh;
int offset, nextoffset;
int nodelen;
int err;
uint32_t tag;
fdt32_t *endtag;
struct fdt_node_header *nh;
int offset, nextoffset;
int nodelen;
int err;
uint32_t tag;
fdt32_t *endtag;
FDT_RW_CHECK_HEADER(fdt);
FDT_RW_CHECK_HEADER (fdt);
offset = fdt_subnode_offset_namelen(fdt, parentoffset, name, namelen);
if (offset >= 0)
return -FDT_ERR_EXISTS;
else if (offset != -FDT_ERR_NOTFOUND)
return offset;
offset = fdt_subnode_offset_namelen (fdt, parentoffset, name, namelen);
if (offset >= 0) {
return -FDT_ERR_EXISTS;
} else if (offset != -FDT_ERR_NOTFOUND) {
return offset;
}
/* Try to place the new node after the parent's properties */
fdt_next_tag(fdt, parentoffset, &nextoffset); /* skip the BEGIN_NODE */
do {
offset = nextoffset;
tag = fdt_next_tag(fdt, offset, &nextoffset);
} while ((tag == FDT_PROP) || (tag == FDT_NOP));
/* Try to place the new node after the parent's properties */
fdt_next_tag (fdt, parentoffset, &nextoffset); /* skip the BEGIN_NODE */
do {
offset = nextoffset;
tag = fdt_next_tag (fdt, offset, &nextoffset);
} while ((tag == FDT_PROP) || (tag == FDT_NOP));
nh = _fdt_offset_ptr_w(fdt, offset);
nodelen = sizeof(*nh) + FDT_TAGALIGN(namelen+1) + FDT_TAGSIZE;
nh = _fdt_offset_ptr_w (fdt, offset);
nodelen = sizeof (*nh) + FDT_TAGALIGN (namelen+1) + FDT_TAGSIZE;
err = _fdt_splice_struct(fdt, nh, 0, nodelen);
if (err)
return err;
err = _fdt_splice_struct (fdt, nh, 0, nodelen);
if (err) {
return err;
}
nh->tag = cpu_to_fdt32(FDT_BEGIN_NODE);
memset(nh->name, 0, FDT_TAGALIGN(namelen+1));
memcpy(nh->name, name, namelen);
endtag = (fdt32_t *)((char *)nh + nodelen - FDT_TAGSIZE);
*endtag = cpu_to_fdt32(FDT_END_NODE);
nh->tag = cpu_to_fdt32 (FDT_BEGIN_NODE);
memset (nh->name, 0, FDT_TAGALIGN (namelen+1));
memcpy (nh->name, name, namelen);
endtag = (fdt32_t *)((char *)nh + nodelen - FDT_TAGSIZE);
*endtag = cpu_to_fdt32 (FDT_END_NODE);
return offset;
return offset;
}
int fdt_add_subnode(void *fdt, int parentoffset, const char *name)
int
fdt_add_subnode (
void *fdt,
int parentoffset,
const char *name
)
{
return fdt_add_subnode_namelen(fdt, parentoffset, name, strlen(name));
return fdt_add_subnode_namelen (fdt, parentoffset, name, strlen (name));
}
int fdt_del_node(void *fdt, int nodeoffset)
int
fdt_del_node (
void *fdt,
int nodeoffset
)
{
int endoffset;
int endoffset;
FDT_RW_CHECK_HEADER(fdt);
FDT_RW_CHECK_HEADER (fdt);
endoffset = _fdt_node_end_offset(fdt, nodeoffset);
if (endoffset < 0)
return endoffset;
endoffset = _fdt_node_end_offset (fdt, nodeoffset);
if (endoffset < 0) {
return endoffset;
}
return _fdt_splice_struct(fdt, _fdt_offset_ptr_w(fdt, nodeoffset),
endoffset - nodeoffset, 0);
return _fdt_splice_struct (
fdt,
_fdt_offset_ptr_w (fdt, nodeoffset),
endoffset - nodeoffset,
0
);
}
static void _fdt_packblocks(const char *old, char *new,
int mem_rsv_size, int struct_size)
static void
_fdt_packblocks (
const char *old,
char *new,
int mem_rsv_size,
int struct_size
)
{
int mem_rsv_off, struct_off, strings_off;
int mem_rsv_off, struct_off, strings_off;
mem_rsv_off = FDT_ALIGN(sizeof(struct fdt_header), 8);
struct_off = mem_rsv_off + mem_rsv_size;
strings_off = struct_off + struct_size;
mem_rsv_off = FDT_ALIGN (sizeof (struct fdt_header), 8);
struct_off = mem_rsv_off + mem_rsv_size;
strings_off = struct_off + struct_size;
memmove(new + mem_rsv_off, old + fdt_off_mem_rsvmap(old), mem_rsv_size);
fdt_set_off_mem_rsvmap(new, mem_rsv_off);
memmove (new + mem_rsv_off, old + fdt_off_mem_rsvmap (old), mem_rsv_size);
fdt_set_off_mem_rsvmap (new, mem_rsv_off);
memmove(new + struct_off, old + fdt_off_dt_struct(old), struct_size);
fdt_set_off_dt_struct(new, struct_off);
fdt_set_size_dt_struct(new, struct_size);
memmove (new + struct_off, old + fdt_off_dt_struct (old), struct_size);
fdt_set_off_dt_struct (new, struct_off);
fdt_set_size_dt_struct (new, struct_size);
memmove(new + strings_off, old + fdt_off_dt_strings(old),
fdt_size_dt_strings(old));
fdt_set_off_dt_strings(new, strings_off);
fdt_set_size_dt_strings(new, fdt_size_dt_strings(old));
memmove (
new + strings_off,
old + fdt_off_dt_strings (old),
fdt_size_dt_strings (old)
);
fdt_set_off_dt_strings (new, strings_off);
fdt_set_size_dt_strings (new, fdt_size_dt_strings (old));
}
int fdt_open_into(const void *fdt, void *buf, int bufsize)
int
fdt_open_into (
const void *fdt,
void *buf,
int bufsize
)
{
int err;
int mem_rsv_size, struct_size;
int newsize;
const char *fdtstart = fdt;
const char *fdtend = fdtstart + fdt_totalsize(fdt);
char *tmp;
int err;
int mem_rsv_size, struct_size;
int newsize;
const char *fdtstart = fdt;
const char *fdtend = fdtstart + fdt_totalsize (fdt);
char *tmp;
FDT_CHECK_HEADER(fdt);
FDT_CHECK_HEADER (fdt);
mem_rsv_size = (fdt_num_mem_rsv(fdt)+1)
* sizeof(struct fdt_reserve_entry);
mem_rsv_size = (fdt_num_mem_rsv (fdt)+1)
* sizeof (struct fdt_reserve_entry);
if (fdt_version(fdt) >= 17) {
struct_size = fdt_size_dt_struct(fdt);
} else {
struct_size = 0;
while (fdt_next_tag(fdt, struct_size, &struct_size) != FDT_END)
;
if (struct_size < 0)
return struct_size;
}
if (fdt_version (fdt) >= 17) {
struct_size = fdt_size_dt_struct (fdt);
} else {
struct_size = 0;
while (fdt_next_tag (fdt, struct_size, &struct_size) != FDT_END) {
}
if (!_fdt_blocks_misordered(fdt, mem_rsv_size, struct_size)) {
/* no further work necessary */
err = fdt_move(fdt, buf, bufsize);
if (err)
return err;
fdt_set_version(buf, 17);
fdt_set_size_dt_struct(buf, struct_size);
fdt_set_totalsize(buf, bufsize);
return 0;
}
if (struct_size < 0) {
return struct_size;
}
}
/* Need to reorder */
newsize = FDT_ALIGN(sizeof(struct fdt_header), 8) + mem_rsv_size
+ struct_size + fdt_size_dt_strings(fdt);
if (!_fdt_blocks_misordered (fdt, mem_rsv_size, struct_size)) {
/* no further work necessary */
err = fdt_move (fdt, buf, bufsize);
if (err) {
return err;
}
if (bufsize < newsize)
return -FDT_ERR_NOSPACE;
fdt_set_version (buf, 17);
fdt_set_size_dt_struct (buf, struct_size);
fdt_set_totalsize (buf, bufsize);
return 0;
}
/* First attempt to build converted tree at beginning of buffer */
tmp = buf;
/* But if that overlaps with the old tree... */
if (((tmp + newsize) > fdtstart) && (tmp < fdtend)) {
/* Try right after the old tree instead */
tmp = (char *)(uintptr_t)fdtend;
if ((tmp + newsize) > ((char *)buf + bufsize))
return -FDT_ERR_NOSPACE;
}
/* Need to reorder */
newsize = FDT_ALIGN (sizeof (struct fdt_header), 8) + mem_rsv_size
+ struct_size + fdt_size_dt_strings (fdt);
_fdt_packblocks(fdt, tmp, mem_rsv_size, struct_size);
memmove(buf, tmp, newsize);
if (bufsize < newsize) {
return -FDT_ERR_NOSPACE;
}
fdt_set_magic(buf, FDT_MAGIC);
fdt_set_totalsize(buf, bufsize);
fdt_set_version(buf, 17);
fdt_set_last_comp_version(buf, 16);
fdt_set_boot_cpuid_phys(buf, fdt_boot_cpuid_phys(fdt));
/* First attempt to build converted tree at beginning of buffer */
tmp = buf;
/* But if that overlaps with the old tree... */
if (((tmp + newsize) > fdtstart) && (tmp < fdtend)) {
/* Try right after the old tree instead */
tmp = (char *)(uintptr_t)fdtend;
if ((tmp + newsize) > ((char *)buf + bufsize)) {
return -FDT_ERR_NOSPACE;
}
}
return 0;
_fdt_packblocks (fdt, tmp, mem_rsv_size, struct_size);
memmove (buf, tmp, newsize);
fdt_set_magic (buf, FDT_MAGIC);
fdt_set_totalsize (buf, bufsize);
fdt_set_version (buf, 17);
fdt_set_last_comp_version (buf, 16);
fdt_set_boot_cpuid_phys (buf, fdt_boot_cpuid_phys (fdt));
return 0;
}
int fdt_pack(void *fdt)
int
fdt_pack (
void *fdt
)
{
int mem_rsv_size;
int mem_rsv_size;
FDT_RW_CHECK_HEADER(fdt);
FDT_RW_CHECK_HEADER (fdt);
mem_rsv_size = (fdt_num_mem_rsv(fdt)+1)
* sizeof(struct fdt_reserve_entry);
_fdt_packblocks(fdt, fdt, mem_rsv_size, fdt_size_dt_struct(fdt));
fdt_set_totalsize(fdt, _fdt_data_size(fdt));
mem_rsv_size = (fdt_num_mem_rsv (fdt)+1)
* sizeof (struct fdt_reserve_entry);
_fdt_packblocks (fdt, fdt, mem_rsv_size, fdt_size_dt_struct (fdt));
fdt_set_totalsize (fdt, _fdt_data_size (fdt));
return 0;
return 0;
}

View File

@ -56,47 +56,51 @@
#include "libfdt_internal.h"
struct fdt_errtabent {
const char *str;
const char *str;
};
#define FDT_ERRTABENT(val) \
[(val)] = { .str = #val, }
[(val)] = { .str = #val, }
static struct fdt_errtabent fdt_errtable[] = {
FDT_ERRTABENT(FDT_ERR_NOTFOUND),
FDT_ERRTABENT(FDT_ERR_EXISTS),
FDT_ERRTABENT(FDT_ERR_NOSPACE),
static struct fdt_errtabent fdt_errtable[] = {
FDT_ERRTABENT (FDT_ERR_NOTFOUND),
FDT_ERRTABENT (FDT_ERR_EXISTS),
FDT_ERRTABENT (FDT_ERR_NOSPACE),
FDT_ERRTABENT(FDT_ERR_BADOFFSET),
FDT_ERRTABENT(FDT_ERR_BADPATH),
FDT_ERRTABENT(FDT_ERR_BADPHANDLE),
FDT_ERRTABENT(FDT_ERR_BADSTATE),
FDT_ERRTABENT (FDT_ERR_BADOFFSET),
FDT_ERRTABENT (FDT_ERR_BADPATH),
FDT_ERRTABENT (FDT_ERR_BADPHANDLE),
FDT_ERRTABENT (FDT_ERR_BADSTATE),
FDT_ERRTABENT(FDT_ERR_TRUNCATED),
FDT_ERRTABENT(FDT_ERR_BADMAGIC),
FDT_ERRTABENT(FDT_ERR_BADVERSION),
FDT_ERRTABENT(FDT_ERR_BADSTRUCTURE),
FDT_ERRTABENT(FDT_ERR_BADLAYOUT),
FDT_ERRTABENT(FDT_ERR_INTERNAL),
FDT_ERRTABENT(FDT_ERR_BADNCELLS),
FDT_ERRTABENT(FDT_ERR_BADVALUE),
FDT_ERRTABENT(FDT_ERR_BADOVERLAY),
FDT_ERRTABENT(FDT_ERR_NOPHANDLES),
FDT_ERRTABENT (FDT_ERR_TRUNCATED),
FDT_ERRTABENT (FDT_ERR_BADMAGIC),
FDT_ERRTABENT (FDT_ERR_BADVERSION),
FDT_ERRTABENT (FDT_ERR_BADSTRUCTURE),
FDT_ERRTABENT (FDT_ERR_BADLAYOUT),
FDT_ERRTABENT (FDT_ERR_INTERNAL),
FDT_ERRTABENT (FDT_ERR_BADNCELLS),
FDT_ERRTABENT (FDT_ERR_BADVALUE),
FDT_ERRTABENT (FDT_ERR_BADOVERLAY),
FDT_ERRTABENT (FDT_ERR_NOPHANDLES),
};
#define FDT_ERRTABSIZE (sizeof(fdt_errtable) / sizeof(fdt_errtable[0]))
#define FDT_ERRTABSIZE (sizeof(fdt_errtable) / sizeof(fdt_errtable[0]))
const char *fdt_strerror(int errval)
const char *
fdt_strerror (
int errval
)
{
if (errval > 0)
return "<valid offset/length>";
else if (errval == 0)
return "<no error>";
else if (errval > -FDT_ERRTABSIZE) {
const char *s = fdt_errtable[-errval].str;
if (errval > 0) {
return "<valid offset/length>";
} else if (errval == 0) {
return "<no error>";
} else if (errval > -FDT_ERRTABSIZE) {
const char *s = fdt_errtable[-errval].str;
if (s)
return s;
}
if (s) {
return s;
}
}
return "<unknown error>";
return "<unknown error>";
}

View File

@ -9,24 +9,29 @@
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>
unsigned long strtoul(const char *nptr, char **endptr, int base)
unsigned long
strtoul (
const char *nptr,
char **endptr,
int base
)
{
RETURN_STATUS Status;
UINTN ReturnValue;
RETURN_STATUS Status;
UINTN ReturnValue;
ASSERT (base == 10 || base == 16);
ASSERT (base == 10 || base == 16);
if (base == 10) {
Status = AsciiStrDecimalToUintnS (nptr, endptr, &ReturnValue);
} else if (base == 16) {
Status = AsciiStrHexToUintnS (nptr, endptr, &ReturnValue);
} else {
Status = RETURN_INVALID_PARAMETER;
}
if (base == 10) {
Status = AsciiStrDecimalToUintnS (nptr, endptr, &ReturnValue);
} else if (base == 16) {
Status = AsciiStrHexToUintnS (nptr, endptr, &ReturnValue);
} else {
Status = RETURN_INVALID_PARAMETER;
}
if (RETURN_ERROR (Status)) {
return MAX_UINTN;
}
if (RETURN_ERROR (Status)) {
return MAX_UINTN;
}
return ReturnValue;
return ReturnValue;
}

View File

@ -55,246 +55,321 @@
#include "libfdt_internal.h"
static int _fdt_sw_check_header(void *fdt)
static int
_fdt_sw_check_header (
void *fdt
)
{
if (fdt_magic(fdt) != FDT_SW_MAGIC)
return -FDT_ERR_BADMAGIC;
/* FIXME: should check more details about the header state */
return 0;
if (fdt_magic (fdt) != FDT_SW_MAGIC) {
return -FDT_ERR_BADMAGIC;
}
/* FIXME: should check more details about the header state */
return 0;
}
#define FDT_SW_CHECK_HEADER(fdt) \
{ \
int err; \
if ((err = _fdt_sw_check_header(fdt)) != 0) \
return err; \
}
{ \
int err; \
if ((err = _fdt_sw_check_header(fdt)) != 0) \
return err; \
}
static void *_fdt_grab_space(void *fdt, size_t len)
static void *
_fdt_grab_space (
void *fdt,
size_t len
)
{
int offset = fdt_size_dt_struct(fdt);
int spaceleft;
int offset = fdt_size_dt_struct (fdt);
int spaceleft;
spaceleft = fdt_totalsize(fdt) - fdt_off_dt_struct(fdt)
- fdt_size_dt_strings(fdt);
spaceleft = fdt_totalsize (fdt) - fdt_off_dt_struct (fdt)
- fdt_size_dt_strings (fdt);
if ((offset + len < offset) || (offset + len > spaceleft))
return NULL;
if ((offset + len < offset) || (offset + len > spaceleft)) {
return NULL;
}
fdt_set_size_dt_struct(fdt, offset + len);
return _fdt_offset_ptr_w(fdt, offset);
fdt_set_size_dt_struct (fdt, offset + len);
return _fdt_offset_ptr_w (fdt, offset);
}
int fdt_create(void *buf, int bufsize)
int
fdt_create (
void *buf,
int bufsize
)
{
void *fdt = buf;
void *fdt = buf;
if (bufsize < sizeof(struct fdt_header))
return -FDT_ERR_NOSPACE;
if (bufsize < sizeof (struct fdt_header)) {
return -FDT_ERR_NOSPACE;
}
memset(buf, 0, bufsize);
memset (buf, 0, bufsize);
fdt_set_magic(fdt, FDT_SW_MAGIC);
fdt_set_version(fdt, FDT_LAST_SUPPORTED_VERSION);
fdt_set_last_comp_version(fdt, FDT_FIRST_SUPPORTED_VERSION);
fdt_set_totalsize(fdt, bufsize);
fdt_set_magic (fdt, FDT_SW_MAGIC);
fdt_set_version (fdt, FDT_LAST_SUPPORTED_VERSION);
fdt_set_last_comp_version (fdt, FDT_FIRST_SUPPORTED_VERSION);
fdt_set_totalsize (fdt, bufsize);
fdt_set_off_mem_rsvmap(fdt, FDT_ALIGN(sizeof(struct fdt_header),
sizeof(struct fdt_reserve_entry)));
fdt_set_off_dt_struct(fdt, fdt_off_mem_rsvmap(fdt));
fdt_set_off_dt_strings(fdt, bufsize);
fdt_set_off_mem_rsvmap (
fdt,
FDT_ALIGN (
sizeof (struct fdt_header),
sizeof (struct fdt_reserve_entry)
)
);
fdt_set_off_dt_struct (fdt, fdt_off_mem_rsvmap (fdt));
fdt_set_off_dt_strings (fdt, bufsize);
return 0;
return 0;
}
int fdt_resize(void *fdt, void *buf, int bufsize)
int
fdt_resize (
void *fdt,
void *buf,
int bufsize
)
{
size_t headsize, tailsize;
char *oldtail, *newtail;
size_t headsize, tailsize;
char *oldtail, *newtail;
FDT_SW_CHECK_HEADER(fdt);
FDT_SW_CHECK_HEADER (fdt);
headsize = fdt_off_dt_struct(fdt);
tailsize = fdt_size_dt_strings(fdt);
headsize = fdt_off_dt_struct (fdt);
tailsize = fdt_size_dt_strings (fdt);
if ((headsize + tailsize) > bufsize)
return -FDT_ERR_NOSPACE;
if ((headsize + tailsize) > bufsize) {
return -FDT_ERR_NOSPACE;
}
oldtail = (char *)fdt + fdt_totalsize(fdt) - tailsize;
newtail = (char *)buf + bufsize - tailsize;
oldtail = (char *)fdt + fdt_totalsize (fdt) - tailsize;
newtail = (char *)buf + bufsize - tailsize;
/* Two cases to avoid clobbering data if the old and new
* buffers partially overlap */
if (buf <= fdt) {
memmove(buf, fdt, headsize);
memmove(newtail, oldtail, tailsize);
} else {
memmove(newtail, oldtail, tailsize);
memmove(buf, fdt, headsize);
}
/* Two cases to avoid clobbering data if the old and new
* buffers partially overlap */
if (buf <= fdt) {
memmove (buf, fdt, headsize);
memmove (newtail, oldtail, tailsize);
} else {
memmove (newtail, oldtail, tailsize);
memmove (buf, fdt, headsize);
}
fdt_set_off_dt_strings(buf, bufsize);
fdt_set_totalsize(buf, bufsize);
fdt_set_off_dt_strings (buf, bufsize);
fdt_set_totalsize (buf, bufsize);
return 0;
return 0;
}
int fdt_add_reservemap_entry(void *fdt, uint64_t addr, uint64_t size)
int
fdt_add_reservemap_entry (
void *fdt,
uint64_t addr,
uint64_t size
)
{
struct fdt_reserve_entry *re;
int offset;
struct fdt_reserve_entry *re;
int offset;
FDT_SW_CHECK_HEADER(fdt);
FDT_SW_CHECK_HEADER (fdt);
if (fdt_size_dt_struct(fdt))
return -FDT_ERR_BADSTATE;
if (fdt_size_dt_struct (fdt)) {
return -FDT_ERR_BADSTATE;
}
offset = fdt_off_dt_struct(fdt);
if ((offset + sizeof(*re)) > fdt_totalsize(fdt))
return -FDT_ERR_NOSPACE;
offset = fdt_off_dt_struct (fdt);
if ((offset + sizeof (*re)) > fdt_totalsize (fdt)) {
return -FDT_ERR_NOSPACE;
}
re = (struct fdt_reserve_entry *)((char *)fdt + offset);
re->address = cpu_to_fdt64(addr);
re->size = cpu_to_fdt64(size);
re = (struct fdt_reserve_entry *)((char *)fdt + offset);
re->address = cpu_to_fdt64 (addr);
re->size = cpu_to_fdt64 (size);
fdt_set_off_dt_struct(fdt, offset + sizeof(*re));
fdt_set_off_dt_struct (fdt, offset + sizeof (*re));
return 0;
return 0;
}
int fdt_finish_reservemap(void *fdt)
int
fdt_finish_reservemap (
void *fdt
)
{
return fdt_add_reservemap_entry(fdt, 0, 0);
return fdt_add_reservemap_entry (fdt, 0, 0);
}
int fdt_begin_node(void *fdt, const char *name)
int
fdt_begin_node (
void *fdt,
const char *name
)
{
struct fdt_node_header *nh;
int namelen = strlen(name) + 1;
struct fdt_node_header *nh;
int namelen = strlen (name) + 1;
FDT_SW_CHECK_HEADER(fdt);
FDT_SW_CHECK_HEADER (fdt);
nh = _fdt_grab_space(fdt, sizeof(*nh) + FDT_TAGALIGN(namelen));
if (! nh)
return -FDT_ERR_NOSPACE;
nh = _fdt_grab_space (fdt, sizeof (*nh) + FDT_TAGALIGN (namelen));
if (!nh) {
return -FDT_ERR_NOSPACE;
}
nh->tag = cpu_to_fdt32(FDT_BEGIN_NODE);
memcpy(nh->name, name, namelen);
return 0;
nh->tag = cpu_to_fdt32 (FDT_BEGIN_NODE);
memcpy (nh->name, name, namelen);
return 0;
}
int fdt_end_node(void *fdt)
int
fdt_end_node (
void *fdt
)
{
fdt32_t *en;
fdt32_t *en;
FDT_SW_CHECK_HEADER(fdt);
FDT_SW_CHECK_HEADER (fdt);
en = _fdt_grab_space(fdt, FDT_TAGSIZE);
if (! en)
return -FDT_ERR_NOSPACE;
en = _fdt_grab_space (fdt, FDT_TAGSIZE);
if (!en) {
return -FDT_ERR_NOSPACE;
}
*en = cpu_to_fdt32(FDT_END_NODE);
return 0;
*en = cpu_to_fdt32 (FDT_END_NODE);
return 0;
}
static int _fdt_find_add_string(void *fdt, const char *s)
static int
_fdt_find_add_string (
void *fdt,
const char *s
)
{
char *strtab = (char *)fdt + fdt_totalsize(fdt);
const char *p;
int strtabsize = fdt_size_dt_strings(fdt);
int len = strlen(s) + 1;
int struct_top, offset;
char *strtab = (char *)fdt + fdt_totalsize (fdt);
const char *p;
int strtabsize = fdt_size_dt_strings (fdt);
int len = strlen (s) + 1;
int struct_top, offset;
p = _fdt_find_string(strtab - strtabsize, strtabsize, s);
if (p)
return p - strtab;
p = _fdt_find_string (strtab - strtabsize, strtabsize, s);
if (p) {
return p - strtab;
}
/* Add it */
offset = -strtabsize - len;
struct_top = fdt_off_dt_struct(fdt) + fdt_size_dt_struct(fdt);
if (fdt_totalsize(fdt) + offset < struct_top)
return 0; /* no more room :( */
/* Add it */
offset = -strtabsize - len;
struct_top = fdt_off_dt_struct (fdt) + fdt_size_dt_struct (fdt);
if (fdt_totalsize (fdt) + offset < struct_top) {
return 0; /* no more room :( */
}
memcpy(strtab + offset, s, len);
fdt_set_size_dt_strings(fdt, strtabsize + len);
return offset;
memcpy (strtab + offset, s, len);
fdt_set_size_dt_strings (fdt, strtabsize + len);
return offset;
}
int fdt_property_placeholder(void *fdt, const char *name, int len, void **valp)
int
fdt_property_placeholder (
void *fdt,
const char *name,
int len,
void **valp
)
{
struct fdt_property *prop;
int nameoff;
struct fdt_property *prop;
int nameoff;
FDT_SW_CHECK_HEADER(fdt);
FDT_SW_CHECK_HEADER (fdt);
nameoff = _fdt_find_add_string(fdt, name);
if (nameoff == 0)
return -FDT_ERR_NOSPACE;
nameoff = _fdt_find_add_string (fdt, name);
if (nameoff == 0) {
return -FDT_ERR_NOSPACE;
}
prop = _fdt_grab_space(fdt, sizeof(*prop) + FDT_TAGALIGN(len));
if (! prop)
return -FDT_ERR_NOSPACE;
prop = _fdt_grab_space (fdt, sizeof (*prop) + FDT_TAGALIGN (len));
if (!prop) {
return -FDT_ERR_NOSPACE;
}
prop->tag = cpu_to_fdt32(FDT_PROP);
prop->nameoff = cpu_to_fdt32(nameoff);
prop->len = cpu_to_fdt32(len);
*valp = prop->data;
return 0;
prop->tag = cpu_to_fdt32 (FDT_PROP);
prop->nameoff = cpu_to_fdt32 (nameoff);
prop->len = cpu_to_fdt32 (len);
*valp = prop->data;
return 0;
}
int fdt_property(void *fdt, const char *name, const void *val, int len)
int
fdt_property (
void *fdt,
const char *name,
const void *val,
int len
)
{
void *ptr;
int ret;
void *ptr;
int ret;
ret = fdt_property_placeholder(fdt, name, len, &ptr);
if (ret)
return ret;
memcpy(ptr, val, len);
return 0;
ret = fdt_property_placeholder (fdt, name, len, &ptr);
if (ret) {
return ret;
}
memcpy (ptr, val, len);
return 0;
}
int fdt_finish(void *fdt)
int
fdt_finish (
void *fdt
)
{
char *p = (char *)fdt;
fdt32_t *end;
int oldstroffset, newstroffset;
uint32_t tag;
int offset, nextoffset;
char *p = (char *)fdt;
fdt32_t *end;
int oldstroffset, newstroffset;
uint32_t tag;
int offset, nextoffset;
FDT_SW_CHECK_HEADER(fdt);
FDT_SW_CHECK_HEADER (fdt);
/* Add terminator */
end = _fdt_grab_space(fdt, sizeof(*end));
if (! end)
return -FDT_ERR_NOSPACE;
*end = cpu_to_fdt32(FDT_END);
/* Add terminator */
end = _fdt_grab_space (fdt, sizeof (*end));
if (!end) {
return -FDT_ERR_NOSPACE;
}
/* Relocate the string table */
oldstroffset = fdt_totalsize(fdt) - fdt_size_dt_strings(fdt);
newstroffset = fdt_off_dt_struct(fdt) + fdt_size_dt_struct(fdt);
memmove(p + newstroffset, p + oldstroffset, fdt_size_dt_strings(fdt));
fdt_set_off_dt_strings(fdt, newstroffset);
*end = cpu_to_fdt32 (FDT_END);
/* Walk the structure, correcting string offsets */
offset = 0;
while ((tag = fdt_next_tag(fdt, offset, &nextoffset)) != FDT_END) {
if (tag == FDT_PROP) {
struct fdt_property *prop =
_fdt_offset_ptr_w(fdt, offset);
int nameoff;
/* Relocate the string table */
oldstroffset = fdt_totalsize (fdt) - fdt_size_dt_strings (fdt);
newstroffset = fdt_off_dt_struct (fdt) + fdt_size_dt_struct (fdt);
memmove (p + newstroffset, p + oldstroffset, fdt_size_dt_strings (fdt));
fdt_set_off_dt_strings (fdt, newstroffset);
nameoff = fdt32_to_cpu(prop->nameoff);
nameoff += fdt_size_dt_strings(fdt);
prop->nameoff = cpu_to_fdt32(nameoff);
}
offset = nextoffset;
}
if (nextoffset < 0)
return nextoffset;
/* Walk the structure, correcting string offsets */
offset = 0;
while ((tag = fdt_next_tag (fdt, offset, &nextoffset)) != FDT_END) {
if (tag == FDT_PROP) {
struct fdt_property *prop =
_fdt_offset_ptr_w (fdt, offset);
int nameoff;
/* Finally, adjust the header */
fdt_set_totalsize(fdt, newstroffset + fdt_size_dt_strings(fdt));
fdt_set_magic(fdt, FDT_MAGIC);
return 0;
nameoff = fdt32_to_cpu (prop->nameoff);
nameoff += fdt_size_dt_strings (fdt);
prop->nameoff = cpu_to_fdt32 (nameoff);
}
offset = nextoffset;
}
if (nextoffset < 0) {
return nextoffset;
}
/* Finally, adjust the header */
fdt_set_totalsize (fdt, newstroffset + fdt_size_dt_strings (fdt));
fdt_set_magic (fdt, FDT_MAGIC);
return 0;
}

View File

@ -55,85 +55,135 @@
#include "libfdt_internal.h"
int fdt_setprop_inplace_namelen_partial(void *fdt, int nodeoffset,
const char *name, int namelen,
uint32_t idx, const void *val,
int len)
int
fdt_setprop_inplace_namelen_partial (
void *fdt,
int nodeoffset,
const char *name,
int namelen,
uint32_t idx,
const void *val,
int len
)
{
void *propval;
int proplen;
void *propval;
int proplen;
propval = fdt_getprop_namelen_w(fdt, nodeoffset, name, namelen,
&proplen);
if (!propval)
return proplen;
propval = fdt_getprop_namelen_w (
fdt,
nodeoffset,
name,
namelen,
&proplen
);
if (!propval) {
return proplen;
}
if (proplen < (len + idx))
return -FDT_ERR_NOSPACE;
if (proplen < (len + idx)) {
return -FDT_ERR_NOSPACE;
}
memcpy((char *)propval + idx, val, len);
return 0;
memcpy ((char *)propval + idx, val, len);
return 0;
}
int fdt_setprop_inplace(void *fdt, int nodeoffset, const char *name,
const void *val, int len)
int
fdt_setprop_inplace (
void *fdt,
int nodeoffset,
const char *name,
const void *val,
int len
)
{
const void *propval;
int proplen;
const void *propval;
int proplen;
propval = fdt_getprop(fdt, nodeoffset, name, &proplen);
if (!propval)
return proplen;
propval = fdt_getprop (fdt, nodeoffset, name, &proplen);
if (!propval) {
return proplen;
}
if (proplen != len)
return -FDT_ERR_NOSPACE;
if (proplen != len) {
return -FDT_ERR_NOSPACE;
}
return fdt_setprop_inplace_namelen_partial(fdt, nodeoffset, name,
strlen(name), 0,
val, len);
return fdt_setprop_inplace_namelen_partial (
fdt,
nodeoffset,
name,
strlen (name),
0,
val,
len
);
}
static void _fdt_nop_region(void *start, int len)
static void
_fdt_nop_region (
void *start,
int len
)
{
fdt32_t *p;
fdt32_t *p;
for (p = start; (char *)p < ((char *)start + len); p++)
*p = cpu_to_fdt32(FDT_NOP);
for (p = start; (char *)p < ((char *)start + len); p++) {
*p = cpu_to_fdt32 (FDT_NOP);
}
}
int fdt_nop_property(void *fdt, int nodeoffset, const char *name)
int
fdt_nop_property (
void *fdt,
int nodeoffset,
const char *name
)
{
struct fdt_property *prop;
int len;
struct fdt_property *prop;
int len;
prop = fdt_get_property_w(fdt, nodeoffset, name, &len);
if (!prop)
return len;
prop = fdt_get_property_w (fdt, nodeoffset, name, &len);
if (!prop) {
return len;
}
_fdt_nop_region(prop, len + sizeof(*prop));
_fdt_nop_region (prop, len + sizeof (*prop));
return 0;
return 0;
}
int _fdt_node_end_offset(void *fdt, int offset)
int
_fdt_node_end_offset (
void *fdt,
int offset
)
{
int depth = 0;
int depth = 0;
while ((offset >= 0) && (depth >= 0))
offset = fdt_next_node(fdt, offset, &depth);
while ((offset >= 0) && (depth >= 0)) {
offset = fdt_next_node (fdt, offset, &depth);
}
return offset;
return offset;
}
int fdt_nop_node(void *fdt, int nodeoffset)
int
fdt_nop_node (
void *fdt,
int nodeoffset
)
{
int endoffset;
int endoffset;
endoffset = _fdt_node_end_offset(fdt, nodeoffset);
if (endoffset < 0)
return endoffset;
endoffset = _fdt_node_end_offset (fdt, nodeoffset);
if (endoffset < 0) {
return endoffset;
}
_fdt_nop_region(fdt_offset_ptr_w(fdt, nodeoffset, 0),
endoffset - nodeoffset);
return 0;
_fdt_nop_region (
fdt_offset_ptr_w (fdt, nodeoffset, 0),
endoffset - nodeoffset
);
return 0;
}

View File

@ -1,5 +1,6 @@
#ifndef _LIBFDT_INTERNAL_H
#define _LIBFDT_INTERNAL_H
/*
* libfdt - Flat Device Tree manipulation
* Copyright (C) 2006 David Gibson, IBM Corporation.
@ -52,44 +53,81 @@
*/
#include <fdt.h>
#define FDT_ALIGN(x, a) (((x) + (a) - 1) & ~((a) - 1))
#define FDT_TAGALIGN(x) (FDT_ALIGN((x), FDT_TAGSIZE))
#define FDT_ALIGN(x, a) (((x) + (a) - 1) & ~((a) - 1))
#define FDT_TAGALIGN(x) (FDT_ALIGN((x), FDT_TAGSIZE))
#define FDT_CHECK_HEADER(fdt) \
{ \
int __err; \
if ((__err = fdt_check_header(fdt)) != 0) \
return __err; \
}
{ \
int __err; \
if ((__err = fdt_check_header(fdt)) != 0) \
return __err; \
}
int _fdt_check_node_offset(const void *fdt, int offset);
int _fdt_check_prop_offset(const void *fdt, int offset);
const char *_fdt_find_string(const char *strtab, int tabsize, const char *s);
int _fdt_node_end_offset(void *fdt, int nodeoffset);
int
_fdt_check_node_offset (
const void *fdt,
int offset
);
static inline const void *_fdt_offset_ptr(const void *fdt, int offset)
int
_fdt_check_prop_offset (
const void *fdt,
int offset
);
const char *
_fdt_find_string (
const char *strtab,
int tabsize,
const char *s
);
int
_fdt_node_end_offset (
void *fdt,
int nodeoffset
);
static inline const void *
_fdt_offset_ptr (
const void *fdt,
int offset
)
{
return (const char *)fdt + fdt_off_dt_struct(fdt) + offset;
return (const char *)fdt + fdt_off_dt_struct (fdt) + offset;
}
static inline void *_fdt_offset_ptr_w(void *fdt, int offset)
static inline void *
_fdt_offset_ptr_w (
void *fdt,
int offset
)
{
return (void *)(uintptr_t)_fdt_offset_ptr(fdt, offset);
return (void *)(uintptr_t)_fdt_offset_ptr (fdt, offset);
}
static inline const struct fdt_reserve_entry *_fdt_mem_rsv(const void *fdt, int n)
static inline const struct fdt_reserve_entry *
_fdt_mem_rsv (
const void *fdt,
int n
)
{
const struct fdt_reserve_entry *rsv_table =
(const struct fdt_reserve_entry *)
((const char *)fdt + fdt_off_mem_rsvmap(fdt));
const struct fdt_reserve_entry *rsv_table =
(const struct fdt_reserve_entry *)
((const char *)fdt + fdt_off_mem_rsvmap (fdt));
return rsv_table + n;
}
static inline struct fdt_reserve_entry *_fdt_mem_rsv_w(void *fdt, int n)
{
return (void *)(uintptr_t)_fdt_mem_rsv(fdt, n);
return rsv_table + n;
}
#define FDT_SW_MAGIC (~FDT_MAGIC)
static inline struct fdt_reserve_entry *
_fdt_mem_rsv_w (
void *fdt,
int n
)
{
return (void *)(uintptr_t)_fdt_mem_rsv (fdt, n);
}
#define FDT_SW_MAGIC (~FDT_MAGIC)
#endif /* _LIBFDT_INTERNAL_H */

View File

@ -16,9 +16,8 @@
#include <Protocol/DebugPort.h>
EFI_DEBUGPORT_PROTOCOL *gDebugPort = NULL;
UINTN gTimeOut = 0;
UINTN gTimeOut = 0;
/**
The constructor function initializes the UART.
@ -36,7 +35,7 @@ GdbSerialLibDebugPortConstructor (
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
EFI_STATUS Status;
Status = gBS->LocateProtocol (&gEfiDebugPortProtocolGuid, NULL, (VOID **)&gDebugPort);
if (!EFI_ERROR (Status)) {
@ -47,8 +46,6 @@ GdbSerialLibDebugPortConstructor (
return Status;
}
/**
Sets the baud rate, receive FIFO depth, transmit/receive time out, parity,
data buts, and stop bits on a serial device. This call is optional as the serial
@ -71,10 +68,10 @@ GdbSerialLibDebugPortConstructor (
RETURN_STATUS
EFIAPI
GdbSerialInit (
IN UINT64 BaudRate,
IN UINT8 Parity,
IN UINT8 DataBits,
IN UINT8 StopBits
IN UINT64 BaudRate,
IN UINT8 Parity,
IN UINT8 DataBits,
IN UINT8 StopBits
)
{
EFI_STATUS Status;
@ -83,7 +80,6 @@ GdbSerialInit (
return Status;
}
/**
Check to see if a character is available from GDB. Do not read the character as that is
done via GdbGetChar().
@ -105,7 +101,6 @@ GdbIsCharAvailable (
return (Status == EFI_SUCCESS ? TRUE : FALSE);
}
/**
Get a character from GDB. This function must be able to run in interrupt context.
@ -124,13 +119,12 @@ GdbGetChar (
do {
BufferSize = sizeof (Char);
Status = gDebugPort->Read (gDebugPort, gTimeOut, &BufferSize, &Char);
Status = gDebugPort->Read (gDebugPort, gTimeOut, &BufferSize, &Char);
} while (EFI_ERROR (Status) || BufferSize != sizeof (Char));
return Char;
}
/**
Send a character to GDB. This function must be able to run in interrupt context.
@ -138,11 +132,10 @@ GdbGetChar (
@param Char Send a character to GDB
**/
VOID
EFIAPI
GdbPutChar (
IN CHAR8 Char
IN CHAR8 Char
)
{
EFI_STATUS Status;
@ -150,7 +143,7 @@ GdbPutChar (
do {
BufferSize = sizeof (Char);
Status = gDebugPort->Write (gDebugPort, gTimeOut, &BufferSize, &Char);
Status = gDebugPort->Write (gDebugPort, gTimeOut, &BufferSize, &Char);
} while (EFI_ERROR (Status) || BufferSize != sizeof (Char));
return;
@ -163,19 +156,14 @@ GdbPutChar (
@param String Send a string to GDB
**/
VOID
GdbPutString (
IN CHAR8 *String
)
{
// We could performance enhance this function by calling gDebugPort->Write ()
// We could performance enhance this function by calling gDebugPort->Write ()
while (*String != '\0') {
GdbPutChar (*String);
String++;
}
}

View File

@ -13,38 +13,34 @@
#include <Library/IoLib.h>
#include <Library/DebugLib.h>
//---------------------------------------------
// ---------------------------------------------
// UART Register Offsets
//---------------------------------------------
#define BAUD_LOW_OFFSET 0x00
#define BAUD_HIGH_OFFSET 0x01
#define IER_OFFSET 0x01
#define LCR_SHADOW_OFFSET 0x01
#define FCR_SHADOW_OFFSET 0x02
#define IR_CONTROL_OFFSET 0x02
#define FCR_OFFSET 0x02
#define EIR_OFFSET 0x02
#define BSR_OFFSET 0x03
#define LCR_OFFSET 0x03
#define MCR_OFFSET 0x04
#define LSR_OFFSET 0x05
#define MSR_OFFSET 0x06
// ---------------------------------------------
#define BAUD_LOW_OFFSET 0x00
#define BAUD_HIGH_OFFSET 0x01
#define IER_OFFSET 0x01
#define LCR_SHADOW_OFFSET 0x01
#define FCR_SHADOW_OFFSET 0x02
#define IR_CONTROL_OFFSET 0x02
#define FCR_OFFSET 0x02
#define EIR_OFFSET 0x02
#define BSR_OFFSET 0x03
#define LCR_OFFSET 0x03
#define MCR_OFFSET 0x04
#define LSR_OFFSET 0x05
#define MSR_OFFSET 0x06
//---------------------------------------------
// ---------------------------------------------
// UART Register Bit Defines
//---------------------------------------------
#define LSR_TXRDY 0x20U
#define LSR_RXDA 0x01U
#define DLAB 0x01U
#define ENABLE_FIFO 0x01U
#define CLEAR_FIFOS 0x06U
// ---------------------------------------------
#define LSR_TXRDY 0x20U
#define LSR_RXDA 0x01U
#define DLAB 0x01U
#define ENABLE_FIFO 0x01U
#define CLEAR_FIFOS 0x06U
// IO Port Base for the UART
UINTN gPort;
UINTN gPort;
/**
The constructor function initializes the UART.
@ -62,10 +58,10 @@ GdbSerialLibConstructor (
IN EFI_SYSTEM_TABLE *SystemTable
)
{
UINT64 BaudRate;
UINT8 DataBits;
UINT8 Parity;
UINT8 StopBits;
UINT64 BaudRate;
UINT8 DataBits;
UINT8 Parity;
UINT8 StopBits;
gPort = (UINTN)PcdGet32 (PcdGdbUartPort);
@ -77,8 +73,6 @@ GdbSerialLibConstructor (
return GdbSerialInit (BaudRate, Parity, DataBits, StopBits);
}
/**
Sets the baud rate, receive FIFO depth, transmit/receive time out, parity,
data buts, and stop bits on a serial device. This call is optional as the serial
@ -101,16 +95,16 @@ GdbSerialLibConstructor (
RETURN_STATUS
EFIAPI
GdbSerialInit (
IN UINT64 BaudRate,
IN UINT8 Parity,
IN UINT8 DataBits,
IN UINT8 StopBits
IN UINT64 BaudRate,
IN UINT8 Parity,
IN UINT8 DataBits,
IN UINT8 StopBits
)
{
UINTN Divisor;
UINT8 OutputData;
UINT8 Data;
UINT8 BreakSet = 0;
UINTN Divisor;
UINT8 OutputData;
UINT8 Data;
UINT8 BreakSet = 0;
//
// We assume the UART has been turned on to decode gPort address range
@ -119,7 +113,7 @@ GdbSerialInit (
//
// Map 5..8 to 0..3
//
Data = (UINT8) (DataBits - (UINT8)5);
Data = (UINT8)(DataBits - (UINT8)5);
//
// Calculate divisor for baud generator
@ -138,7 +132,6 @@ GdbSerialInit (
IoWrite8 (gPort + BAUD_HIGH_OFFSET, (UINT8)(Divisor >> 8));
IoWrite8 (gPort + BAUD_LOW_OFFSET, (UINT8)(Divisor & 0xff));
//
// Switch back to bank 0
//
@ -149,12 +142,10 @@ GdbSerialInit (
// We probably need the FIFO enabled to not drop input
IoWrite8 (gPort + FCR_SHADOW_OFFSET, ENABLE_FIFO);
// Configure the UART hardware here
return RETURN_SUCCESS;
}
/**
Check to see if a character is available from GDB. Do not read the character as that is
done via GdbGetChar().
@ -169,14 +160,13 @@ GdbIsCharAvailable (
VOID
)
{
UINT8 Data;
UINT8 Data;
Data = IoRead8 (gPort + LSR_OFFSET);
return ((Data & LSR_RXDA) == LSR_RXDA);
}
/**
Get a character from GDB. This function must be able to run in interrupt context.
@ -189,8 +179,8 @@ GdbGetChar (
VOID
)
{
UINT8 Data;
CHAR8 Char;
UINT8 Data;
CHAR8 Char;
// Wait for the serial port to be ready
do {
@ -204,7 +194,6 @@ GdbGetChar (
return Char;
}
/**
Send a character to GDB. This function must be able to run in interrupt context.
@ -212,14 +201,13 @@ GdbGetChar (
@param Char Send a character to GDB
**/
VOID
EFIAPI
GdbPutChar (
IN CHAR8 Char
IN CHAR8 Char
)
{
UINT8 Data;
UINT8 Data;
// Make this an DEBUG_INFO after we get everything debugged.
DEBUG ((DEBUG_ERROR, ">%c>", Char));
@ -239,7 +227,6 @@ GdbPutChar (
@param String Send a string to GDB
**/
VOID
GdbPutString (
IN CHAR8 *String

View File

@ -22,30 +22,29 @@
#include <Protocol/Cpu.h>
typedef struct {
EFI_PHYSICAL_ADDRESS HostAddress;
VOID *BufferAddress;
UINTN NumberOfBytes;
DMA_MAP_OPERATION Operation;
BOOLEAN DoubleBuffer;
EFI_PHYSICAL_ADDRESS HostAddress;
VOID *BufferAddress;
UINTN NumberOfBytes;
DMA_MAP_OPERATION Operation;
BOOLEAN DoubleBuffer;
} MAP_INFO_INSTANCE;
typedef struct {
LIST_ENTRY Link;
VOID *HostAddress;
UINTN NumPages;
UINT64 Attributes;
LIST_ENTRY Link;
VOID *HostAddress;
UINTN NumPages;
UINT64 Attributes;
} UNCACHED_ALLOCATION;
STATIC EFI_CPU_ARCH_PROTOCOL *mCpu;
STATIC LIST_ENTRY UncachedAllocationList;
STATIC EFI_CPU_ARCH_PROTOCOL *mCpu;
STATIC LIST_ENTRY UncachedAllocationList;
STATIC PHYSICAL_ADDRESS mDmaHostAddressLimit;
STATIC PHYSICAL_ADDRESS mDmaHostAddressLimit;
STATIC
PHYSICAL_ADDRESS
HostToDeviceAddress (
IN VOID *Address
IN VOID *Address
)
{
return (PHYSICAL_ADDRESS)(UINTN)Address + PcdGet64 (PcdDmaDeviceOffset);
@ -95,13 +94,14 @@ InternalAllocateAlignedPages (
if (Pages == 0) {
return NULL;
}
if (Alignment > EFI_PAGE_SIZE) {
//
// Calculate the total number of pages since alignment is larger than page
// size.
//
AlignmentMask = Alignment - 1;
RealPages = Pages + EFI_SIZE_TO_PAGES (Alignment);
AlignmentMask = Alignment - 1;
RealPages = Pages + EFI_SIZE_TO_PAGES (Alignment);
//
// Make sure that Pages plus EFI_SIZE_TO_PAGES (Alignment) does not
// overflow.
@ -109,11 +109,16 @@ InternalAllocateAlignedPages (
ASSERT (RealPages > Pages);
Memory = mDmaHostAddressLimit;
Status = gBS->AllocatePages (AllocateMaxAddress, MemoryType, RealPages,
&Memory);
Status = gBS->AllocatePages (
AllocateMaxAddress,
MemoryType,
RealPages,
&Memory
);
if (EFI_ERROR (Status)) {
return NULL;
}
AlignedMemory = ((UINTN)Memory + AlignmentMask) & ~AlignmentMask;
UnalignedPages = EFI_SIZE_TO_PAGES (AlignedMemory - (UINTN)Memory);
if (UnalignedPages > 0) {
@ -123,6 +128,7 @@ InternalAllocateAlignedPages (
Status = gBS->FreePages (Memory, UnalignedPages);
ASSERT_EFI_ERROR (Status);
}
Memory = AlignedMemory + EFI_PAGES_TO_SIZE (Pages);
UnalignedPages = RealPages - Pages - UnalignedPages;
if (UnalignedPages > 0) {
@ -137,13 +143,19 @@ InternalAllocateAlignedPages (
// Do not over-allocate pages in this case.
//
Memory = mDmaHostAddressLimit;
Status = gBS->AllocatePages (AllocateMaxAddress, MemoryType, Pages,
&Memory);
Status = gBS->AllocatePages (
AllocateMaxAddress,
MemoryType,
Pages,
&Memory
);
if (EFI_ERROR (Status)) {
return NULL;
}
AlignedMemory = (UINTN)Memory;
}
return (VOID *)AlignedMemory;
}
@ -177,23 +189,24 @@ InternalAllocateAlignedPages (
EFI_STATUS
EFIAPI
DmaMap (
IN DMA_MAP_OPERATION Operation,
IN VOID *HostAddress,
IN OUT UINTN *NumberOfBytes,
OUT PHYSICAL_ADDRESS *DeviceAddress,
OUT VOID **Mapping
IN DMA_MAP_OPERATION Operation,
IN VOID *HostAddress,
IN OUT UINTN *NumberOfBytes,
OUT PHYSICAL_ADDRESS *DeviceAddress,
OUT VOID **Mapping
)
{
EFI_STATUS Status;
MAP_INFO_INSTANCE *Map;
VOID *Buffer;
EFI_GCD_MEMORY_SPACE_DESCRIPTOR GcdDescriptor;
UINTN AllocSize;
EFI_STATUS Status;
MAP_INFO_INSTANCE *Map;
VOID *Buffer;
EFI_GCD_MEMORY_SPACE_DESCRIPTOR GcdDescriptor;
UINTN AllocSize;
if (HostAddress == NULL ||
NumberOfBytes == NULL ||
DeviceAddress == NULL ||
Mapping == NULL ) {
if ((HostAddress == NULL) ||
(NumberOfBytes == NULL) ||
(DeviceAddress == NULL) ||
(Mapping == NULL))
{
return EFI_INVALID_PARAMETER;
}
@ -206,19 +219,20 @@ DmaMap (
// Remember range so we can flush on the other side
Map = AllocatePool (sizeof (MAP_INFO_INSTANCE));
if (Map == NULL) {
return EFI_OUT_OF_RESOURCES;
return EFI_OUT_OF_RESOURCES;
}
if (((UINTN)HostAddress + *NumberOfBytes) > mDmaHostAddressLimit) {
if (Operation == MapOperationBusMasterCommonBuffer) {
goto CommonBufferError;
}
AllocSize = ALIGN_VALUE (*NumberOfBytes, mCpu->DmaBufferAlignment);
Map->BufferAddress = InternalAllocateAlignedPages (EfiBootServicesData,
AllocSize = ALIGN_VALUE (*NumberOfBytes, mCpu->DmaBufferAlignment);
Map->BufferAddress = InternalAllocateAlignedPages (
EfiBootServicesData,
EFI_SIZE_TO_PAGES (AllocSize),
mCpu->DmaBufferAlignment);
mCpu->DmaBufferAlignment
);
if (Map->BufferAddress == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto FreeMapInfo;
@ -227,17 +241,22 @@ DmaMap (
if (Operation == MapOperationBusMasterRead) {
CopyMem (Map->BufferAddress, (VOID *)(UINTN)HostAddress, *NumberOfBytes);
}
mCpu->FlushDataCache (mCpu, (UINTN)Map->BufferAddress, AllocSize,
EfiCpuFlushTypeWriteBack);
mCpu->FlushDataCache (
mCpu,
(UINTN)Map->BufferAddress,
AllocSize,
EfiCpuFlushTypeWriteBack
);
*DeviceAddress = HostToDeviceAddress (Map->BufferAddress);
} else if (Operation != MapOperationBusMasterRead &&
((((UINTN)HostAddress & (mCpu->DmaBufferAlignment - 1)) != 0) ||
((*NumberOfBytes & (mCpu->DmaBufferAlignment - 1)) != 0))) {
} else if ((Operation != MapOperationBusMasterRead) &&
((((UINTN)HostAddress & (mCpu->DmaBufferAlignment - 1)) != 0) ||
((*NumberOfBytes & (mCpu->DmaBufferAlignment - 1)) != 0)))
{
// Get the cacheability of the region
Status = gDS->GetMemorySpaceDescriptor ((UINTN)HostAddress, &GcdDescriptor);
if (EFI_ERROR(Status)) {
if (EFI_ERROR (Status)) {
goto FreeMapInfo;
}
@ -259,15 +278,15 @@ DmaMap (
// we only have to add (alignment - 8) worth of padding.
//
Map->DoubleBuffer = TRUE;
AllocSize = ALIGN_VALUE (*NumberOfBytes, mCpu->DmaBufferAlignment) +
(mCpu->DmaBufferAlignment - 8);
AllocSize = ALIGN_VALUE (*NumberOfBytes, mCpu->DmaBufferAlignment) +
(mCpu->DmaBufferAlignment - 8);
Map->BufferAddress = AllocatePool (AllocSize);
if (Map->BufferAddress == NULL) {
Status = EFI_OUT_OF_RESOURCES;
goto FreeMapInfo;
}
Buffer = ALIGN_POINTER (Map->BufferAddress, mCpu->DmaBufferAlignment);
Buffer = ALIGN_POINTER (Map->BufferAddress, mCpu->DmaBufferAlignment);
*DeviceAddress = HostToDeviceAddress (Buffer);
//
@ -275,13 +294,17 @@ DmaMap (
// prevents them from being written back unexpectedly, potentially
// overwriting the data we receive from the device.
//
mCpu->FlushDataCache (mCpu, (UINTN)Buffer, *NumberOfBytes,
EfiCpuFlushTypeWriteBack);
mCpu->FlushDataCache (
mCpu,
(UINTN)Buffer,
*NumberOfBytes,
EfiCpuFlushTypeWriteBack
);
} else {
Map->DoubleBuffer = FALSE;
Map->DoubleBuffer = FALSE;
}
} else {
Map->DoubleBuffer = FALSE;
Map->DoubleBuffer = FALSE;
DEBUG_CODE_BEGIN ();
@ -293,17 +316,23 @@ DmaMap (
// that we are not trying to create a consistent mapping for cached memory.
//
Status = gDS->GetMemorySpaceDescriptor ((UINTN)HostAddress, &GcdDescriptor);
ASSERT_EFI_ERROR(Status);
ASSERT_EFI_ERROR (Status);
ASSERT (Operation != MapOperationBusMasterCommonBuffer ||
(GcdDescriptor.Attributes & (EFI_MEMORY_WB | EFI_MEMORY_WT)) == 0);
ASSERT (
Operation != MapOperationBusMasterCommonBuffer ||
(GcdDescriptor.Attributes & (EFI_MEMORY_WB | EFI_MEMORY_WT)) == 0
);
DEBUG_CODE_END ();
// Flush the Data Cache (should not have any effect if the memory region is
// uncached)
mCpu->FlushDataCache (mCpu, (UINTN)HostAddress, *NumberOfBytes,
EfiCpuFlushTypeWriteBackInvalidate);
mCpu->FlushDataCache (
mCpu,
(UINTN)HostAddress,
*NumberOfBytes,
EfiCpuFlushTypeWriteBackInvalidate
);
}
Map->HostAddress = (UINTN)HostAddress;
@ -315,10 +344,13 @@ DmaMap (
return EFI_SUCCESS;
CommonBufferError:
DEBUG ((DEBUG_ERROR,
DEBUG ((
DEBUG_ERROR,
"%a: Operation type 'MapOperationBusMasterCommonBuffer' is only "
"supported\non memory regions that were allocated using "
"DmaAllocateBuffer ()\n", __FUNCTION__));
"DmaAllocateBuffer ()\n",
__FUNCTION__
));
Status = EFI_UNSUPPORTED;
FreeMapInfo:
FreePool (Map);
@ -326,7 +358,6 @@ FreeMapInfo:
return Status;
}
/**
Completes the DmaMapBusMasterRead(), DmaMapBusMasterWrite(), or
DmaMapBusMasterCommonBuffer() operation and releases any corresponding
@ -344,13 +375,13 @@ FreeMapInfo:
EFI_STATUS
EFIAPI
DmaUnmap (
IN VOID *Mapping
IN VOID *Mapping
)
{
MAP_INFO_INSTANCE *Map;
EFI_STATUS Status;
VOID *Buffer;
UINTN AllocSize;
MAP_INFO_INSTANCE *Map;
EFI_STATUS Status;
VOID *Buffer;
UINTN AllocSize;
if (Mapping == NULL) {
ASSERT (FALSE);
@ -363,14 +394,21 @@ DmaUnmap (
if (((UINTN)Map->HostAddress + Map->NumberOfBytes) > mDmaHostAddressLimit) {
AllocSize = ALIGN_VALUE (Map->NumberOfBytes, mCpu->DmaBufferAlignment);
if (Map->Operation == MapOperationBusMasterWrite) {
mCpu->FlushDataCache (mCpu, (UINTN)Map->BufferAddress, AllocSize,
EfiCpuFlushTypeInvalidate);
CopyMem ((VOID *)(UINTN)Map->HostAddress, Map->BufferAddress,
Map->NumberOfBytes);
mCpu->FlushDataCache (
mCpu,
(UINTN)Map->BufferAddress,
AllocSize,
EfiCpuFlushTypeInvalidate
);
CopyMem (
(VOID *)(UINTN)Map->HostAddress,
Map->BufferAddress,
Map->NumberOfBytes
);
}
FreePages (Map->BufferAddress, EFI_SIZE_TO_PAGES (AllocSize));
} else if (Map->DoubleBuffer) {
ASSERT (Map->Operation == MapOperationBusMasterWrite);
if (Map->Operation != MapOperationBusMasterWrite) {
@ -378,8 +416,12 @@ DmaUnmap (
} else {
Buffer = ALIGN_POINTER (Map->BufferAddress, mCpu->DmaBufferAlignment);
mCpu->FlushDataCache (mCpu, (UINTN)Buffer, Map->NumberOfBytes,
EfiCpuFlushTypeInvalidate);
mCpu->FlushDataCache (
mCpu,
(UINTN)Buffer,
Map->NumberOfBytes,
EfiCpuFlushTypeInvalidate
);
CopyMem ((VOID *)(UINTN)Map->HostAddress, Buffer, Map->NumberOfBytes);
@ -390,8 +432,12 @@ DmaUnmap (
//
// Make sure we read buffer from uncached memory and not the cache
//
mCpu->FlushDataCache (mCpu, Map->HostAddress, Map->NumberOfBytes,
EfiCpuFlushTypeInvalidate);
mCpu->FlushDataCache (
mCpu,
Map->HostAddress,
Map->NumberOfBytes,
EfiCpuFlushTypeInvalidate
);
}
}
@ -418,9 +464,9 @@ DmaUnmap (
EFI_STATUS
EFIAPI
DmaAllocateBuffer (
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Pages,
OUT VOID **HostAddress
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Pages,
OUT VOID **HostAddress
)
{
return DmaAllocateAlignedBuffer (MemoryType, Pages, 0, HostAddress);
@ -446,29 +492,31 @@ DmaAllocateBuffer (
EFI_STATUS
EFIAPI
DmaAllocateAlignedBuffer (
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Pages,
IN UINTN Alignment,
OUT VOID **HostAddress
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Pages,
IN UINTN Alignment,
OUT VOID **HostAddress
)
{
EFI_GCD_MEMORY_SPACE_DESCRIPTOR GcdDescriptor;
VOID *Allocation;
UINT64 MemType;
UNCACHED_ALLOCATION *Alloc;
EFI_STATUS Status;
EFI_GCD_MEMORY_SPACE_DESCRIPTOR GcdDescriptor;
VOID *Allocation;
UINT64 MemType;
UNCACHED_ALLOCATION *Alloc;
EFI_STATUS Status;
if (Alignment == 0) {
Alignment = EFI_PAGE_SIZE;
}
if (HostAddress == NULL ||
(Alignment & (Alignment - 1)) != 0) {
if ((HostAddress == NULL) ||
((Alignment & (Alignment - 1)) != 0))
{
return EFI_INVALID_PARAMETER;
}
if (MemoryType == EfiBootServicesData ||
MemoryType == EfiRuntimeServicesData) {
if ((MemoryType == EfiBootServicesData) ||
(MemoryType == EfiRuntimeServicesData))
{
Allocation = InternalAllocateAlignedPages (MemoryType, Pages, Alignment);
} else {
return EFI_INVALID_PARAMETER;
@ -480,7 +528,7 @@ DmaAllocateAlignedBuffer (
// Get the cacheability of the region
Status = gDS->GetMemorySpaceDescriptor ((UINTN)Allocation, &GcdDescriptor);
if (EFI_ERROR(Status)) {
if (EFI_ERROR (Status)) {
goto FreeBuffer;
}
@ -500,23 +548,27 @@ DmaAllocateAlignedBuffer (
}
Alloc->HostAddress = Allocation;
Alloc->NumPages = Pages;
Alloc->Attributes = GcdDescriptor.Attributes;
Alloc->NumPages = Pages;
Alloc->Attributes = GcdDescriptor.Attributes;
InsertHeadList (&UncachedAllocationList, &Alloc->Link);
// Remap the region with the new attributes
Status = gDS->SetMemorySpaceAttributes ((PHYSICAL_ADDRESS)(UINTN)Allocation,
EFI_PAGES_TO_SIZE (Pages),
MemType);
Status = gDS->SetMemorySpaceAttributes (
(PHYSICAL_ADDRESS)(UINTN)Allocation,
EFI_PAGES_TO_SIZE (Pages),
MemType
);
if (EFI_ERROR (Status)) {
goto FreeAlloc;
}
Status = mCpu->FlushDataCache (mCpu,
(PHYSICAL_ADDRESS)(UINTN)Allocation,
EFI_PAGES_TO_SIZE (Pages),
EfiCpuFlushTypeInvalidate);
Status = mCpu->FlushDataCache (
mCpu,
(PHYSICAL_ADDRESS)(UINTN)Allocation,
EFI_PAGES_TO_SIZE (Pages),
EfiCpuFlushTypeInvalidate
);
if (EFI_ERROR (Status)) {
goto FreeAlloc;
}
@ -534,7 +586,6 @@ FreeBuffer:
return Status;
}
/**
Frees memory that was allocated with DmaAllocateBuffer().
@ -551,25 +602,25 @@ FreeBuffer:
EFI_STATUS
EFIAPI
DmaFreeBuffer (
IN UINTN Pages,
IN VOID *HostAddress
IN UINTN Pages,
IN VOID *HostAddress
)
{
LIST_ENTRY *Link;
UNCACHED_ALLOCATION *Alloc;
BOOLEAN Found;
EFI_STATUS Status;
LIST_ENTRY *Link;
UNCACHED_ALLOCATION *Alloc;
BOOLEAN Found;
EFI_STATUS Status;
if (HostAddress == NULL) {
return EFI_INVALID_PARAMETER;
return EFI_INVALID_PARAMETER;
}
for (Link = GetFirstNode (&UncachedAllocationList), Found = FALSE;
!IsNull (&UncachedAllocationList, Link);
Link = GetNextNode (&UncachedAllocationList, Link)) {
Link = GetNextNode (&UncachedAllocationList, Link))
{
Alloc = BASE_CR (Link, UNCACHED_ALLOCATION, Link);
if (Alloc->HostAddress == HostAddress && Alloc->NumPages == Pages) {
if ((Alloc->HostAddress == HostAddress) && (Alloc->NumPages == Pages)) {
Found = TRUE;
break;
}
@ -582,9 +633,11 @@ DmaFreeBuffer (
RemoveEntryList (&Alloc->Link);
Status = gDS->SetMemorySpaceAttributes ((PHYSICAL_ADDRESS)(UINTN)HostAddress,
EFI_PAGES_TO_SIZE (Pages),
Alloc->Attributes);
Status = gDS->SetMemorySpaceAttributes (
(PHYSICAL_ADDRESS)(UINTN)HostAddress,
EFI_PAGES_TO_SIZE (Pages),
Alloc->Attributes
);
if (EFI_ERROR (Status)) {
goto FreeAlloc;
}
@ -600,12 +653,11 @@ FreeAlloc:
return Status;
}
EFI_STATUS
EFIAPI
NonCoherentDmaLibConstructor (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
InitializeListHead (&UncachedAllocationList);

View File

@ -15,121 +15,121 @@
#include <Library/MemoryAllocationLib.h>
#include <Library/NorFlashInfoLib.h>
STATIC CONST NOR_FLASH_INFO NorFlashIds[] = {
STATIC CONST NOR_FLASH_INFO NorFlashIds[] = {
/* ATMEL */
{L"at45db011d", {0x1f, 0x22, 0x00}, 3, 256, 64 * 1024, 4, NOR_FLASH_ERASE_4K},
{L"at45db021d", {0x1f, 0x23, 0x00}, 3, 256, 64 * 1024, 8, NOR_FLASH_ERASE_4K},
{L"at45db041d", {0x1f, 0x24, 0x00}, 3, 256, 64 * 1024, 8, NOR_FLASH_ERASE_4K},
{L"at45db081d", {0x1f, 0x25, 0x00}, 3, 256, 64 * 1024, 16, NOR_FLASH_ERASE_4K},
{L"at45db161d", {0x1f, 0x26, 0x00}, 3, 256, 64 * 1024, 32, NOR_FLASH_ERASE_4K},
{L"at45db321d", {0x1f, 0x27, 0x00}, 3, 256, 64 * 1024, 64, NOR_FLASH_ERASE_4K},
{L"at45db641d", {0x1f, 0x28, 0x00}, 3, 256, 64 * 1024, 128, NOR_FLASH_ERASE_4K},
{L"at25df321a", {0x1f, 0x47, 0x01}, 3, 256, 64 * 1024, 64, NOR_FLASH_ERASE_4K},
{L"at25df321", {0x1f, 0x47, 0x00}, 3, 256, 64 * 1024, 64, NOR_FLASH_ERASE_4K},
{L"at26df081a", {0x1f, 0x45, 0x01}, 3, 256, 64 * 1024, 16, NOR_FLASH_ERASE_4K},
{ L"at45db011d", { 0x1f, 0x22, 0x00 }, 3, 256, 64 * 1024, 4, NOR_FLASH_ERASE_4K },
{ L"at45db021d", { 0x1f, 0x23, 0x00 }, 3, 256, 64 * 1024, 8, NOR_FLASH_ERASE_4K },
{ L"at45db041d", { 0x1f, 0x24, 0x00 }, 3, 256, 64 * 1024, 8, NOR_FLASH_ERASE_4K },
{ L"at45db081d", { 0x1f, 0x25, 0x00 }, 3, 256, 64 * 1024, 16, NOR_FLASH_ERASE_4K },
{ L"at45db161d", { 0x1f, 0x26, 0x00 }, 3, 256, 64 * 1024, 32, NOR_FLASH_ERASE_4K },
{ L"at45db321d", { 0x1f, 0x27, 0x00 }, 3, 256, 64 * 1024, 64, NOR_FLASH_ERASE_4K },
{ L"at45db641d", { 0x1f, 0x28, 0x00 }, 3, 256, 64 * 1024, 128, NOR_FLASH_ERASE_4K },
{ L"at25df321a", { 0x1f, 0x47, 0x01 }, 3, 256, 64 * 1024, 64, NOR_FLASH_ERASE_4K },
{ L"at25df321", { 0x1f, 0x47, 0x00 }, 3, 256, 64 * 1024, 64, NOR_FLASH_ERASE_4K },
{ L"at26df081a", { 0x1f, 0x45, 0x01 }, 3, 256, 64 * 1024, 16, NOR_FLASH_ERASE_4K },
/* EON */
{L"en25q32b", {0x1c, 0x30, 0x16}, 3, 256, 64 * 1024, 64, 0},
{L"en25q64", {0x1c, 0x30, 0x17}, 3, 256, 64 * 1024, 128, NOR_FLASH_ERASE_4K},
{L"en25q128b", {0x1c, 0x30, 0x18}, 3, 256, 64 * 1024, 256, 0},
{L"en25s64", {0x1c, 0x38, 0x17}, 3, 256, 64 * 1024, 128, 0},
{ L"en25q32b", { 0x1c, 0x30, 0x16 }, 3, 256, 64 * 1024, 64, 0 },
{ L"en25q64", { 0x1c, 0x30, 0x17 }, 3, 256, 64 * 1024, 128, NOR_FLASH_ERASE_4K },
{ L"en25q128b", { 0x1c, 0x30, 0x18 }, 3, 256, 64 * 1024, 256, 0 },
{ L"en25s64", { 0x1c, 0x38, 0x17 }, 3, 256, 64 * 1024, 128, 0 },
/* GIGADEVICE */
{L"gd25q64b", {0xc8, 0x40, 0x17}, 3, 256, 64 * 1024, 128, NOR_FLASH_ERASE_4K},
{L"gd25lq32", {0xc8, 0x60, 0x16}, 3, 256, 64 * 1024, 64, NOR_FLASH_ERASE_4K},
{ L"gd25q64b", { 0xc8, 0x40, 0x17 }, 3, 256, 64 * 1024, 128, NOR_FLASH_ERASE_4K },
{ L"gd25lq32", { 0xc8, 0x60, 0x16 }, 3, 256, 64 * 1024, 64, NOR_FLASH_ERASE_4K },
/* ISSI */
{L"is25lp032", {0x9d, 0x60, 0x16}, 3, 256, 64 * 1024, 64, 0},
{L"is25lp064", {0x9d, 0x60, 0x17}, 3, 256, 64 * 1024, 128, 0},
{L"is25lp128", {0x9d, 0x60, 0x18}, 3, 256, 64 * 1024, 256, 0},
{ L"is25lp032", { 0x9d, 0x60, 0x16 }, 3, 256, 64 * 1024, 64, 0 },
{ L"is25lp064", { 0x9d, 0x60, 0x17 }, 3, 256, 64 * 1024, 128, 0 },
{ L"is25lp128", { 0x9d, 0x60, 0x18 }, 3, 256, 64 * 1024, 256, 0 },
/* MACRONIX */
{L"mx25l2006e", {0xc2, 0x20, 0x12}, 3, 256, 64 * 1024, 4, 0},
{L"mx25l4005", {0xc2, 0x20, 0x13}, 3, 256, 64 * 1024, 8, 0},
{L"mx25l8005", {0xc2, 0x20, 0x14}, 3, 256, 64 * 1024, 16, 0},
{L"mx25l1605d", {0xc2, 0x20, 0x15}, 3, 256, 64 * 1024, 32, 0},
{L"mx25l3205d", {0xc2, 0x20, 0x16}, 3, 256, 64 * 1024, 64, 0},
{L"mx25l6405d", {0xc2, 0x20, 0x17}, 3, 256, 64 * 1024, 128, 0},
{L"mx25l12805", {0xc2, 0x20, 0x18}, 3, 256, 64 * 1024, 256, 0},
{L"mx25l25635f", {0xc2, 0x20, 0x19}, 3, 256, 64 * 1024, 512, 0},
{L"mx25l51235f", {0xc2, 0x20, 0x1a}, 3, 256, 64 * 1024, 1024, 0},
{L"mx25l12855e", {0xc2, 0x26, 0x18}, 3, 256, 64 * 1024, 256, 0},
{L"mx66u51235f", {0xc2, 0x25, 0x3a}, 3, 256, 64 * 1024, 1024, 0},
{L"mx66u1g45g", {0xc2, 0x25, 0x3b}, 3, 256, 64 * 1024, 2048, 0},
{L"mx66l1g45g", {0xc2, 0x20, 0x1b}, 3, 256, 64 * 1024, 2048, 0},
{ L"mx25l2006e", { 0xc2, 0x20, 0x12 }, 3, 256, 64 * 1024, 4, 0 },
{ L"mx25l4005", { 0xc2, 0x20, 0x13 }, 3, 256, 64 * 1024, 8, 0 },
{ L"mx25l8005", { 0xc2, 0x20, 0x14 }, 3, 256, 64 * 1024, 16, 0 },
{ L"mx25l1605d", { 0xc2, 0x20, 0x15 }, 3, 256, 64 * 1024, 32, 0 },
{ L"mx25l3205d", { 0xc2, 0x20, 0x16 }, 3, 256, 64 * 1024, 64, 0 },
{ L"mx25l6405d", { 0xc2, 0x20, 0x17 }, 3, 256, 64 * 1024, 128, 0 },
{ L"mx25l12805", { 0xc2, 0x20, 0x18 }, 3, 256, 64 * 1024, 256, 0 },
{ L"mx25l25635f", { 0xc2, 0x20, 0x19 }, 3, 256, 64 * 1024, 512, 0 },
{ L"mx25l51235f", { 0xc2, 0x20, 0x1a }, 3, 256, 64 * 1024, 1024, 0 },
{ L"mx25l12855e", { 0xc2, 0x26, 0x18 }, 3, 256, 64 * 1024, 256, 0 },
{ L"mx66u51235f", { 0xc2, 0x25, 0x3a }, 3, 256, 64 * 1024, 1024, 0 },
{ L"mx66u1g45g", { 0xc2, 0x25, 0x3b }, 3, 256, 64 * 1024, 2048, 0 },
{ L"mx66l1g45g", { 0xc2, 0x20, 0x1b }, 3, 256, 64 * 1024, 2048, 0 },
/* SPANSION */
{L"s25fl008a", {0x01, 0x02, 0x13}, 3, 256, 64 * 1024, 16, 0},
{L"s25fl016a", {0x01, 0x02, 0x14}, 3, 256, 64 * 1024, 32, 0},
{L"s25fl032a", {0x01, 0x02, 0x15}, 3, 256, 64 * 1024, 64, 0},
{L"s25fl064a", {0x01, 0x02, 0x16}, 3, 256, 64 * 1024, 128, 0},
{L"s25fl116k", {0x01, 0x40, 0x15}, 3, 256, 64 * 1024, 128, 0},
{L"s25fl164k", {0x01, 0x40, 0x17, 0x01, 0x40}, 5, 256, 64 * 1024, 128, 0},
{L"s25fl128p_256k", {0x01, 0x20, 0x18, 0x03, 0x00}, 5, 256, 256 * 1024, 64, 0},
{L"s25fl128p_64k", {0x01, 0x20, 0x18, 0x03, 0x01}, 5, 256, 64 * 1024, 256, 0},
{L"s25fl032p", {0x01, 0x02, 0x15, 0x4d, 0x00}, 5, 256, 64 * 1024, 64, 0},
{L"s25fl064p", {0x01, 0x02, 0x16, 0x4d, 0x00}, 5, 256, 64 * 1024, 128, 0},
{L"s25fl128s_256k", {0x01, 0x20, 0x18, 0x4d, 0x00}, 5, 256, 256 * 1024, 64, 0},
{L"s25fl128s_64k", {0x01, 0x20, 0x18, 0x4d, 0x01}, 5, 256, 64 * 1024, 256, 0},
{L"s25fl256s_256k", {0x01, 0x02, 0x19, 0x4d, 0x00}, 5, 256, 256 * 1024, 128, 0},
{L"s25fl256s_64k", {0x01, 0x02, 0x19, 0x4d, 0x01}, 5, 256, 64 * 1024, 512, 0},
{L"s25fl512s_256k", {0x01, 0x02, 0x20, 0x4d, 0x00}, 5, 256, 256 * 1024, 256, 0},
{L"s25fl512s_64k", {0x01, 0x02, 0x20, 0x4d, 0x01}, 5, 256, 64 * 1024, 1024, 0},
{L"s25fl512s_512k", {0x01, 0x02, 0x20, 0x4f, 0x00}, 5, 256, 256 * 1024, 256, 0},
{ L"s25fl008a", { 0x01, 0x02, 0x13 }, 3, 256, 64 * 1024, 16, 0 },
{ L"s25fl016a", { 0x01, 0x02, 0x14 }, 3, 256, 64 * 1024, 32, 0 },
{ L"s25fl032a", { 0x01, 0x02, 0x15 }, 3, 256, 64 * 1024, 64, 0 },
{ L"s25fl064a", { 0x01, 0x02, 0x16 }, 3, 256, 64 * 1024, 128, 0 },
{ L"s25fl116k", { 0x01, 0x40, 0x15 }, 3, 256, 64 * 1024, 128, 0 },
{ L"s25fl164k", { 0x01, 0x40, 0x17, 0x01, 0x40}, 5, 256, 64 * 1024, 128, 0 },
{ L"s25fl128p_256k", { 0x01, 0x20, 0x18, 0x03, 0x00}, 5, 256, 256 * 1024, 64, 0 },
{ L"s25fl128p_64k", { 0x01, 0x20, 0x18, 0x03, 0x01}, 5, 256, 64 * 1024, 256, 0 },
{ L"s25fl032p", { 0x01, 0x02, 0x15, 0x4d, 0x00}, 5, 256, 64 * 1024, 64, 0 },
{ L"s25fl064p", { 0x01, 0x02, 0x16, 0x4d, 0x00}, 5, 256, 64 * 1024, 128, 0 },
{ L"s25fl128s_256k", { 0x01, 0x20, 0x18, 0x4d, 0x00}, 5, 256, 256 * 1024, 64, 0 },
{ L"s25fl128s_64k", { 0x01, 0x20, 0x18, 0x4d, 0x01}, 5, 256, 64 * 1024, 256, 0 },
{ L"s25fl256s_256k", { 0x01, 0x02, 0x19, 0x4d, 0x00}, 5, 256, 256 * 1024, 128, 0 },
{ L"s25fl256s_64k", { 0x01, 0x02, 0x19, 0x4d, 0x01}, 5, 256, 64 * 1024, 512, 0 },
{ L"s25fl512s_256k", { 0x01, 0x02, 0x20, 0x4d, 0x00}, 5, 256, 256 * 1024, 256, 0 },
{ L"s25fl512s_64k", { 0x01, 0x02, 0x20, 0x4d, 0x01}, 5, 256, 64 * 1024, 1024, 0 },
{ L"s25fl512s_512k", { 0x01, 0x02, 0x20, 0x4f, 0x00}, 5, 256, 256 * 1024, 256, 0 },
/* STMICRO */
{L"m25p10", {0x20, 0x20, 0x11}, 3, 256, 32 * 1024, 4, 0},
{L"m25p20", {0x20, 0x20, 0x12}, 3, 256, 64 * 1024, 4, 0},
{L"m25p40", {0x20, 0x20, 0x13}, 3, 256, 64 * 1024, 8, 0},
{L"m25p80", {0x20, 0x20, 0x14}, 3, 256, 64 * 1024, 16, 0},
{L"m25p16", {0x20, 0x20, 0x15}, 3, 256, 64 * 1024, 32, 0},
{L"m25pE16", {0x20, 0x80, 0x15, 0x10, 0x00}, 5, 256, 64 * 1024, 32, 0},
{L"m25pX16", {0x20, 0x71, 0x15, 0x10, 0x00}, 5, 256, 64 * 1024, 32, 0},
{L"m25p32", {0x20, 0x20, 0x16}, 3, 256, 64 * 1024, 64, 0},
{L"m25p64", {0x20, 0x20, 0x17}, 3, 256, 64 * 1024, 128, 0},
{L"m25p128", {0x20, 0x20, 0x18}, 3, 256, 256 * 1024, 64, 0},
{L"m25pX64", {0x20, 0x71, 0x17}, 3, 256, 64 * 1024, 128, NOR_FLASH_ERASE_4K},
{L"n25q016a", {0x20, 0xbb, 0x15}, 3, 256, 64 * 1024, 32, NOR_FLASH_ERASE_4K},
{L"n25q32", {0x20, 0xba, 0x16}, 3, 256, 64 * 1024, 64, NOR_FLASH_ERASE_4K},
{L"n25q32a", {0x20, 0xbb, 0x16}, 3, 256, 64 * 1024, 64, NOR_FLASH_ERASE_4K},
{L"n25q64", {0x20, 0xba, 0x17}, 3, 256, 64 * 1024, 128, NOR_FLASH_ERASE_4K},
{L"n25q64a", {0x20, 0xbb, 0x17}, 3, 256, 64 * 1024, 128, NOR_FLASH_ERASE_4K},
{L"n25q128", {0x20, 0xba, 0x18}, 3, 256, 64 * 1024, 256, 0},
{L"n25q128a", {0x20, 0xbb, 0x18}, 3, 256, 64 * 1024, 256, 0},
{L"n25q256", {0x20, 0xba, 0x19}, 3, 256, 64 * 1024, 512, NOR_FLASH_ERASE_4K},
{L"n25q256a", {0x20, 0xbb, 0x19}, 3, 256, 64 * 1024, 512, NOR_FLASH_ERASE_4K},
{L"n25q512", {0x20, 0xba, 0x20}, 3, 256, 64 * 1024, 1024, NOR_FLASH_WRITE_FSR | NOR_FLASH_ERASE_4K},
{L"n25q512a", {0x20, 0xbb, 0x20}, 3, 256, 64 * 1024, 1024, NOR_FLASH_WRITE_FSR | NOR_FLASH_ERASE_4K},
{L"n25q1024", {0x20, 0xba, 0x21}, 3, 256, 64 * 1024, 2048, NOR_FLASH_WRITE_FSR | NOR_FLASH_ERASE_4K},
{L"n25q1024a", {0x20, 0xbb, 0x21}, 3, 256, 64 * 1024, 2048, NOR_FLASH_WRITE_FSR | NOR_FLASH_ERASE_4K},
{L"mt25qu02g", {0x20, 0xbb, 0x22}, 3, 256, 64 * 1024, 4096, NOR_FLASH_WRITE_FSR | NOR_FLASH_ERASE_4K},
{L"mt25ql02g", {0x20, 0xba, 0x22}, 3, 256, 64 * 1024, 4096, NOR_FLASH_WRITE_FSR | NOR_FLASH_ERASE_4K},
{ L"m25p10", { 0x20, 0x20, 0x11 }, 3, 256, 32 * 1024, 4, 0 },
{ L"m25p20", { 0x20, 0x20, 0x12 }, 3, 256, 64 * 1024, 4, 0 },
{ L"m25p40", { 0x20, 0x20, 0x13 }, 3, 256, 64 * 1024, 8, 0 },
{ L"m25p80", { 0x20, 0x20, 0x14 }, 3, 256, 64 * 1024, 16, 0 },
{ L"m25p16", { 0x20, 0x20, 0x15 }, 3, 256, 64 * 1024, 32, 0 },
{ L"m25pE16", { 0x20, 0x80, 0x15, 0x10, 0x00}, 5, 256, 64 * 1024, 32, 0 },
{ L"m25pX16", { 0x20, 0x71, 0x15, 0x10, 0x00}, 5, 256, 64 * 1024, 32, 0 },
{ L"m25p32", { 0x20, 0x20, 0x16 }, 3, 256, 64 * 1024, 64, 0 },
{ L"m25p64", { 0x20, 0x20, 0x17 }, 3, 256, 64 * 1024, 128, 0 },
{ L"m25p128", { 0x20, 0x20, 0x18 }, 3, 256, 256 * 1024, 64, 0 },
{ L"m25pX64", { 0x20, 0x71, 0x17 }, 3, 256, 64 * 1024, 128, NOR_FLASH_ERASE_4K },
{ L"n25q016a", { 0x20, 0xbb, 0x15 }, 3, 256, 64 * 1024, 32, NOR_FLASH_ERASE_4K },
{ L"n25q32", { 0x20, 0xba, 0x16 }, 3, 256, 64 * 1024, 64, NOR_FLASH_ERASE_4K },
{ L"n25q32a", { 0x20, 0xbb, 0x16 }, 3, 256, 64 * 1024, 64, NOR_FLASH_ERASE_4K },
{ L"n25q64", { 0x20, 0xba, 0x17 }, 3, 256, 64 * 1024, 128, NOR_FLASH_ERASE_4K },
{ L"n25q64a", { 0x20, 0xbb, 0x17 }, 3, 256, 64 * 1024, 128, NOR_FLASH_ERASE_4K },
{ L"n25q128", { 0x20, 0xba, 0x18 }, 3, 256, 64 * 1024, 256, 0 },
{ L"n25q128a", { 0x20, 0xbb, 0x18 }, 3, 256, 64 * 1024, 256, 0 },
{ L"n25q256", { 0x20, 0xba, 0x19 }, 3, 256, 64 * 1024, 512, NOR_FLASH_ERASE_4K },
{ L"n25q256a", { 0x20, 0xbb, 0x19 }, 3, 256, 64 * 1024, 512, NOR_FLASH_ERASE_4K },
{ L"n25q512", { 0x20, 0xba, 0x20 }, 3, 256, 64 * 1024, 1024, NOR_FLASH_WRITE_FSR | NOR_FLASH_ERASE_4K },
{ L"n25q512a", { 0x20, 0xbb, 0x20 }, 3, 256, 64 * 1024, 1024, NOR_FLASH_WRITE_FSR | NOR_FLASH_ERASE_4K },
{ L"n25q1024", { 0x20, 0xba, 0x21 }, 3, 256, 64 * 1024, 2048, NOR_FLASH_WRITE_FSR | NOR_FLASH_ERASE_4K },
{ L"n25q1024a", { 0x20, 0xbb, 0x21 }, 3, 256, 64 * 1024, 2048, NOR_FLASH_WRITE_FSR | NOR_FLASH_ERASE_4K },
{ L"mt25qu02g", { 0x20, 0xbb, 0x22 }, 3, 256, 64 * 1024, 4096, NOR_FLASH_WRITE_FSR | NOR_FLASH_ERASE_4K },
{ L"mt25ql02g", { 0x20, 0xba, 0x22 }, 3, 256, 64 * 1024, 4096, NOR_FLASH_WRITE_FSR | NOR_FLASH_ERASE_4K },
/* SST */
{L"sst25vf040b", {0xbf, 0x25, 0x8d}, 3, 256, 64 * 1024, 8, NOR_FLASH_ERASE_4K},
{L"sst25vf080b", {0xbf, 0x25, 0x8e}, 3, 256, 64 * 1024, 16, NOR_FLASH_ERASE_4K},
{L"sst25vf016b", {0xbf, 0x25, 0x41}, 3, 256, 64 * 1024, 32, NOR_FLASH_ERASE_4K},
{L"sst25vf032b", {0xbf, 0x25, 0x4a}, 3, 256, 64 * 1024, 64, NOR_FLASH_ERASE_4K},
{L"sst25vf064c", {0xbf, 0x25, 0x4b}, 3, 256, 64 * 1024, 128, NOR_FLASH_ERASE_4K},
{L"sst25wf512", {0xbf, 0x25, 0x01}, 3, 256, 64 * 1024, 1, NOR_FLASH_ERASE_4K},
{L"sst25wf010", {0xbf, 0x25, 0x02}, 3, 256, 64 * 1024, 2, NOR_FLASH_ERASE_4K},
{L"sst25wf020", {0xbf, 0x25, 0x03}, 3, 256, 64 * 1024, 4, NOR_FLASH_ERASE_4K},
{L"sst25wf040", {0xbf, 0x25, 0x04}, 3, 256, 64 * 1024, 8, NOR_FLASH_ERASE_4K},
{L"sst25wf040b", {0x62, 0x16, 0x13}, 3, 256, 64 * 1024, 8, NOR_FLASH_ERASE_4K},
{L"sst25wf080", {0xbf, 0x25, 0x05}, 3, 256, 64 * 1024, 16, NOR_FLASH_ERASE_4K},
{ L"sst25vf040b", { 0xbf, 0x25, 0x8d }, 3, 256, 64 * 1024, 8, NOR_FLASH_ERASE_4K },
{ L"sst25vf080b", { 0xbf, 0x25, 0x8e }, 3, 256, 64 * 1024, 16, NOR_FLASH_ERASE_4K },
{ L"sst25vf016b", { 0xbf, 0x25, 0x41 }, 3, 256, 64 * 1024, 32, NOR_FLASH_ERASE_4K },
{ L"sst25vf032b", { 0xbf, 0x25, 0x4a }, 3, 256, 64 * 1024, 64, NOR_FLASH_ERASE_4K },
{ L"sst25vf064c", { 0xbf, 0x25, 0x4b }, 3, 256, 64 * 1024, 128, NOR_FLASH_ERASE_4K },
{ L"sst25wf512", { 0xbf, 0x25, 0x01 }, 3, 256, 64 * 1024, 1, NOR_FLASH_ERASE_4K },
{ L"sst25wf010", { 0xbf, 0x25, 0x02 }, 3, 256, 64 * 1024, 2, NOR_FLASH_ERASE_4K },
{ L"sst25wf020", { 0xbf, 0x25, 0x03 }, 3, 256, 64 * 1024, 4, NOR_FLASH_ERASE_4K },
{ L"sst25wf040", { 0xbf, 0x25, 0x04 }, 3, 256, 64 * 1024, 8, NOR_FLASH_ERASE_4K },
{ L"sst25wf040b", { 0x62, 0x16, 0x13 }, 3, 256, 64 * 1024, 8, NOR_FLASH_ERASE_4K },
{ L"sst25wf080", { 0xbf, 0x25, 0x05 }, 3, 256, 64 * 1024, 16, NOR_FLASH_ERASE_4K },
/* WINBOND */
{L"w25p80", {0xef, 0x20, 0x14}, 3, 256, 64 * 1024, 16, 0},
{L"w25p16", {0xef, 0x20, 0x15}, 3, 256, 64 * 1024, 32, 0},
{L"w25p32", {0xef, 0x20, 0x16}, 3, 256, 64 * 1024, 64, 0},
{L"w25x40", {0xef, 0x30, 0x13}, 3, 256, 64 * 1024, 8, NOR_FLASH_ERASE_4K},
{L"w25x16", {0xef, 0x30, 0x15}, 3, 256, 64 * 1024, 32, NOR_FLASH_ERASE_4K},
{L"w25x32", {0xef, 0x30, 0x16}, 3, 256, 64 * 1024, 64, NOR_FLASH_ERASE_4K},
{L"w25x64", {0xef, 0x30, 0x17}, 3, 256, 64 * 1024, 128, NOR_FLASH_ERASE_4K},
{L"w25q80bl", {0xef, 0x40, 0x14}, 3, 256, 64 * 1024, 16, NOR_FLASH_ERASE_4K},
{L"w25q16cl", {0xef, 0x40, 0x15}, 3, 256, 64 * 1024, 32, NOR_FLASH_ERASE_4K},
{L"w25q32bv", {0xef, 0x40, 0x16}, 3, 256, 64 * 1024, 64, NOR_FLASH_ERASE_4K},
{L"w25q64cv", {0xef, 0x40, 0x17}, 3, 256, 64 * 1024, 128, NOR_FLASH_ERASE_4K},
{L"w25q128bv", {0xef, 0x40, 0x18}, 3, 256, 64 * 1024, 256, NOR_FLASH_ERASE_4K},
{L"w25q256", {0xef, 0x40, 0x19}, 3, 256, 64 * 1024, 512, NOR_FLASH_ERASE_4K},
{L"w25q80bw", {0xef, 0x50, 0x14}, 3, 256, 64 * 1024, 16, NOR_FLASH_ERASE_4K},
{L"w25q16dw", {0xef, 0x60, 0x15}, 3, 256, 64 * 1024, 32, NOR_FLASH_ERASE_4K},
{L"w25q32dw", {0xef, 0x60, 0x16}, 3, 256, 64 * 1024, 64, NOR_FLASH_ERASE_4K},
{L"w25q64dw", {0xef, 0x60, 0x17}, 3, 256, 64 * 1024, 128, NOR_FLASH_ERASE_4K},
{L"w25q128fw", {0xef, 0x60, 0x18}, 3, 256, 64 * 1024, 256, NOR_FLASH_ERASE_4K},
{}, /* Empty entry to terminate the list */
{ L"w25p80", { 0xef, 0x20, 0x14 }, 3, 256, 64 * 1024, 16, 0 },
{ L"w25p16", { 0xef, 0x20, 0x15 }, 3, 256, 64 * 1024, 32, 0 },
{ L"w25p32", { 0xef, 0x20, 0x16 }, 3, 256, 64 * 1024, 64, 0 },
{ L"w25x40", { 0xef, 0x30, 0x13 }, 3, 256, 64 * 1024, 8, NOR_FLASH_ERASE_4K },
{ L"w25x16", { 0xef, 0x30, 0x15 }, 3, 256, 64 * 1024, 32, NOR_FLASH_ERASE_4K },
{ L"w25x32", { 0xef, 0x30, 0x16 }, 3, 256, 64 * 1024, 64, NOR_FLASH_ERASE_4K },
{ L"w25x64", { 0xef, 0x30, 0x17 }, 3, 256, 64 * 1024, 128, NOR_FLASH_ERASE_4K },
{ L"w25q80bl", { 0xef, 0x40, 0x14 }, 3, 256, 64 * 1024, 16, NOR_FLASH_ERASE_4K },
{ L"w25q16cl", { 0xef, 0x40, 0x15 }, 3, 256, 64 * 1024, 32, NOR_FLASH_ERASE_4K },
{ L"w25q32bv", { 0xef, 0x40, 0x16 }, 3, 256, 64 * 1024, 64, NOR_FLASH_ERASE_4K },
{ L"w25q64cv", { 0xef, 0x40, 0x17 }, 3, 256, 64 * 1024, 128, NOR_FLASH_ERASE_4K },
{ L"w25q128bv", { 0xef, 0x40, 0x18 }, 3, 256, 64 * 1024, 256, NOR_FLASH_ERASE_4K },
{ L"w25q256", { 0xef, 0x40, 0x19 }, 3, 256, 64 * 1024, 512, NOR_FLASH_ERASE_4K },
{ L"w25q80bw", { 0xef, 0x50, 0x14 }, 3, 256, 64 * 1024, 16, NOR_FLASH_ERASE_4K },
{ L"w25q16dw", { 0xef, 0x60, 0x15 }, 3, 256, 64 * 1024, 32, NOR_FLASH_ERASE_4K },
{ L"w25q32dw", { 0xef, 0x60, 0x16 }, 3, 256, 64 * 1024, 64, NOR_FLASH_ERASE_4K },
{ L"w25q64dw", { 0xef, 0x60, 0x17 }, 3, 256, 64 * 1024, 128, NOR_FLASH_ERASE_4K },
{ L"w25q128fw", { 0xef, 0x60, 0x18 }, 3, 256, 64 * 1024, 256, NOR_FLASH_ERASE_4K },
{ }, /* Empty entry to terminate the list */
};
/**
@ -151,18 +151,18 @@ STATIC CONST NOR_FLASH_INFO NorFlashIds[] = {
EFI_STATUS
EFIAPI
NorFlashGetInfo (
IN UINT8 *Id,
IN UINT8 *Id,
IN OUT NOR_FLASH_INFO **FlashInfo,
IN BOOLEAN AllocateForRuntime
IN BOOLEAN AllocateForRuntime
)
{
CONST NOR_FLASH_INFO *TmpInfo;
CONST NOR_FLASH_INFO *TmpInfo;
/*
* Iterate over NorFlashIds table, in order to find matching entry.
*/
TmpInfo = NorFlashIds;
for (; TmpInfo->Name != NULL; TmpInfo++) {
for ( ; TmpInfo->Name != NULL; TmpInfo++) {
if (CompareMem (TmpInfo->Id, Id, TmpInfo->IdLen) == 0) {
break;
}
@ -183,6 +183,7 @@ NorFlashGetInfo (
} else {
*FlashInfo = AllocateCopyPool (sizeof (NOR_FLASH_INFO), TmpInfo);
}
if (FlashInfo == NULL) {
return EFI_OUT_OF_RESOURCES;
}
@ -203,7 +204,7 @@ NorFlashPrintInfo (
IN NOR_FLASH_INFO *Info
)
{
UINTN EraseSize;
UINTN EraseSize;
if (Info->Flags & NOR_FLASH_ERASE_4K) {
EraseSize = SIZE_4KB;
@ -211,10 +212,12 @@ NorFlashPrintInfo (
EraseSize = Info->SectorSize;
}
DEBUG ((DEBUG_ERROR,
DEBUG ((
DEBUG_ERROR,
"Detected %s SPI NOR flash with page size %d B, erase size %d KB, total %d MB\n",
Info->Name,
Info->PageSize,
EraseSize / 1024,
(Info->SectorSize * Info->SectorCount) / 1024 / 1024));
(Info->SectorSize * Info->SectorCount) / 1024 / 1024
));
}

View File

@ -13,13 +13,13 @@
#include <Library/PcdLib.h>
#include <Library/PrePiLib.h>
#define PRE_PI_EXTRACT_GUIDED_SECTION_DATA_GUID { 0x385A982C, 0x2F49, 0x4043, { 0xA5, 0x1E, 0x49, 0x01, 0x02, 0x5C, 0x8B, 0x6B }}
#define PRE_PI_EXTRACT_GUIDED_SECTION_DATA_GUID { 0x385A982C, 0x2F49, 0x4043, { 0xA5, 0x1E, 0x49, 0x01, 0x02, 0x5C, 0x8B, 0x6B }}
typedef struct {
UINT32 NumberOfExtractHandler;
GUID *ExtractHandlerGuidTable;
EXTRACT_GUIDED_SECTION_DECODE_HANDLER *ExtractDecodeHandlerTable;
EXTRACT_GUIDED_SECTION_GET_INFO_HANDLER *ExtractGetInfoHandlerTable;
UINT32 NumberOfExtractHandler;
GUID *ExtractHandlerGuidTable;
EXTRACT_GUIDED_SECTION_DECODE_HANDLER *ExtractDecodeHandlerTable;
EXTRACT_GUIDED_SECTION_GET_INFO_HANDLER *ExtractGetInfoHandlerTable;
} PRE_PI_EXTRACT_GUIDED_SECTION_DATA;
PRE_PI_EXTRACT_GUIDED_SECTION_DATA *
@ -27,10 +27,10 @@ GetSavedData (
VOID
)
{
EFI_HOB_GUID_TYPE *GuidHob;
GUID SavedDataGuid = PRE_PI_EXTRACT_GUIDED_SECTION_DATA_GUID;
EFI_HOB_GUID_TYPE *GuidHob;
GUID SavedDataGuid = PRE_PI_EXTRACT_GUIDED_SECTION_DATA_GUID;
GuidHob = GetFirstGuidHob(&SavedDataGuid);
GuidHob = GetFirstGuidHob (&SavedDataGuid);
GuidHob++;
return (PRE_PI_EXTRACT_GUIDED_SECTION_DATA *)GuidHob;
@ -46,6 +46,7 @@ ExtractGuidedSectionRegisterHandlers (
{
PRE_PI_EXTRACT_GUIDED_SECTION_DATA *SavedData;
UINT32 Index;
//
// Check input parameter.
//
@ -53,12 +54,12 @@ ExtractGuidedSectionRegisterHandlers (
return RETURN_INVALID_PARAMETER;
}
SavedData = GetSavedData();
SavedData = GetSavedData ();
//
// Search the match registered GetInfo handler for the input guided section.
//
for (Index = 0; Index < SavedData->NumberOfExtractHandler; Index ++) {
for (Index = 0; Index < SavedData->NumberOfExtractHandler; Index++) {
if (CompareGuid (&SavedData->ExtractHandlerGuidTable[Index], SectionGuid)) {
break;
}
@ -68,8 +69,8 @@ ExtractGuidedSectionRegisterHandlers (
// If the guided handler has been registered before, only update its handler.
//
if (Index < SavedData->NumberOfExtractHandler) {
SavedData->ExtractDecodeHandlerTable [Index] = DecodeHandler;
SavedData->ExtractGetInfoHandlerTable [Index] = GetInfoHandler;
SavedData->ExtractDecodeHandlerTable[Index] = DecodeHandler;
SavedData->ExtractGetInfoHandlerTable[Index] = GetInfoHandler;
return RETURN_SUCCESS;
}
@ -83,9 +84,9 @@ ExtractGuidedSectionRegisterHandlers (
//
// Register new Handler and guid value.
//
CopyGuid (&SavedData->ExtractHandlerGuidTable [SavedData->NumberOfExtractHandler], SectionGuid);
SavedData->ExtractDecodeHandlerTable [SavedData->NumberOfExtractHandler] = DecodeHandler;
SavedData->ExtractGetInfoHandlerTable [SavedData->NumberOfExtractHandler++] = GetInfoHandler;
CopyGuid (&SavedData->ExtractHandlerGuidTable[SavedData->NumberOfExtractHandler], SectionGuid);
SavedData->ExtractDecodeHandlerTable[SavedData->NumberOfExtractHandler] = DecodeHandler;
SavedData->ExtractGetInfoHandlerTable[SavedData->NumberOfExtractHandler++] = GetInfoHandler;
return RETURN_SUCCESS;
}
@ -98,9 +99,9 @@ ExtractGuidedSectionGetGuidList (
{
PRE_PI_EXTRACT_GUIDED_SECTION_DATA *SavedData;
ASSERT(ExtractHandlerGuidTable != NULL);
ASSERT (ExtractHandlerGuidTable != NULL);
SavedData = GetSavedData();
SavedData = GetSavedData ();
*ExtractHandlerGuidTable = SavedData->ExtractHandlerGuidTable;
return SavedData->NumberOfExtractHandler;
@ -127,18 +128,18 @@ ExtractGuidedSectionGetInfo (
ASSERT (ScratchBufferSize != NULL);
ASSERT (SectionAttribute != NULL);
SavedData = GetSavedData();
SavedData = GetSavedData ();
if (IS_SECTION2 (InputSection)) {
SectionDefinitionGuid = &(((EFI_GUID_DEFINED_SECTION2 *) InputSection)->SectionDefinitionGuid);
SectionDefinitionGuid = &(((EFI_GUID_DEFINED_SECTION2 *)InputSection)->SectionDefinitionGuid);
} else {
SectionDefinitionGuid = &(((EFI_GUID_DEFINED_SECTION *) InputSection)->SectionDefinitionGuid);
SectionDefinitionGuid = &(((EFI_GUID_DEFINED_SECTION *)InputSection)->SectionDefinitionGuid);
}
//
// Search the match registered GetInfo handler for the input guided section.
//
for (Index = 0; Index < SavedData->NumberOfExtractHandler; Index ++) {
for (Index = 0; Index < SavedData->NumberOfExtractHandler; Index++) {
if (CompareGuid (&SavedData->ExtractHandlerGuidTable[Index], SectionDefinitionGuid)) {
break;
}
@ -154,12 +155,12 @@ ExtractGuidedSectionGetInfo (
//
// Call the match handler to getinfo for the input section data.
//
return SavedData->ExtractGetInfoHandlerTable [Index] (
InputSection,
OutputBufferSize,
ScratchBufferSize,
SectionAttribute
);
return SavedData->ExtractGetInfoHandlerTable[Index](
InputSection,
OutputBufferSize,
ScratchBufferSize,
SectionAttribute
);
}
RETURN_STATUS
@ -182,18 +183,18 @@ ExtractGuidedSectionDecode (
ASSERT (OutputBuffer != NULL);
ASSERT (AuthenticationStatus != NULL);
SavedData = GetSavedData();
SavedData = GetSavedData ();
if (IS_SECTION2 (InputSection)) {
SectionDefinitionGuid = &(((EFI_GUID_DEFINED_SECTION2 *) InputSection)->SectionDefinitionGuid);
SectionDefinitionGuid = &(((EFI_GUID_DEFINED_SECTION2 *)InputSection)->SectionDefinitionGuid);
} else {
SectionDefinitionGuid = &(((EFI_GUID_DEFINED_SECTION *) InputSection)->SectionDefinitionGuid);
SectionDefinitionGuid = &(((EFI_GUID_DEFINED_SECTION *)InputSection)->SectionDefinitionGuid);
}
//
// Search the match registered GetInfo handler for the input guided section.
//
for (Index = 0; Index < SavedData->NumberOfExtractHandler; Index ++) {
for (Index = 0; Index < SavedData->NumberOfExtractHandler; Index++) {
if (CompareGuid (&SavedData->ExtractHandlerGuidTable[Index], SectionDefinitionGuid)) {
break;
}
@ -209,12 +210,12 @@ ExtractGuidedSectionDecode (
//
// Call the match handler to getinfo for the input section data.
//
return SavedData->ExtractDecodeHandlerTable [Index] (
InputSection,
OutputBuffer,
ScratchBuffer,
AuthenticationStatus
);
return SavedData->ExtractDecodeHandlerTable[Index](
InputSection,
OutputBuffer,
ScratchBuffer,
AuthenticationStatus
);
}
RETURN_STATUS
@ -229,17 +230,17 @@ ExtractGuidedSectionLibConstructor (
//
// Allocate global pool space to store the registered handler and its guid value.
//
SavedData.ExtractHandlerGuidTable = (GUID *)AllocatePool(PcdGet32(PcdMaximumGuidedExtractHandler) * sizeof(GUID));
SavedData.ExtractHandlerGuidTable = (GUID *)AllocatePool (PcdGet32 (PcdMaximumGuidedExtractHandler) * sizeof (GUID));
if (SavedData.ExtractHandlerGuidTable == NULL) {
return RETURN_OUT_OF_RESOURCES;
}
SavedData.ExtractDecodeHandlerTable = (EXTRACT_GUIDED_SECTION_DECODE_HANDLER *)AllocatePool(PcdGet32(PcdMaximumGuidedExtractHandler) * sizeof(EXTRACT_GUIDED_SECTION_DECODE_HANDLER));
SavedData.ExtractDecodeHandlerTable = (EXTRACT_GUIDED_SECTION_DECODE_HANDLER *)AllocatePool (PcdGet32 (PcdMaximumGuidedExtractHandler) * sizeof (EXTRACT_GUIDED_SECTION_DECODE_HANDLER));
if (SavedData.ExtractDecodeHandlerTable == NULL) {
return RETURN_OUT_OF_RESOURCES;
}
SavedData.ExtractGetInfoHandlerTable = (EXTRACT_GUIDED_SECTION_GET_INFO_HANDLER *)AllocatePool(PcdGet32(PcdMaximumGuidedExtractHandler) * sizeof(EXTRACT_GUIDED_SECTION_GET_INFO_HANDLER));
SavedData.ExtractGetInfoHandlerTable = (EXTRACT_GUIDED_SECTION_GET_INFO_HANDLER *)AllocatePool (PcdGet32 (PcdMaximumGuidedExtractHandler) * sizeof (EXTRACT_GUIDED_SECTION_GET_INFO_HANDLER));
if (SavedData.ExtractGetInfoHandlerTable == NULL) {
return RETURN_OUT_OF_RESOURCES;
}
@ -249,7 +250,7 @@ ExtractGuidedSectionLibConstructor (
//
SavedData.NumberOfExtractHandler = 0;
BuildGuidDataHob(&HobGuid, &SavedData, sizeof(SavedData));
BuildGuidDataHob (&HobGuid, &SavedData, sizeof (SavedData));
return RETURN_SUCCESS;
}

View File

@ -44,8 +44,6 @@ GetHobList (
return PrePeiGetHobList ();
}
/**
Updates the pointer to the HOB list.
@ -55,7 +53,7 @@ GetHobList (
EFI_STATUS
EFIAPI
SetHobList (
IN VOID *HobList
IN VOID *HobList
)
{
return PrePeiSetHobList (HobList);
@ -65,7 +63,7 @@ SetHobList (
**/
EFI_HOB_HANDOFF_INFO_TABLE*
EFI_HOB_HANDOFF_INFO_TABLE *
HobConstructor (
IN VOID *EfiMemoryBegin,
IN UINTN EfiMemoryLength,
@ -79,16 +77,16 @@ HobConstructor (
Hob = EfiFreeMemoryBottom;
HobEnd = (EFI_HOB_GENERIC_HEADER *)(Hob+1);
Hob->Header.HobType = EFI_HOB_TYPE_HANDOFF;
Hob->Header.HobLength = sizeof(EFI_HOB_HANDOFF_INFO_TABLE);
Hob->Header.Reserved = 0;
Hob->Header.HobType = EFI_HOB_TYPE_HANDOFF;
Hob->Header.HobLength = sizeof (EFI_HOB_HANDOFF_INFO_TABLE);
Hob->Header.Reserved = 0;
HobEnd->HobType = EFI_HOB_TYPE_END_OF_HOB_LIST;
HobEnd->HobLength = sizeof(EFI_HOB_GENERIC_HEADER);
HobEnd->Reserved = 0;
HobEnd->HobType = EFI_HOB_TYPE_END_OF_HOB_LIST;
HobEnd->HobLength = sizeof (EFI_HOB_GENERIC_HEADER);
HobEnd->Reserved = 0;
Hob->Version = EFI_HOB_HANDOFF_TABLE_VERSION;
Hob->BootMode = BOOT_WITH_FULL_CONFIGURATION;
Hob->Version = EFI_HOB_HANDOFF_TABLE_VERSION;
Hob->BootMode = BOOT_WITH_FULL_CONFIGURATION;
Hob->EfiMemoryTop = (UINTN)EfiMemoryBegin + EfiMemoryLength;
Hob->EfiMemoryBottom = (UINTN)EfiMemoryBegin;
@ -101,8 +99,8 @@ HobConstructor (
VOID *
CreateHob (
IN UINT16 HobType,
IN UINT16 HobLength
IN UINT16 HobType,
IN UINT16 HobLength
)
{
EFI_HOB_HANDOFF_INFO_TABLE *HandOffHob;
@ -117,22 +115,22 @@ CreateHob (
FreeMemory = HandOffHob->EfiFreeMemoryTop - HandOffHob->EfiFreeMemoryBottom;
if (FreeMemory < HobLength) {
return NULL;
return NULL;
}
Hob = (VOID*) (UINTN) HandOffHob->EfiEndOfHobList;
((EFI_HOB_GENERIC_HEADER*) Hob)->HobType = HobType;
((EFI_HOB_GENERIC_HEADER*) Hob)->HobLength = HobLength;
((EFI_HOB_GENERIC_HEADER*) Hob)->Reserved = 0;
Hob = (VOID *)(UINTN)HandOffHob->EfiEndOfHobList;
((EFI_HOB_GENERIC_HEADER *)Hob)->HobType = HobType;
((EFI_HOB_GENERIC_HEADER *)Hob)->HobLength = HobLength;
((EFI_HOB_GENERIC_HEADER *)Hob)->Reserved = 0;
HobEnd = (EFI_HOB_GENERIC_HEADER*) ((UINTN)Hob + HobLength);
HandOffHob->EfiEndOfHobList = (EFI_PHYSICAL_ADDRESS) (UINTN) HobEnd;
HobEnd = (EFI_HOB_GENERIC_HEADER *)((UINTN)Hob + HobLength);
HandOffHob->EfiEndOfHobList = (EFI_PHYSICAL_ADDRESS)(UINTN)HobEnd;
HobEnd->HobType = EFI_HOB_TYPE_END_OF_HOB_LIST;
HobEnd->HobLength = sizeof(EFI_HOB_GENERIC_HEADER);
HobEnd->HobLength = sizeof (EFI_HOB_GENERIC_HEADER);
HobEnd->Reserved = 0;
HobEnd++;
HandOffHob->EfiFreeMemoryBottom = (EFI_PHYSICAL_ADDRESS) (UINTN) HobEnd;
HandOffHob->EfiFreeMemoryBottom = (EFI_PHYSICAL_ADDRESS)(UINTN)HobEnd;
return Hob;
}
@ -161,7 +159,7 @@ BuildResourceDescriptorHob (
EFI_HOB_RESOURCE_DESCRIPTOR *Hob;
Hob = CreateHob (EFI_HOB_TYPE_RESOURCE_DESCRIPTOR, sizeof (EFI_HOB_RESOURCE_DESCRIPTOR));
ASSERT(Hob != NULL);
ASSERT (Hob != NULL);
Hob->ResourceType = ResourceType;
Hob->ResourceAttribute = ResourceAttribute;
@ -177,8 +175,7 @@ BuildFvHobs (
IN EFI_RESOURCE_ATTRIBUTE_TYPE *ResourceAttribute
)
{
EFI_RESOURCE_ATTRIBUTE_TYPE Resource;
EFI_RESOURCE_ATTRIBUTE_TYPE Resource;
BuildFvHob (PhysicalStart, NumberOfBytes);
@ -213,15 +210,15 @@ BuildFvHobs (
VOID *
EFIAPI
GetNextHob (
IN UINT16 Type,
IN CONST VOID *HobStart
IN UINT16 Type,
IN CONST VOID *HobStart
)
{
EFI_PEI_HOB_POINTERS Hob;
ASSERT (HobStart != NULL);
Hob.Raw = (UINT8 *) HobStart;
Hob.Raw = (UINT8 *)HobStart;
//
// Parse the HOB list until end of list or matching type is found.
//
@ -229,13 +226,13 @@ GetNextHob (
if (Hob.Header->HobType == Type) {
return Hob.Raw;
}
Hob.Raw = GET_NEXT_HOB (Hob);
}
return NULL;
}
/**
Returns the first instance of a HOB type among the whole HOB list.
@ -250,16 +247,15 @@ GetNextHob (
VOID *
EFIAPI
GetFirstHob (
IN UINT16 Type
IN UINT16 Type
)
{
VOID *HobList;
VOID *HobList;
HobList = GetHobList ();
return GetNextHob (Type, HobList);
}
/**
This function searches the first instance of a HOB from the starting HOB pointer.
Such HOB should satisfy two conditions:
@ -282,22 +278,24 @@ GetFirstHob (
VOID *
EFIAPI
GetNextGuidHob (
IN CONST EFI_GUID *Guid,
IN CONST VOID *HobStart
){
IN CONST EFI_GUID *Guid,
IN CONST VOID *HobStart
)
{
EFI_PEI_HOB_POINTERS GuidHob;
GuidHob.Raw = (UINT8 *) HobStart;
GuidHob.Raw = (UINT8 *)HobStart;
while ((GuidHob.Raw = GetNextHob (EFI_HOB_TYPE_GUID_EXTENSION, GuidHob.Raw)) != NULL) {
if (CompareGuid (Guid, &GuidHob.Guid->Name)) {
break;
}
GuidHob.Raw = GET_NEXT_HOB (GuidHob);
}
return GuidHob.Raw;
}
/**
This function searches the first instance of a HOB among the whole HOB list.
Such HOB should satisfy two conditions:
@ -315,16 +313,15 @@ GetNextGuidHob (
VOID *
EFIAPI
GetFirstGuidHob (
IN CONST EFI_GUID *Guid
IN CONST EFI_GUID *Guid
)
{
VOID *HobList;
VOID *HobList;
HobList = GetHobList ();
return GetNextGuidHob (Guid, HobList);
}
/**
Get the Boot Mode from the HOB list.
@ -348,7 +345,6 @@ GetBootMode (
return Hob.HandoffInformationTable->BootMode;
}
/**
Get the Boot Mode from the HOB list.
@ -363,12 +359,12 @@ GetBootMode (
EFI_STATUS
EFIAPI
SetBootMode (
IN EFI_BOOT_MODE BootMode
IN EFI_BOOT_MODE BootMode
)
{
EFI_PEI_HOB_POINTERS Hob;
Hob.Raw = GetHobList ();
Hob.Raw = GetHobList ();
Hob.HandoffInformationTable->BootMode = BootMode;
return BootMode;
}
@ -391,16 +387,18 @@ SetBootMode (
VOID
EFIAPI
BuildModuleHob (
IN CONST EFI_GUID *ModuleName,
IN EFI_PHYSICAL_ADDRESS MemoryAllocationModule,
IN UINT64 ModuleLength,
IN EFI_PHYSICAL_ADDRESS EntryPoint
IN CONST EFI_GUID *ModuleName,
IN EFI_PHYSICAL_ADDRESS MemoryAllocationModule,
IN UINT64 ModuleLength,
IN EFI_PHYSICAL_ADDRESS EntryPoint
)
{
EFI_HOB_MEMORY_ALLOCATION_MODULE *Hob;
ASSERT (((MemoryAllocationModule & (EFI_PAGE_SIZE - 1)) == 0) &&
((ModuleLength & (EFI_PAGE_SIZE - 1)) == 0));
ASSERT (
((MemoryAllocationModule & (EFI_PAGE_SIZE - 1)) == 0) &&
((ModuleLength & (EFI_PAGE_SIZE - 1)) == 0)
);
Hob = CreateHob (EFI_HOB_TYPE_MEMORY_ALLOCATION, sizeof (EFI_HOB_MEMORY_ALLOCATION_MODULE));
@ -439,23 +437,22 @@ BuildModuleHob (
VOID *
EFIAPI
BuildGuidHob (
IN CONST EFI_GUID *Guid,
IN UINTN DataLength
IN CONST EFI_GUID *Guid,
IN UINTN DataLength
)
{
EFI_HOB_GUID_TYPE *Hob;
EFI_HOB_GUID_TYPE *Hob;
//
// Make sure that data length is not too long.
//
ASSERT (DataLength <= (0xffff - sizeof (EFI_HOB_GUID_TYPE)));
Hob = CreateHob (EFI_HOB_TYPE_GUID_EXTENSION, (UINT16) (sizeof (EFI_HOB_GUID_TYPE) + DataLength));
Hob = CreateHob (EFI_HOB_TYPE_GUID_EXTENSION, (UINT16)(sizeof (EFI_HOB_GUID_TYPE) + DataLength));
CopyGuid (&Hob->Name, Guid);
return Hob + 1;
}
/**
Copies a data buffer to a newly-built HOB.
@ -479,9 +476,9 @@ BuildGuidHob (
VOID *
EFIAPI
BuildGuidDataHob (
IN CONST EFI_GUID *Guid,
IN VOID *Data,
IN UINTN DataLength
IN CONST EFI_GUID *Guid,
IN VOID *Data,
IN UINTN DataLength
)
{
VOID *HobData;
@ -493,7 +490,6 @@ BuildGuidDataHob (
return CopyMem (HobData, Data, DataLength);
}
/**
Builds a Firmware Volume HOB.
@ -509,8 +505,8 @@ BuildGuidDataHob (
VOID
EFIAPI
BuildFvHob (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
EFI_HOB_FIRMWARE_VOLUME *Hob;
@ -521,7 +517,6 @@ BuildFvHob (
Hob->Length = Length;
}
/**
Builds a EFI_HOB_TYPE_FV2 HOB.
@ -539,10 +534,10 @@ BuildFvHob (
VOID
EFIAPI
BuildFv2Hob (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN CONST EFI_GUID *FvName,
IN CONST EFI_GUID *FileName
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN CONST EFI_GUID *FvName,
IN CONST EFI_GUID *FileName
)
{
EFI_HOB_FIRMWARE_VOLUME2 *Hob;
@ -578,12 +573,12 @@ BuildFv2Hob (
VOID
EFIAPI
BuildFv3Hob (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT32 AuthenticationStatus,
IN BOOLEAN ExtractedFv,
IN CONST EFI_GUID *FvName OPTIONAL,
IN CONST EFI_GUID *FileName OPTIONAL
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT32 AuthenticationStatus,
IN BOOLEAN ExtractedFv,
IN CONST EFI_GUID *FvName OPTIONAL,
IN CONST EFI_GUID *FileName OPTIONAL
)
{
EFI_HOB_FIRMWARE_VOLUME3 *Hob;
@ -615,14 +610,13 @@ BuildFv3Hob (
VOID
EFIAPI
BuildCvHob (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
ASSERT (FALSE);
}
/**
Builds a HOB for the CPU.
@ -638,8 +632,8 @@ BuildCvHob (
VOID
EFIAPI
BuildCpuHob (
IN UINT8 SizeOfMemorySpace,
IN UINT8 SizeOfIoSpace
IN UINT8 SizeOfMemorySpace,
IN UINT8 SizeOfIoSpace
)
{
EFI_HOB_CPU *Hob;
@ -655,7 +649,6 @@ BuildCpuHob (
ZeroMem (Hob->Reserved, sizeof (Hob->Reserved));
}
/**
Builds a HOB for the Stack.
@ -671,14 +664,16 @@ BuildCpuHob (
VOID
EFIAPI
BuildStackHob (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
EFI_HOB_MEMORY_ALLOCATION_STACK *Hob;
ASSERT (((BaseAddress & (EFI_PAGE_SIZE - 1)) == 0) &&
((Length & (EFI_PAGE_SIZE - 1)) == 0));
ASSERT (
((BaseAddress & (EFI_PAGE_SIZE - 1)) == 0) &&
((Length & (EFI_PAGE_SIZE - 1)) == 0)
);
Hob = CreateHob (EFI_HOB_TYPE_MEMORY_ALLOCATION, sizeof (EFI_HOB_MEMORY_ALLOCATION_STACK));
@ -693,7 +688,6 @@ BuildStackHob (
ZeroMem (Hob->AllocDescriptor.Reserved, sizeof (Hob->AllocDescriptor.Reserved));
}
/**
Update the Stack Hob if the stack has been moved
@ -703,11 +697,11 @@ BuildStackHob (
**/
VOID
UpdateStackHob (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
EFI_PEI_HOB_POINTERS Hob;
EFI_PEI_HOB_POINTERS Hob;
Hob.Raw = GetHobList ();
while ((Hob.Raw = GetNextHob (EFI_HOB_TYPE_MEMORY_ALLOCATION, Hob.Raw)) != NULL) {
@ -725,15 +719,14 @@ UpdateStackHob (
// Update the BSP Stack Hob to reflect the new stack info.
//
Hob.MemoryAllocationStack->AllocDescriptor.MemoryBaseAddress = BaseAddress;
Hob.MemoryAllocationStack->AllocDescriptor.MemoryLength = Length;
Hob.MemoryAllocationStack->AllocDescriptor.MemoryLength = Length;
break;
}
Hob.Raw = GET_NEXT_HOB (Hob);
}
}
/**
Builds a HOB for the memory allocation.
@ -750,15 +743,17 @@ UpdateStackHob (
VOID
EFIAPI
BuildMemoryAllocationHob (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN EFI_MEMORY_TYPE MemoryType
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN EFI_MEMORY_TYPE MemoryType
)
{
EFI_HOB_MEMORY_ALLOCATION *Hob;
ASSERT (((BaseAddress & (EFI_PAGE_SIZE - 1)) == 0) &&
((Length & (EFI_PAGE_SIZE - 1)) == 0));
ASSERT (
((BaseAddress & (EFI_PAGE_SIZE - 1)) == 0) &&
((Length & (EFI_PAGE_SIZE - 1)) == 0)
);
Hob = CreateHob (EFI_HOB_TYPE_MEMORY_ALLOCATION, sizeof (EFI_HOB_MEMORY_ALLOCATION));
@ -772,24 +767,22 @@ BuildMemoryAllocationHob (
ZeroMem (Hob->AllocDescriptor.Reserved, sizeof (Hob->AllocDescriptor.Reserved));
}
VOID
EFIAPI
BuildExtractSectionHob (
IN EFI_GUID *Guid,
IN EXTRACT_GUIDED_SECTION_GET_INFO_HANDLER SectionGetInfo,
IN EXTRACT_GUIDED_SECTION_DECODE_HANDLER SectionExtraction
IN EFI_GUID *Guid,
IN EXTRACT_GUIDED_SECTION_GET_INFO_HANDLER SectionGetInfo,
IN EXTRACT_GUIDED_SECTION_DECODE_HANDLER SectionExtraction
)
{
EXTRACT_SECTION_DATA Data;
EXTRACT_SECTION_DATA Data;
Data.SectionGetInfo = SectionGetInfo;
Data.SectionExtraction = SectionExtraction;
BuildGuidDataHob (Guid, &Data, sizeof (Data));
}
PE_COFF_LOADER_PROTOCOL gPeCoffProtocol = {
PE_COFF_LOADER_PROTOCOL gPeCoffProtocol = {
PeCoffLoaderGetImageInfo,
PeCoffLoaderLoadImage,
PeCoffLoaderRelocateImage,
@ -798,8 +791,6 @@ PE_COFF_LOADER_PROTOCOL gPeCoffProtocol = {
PeCoffLoaderUnloadImage
};
VOID
EFIAPI
BuildPeCoffLoaderHob (
@ -818,7 +809,7 @@ BuildMemoryTypeInformationHob (
VOID
)
{
EFI_MEMORY_TYPE_INFORMATION Info[10];
EFI_MEMORY_TYPE_INFORMATION Info[10];
Info[0].Type = EfiACPIReclaimMemory;
Info[0].NumberOfPages = PcdGet32 (PcdMemoryTypeEfiACPIReclaimMemory);
@ -843,6 +834,5 @@ BuildMemoryTypeInformationHob (
Info[9].Type = EfiMaxMemoryType;
Info[9].NumberOfPages = 0;
BuildGuidDataHob (&gEfiMemoryTypeInformationGuid, &Info, sizeof (Info));
}

View File

@ -12,11 +12,9 @@
#include <PrePi.h>
#include <Library/ExtractGuidedSectionLib.h>
#define GET_OCCUPIED_SIZE(ActualSize, Alignment) \
(ActualSize) + (((Alignment) - ((ActualSize) & ((Alignment) - 1))) & ((Alignment) - 1))
/**
Returns the highest bit set of the State field
@ -30,7 +28,7 @@
**/
STATIC
EFI_FFS_FILE_STATE
GetFileState(
GetFileState (
IN UINT8 ErasePolarity,
IN EFI_FFS_FILE_HEADER *FfsHeader
)
@ -41,7 +39,7 @@ GetFileState(
FileState = FfsHeader->State;
if (ErasePolarity != 0) {
FileState = (EFI_FFS_FILE_STATE)~FileState;
FileState = (EFI_FFS_FILE_STATE) ~FileState;
}
HighestBit = 0x80;
@ -52,7 +50,6 @@ GetFileState(
return HighestBit;
}
/**
Calculates the checksum of the header of a file.
The header is a zero byte checksum, so zero means header is good
@ -68,21 +65,21 @@ CalculateHeaderChecksum (
IN EFI_FFS_FILE_HEADER *FileHeader
)
{
UINT8 *Ptr;
UINTN Index;
UINT8 Sum;
UINT8 *Ptr;
UINTN Index;
UINT8 Sum;
Sum = 0;
Ptr = (UINT8 *)FileHeader;
for (Index = 0; Index < sizeof(EFI_FFS_FILE_HEADER) - 3; Index += 4) {
for (Index = 0; Index < sizeof (EFI_FFS_FILE_HEADER) - 3; Index += 4) {
Sum = (UINT8)(Sum + Ptr[Index]);
Sum = (UINT8)(Sum + Ptr[Index+1]);
Sum = (UINT8)(Sum + Ptr[Index+2]);
Sum = (UINT8)(Sum + Ptr[Index+3]);
}
for (; Index < sizeof(EFI_FFS_FILE_HEADER); Index++) {
for ( ; Index < sizeof (EFI_FFS_FILE_HEADER); Index++) {
Sum = (UINT8)(Sum + Ptr[Index]);
}
@ -98,7 +95,6 @@ CalculateHeaderChecksum (
return Sum;
}
/**
Given a FileHandle return the VolumeHandle
@ -112,8 +108,8 @@ STATIC
BOOLEAN
EFIAPI
FileHandleToVolume (
IN EFI_PEI_FILE_HANDLE FileHandle,
OUT EFI_PEI_FV_HANDLE *VolumeHandle
IN EFI_PEI_FILE_HANDLE FileHandle,
OUT EFI_PEI_FV_HANDLE *VolumeHandle
)
{
EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader;
@ -128,8 +124,9 @@ FileHandleToVolume (
Hob.Raw = GetNextHob (EFI_HOB_TYPE_FV, Hob.Raw);
if (Hob.Raw != NULL) {
FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *)(UINTN)(Hob.FirmwareVolume->BaseAddress);
if (((UINT64) (UINTN) FileHandle > (UINT64) (UINTN) FwVolHeader ) && \
((UINT64) (UINTN) FileHandle <= ((UINT64) (UINTN) FwVolHeader + FwVolHeader->FvLength - 1))) {
if (((UINT64)(UINTN)FileHandle > (UINT64)(UINTN)FwVolHeader) && \
((UINT64)(UINTN)FileHandle <= ((UINT64)(UINTN)FwVolHeader + FwVolHeader->FvLength - 1)))
{
*VolumeHandle = (EFI_PEI_FV_HANDLE)FwVolHeader;
return TRUE;
}
@ -141,8 +138,6 @@ FileHandleToVolume (
return FALSE;
}
/**
Given the input file pointer, search for the next matching file in the
FFS volume as defined by SearchType. The search starts from FileHeader inside
@ -155,22 +150,22 @@ FileHandleToVolume (
**/
EFI_STATUS
FindFileEx (
IN CONST EFI_PEI_FV_HANDLE FvHandle,
IN CONST EFI_GUID *FileName OPTIONAL,
IN EFI_FV_FILETYPE SearchType,
IN OUT EFI_PEI_FILE_HANDLE *FileHandle
IN CONST EFI_PEI_FV_HANDLE FvHandle,
IN CONST EFI_GUID *FileName OPTIONAL,
IN EFI_FV_FILETYPE SearchType,
IN OUT EFI_PEI_FILE_HANDLE *FileHandle
)
{
EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader;
EFI_FFS_FILE_HEADER **FileHeader;
EFI_FFS_FILE_HEADER *FfsFileHeader;
EFI_FIRMWARE_VOLUME_EXT_HEADER *FwVolExHeaderInfo;
UINT32 FileLength;
UINT32 FileOccupiedSize;
UINT32 FileOffset;
UINT64 FvLength;
UINT8 ErasePolarity;
UINT8 FileState;
EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader;
EFI_FFS_FILE_HEADER **FileHeader;
EFI_FFS_FILE_HEADER *FfsFileHeader;
EFI_FIRMWARE_VOLUME_EXT_HEADER *FwVolExHeaderInfo;
UINT32 FileLength;
UINT32 FileOccupiedSize;
UINT32 FileOffset;
UINT64 FvLength;
UINT8 ErasePolarity;
UINT8 FileState;
FwVolHeader = (EFI_FIRMWARE_VOLUME_HEADER *)FvHandle;
FileHeader = (EFI_FFS_FILE_HEADER **)FileHandle;
@ -191,22 +186,22 @@ FindFileEx (
FfsFileHeader = (EFI_FFS_FILE_HEADER *)((UINT8 *)FwVolHeader + FwVolHeader->HeaderLength);
if (FwVolHeader->ExtHeaderOffset != 0) {
FwVolExHeaderInfo = (EFI_FIRMWARE_VOLUME_EXT_HEADER *)(((UINT8 *)FwVolHeader) + FwVolHeader->ExtHeaderOffset);
FfsFileHeader = (EFI_FFS_FILE_HEADER *)(((UINT8 *)FwVolExHeaderInfo) + FwVolExHeaderInfo->ExtHeaderSize);
FfsFileHeader = (EFI_FFS_FILE_HEADER *)(((UINT8 *)FwVolExHeaderInfo) + FwVolExHeaderInfo->ExtHeaderSize);
}
} else {
//
// Length is 24 bits wide so mask upper 8 bits
// FileLength is adjusted to FileOccupiedSize as it is 8 byte aligned.
//
FileLength = *(UINT32 *)(*FileHeader)->Size & 0x00FFFFFF;
FileLength = *(UINT32 *)(*FileHeader)->Size & 0x00FFFFFF;
FileOccupiedSize = GET_OCCUPIED_SIZE (FileLength, 8);
FfsFileHeader = (EFI_FFS_FILE_HEADER *)((UINT8 *)*FileHeader + FileOccupiedSize);
FfsFileHeader = (EFI_FFS_FILE_HEADER *)((UINT8 *)*FileHeader + FileOccupiedSize);
}
// FFS files begin with a header that is aligned on an 8-byte boundary
FfsFileHeader = ALIGN_POINTER (FfsFileHeader, 8);
FileOffset = (UINT32) ((UINT8 *)FfsFileHeader - (UINT8 *)FwVolHeader);
FileOffset = (UINT32)((UINT8 *)FfsFileHeader - (UINT8 *)FwVolHeader);
ASSERT (FileOffset <= 0xFFFFFFFF);
while (FileOffset < (FvLength - sizeof (EFI_FFS_FILE_HEADER))) {
@ -216,57 +211,55 @@ FindFileEx (
FileState = GetFileState (ErasePolarity, FfsFileHeader);
switch (FileState) {
case EFI_FILE_HEADER_INVALID:
FileOffset += sizeof (EFI_FFS_FILE_HEADER);
FfsFileHeader = (EFI_FFS_FILE_HEADER *)((UINT8 *)FfsFileHeader + sizeof (EFI_FFS_FILE_HEADER));
break;
case EFI_FILE_HEADER_INVALID:
FileOffset += sizeof(EFI_FFS_FILE_HEADER);
FfsFileHeader = (EFI_FFS_FILE_HEADER *)((UINT8 *)FfsFileHeader + sizeof(EFI_FFS_FILE_HEADER));
break;
case EFI_FILE_DATA_VALID:
case EFI_FILE_MARKED_FOR_UPDATE:
if (CalculateHeaderChecksum (FfsFileHeader) != 0) {
ASSERT (FALSE);
*FileHeader = NULL;
return EFI_NOT_FOUND;
}
case EFI_FILE_DATA_VALID:
case EFI_FILE_MARKED_FOR_UPDATE:
if (CalculateHeaderChecksum (FfsFileHeader) != 0) {
ASSERT (FALSE);
*FileHeader = NULL;
return EFI_NOT_FOUND;
}
FileLength = *(UINT32 *)(FfsFileHeader->Size) & 0x00FFFFFF;
FileOccupiedSize = GET_OCCUPIED_SIZE (FileLength, 8);
FileLength = *(UINT32 *)(FfsFileHeader->Size) & 0x00FFFFFF;
FileOccupiedSize = GET_OCCUPIED_SIZE(FileLength, 8);
if (FileName != NULL) {
if (CompareGuid (&FfsFileHeader->Name, (EFI_GUID*)FileName)) {
if (FileName != NULL) {
if (CompareGuid (&FfsFileHeader->Name, (EFI_GUID *)FileName)) {
*FileHeader = FfsFileHeader;
return EFI_SUCCESS;
}
} else if (((SearchType == FfsFileHeader->Type) || (SearchType == EFI_FV_FILETYPE_ALL)) &&
(FfsFileHeader->Type != EFI_FV_FILETYPE_FFS_PAD))
{
*FileHeader = FfsFileHeader;
return EFI_SUCCESS;
}
} else if (((SearchType == FfsFileHeader->Type) || (SearchType == EFI_FV_FILETYPE_ALL)) &&
(FfsFileHeader->Type != EFI_FV_FILETYPE_FFS_PAD)) {
*FileHeader = FfsFileHeader;
return EFI_SUCCESS;
}
FileOffset += FileOccupiedSize;
FfsFileHeader = (EFI_FFS_FILE_HEADER *)((UINT8 *)FfsFileHeader + FileOccupiedSize);
break;
FileOffset += FileOccupiedSize;
FfsFileHeader = (EFI_FFS_FILE_HEADER *)((UINT8 *)FfsFileHeader + FileOccupiedSize);
break;
case EFI_FILE_DELETED:
FileLength = *(UINT32 *)(FfsFileHeader->Size) & 0x00FFFFFF;
FileOccupiedSize = GET_OCCUPIED_SIZE(FileLength, 8);
FileOffset += FileOccupiedSize;
FfsFileHeader = (EFI_FFS_FILE_HEADER *)((UINT8 *)FfsFileHeader + FileOccupiedSize);
break;
case EFI_FILE_DELETED:
FileLength = *(UINT32 *)(FfsFileHeader->Size) & 0x00FFFFFF;
FileOccupiedSize = GET_OCCUPIED_SIZE (FileLength, 8);
FileOffset += FileOccupiedSize;
FfsFileHeader = (EFI_FFS_FILE_HEADER *)((UINT8 *)FfsFileHeader + FileOccupiedSize);
break;
default:
*FileHeader = NULL;
return EFI_NOT_FOUND;
default:
*FileHeader = NULL;
return EFI_NOT_FOUND;
}
}
*FileHeader = NULL;
return EFI_NOT_FOUND;
}
/**
Go through the file to search SectionType section,
when meeting an encapsuled section.
@ -286,20 +279,19 @@ FfsProcessSection (
OUT VOID **OutputBuffer
)
{
EFI_STATUS Status;
UINT32 SectionLength;
UINT32 ParsedLength;
EFI_COMPRESSION_SECTION *CompressionSection;
EFI_COMPRESSION_SECTION2 *CompressionSection2;
UINT32 DstBufferSize;
VOID *ScratchBuffer;
UINT32 ScratchBufferSize;
VOID *DstBuffer;
UINT16 SectionAttribute;
UINT32 AuthenticationStatus;
CHAR8 *CompressedData;
UINTN CompressedDataLength;
EFI_STATUS Status;
UINT32 SectionLength;
UINT32 ParsedLength;
EFI_COMPRESSION_SECTION *CompressionSection;
EFI_COMPRESSION_SECTION2 *CompressionSection2;
UINT32 DstBufferSize;
VOID *ScratchBuffer;
UINT32 ScratchBufferSize;
VOID *DstBuffer;
UINT16 SectionAttribute;
UINT32 AuthenticationStatus;
CHAR8 *CompressedData;
UINTN CompressedDataLength;
*OutputBuffer = NULL;
ParsedLength = 0;
@ -311,35 +303,34 @@ FfsProcessSection (
if (Section->Type == SectionType) {
if (IS_SECTION2 (Section)) {
*OutputBuffer = (VOID *)((UINT8 *) Section + sizeof (EFI_COMMON_SECTION_HEADER2));
*OutputBuffer = (VOID *)((UINT8 *)Section + sizeof (EFI_COMMON_SECTION_HEADER2));
} else {
*OutputBuffer = (VOID *)((UINT8 *) Section + sizeof (EFI_COMMON_SECTION_HEADER));
*OutputBuffer = (VOID *)((UINT8 *)Section + sizeof (EFI_COMMON_SECTION_HEADER));
}
return EFI_SUCCESS;
} else if ((Section->Type == EFI_SECTION_COMPRESSION) || (Section->Type == EFI_SECTION_GUID_DEFINED)) {
if (Section->Type == EFI_SECTION_COMPRESSION) {
if (IS_SECTION2 (Section)) {
CompressionSection2 = (EFI_COMPRESSION_SECTION2 *) Section;
CompressionSection2 = (EFI_COMPRESSION_SECTION2 *)Section;
SectionLength = SECTION2_SIZE (Section);
if (CompressionSection2->CompressionType != EFI_STANDARD_COMPRESSION) {
return EFI_UNSUPPORTED;
}
CompressedData = (CHAR8 *) ((EFI_COMPRESSION_SECTION2 *) Section + 1);
CompressedDataLength = (UINT32) SectionLength - sizeof (EFI_COMPRESSION_SECTION2);
CompressedData = (CHAR8 *)((EFI_COMPRESSION_SECTION2 *)Section + 1);
CompressedDataLength = (UINT32)SectionLength - sizeof (EFI_COMPRESSION_SECTION2);
} else {
CompressionSection = (EFI_COMPRESSION_SECTION *) Section;
SectionLength = SECTION_SIZE (Section);
CompressionSection = (EFI_COMPRESSION_SECTION *)Section;
SectionLength = SECTION_SIZE (Section);
if (CompressionSection->CompressionType != EFI_STANDARD_COMPRESSION) {
return EFI_UNSUPPORTED;
}
CompressedData = (CHAR8 *) ((EFI_COMPRESSION_SECTION *) Section + 1);
CompressedDataLength = (UINT32) SectionLength - sizeof (EFI_COMPRESSION_SECTION);
CompressedData = (CHAR8 *)((EFI_COMPRESSION_SECTION *)Section + 1);
CompressedDataLength = (UINT32)SectionLength - sizeof (EFI_COMPRESSION_SECTION);
}
Status = UefiDecompressGetInfo (
@ -364,6 +355,7 @@ FfsProcessSection (
DEBUG ((DEBUG_ERROR, "Decompress GetInfo Failed - %r\n", Status));
return EFI_NOT_FOUND;
}
//
// Allocate scratch buffer
//
@ -371,6 +363,7 @@ FfsProcessSection (
if (ScratchBuffer == NULL) {
return EFI_OUT_OF_RESOURCES;
}
//
// Allocate destination buffer, extra one page for adjustment
//
@ -378,37 +371,39 @@ FfsProcessSection (
if (DstBuffer == NULL) {
return EFI_OUT_OF_RESOURCES;
}
//
// DstBuffer still is one section. Adjust DstBuffer offset, skip EFI section header
// to make section data at page alignment.
//
if (IS_SECTION2 (Section))
if (IS_SECTION2 (Section)) {
DstBuffer = (UINT8 *)DstBuffer + EFI_PAGE_SIZE - sizeof (EFI_COMMON_SECTION_HEADER2);
else
} else {
DstBuffer = (UINT8 *)DstBuffer + EFI_PAGE_SIZE - sizeof (EFI_COMMON_SECTION_HEADER);
}
//
// Call decompress function
//
if (Section->Type == EFI_SECTION_COMPRESSION) {
if (IS_SECTION2 (Section)) {
CompressedData = (CHAR8 *) ((EFI_COMPRESSION_SECTION2 *) Section + 1);
}
else {
CompressedData = (CHAR8 *) ((EFI_COMPRESSION_SECTION *) Section + 1);
CompressedData = (CHAR8 *)((EFI_COMPRESSION_SECTION2 *)Section + 1);
} else {
CompressedData = (CHAR8 *)((EFI_COMPRESSION_SECTION *)Section + 1);
}
Status = UefiDecompress (
CompressedData,
DstBuffer,
ScratchBuffer
);
CompressedData,
DstBuffer,
ScratchBuffer
);
} else if (Section->Type == EFI_SECTION_GUID_DEFINED) {
Status = ExtractGuidedSectionDecode (
Section,
&DstBuffer,
ScratchBuffer,
&AuthenticationStatus
);
Section,
&DstBuffer,
ScratchBuffer,
&AuthenticationStatus
);
}
if (EFI_ERROR (Status)) {
@ -419,12 +414,12 @@ FfsProcessSection (
return EFI_NOT_FOUND;
} else {
return FfsProcessSection (
SectionType,
DstBuffer,
DstBufferSize,
OutputBuffer
);
}
SectionType,
DstBuffer,
DstBufferSize,
OutputBuffer
);
}
}
if (IS_SECTION2 (Section)) {
@ -432,6 +427,7 @@ FfsProcessSection (
} else {
SectionLength = SECTION_SIZE (Section);
}
//
// SectionLength is adjusted it is 4 byte aligned.
// Go to the next section
@ -439,14 +435,12 @@ FfsProcessSection (
SectionLength = GET_OCCUPIED_SIZE (SectionLength, 4);
ASSERT (SectionLength != 0);
ParsedLength += SectionLength;
Section = (EFI_COMMON_SECTION_HEADER *)((UINT8 *)Section + SectionLength);
Section = (EFI_COMMON_SECTION_HEADER *)((UINT8 *)Section + SectionLength);
}
return EFI_NOT_FOUND;
}
/**
This service enables discovery sections of a given type within a valid FFS file.
@ -462,14 +456,14 @@ FfsProcessSection (
EFI_STATUS
EFIAPI
FfsFindSectionData (
IN EFI_SECTION_TYPE SectionType,
IN EFI_PEI_FILE_HANDLE FileHandle,
OUT VOID **SectionData
IN EFI_SECTION_TYPE SectionType,
IN EFI_PEI_FILE_HANDLE FileHandle,
OUT VOID **SectionData
)
{
EFI_FFS_FILE_HEADER *FfsFileHeader;
UINT32 FileSize;
EFI_COMMON_SECTION_HEADER *Section;
EFI_FFS_FILE_HEADER *FfsFileHeader;
UINT32 FileSize;
EFI_COMMON_SECTION_HEADER *Section;
FfsFileHeader = (EFI_FFS_FILE_HEADER *)(FileHandle);
@ -478,23 +472,18 @@ FfsFindSectionData (
// Does not include FfsFileHeader header size
// FileSize is adjusted to FileOccupiedSize as it is 8 byte aligned.
//
Section = (EFI_COMMON_SECTION_HEADER *)(FfsFileHeader + 1);
FileSize = *(UINT32 *)(FfsFileHeader->Size) & 0x00FFFFFF;
Section = (EFI_COMMON_SECTION_HEADER *)(FfsFileHeader + 1);
FileSize = *(UINT32 *)(FfsFileHeader->Size) & 0x00FFFFFF;
FileSize -= sizeof (EFI_FFS_FILE_HEADER);
return FfsProcessSection (
SectionType,
Section,
FileSize,
SectionData
);
SectionType,
Section,
FileSize,
SectionData
);
}
/**
This service enables discovery of additional firmware files.
@ -511,15 +500,14 @@ FfsFindSectionData (
EFI_STATUS
EFIAPI
FfsFindNextFile (
IN UINT8 SearchType,
IN EFI_PEI_FV_HANDLE VolumeHandle,
IN OUT EFI_PEI_FILE_HANDLE *FileHandle
IN UINT8 SearchType,
IN EFI_PEI_FV_HANDLE VolumeHandle,
IN OUT EFI_PEI_FILE_HANDLE *FileHandle
)
{
return FindFileEx (VolumeHandle, NULL, SearchType, FileHandle);
}
/**
This service enables discovery of additional firmware volumes.
@ -534,12 +522,11 @@ FfsFindNextFile (
EFI_STATUS
EFIAPI
FfsFindNextVolume (
IN UINTN Instance,
IN OUT EFI_PEI_FV_HANDLE *VolumeHandle
IN UINTN Instance,
IN OUT EFI_PEI_FV_HANDLE *VolumeHandle
)
{
EFI_PEI_HOB_POINTERS Hob;
EFI_PEI_HOB_POINTERS Hob;
Hob.Raw = GetHobList ();
if (Hob.Raw == NULL) {
@ -559,10 +546,8 @@ FfsFindNextVolume (
} while (Hob.Raw != NULL);
return EFI_NOT_FOUND;
}
/**
Find a file in the volume by name
@ -584,25 +569,25 @@ FfsFindNextVolume (
EFI_STATUS
EFIAPI
FfsFindFileByName (
IN CONST EFI_GUID *FileName,
IN EFI_PEI_FV_HANDLE VolumeHandle,
OUT EFI_PEI_FILE_HANDLE *FileHandle
IN CONST EFI_GUID *FileName,
IN EFI_PEI_FV_HANDLE VolumeHandle,
OUT EFI_PEI_FILE_HANDLE *FileHandle
)
{
EFI_STATUS Status;
if ((VolumeHandle == NULL) || (FileName == NULL) || (FileHandle == NULL)) {
return EFI_INVALID_PARAMETER;
}
Status = FindFileEx (VolumeHandle, FileName, 0, FileHandle);
if (Status == EFI_NOT_FOUND) {
*FileHandle = NULL;
}
return Status;
}
/**
Get information about the file by name.
@ -626,10 +611,10 @@ FfsGetFileInfo (
OUT EFI_FV_FILE_INFO *FileInfo
)
{
UINT8 FileState;
UINT8 ErasePolarity;
EFI_FFS_FILE_HEADER *FileHeader;
EFI_PEI_FV_HANDLE VolumeHandle;
UINT8 FileState;
UINT8 ErasePolarity;
EFI_FFS_FILE_HEADER *FileHeader;
EFI_PEI_FV_HANDLE VolumeHandle;
if ((FileHandle == NULL) || (FileInfo == NULL)) {
return EFI_INVALID_PARAMETER;
@ -639,11 +624,11 @@ FfsGetFileInfo (
//
// Retrieve the FirmwareVolume which the file resides in.
//
if (!FileHandleToVolume(FileHandle, &VolumeHandle)) {
if (!FileHandleToVolume (FileHandle, &VolumeHandle)) {
return EFI_INVALID_PARAMETER;
}
if (((EFI_FIRMWARE_VOLUME_HEADER*)VolumeHandle)->Attributes & EFI_FVB2_ERASE_POLARITY) {
if (((EFI_FIRMWARE_VOLUME_HEADER *)VolumeHandle)->Attributes & EFI_FVB2_ERASE_POLARITY) {
ErasePolarity = 1;
} else {
ErasePolarity = 0;
@ -652,7 +637,7 @@ FfsGetFileInfo (
//
// Get FileState which is the highest bit of the State
//
FileState = GetFileState (ErasePolarity, (EFI_FFS_FILE_HEADER*)FileHandle);
FileState = GetFileState (ErasePolarity, (EFI_FFS_FILE_HEADER *)FileHandle);
switch (FileState) {
case EFI_FILE_DATA_VALID:
@ -660,18 +645,17 @@ FfsGetFileInfo (
break;
default:
return EFI_INVALID_PARAMETER;
}
}
FileHeader = (EFI_FFS_FILE_HEADER *)FileHandle;
CopyMem (&FileInfo->FileName, &FileHeader->Name, sizeof(EFI_GUID));
FileInfo->FileType = FileHeader->Type;
CopyMem (&FileInfo->FileName, &FileHeader->Name, sizeof (EFI_GUID));
FileInfo->FileType = FileHeader->Type;
FileInfo->FileAttributes = FileHeader->Attributes;
FileInfo->BufferSize = ((*(UINT32 *)FileHeader->Size) & 0x00FFFFFF) - sizeof (EFI_FFS_FILE_HEADER);
FileInfo->Buffer = (FileHeader + 1);
FileInfo->BufferSize = ((*(UINT32 *)FileHeader->Size) & 0x00FFFFFF) - sizeof (EFI_FFS_FILE_HEADER);
FileInfo->Buffer = (FileHeader + 1);
return EFI_SUCCESS;
}
/**
Get Information about the volume by name
@ -695,8 +679,8 @@ FfsGetVolumeInfo (
OUT EFI_FV_INFO *VolumeInfo
)
{
EFI_FIRMWARE_VOLUME_HEADER FwVolHeader;
EFI_FIRMWARE_VOLUME_EXT_HEADER *FwVolExHeaderInfo;
EFI_FIRMWARE_VOLUME_HEADER FwVolHeader;
EFI_FIRMWARE_VOLUME_EXT_HEADER *FwVolExHeaderInfo;
if (VolumeInfo == NULL) {
return EFI_INVALID_PARAMETER;
@ -714,20 +698,20 @@ FfsGetVolumeInfo (
if (FwVolHeader.Signature != EFI_FVH_SIGNATURE) {
return EFI_INVALID_PARAMETER;
}
VolumeInfo->FvAttributes = FwVolHeader.Attributes;
VolumeInfo->FvStart = (VOID *) VolumeHandle;
VolumeInfo->FvSize = FwVolHeader.FvLength;
CopyMem (&VolumeInfo->FvFormat, &FwVolHeader.FileSystemGuid, sizeof(EFI_GUID));
VolumeInfo->FvStart = (VOID *)VolumeHandle;
VolumeInfo->FvSize = FwVolHeader.FvLength;
CopyMem (&VolumeInfo->FvFormat, &FwVolHeader.FileSystemGuid, sizeof (EFI_GUID));
if (FwVolHeader.ExtHeaderOffset != 0) {
FwVolExHeaderInfo = (EFI_FIRMWARE_VOLUME_EXT_HEADER*)(((UINT8 *)VolumeHandle) + FwVolHeader.ExtHeaderOffset);
CopyMem (&VolumeInfo->FvName, &FwVolExHeaderInfo->FvName, sizeof(EFI_GUID));
FwVolExHeaderInfo = (EFI_FIRMWARE_VOLUME_EXT_HEADER *)(((UINT8 *)VolumeHandle) + FwVolHeader.ExtHeaderOffset);
CopyMem (&VolumeInfo->FvName, &FwVolExHeaderInfo->FvName, sizeof (EFI_GUID));
}
return EFI_SUCCESS;
}
/**
Search through every FV until you find a file of type FileType
@ -742,13 +726,13 @@ FfsGetVolumeInfo (
EFI_STATUS
EFIAPI
FfsAnyFvFindFirstFile (
IN EFI_FV_FILETYPE FileType,
OUT EFI_PEI_FV_HANDLE *VolumeHandle,
OUT EFI_PEI_FILE_HANDLE *FileHandle
IN EFI_FV_FILETYPE FileType,
OUT EFI_PEI_FV_HANDLE *VolumeHandle,
OUT EFI_PEI_FILE_HANDLE *FileHandle
)
{
EFI_STATUS Status;
UINTN Instance;
EFI_STATUS Status;
UINTN Instance;
//
// Search every FV for the DXE Core
@ -756,17 +740,14 @@ FfsAnyFvFindFirstFile (
Instance = 0;
*FileHandle = NULL;
while (1)
{
while (1) {
Status = FfsFindNextVolume (Instance++, VolumeHandle);
if (EFI_ERROR (Status))
{
if (EFI_ERROR (Status)) {
break;
}
Status = FfsFindNextFile (FileType, *VolumeHandle, FileHandle);
if (!EFI_ERROR (Status))
{
if (!EFI_ERROR (Status)) {
break;
}
}
@ -774,8 +755,6 @@ FfsAnyFvFindFirstFile (
return Status;
}
/**
Get Fv image from the FV type file, then add FV & FV2 Hob.
@ -789,7 +768,7 @@ FfsAnyFvFindFirstFile (
EFI_STATUS
EFIAPI
FfsProcessFvFile (
IN EFI_PEI_FILE_HANDLE FvFileHandle
IN EFI_PEI_FILE_HANDLE FvFileHandle
)
{
EFI_STATUS Status;
@ -799,8 +778,7 @@ FfsProcessFvFile (
VOID *FvBuffer;
EFI_PEI_HOB_POINTERS HobFv2;
FvBuffer = NULL;
FvBuffer = NULL;
//
// Check if this EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE file has already
@ -814,6 +792,7 @@ FfsProcessFvFile (
//
return EFI_SUCCESS;
}
HobFv2.Raw = GET_NEXT_HOB (HobFv2);
}
@ -843,30 +822,30 @@ FfsProcessFvFile (
//
// Check FvImage
//
if ((UINTN) FvImageInfo.FvStart % FvAlignment != 0) {
FvBuffer = AllocateAlignedPages (EFI_SIZE_TO_PAGES ((UINT32) FvImageInfo.FvSize), FvAlignment);
if ((UINTN)FvImageInfo.FvStart % FvAlignment != 0) {
FvBuffer = AllocateAlignedPages (EFI_SIZE_TO_PAGES ((UINT32)FvImageInfo.FvSize), FvAlignment);
if (FvBuffer == NULL) {
return EFI_OUT_OF_RESOURCES;
}
CopyMem (FvBuffer, FvImageInfo.FvStart, (UINTN) FvImageInfo.FvSize);
CopyMem (FvBuffer, FvImageInfo.FvStart, (UINTN)FvImageInfo.FvSize);
//
// Update FvImageInfo after reload FvImage to new aligned memory
//
FfsGetVolumeInfo ((EFI_PEI_FV_HANDLE) FvBuffer, &FvImageInfo);
FfsGetVolumeInfo ((EFI_PEI_FV_HANDLE)FvBuffer, &FvImageInfo);
}
//
// Inform HOB consumer phase, i.e. DXE core, the existence of this FV
//
BuildFvHob ((EFI_PHYSICAL_ADDRESS) (UINTN) FvImageInfo.FvStart, FvImageInfo.FvSize);
BuildFvHob ((EFI_PHYSICAL_ADDRESS)(UINTN)FvImageInfo.FvStart, FvImageInfo.FvSize);
//
// Makes the encapsulated volume show up in DXE phase to skip processing of
// encapsulated file again.
//
BuildFv2Hob (
(EFI_PHYSICAL_ADDRESS) (UINTN) FvImageInfo.FvStart,
(EFI_PHYSICAL_ADDRESS)(UINTN)FvImageInfo.FvStart,
FvImageInfo.FvSize,
&FvImageInfo.FvName,
&(((EFI_FFS_FILE_HEADER *)FvFileHandle)->Name)

View File

@ -26,7 +26,6 @@
#include <Guid/MemoryAllocationHob.h>
#define GET_HOB_TYPE(Hob) ((Hob).Header->HobType)
#define GET_HOB_LENGTH(Hob) ((Hob).Header->HobLength)
#define GET_NEXT_HOB(Hob) ((Hob).Raw + GET_HOB_LENGTH (Hob))
@ -35,7 +34,7 @@
//
// Get the data and data size field of GUID
//
#define GET_GUID_HOB_DATA(GuidHob) ((VOID *) (((UINT8 *) &((GuidHob)->Name)) + sizeof (EFI_GUID)))
#define GET_GUID_HOB_DATA_SIZE(GuidHob) (((GuidHob)->Header).HobLength - sizeof (EFI_HOB_GUID_TYPE))
#define GET_GUID_HOB_DATA(GuidHob) ((VOID *) (((UINT8 *) &((GuidHob)->Name)) + sizeof (EFI_GUID)))
#define GET_GUID_HOB_DATA_SIZE(GuidHob) (((GuidHob)->Header).HobLength - sizeof (EFI_HOB_GUID_TYPE))
#endif

View File

@ -16,21 +16,21 @@ EFI_STATUS
EFIAPI
SecWinNtPeiLoadFile (
IN VOID *Pe32Data,
IN EFI_PHYSICAL_ADDRESS *ImageAddress,
IN UINT64 *ImageSize,
IN EFI_PHYSICAL_ADDRESS *EntryPoint
IN VOID *Pe32Data,
IN EFI_PHYSICAL_ADDRESS *ImageAddress,
IN UINT64 *ImageSize,
IN EFI_PHYSICAL_ADDRESS *EntryPoint
);
STATIC
VOID*
VOID *
EFIAPI
AllocateCodePages (
IN UINTN Pages
IN UINTN Pages
)
{
VOID *Alloc;
EFI_PEI_HOB_POINTERS Hob;
VOID *Alloc;
EFI_PEI_HOB_POINTERS Hob;
Alloc = AllocatePages (Pages);
if (Alloc == NULL) {
@ -44,6 +44,7 @@ AllocateCodePages (
Hob.MemoryAllocation->AllocDescriptor.MemoryType = EfiBootServicesCode;
return Alloc;
}
Hob.Raw = GetNextHob (EFI_HOB_TYPE_MEMORY_ALLOCATION, GET_NEXT_HOB (Hob));
}
@ -53,19 +54,18 @@ AllocateCodePages (
return NULL;
}
EFI_STATUS
EFIAPI
LoadPeCoffImage (
IN VOID *PeCoffImage,
OUT EFI_PHYSICAL_ADDRESS *ImageAddress,
OUT UINT64 *ImageSize,
OUT EFI_PHYSICAL_ADDRESS *EntryPoint
IN VOID *PeCoffImage,
OUT EFI_PHYSICAL_ADDRESS *ImageAddress,
OUT UINT64 *ImageSize,
OUT EFI_PHYSICAL_ADDRESS *EntryPoint
)
{
RETURN_STATUS Status;
PE_COFF_LOADER_IMAGE_CONTEXT ImageContext;
VOID *Buffer;
VOID *Buffer;
ZeroMem (&ImageContext, sizeof (ImageContext));
@ -75,14 +75,12 @@ LoadPeCoffImage (
Status = PeCoffLoaderGetImageInfo (&ImageContext);
ASSERT_EFI_ERROR (Status);
//
// Allocate Memory for the image
//
Buffer = AllocateCodePages (EFI_SIZE_TO_PAGES((UINT32)ImageContext.ImageSize));
Buffer = AllocateCodePages (EFI_SIZE_TO_PAGES ((UINT32)ImageContext.ImageSize));
ASSERT (Buffer != 0);
ImageContext.ImageAddress = (EFI_PHYSICAL_ADDRESS)(UINTN)Buffer;
//
@ -97,7 +95,6 @@ LoadPeCoffImage (
Status = PeCoffLoaderRelocateImage (&ImageContext);
ASSERT_EFI_ERROR (Status);
*ImageAddress = ImageContext.ImageAddress;
*ImageSize = ImageContext.ImageSize;
*EntryPoint = ImageContext.EntryPoint;
@ -111,11 +108,9 @@ LoadPeCoffImage (
return Status;
}
typedef
VOID
(EFIAPI *DXE_CORE_ENTRY_POINT) (
(EFIAPI *DXE_CORE_ENTRY_POINT)(
IN VOID *HobStart
);
@ -126,24 +121,23 @@ LoadDxeCoreFromFfsFile (
IN UINTN StackSize
)
{
EFI_STATUS Status;
VOID *PeCoffImage;
EFI_PHYSICAL_ADDRESS ImageAddress;
UINT64 ImageSize;
EFI_PHYSICAL_ADDRESS EntryPoint;
VOID *BaseOfStack;
VOID *TopOfStack;
VOID *Hob;
EFI_FV_FILE_INFO FvFileInfo;
EFI_STATUS Status;
VOID *PeCoffImage;
EFI_PHYSICAL_ADDRESS ImageAddress;
UINT64 ImageSize;
EFI_PHYSICAL_ADDRESS EntryPoint;
VOID *BaseOfStack;
VOID *TopOfStack;
VOID *Hob;
EFI_FV_FILE_INFO FvFileInfo;
Status = FfsFindSectionData (EFI_SECTION_PE32, FileHandle, &PeCoffImage);
if (EFI_ERROR (Status)) {
if (EFI_ERROR (Status)) {
return Status;
}
Status = LoadPeCoffImage (PeCoffImage, &ImageAddress, &ImageSize, &EntryPoint);
// For NT32 Debug Status = SecWinNtPeiLoadFile (PeCoffImage, &ImageAddress, &ImageSize, &EntryPoint);
// For NT32 Debug Status = SecWinNtPeiLoadFile (PeCoffImage, &ImageAddress, &ImageSize, &EntryPoint);
ASSERT_EFI_ERROR (Status);
//
@ -152,7 +146,7 @@ LoadDxeCoreFromFfsFile (
Status = FfsGetFileInfo (FileHandle, &FvFileInfo);
ASSERT_EFI_ERROR (Status);
BuildModuleHob (&FvFileInfo.FileName, (EFI_PHYSICAL_ADDRESS)(UINTN)ImageAddress, EFI_SIZE_TO_PAGES ((UINT32) ImageSize) * EFI_PAGE_SIZE, EntryPoint);
BuildModuleHob (&FvFileInfo.FileName, (EFI_PHYSICAL_ADDRESS)(UINTN)ImageAddress, EFI_SIZE_TO_PAGES ((UINT32)ImageSize) * EFI_PAGE_SIZE, EntryPoint);
DEBUG ((DEBUG_INFO | DEBUG_LOAD, "Loading DxeCore at 0x%10p EntryPoint=0x%10p\n", (VOID *)(UINTN)ImageAddress, (VOID *)(UINTN)EntryPoint));
@ -160,9 +154,8 @@ LoadDxeCoreFromFfsFile (
if (StackSize == 0) {
// User the current stack
((DXE_CORE_ENTRY_POINT)(UINTN)EntryPoint) (Hob);
((DXE_CORE_ENTRY_POINT)(UINTN)EntryPoint)(Hob);
} else {
//
// Allocate 128KB for the Stack
//
@ -173,13 +166,13 @@ LoadDxeCoreFromFfsFile (
// Compute the top of the stack we were allocated. Pre-allocate a UINTN
// for safety.
//
TopOfStack = (VOID *) ((UINTN) BaseOfStack + EFI_SIZE_TO_PAGES (StackSize) * EFI_PAGE_SIZE - CPU_STACK_ALIGNMENT);
TopOfStack = (VOID *)((UINTN)BaseOfStack + EFI_SIZE_TO_PAGES (StackSize) * EFI_PAGE_SIZE - CPU_STACK_ALIGNMENT);
TopOfStack = ALIGN_POINTER (TopOfStack, CPU_STACK_ALIGNMENT);
//
// Update the contents of BSP stack HOB to reflect the real stack info passed to DxeCore.
//
UpdateStackHob ((EFI_PHYSICAL_ADDRESS)(UINTN) BaseOfStack, StackSize);
UpdateStackHob ((EFI_PHYSICAL_ADDRESS)(UINTN)BaseOfStack, StackSize);
SwitchStack (
(SWITCH_STACK_ENTRY_POINT)(UINTN)EntryPoint,
@ -187,7 +180,6 @@ LoadDxeCoreFromFfsFile (
NULL,
TopOfStack
);
}
// Should never get here as DXE Core does not return
@ -197,8 +189,6 @@ LoadDxeCoreFromFfsFile (
return EFI_DEVICE_ERROR;
}
EFI_STATUS
EFIAPI
LoadDxeCoreFromFv (
@ -206,9 +196,9 @@ LoadDxeCoreFromFv (
IN UINTN StackSize
)
{
EFI_STATUS Status;
EFI_PEI_FV_HANDLE VolumeHandle;
EFI_PEI_FILE_HANDLE FileHandle = NULL;
EFI_STATUS Status;
EFI_PEI_FV_HANDLE VolumeHandle;
EFI_PEI_FILE_HANDLE FileHandle = NULL;
if (FvInstance != NULL) {
//
@ -229,16 +219,15 @@ LoadDxeCoreFromFv (
return Status;
}
EFI_STATUS
EFIAPI
DecompressFirstFv (
VOID
)
{
EFI_STATUS Status;
EFI_PEI_FV_HANDLE VolumeHandle;
EFI_PEI_FILE_HANDLE FileHandle;
EFI_STATUS Status;
EFI_PEI_FV_HANDLE VolumeHandle;
EFI_PEI_FILE_HANDLE FileHandle;
Status = FfsAnyFvFindFirstFile (EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE, &VolumeHandle, &FileHandle);
if (!EFI_ERROR (Status)) {

View File

@ -14,8 +14,6 @@
#include <Library/PrePiLib.h>
#include <Library/DebugLib.h>
/**
Allocates one or more 4KB pages of type EfiBootServicesData.
@ -32,11 +30,11 @@
VOID *
EFIAPI
AllocatePages (
IN UINTN Pages
IN UINTN Pages
)
{
EFI_PEI_HOB_POINTERS Hob;
EFI_PHYSICAL_ADDRESS Offset;
EFI_PEI_HOB_POINTERS Hob;
EFI_PHYSICAL_ADDRESS Offset;
Hob.Raw = GetHobList ();
@ -65,15 +63,14 @@ AllocatePages (
// Create a memory allocation HOB.
//
BuildMemoryAllocationHob (
Hob.HandoffInformationTable->EfiFreeMemoryTop,
Pages * EFI_PAGE_SIZE,
EfiBootServicesData
);
Hob.HandoffInformationTable->EfiFreeMemoryTop,
Pages * EFI_PAGE_SIZE,
EfiBootServicesData
);
return (VOID *)(UINTN)Hob.HandoffInformationTable->EfiFreeMemoryTop;
}
}
/**
Allocates one or more 4KB pages of type EfiBootServicesData at a specified alignment.
@ -97,8 +94,8 @@ AllocateAlignedPages (
IN UINTN Alignment
)
{
VOID *Memory;
UINTN AlignmentMask;
VOID *Memory;
UINTN AlignmentMask;
//
// Alignment must be a power of two or zero.
@ -108,6 +105,7 @@ AllocateAlignedPages (
if (Pages == 0) {
return NULL;
}
//
// Make sure that Pages plus EFI_SIZE_TO_PAGES (Alignment) does not overflow.
//
@ -121,9 +119,9 @@ AllocateAlignedPages (
} else {
AlignmentMask = Alignment - 1;
}
return (VOID *) (UINTN) (((UINTN) Memory + AlignmentMask) & ~AlignmentMask);
}
return (VOID *)(UINTN)(((UINTN)Memory + AlignmentMask) & ~AlignmentMask);
}
/**
Frees one or more 4KB pages that were previously allocated with one of the page allocation
@ -171,11 +169,10 @@ AllocatePool (
IN UINTN AllocationSize
)
{
EFI_HOB_MEMORY_POOL *Hob;
EFI_HOB_MEMORY_POOL *Hob;
Hob = GetHobList ();
//
// Verify that there is sufficient memory to satisfy the allocation
//
@ -183,10 +180,11 @@ AllocatePool (
// Please call AllocatePages for big allocations
return 0;
} else {
Hob = (EFI_HOB_MEMORY_POOL *)CreateHob (EFI_HOB_TYPE_MEMORY_POOL,
Hob = (EFI_HOB_MEMORY_POOL *)CreateHob (
EFI_HOB_TYPE_MEMORY_POOL,
(UINT16)(sizeof (EFI_HOB_MEMORY_POOL) +
AllocationSize));
AllocationSize)
);
return (VOID *)(Hob + 1);
}
}
@ -210,7 +208,7 @@ AllocateZeroPool (
IN UINTN AllocationSize
)
{
VOID *Buffer;
VOID *Buffer;
Buffer = AllocatePool (AllocationSize);
if (Buffer == NULL) {
@ -239,7 +237,7 @@ AllocateZeroPool (
VOID
EFIAPI
FreePool (
IN VOID *Buffer
IN VOID *Buffer
)
{
// Not implemented yet

View File

@ -15,7 +15,6 @@
#include <Library/IoLib.h>
#include <Library/RealTimeClockLib.h>
/**
Returns the current time and date information, and the time-keeping capabilities
of the hardware platform.
@ -42,7 +41,6 @@ LibGetTime (
return EFI_DEVICE_ERROR;
}
/**
Sets the current local time and date information.
@ -56,7 +54,7 @@ LibGetTime (
EFI_STATUS
EFIAPI
LibSetTime (
IN EFI_TIME *Time
IN EFI_TIME *Time
)
{
//
@ -65,7 +63,6 @@ LibSetTime (
return EFI_DEVICE_ERROR;
}
/**
Returns the current wakeup alarm clock setting.
@ -81,16 +78,15 @@ LibSetTime (
EFI_STATUS
EFIAPI
LibGetWakeupTime (
OUT BOOLEAN *Enabled,
OUT BOOLEAN *Pending,
OUT EFI_TIME *Time
OUT BOOLEAN *Enabled,
OUT BOOLEAN *Pending,
OUT EFI_TIME *Time
)
{
// Not a required feature
return EFI_UNSUPPORTED;
}
/**
Sets the system wakeup alarm clock time.
@ -107,16 +103,14 @@ LibGetWakeupTime (
EFI_STATUS
EFIAPI
LibSetWakeupTime (
IN BOOLEAN Enabled,
OUT EFI_TIME *Time
IN BOOLEAN Enabled,
OUT EFI_TIME *Time
)
{
// Not a required feature
return EFI_UNSUPPORTED;
}
/**
This is the declaration of an EFI image entry point. This can be the entry point to an application
written to this specification, an EFI boot service driver, or an EFI runtime driver.
@ -130,8 +124,8 @@ LibSetWakeupTime (
EFI_STATUS
EFIAPI
LibRtcInitialize (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
//
@ -140,7 +134,6 @@ LibRtcInitialize (
return EFI_SUCCESS;
}
/**
Fixup internal data so that EFI can be call in virtual mode.
Call the passed in Child Notify event and convert any pointers in
@ -152,8 +145,8 @@ LibRtcInitialize (
VOID
EFIAPI
LibRtcVirtualNotifyEvent (
IN EFI_EVENT Event,
IN VOID *Context
IN EFI_EVENT Event,
IN VOID *Context
)
{
//
@ -164,6 +157,3 @@ LibRtcVirtualNotifyEvent (
//
return;
}

View File

@ -10,14 +10,12 @@
**/
#include <PiDxe.h>
#include <Library/BaseLib.h>
#include <Library/IoLib.h>
#include <Library/EfiResetSystemLib.h>
/**
Resets the entire platform.
@ -32,40 +30,39 @@
EFI_STATUS
EFIAPI
LibResetSystem (
IN EFI_RESET_TYPE ResetType,
IN EFI_STATUS ResetStatus,
IN UINTN DataSize,
IN CHAR16 *ResetData OPTIONAL
IN EFI_RESET_TYPE ResetType,
IN EFI_STATUS ResetStatus,
IN UINTN DataSize,
IN CHAR16 *ResetData OPTIONAL
)
{
UINTN Address;
UINT8 Data;
UINTN Address;
UINT8 Data;
switch (ResetType) {
case EfiResetCold:
// system power cycle
case EfiResetCold:
// system power cycle
// Example using IoLib functions to do IO.
Address = 0x12345678;
Data = MmioRead8 (Address);
MmioWrite8 (Address, Data | 0x01);
// Example using IoLib functions to do IO.
Address = 0x12345678;
Data = MmioRead8 (Address);
MmioWrite8 (Address, Data | 0x01);
// Note this is a bad example asa MmioOr8 (Address, 0x01) does the same thing
break;
// Note this is a bad example asa MmioOr8 (Address, 0x01) does the same thing
break;
case EfiResetWarm:
// not a full power cycle, maybe memory stays around.
// if not support do the same thing as EfiResetCold.
break;
case EfiResetWarm:
// not a full power cycle, maybe memory stays around.
// if not support do the same thing as EfiResetCold.
break;
case EfiResetShutdown:
// turn off the system.
// if not support do the same thing as EfiResetCold.
break;
case EfiResetShutdown:
// turn off the system.
// if not support do the same thing as EfiResetCold.
break;
default:
return EFI_INVALID_PARAMETER;
default:
return EFI_INVALID_PARAMETER;
}
//
@ -74,8 +71,6 @@ LibResetSystem (
return EFI_DEVICE_ERROR;
}
/**
Initialize any infrastructure required for LibResetSystem () to function.
@ -94,4 +89,3 @@ LibInitializeResetSystem (
{
return EFI_SUCCESS;
}

View File

@ -27,22 +27,22 @@ EpochToEfiTime (
OUT EFI_TIME *Time
)
{
UINTN a;
UINTN b;
UINTN c;
UINTN d;
UINTN g;
UINTN j;
UINTN m;
UINTN y;
UINTN da;
UINTN db;
UINTN dc;
UINTN dg;
UINTN hh;
UINTN mm;
UINTN ss;
UINTN J;
UINTN a;
UINTN b;
UINTN c;
UINTN d;
UINTN g;
UINTN j;
UINTN m;
UINTN y;
UINTN da;
UINTN db;
UINTN dc;
UINTN dg;
UINTN hh;
UINTN mm;
UINTN ss;
UINTN J;
J = (EpochSeconds / 86400) + 2440588;
j = J + 32044;
@ -65,14 +65,13 @@ EpochToEfiTime (
ss = EpochSeconds % 60;
a = (EpochSeconds - ss) / 60;
mm = a % 60;
b = (a - mm) / 60;
b = (a - mm) / 60;
hh = b % 24;
Time->Hour = (UINT8)hh;
Time->Minute = (UINT8)mm;
Time->Second = (UINT8)ss;
Time->Nanosecond = 0;
Time->Hour = (UINT8)hh;
Time->Minute = (UINT8)mm;
Time->Second = (UINT8)ss;
Time->Nanosecond = 0;
}
/**
@ -89,13 +88,13 @@ EfiGetEpochDays (
IN EFI_TIME *Time
)
{
UINTN a;
UINTN y;
UINTN m;
UINTN JulianDate; // Absolute Julian Date representation of the supplied Time
UINTN EpochDays; // Number of days elapsed since EPOCH_JULIAN_DAY
UINTN a;
UINTN y;
UINTN m;
UINTN JulianDate; // Absolute Julian Date representation of the supplied Time
UINTN EpochDays; // Number of days elapsed since EPOCH_JULIAN_DAY
a = (14 - Time->Month) / 12 ;
a = (14 - Time->Month) / 12;
y = Time->Year + 4800 - a;
m = Time->Month + (12*a) - 3;
@ -121,8 +120,8 @@ EfiTimeToEpoch (
IN EFI_TIME *Time
)
{
UINTN EpochDays; // Number of days elapsed since EPOCH_JULIAN_DAY
UINTN EpochSeconds;
UINTN EpochDays; // Number of days elapsed since EPOCH_JULIAN_DAY
UINTN EpochSeconds;
EpochDays = EfiGetEpochDays (Time);
@ -144,7 +143,7 @@ EfiTimeToWday (
IN EFI_TIME *Time
)
{
UINTN EpochDays; // Number of days elapsed since EPOCH_JULIAN_DAY
UINTN EpochDays; // Number of days elapsed since EPOCH_JULIAN_DAY
EpochDays = EfiGetEpochDays (Time);
@ -165,7 +164,7 @@ EfiTimeToWday (
BOOLEAN
EFIAPI
IsLeapYear (
IN EFI_TIME *Time
IN EFI_TIME *Time
)
{
if (Time->Year % 4 == 0) {
@ -198,12 +197,13 @@ IsDayValid (
IN EFI_TIME *Time
)
{
STATIC CONST INTN DayOfMonth[12] = { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
STATIC CONST INTN DayOfMonth[12] = { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
if (Time->Day < 1 ||
Time->Day > DayOfMonth[Time->Month - 1] ||
(Time->Month == 2 && (!IsLeapYear (Time) && Time->Day > 28))
) {
if ((Time->Day < 1) ||
(Time->Day > DayOfMonth[Time->Month - 1]) ||
((Time->Month == 2) && (!IsLeapYear (Time) && (Time->Day > 28)))
)
{
return FALSE;
}
@ -267,21 +267,22 @@ IsValidDaylight (
BOOLEAN
EFIAPI
IsTimeValid (
IN EFI_TIME *Time
IN EFI_TIME *Time
)
{
// Check the input parameters are within the range specified by UEFI
if ((Time->Year < 2000) ||
(Time->Year > 2099) ||
(Time->Month < 1 ) ||
(Time->Month > 12 ) ||
(!IsDayValid (Time) ) ||
(Time->Hour > 23 ) ||
(Time->Minute > 59 ) ||
(Time->Second > 59 ) ||
(Time->Nanosecond > 999999999) ||
(!IsValidTimeZone(Time->TimeZone)) ||
(!IsValidDaylight(Time->Daylight))) {
(Time->Year > 2099) ||
(Time->Month < 1) ||
(Time->Month > 12) ||
(!IsDayValid (Time)) ||
(Time->Hour > 23) ||
(Time->Minute > 59) ||
(Time->Second > 59) ||
(Time->Nanosecond > 999999999) ||
(!IsValidTimeZone (Time->TimeZone)) ||
(!IsValidDaylight (Time->Daylight)))
{
return FALSE;
}

View File

@ -23,9 +23,9 @@
#include <Library/TimeBaseLib.h>
#include <Library/UefiRuntimeLib.h>
STATIC CONST CHAR16 mEpochVariableName[] = L"RtcEpochSeconds";
STATIC CONST CHAR16 mTimeZoneVariableName[] = L"RtcTimeZone";
STATIC CONST CHAR16 mDaylightVariableName[] = L"RtcDaylight";
STATIC CONST CHAR16 mEpochVariableName[] = L"RtcEpochSeconds";
STATIC CONST CHAR16 mTimeZoneVariableName[] = L"RtcTimeZone";
STATIC CONST CHAR16 mDaylightVariableName[] = L"RtcDaylight";
/**
Returns the current time and date information, and the time-keeping capabilities
@ -67,19 +67,19 @@ LibGetTime (
}
// Get the epoch time from non-volatile storage
Size = sizeof (UINTN);
Size = sizeof (UINTN);
EpochSeconds = 0;
Status = EfiGetVariable (
(CHAR16 *)mEpochVariableName,
&gEfiCallerIdGuid,
NULL,
&Size,
(VOID *)&EpochSeconds
);
Status = EfiGetVariable (
(CHAR16 *)mEpochVariableName,
&gEfiCallerIdGuid,
NULL,
&Size,
(VOID *)&EpochSeconds
);
// Fall back to compilation-time epoch if not set
if (EFI_ERROR (Status)) {
ASSERT(Status != EFI_INVALID_PARAMETER);
ASSERT(Status != EFI_BUFFER_TOO_SMALL);
ASSERT (Status != EFI_INVALID_PARAMETER);
ASSERT (Status != EFI_BUFFER_TOO_SMALL);
//
// The following is intended to produce a compilation error on build
// environments where BUILD_EPOCH can not be set from inline shell.
@ -101,11 +101,12 @@ LibGetTime (
&EpochSeconds
);
}
Counter = GetPerformanceCounter ();
Counter = GetPerformanceCounter ();
EpochSeconds += DivU64x64Remainder (Counter, Freq, &Remainder);
// Get the current time zone information from non-volatile storage
Size = sizeof (TimeZone);
Size = sizeof (TimeZone);
Status = EfiGetVariable (
(CHAR16 *)mTimeZoneVariableName,
&gEfiCallerIdGuid,
@ -115,8 +116,8 @@ LibGetTime (
);
if (EFI_ERROR (Status)) {
ASSERT(Status != EFI_INVALID_PARAMETER);
ASSERT(Status != EFI_BUFFER_TOO_SMALL);
ASSERT (Status != EFI_INVALID_PARAMETER);
ASSERT (Status != EFI_BUFFER_TOO_SMALL);
if (Status != EFI_NOT_FOUND) {
return Status;
@ -146,8 +147,9 @@ LibGetTime (
Time->TimeZone = TimeZone;
// Check TimeZone bounds: -1440 to 1440 or 2047
if (((Time->TimeZone < -1440) || (Time->TimeZone > 1440))
&& (Time->TimeZone != EFI_UNSPECIFIED_TIMEZONE)) {
if ( ((Time->TimeZone < -1440) || (Time->TimeZone > 1440))
&& (Time->TimeZone != EFI_UNSPECIFIED_TIMEZONE))
{
Time->TimeZone = EFI_UNSPECIFIED_TIMEZONE;
}
@ -158,18 +160,18 @@ LibGetTime (
}
// Get the current daylight information from non-volatile storage
Size = sizeof (Daylight);
Size = sizeof (Daylight);
Status = EfiGetVariable (
(CHAR16 *)mDaylightVariableName,
&gEfiCallerIdGuid,
NULL,
&Size,
(VOID *)&Daylight
);
);
if (EFI_ERROR (Status)) {
ASSERT(Status != EFI_INVALID_PARAMETER);
ASSERT(Status != EFI_BUFFER_TOO_SMALL);
ASSERT (Status != EFI_INVALID_PARAMETER);
ASSERT (Status != EFI_BUFFER_TOO_SMALL);
if (Status != EFI_NOT_FOUND) {
return Status;
@ -253,14 +255,16 @@ LibSetTime (
EpochSeconds = EfiTimeToEpoch (Time);
// Adjust for the correct time zone, i.e. convert to UTC time zone
if ((Time->TimeZone != EFI_UNSPECIFIED_TIMEZONE)
&& (EpochSeconds > Time->TimeZone * SEC_PER_MIN)) {
if ( (Time->TimeZone != EFI_UNSPECIFIED_TIMEZONE)
&& (EpochSeconds > Time->TimeZone * SEC_PER_MIN))
{
EpochSeconds -= Time->TimeZone * SEC_PER_MIN;
}
// Adjust for the correct period
if (((Time->Daylight & EFI_TIME_IN_DAYLIGHT) == EFI_TIME_IN_DAYLIGHT)
&& (EpochSeconds > SEC_PER_HOUR)) {
if ( ((Time->Daylight & EFI_TIME_IN_DAYLIGHT) == EFI_TIME_IN_DAYLIGHT)
&& (EpochSeconds > SEC_PER_HOUR))
{
// Convert to un-adjusted time, i.e. fall back one hour
EpochSeconds -= SEC_PER_HOUR;
}
@ -300,9 +304,9 @@ LibSetTime (
(CHAR16 *)mDaylightVariableName,
&gEfiCallerIdGuid,
EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS,
sizeof(Time->Daylight),
sizeof (Time->Daylight),
(VOID *)&(Time->Daylight)
);
);
if (EFI_ERROR (Status)) {
DEBUG ((
DEBUG_ERROR,

View File

@ -49,12 +49,11 @@ WaitForTick (
installed. All consumers must treat this as a read-only field.
**/
EFI_METRONOME_ARCH_PROTOCOL gMetronome = {
EFI_METRONOME_ARCH_PROTOCOL gMetronome = {
WaitForTick,
FixedPcdGet32 (PcdMetronomeTickPeriod)
};
/**
The WaitForTick() function waits for the number of ticks specified by
TickNumber from a known time source in the platform. If TickNumber of
@ -93,11 +92,8 @@ WaitForTick (
return EFI_SUCCESS;
}
EFI_HANDLE gMetronomeHandle = NULL;
/**
Initialize the state information for the CPU Architectural Protocol
@ -112,8 +108,8 @@ EFI_HANDLE gMetronomeHandle = NULL;
EFI_STATUS
EFIAPI
MetronomeInitialize (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
@ -124,11 +120,11 @@ MetronomeInitialize (
Status = gBS->InstallMultipleProtocolInterfaces (
&gMetronomeHandle,
&gEfiMetronomeArchProtocolGuid, &gMetronome,
&gEfiMetronomeArchProtocolGuid,
&gMetronome,
NULL
);
ASSERT_EFI_ERROR (Status);
return Status;
}

View File

@ -26,12 +26,12 @@ EFI_HANDLE mHandle = NULL;
// variable instead.
//
typedef struct {
INT16 TimeZone;
UINT8 Daylight;
INT16 TimeZone;
UINT8 Daylight;
} NON_VOLATILE_TIME_SETTINGS;
STATIC CONST CHAR16 mTimeSettingsVariableName[] = L"RtcTimeSettings";
STATIC NON_VOLATILE_TIME_SETTINGS mTimeSettings;
STATIC CONST CHAR16 mTimeSettingsVariableName[] = L"RtcTimeSettings";
STATIC NON_VOLATILE_TIME_SETTINGS mTimeSettings;
/**
Returns the current time and date information, and the time-keeping capabilities
@ -49,8 +49,8 @@ STATIC NON_VOLATILE_TIME_SETTINGS mTimeSettings;
EFI_STATUS
EFIAPI
GetTime (
OUT EFI_TIME *Time,
OUT EFI_TIME_CAPABILITIES *Capabilities
OUT EFI_TIME *Time,
OUT EFI_TIME_CAPABILITIES *Capabilities
)
{
if (Time == NULL) {
@ -67,8 +67,6 @@ GetTime (
return LibGetTime (Time, Capabilities);
}
/**
Sets the current local time and date information.
@ -82,23 +80,23 @@ GetTime (
EFI_STATUS
EFIAPI
SetTime (
IN EFI_TIME *Time
IN EFI_TIME *Time
)
{
EFI_STATUS Status;
BOOLEAN TimeSettingsChanged;
EFI_STATUS Status;
BOOLEAN TimeSettingsChanged;
if (Time == NULL || !IsTimeValid (Time)) {
if ((Time == NULL) || !IsTimeValid (Time)) {
return EFI_INVALID_PARAMETER;
}
TimeSettingsChanged = FALSE;
if (mTimeSettings.TimeZone != Time->TimeZone ||
mTimeSettings.Daylight != Time->Daylight) {
if ((mTimeSettings.TimeZone != Time->TimeZone) ||
(mTimeSettings.Daylight != Time->Daylight))
{
mTimeSettings.TimeZone = Time->TimeZone;
mTimeSettings.Daylight = Time->Daylight;
TimeSettingsChanged = TRUE;
TimeSettingsChanged = TRUE;
}
Status = LibSetTime (Time);
@ -114,15 +112,16 @@ SetTime (
EFI_VARIABLE_BOOTSERVICE_ACCESS |
EFI_VARIABLE_RUNTIME_ACCESS,
sizeof (mTimeSettings),
(VOID *)&mTimeSettings);
(VOID *)&mTimeSettings
);
if (EFI_ERROR (Status)) {
return EFI_DEVICE_ERROR;
}
}
return EFI_SUCCESS;
}
/**
Returns the current wakeup alarm clock setting.
@ -138,12 +137,12 @@ SetTime (
EFI_STATUS
EFIAPI
GetWakeupTime (
OUT BOOLEAN *Enabled,
OUT BOOLEAN *Pending,
OUT EFI_TIME *Time
OUT BOOLEAN *Enabled,
OUT BOOLEAN *Pending,
OUT EFI_TIME *Time
)
{
if (Time == NULL || Enabled == NULL || Pending == NULL) {
if ((Time == NULL) || (Enabled == NULL) || (Pending == NULL)) {
return EFI_INVALID_PARAMETER;
}
@ -157,7 +156,6 @@ GetWakeupTime (
return LibGetWakeupTime (Enabled, Pending, Time);
}
/**
Sets the system wakeup alarm clock time.
@ -174,15 +172,13 @@ GetWakeupTime (
EFI_STATUS
EFIAPI
SetWakeupTime (
IN BOOLEAN Enabled,
OUT EFI_TIME *Time
IN BOOLEAN Enabled,
OUT EFI_TIME *Time
)
{
return LibSetWakeupTime (Enabled, Time);
}
/**
This is the declaration of an EFI image entry point. This can be the entry point to an application
written to this specification, an EFI boot service driver, or an EFI runtime driver.
@ -196,8 +192,8 @@ SetWakeupTime (
EFI_STATUS
EFIAPI
InitializeRealTimeClock (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
@ -208,14 +204,23 @@ InitializeRealTimeClock (
return Status;
}
Size = sizeof (mTimeSettings);
Status = EfiGetVariable ((CHAR16 *)mTimeSettingsVariableName,
&gEfiCallerIdGuid, NULL, &Size, (VOID *)&mTimeSettings);
Size = sizeof (mTimeSettings);
Status = EfiGetVariable (
(CHAR16 *)mTimeSettingsVariableName,
&gEfiCallerIdGuid,
NULL,
&Size,
(VOID *)&mTimeSettings
);
if (EFI_ERROR (Status) ||
!IsValidTimeZone (mTimeSettings.TimeZone) ||
!IsValidDaylight (mTimeSettings.Daylight)) {
DEBUG ((DEBUG_WARN, "%a: using default timezone/daylight settings\n",
__FUNCTION__));
!IsValidDaylight (mTimeSettings.Daylight))
{
DEBUG ((
DEBUG_WARN,
"%a: using default timezone/daylight settings\n",
__FUNCTION__
));
mTimeSettings.TimeZone = EFI_UNSPECIFIED_TIMEZONE;
mTimeSettings.Daylight = 0;
@ -235,4 +240,3 @@ InitializeRealTimeClock (
return Status;
}

View File

@ -13,7 +13,6 @@
#include <Library/UefiBootServicesTableLib.h>
#include <Library/EfiResetSystemLib.h>
/**
Resets the entire platform.
@ -28,18 +27,16 @@
VOID
EFIAPI
ResetSystemViaLib (
IN EFI_RESET_TYPE ResetType,
IN EFI_STATUS ResetStatus,
IN UINTN DataSize,
IN VOID *ResetData OPTIONAL
IN EFI_RESET_TYPE ResetType,
IN EFI_STATUS ResetStatus,
IN UINTN DataSize,
IN VOID *ResetData OPTIONAL
)
{
LibResetSystem (ResetType, ResetStatus, DataSize, ResetData);
return;
}
EFI_STATUS
EFIAPI
InitializeReset (
@ -65,4 +62,3 @@ InitializeReset (
return Status;
}

View File

@ -65,30 +65,26 @@
#include <Protocol/SimpleTextOut.h>
#include <Protocol/DevicePath.h>
#define MODE0_COLUMN_COUNT 80
#define MODE0_ROW_COUNT 25
#define MODE0_COLUMN_COUNT 80
#define MODE0_ROW_COUNT 25
EFI_STATUS
EFIAPI
TextInReset(
IN EFI_SIMPLE_TEXT_INPUT_PROTOCOL *This,
IN BOOLEAN ExtendedVerification
TextInReset (
IN EFI_SIMPLE_TEXT_INPUT_PROTOCOL *This,
IN BOOLEAN ExtendedVerification
);
EFI_STATUS
EFIAPI
ReadKeyStroke(
IN EFI_SIMPLE_TEXT_INPUT_PROTOCOL *This,
OUT EFI_INPUT_KEY *Key
ReadKeyStroke (
IN EFI_SIMPLE_TEXT_INPUT_PROTOCOL *This,
OUT EFI_INPUT_KEY *Key
);
EFI_STATUS
EFIAPI
TextOutReset(
TextOutReset (
IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This,
IN BOOLEAN ExtendedVerification
);
@ -96,8 +92,8 @@ TextOutReset(
CHAR8 *
EFIAPI
SafeUnicodeStrToAsciiStr (
IN CONST CHAR16 *Source,
OUT CHAR8 *Destination
IN CONST CHAR16 *Source,
OUT CHAR8 *Destination
);
EFI_STATUS
@ -107,7 +103,6 @@ OutputString (
IN CHAR16 *String
);
EFI_STATUS
EFIAPI
TestString (
@ -115,7 +110,6 @@ TestString (
IN CHAR16 *String
);
EFI_STATUS
EFIAPI
QueryMode (
@ -125,30 +119,26 @@ QueryMode (
OUT UINTN *Rows
);
EFI_STATUS
EFIAPI
SetMode(
SetMode (
IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This,
IN UINTN ModeNumber
);
EFI_STATUS
EFIAPI
SetAttribute(
SetAttribute (
IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This,
IN UINTN Attribute
);
EFI_STATUS
EFIAPI
ClearScreen (
IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This
);
EFI_STATUS
EFIAPI
SetCursorPosition (
@ -157,7 +147,6 @@ SetCursorPosition (
IN UINTN Row
);
EFI_STATUS
EFIAPI
EnableCursor (
@ -165,23 +154,22 @@ EnableCursor (
IN BOOLEAN Enable
);
EFI_SIMPLE_TEXT_INPUT_PROTOCOL mSimpleTextIn = {
EFI_SIMPLE_TEXT_INPUT_PROTOCOL mSimpleTextIn = {
TextInReset,
ReadKeyStroke,
NULL
};
EFI_SIMPLE_TEXT_OUTPUT_MODE mSimpleTextOutMode = {
EFI_SIMPLE_TEXT_OUTPUT_MODE mSimpleTextOutMode = {
1,
0,
EFI_TEXT_ATTR( EFI_LIGHTGRAY, EFI_BLACK ),
EFI_TEXT_ATTR (EFI_LIGHTGRAY,EFI_BLACK),
0,
0,
TRUE
};
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL mSimpleTextOut = {
EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL mSimpleTextOut = {
TextOutReset,
OutputString,
TestString,
@ -194,36 +182,36 @@ EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL mSimpleTextOut = {
&mSimpleTextOutMode
};
EFI_HANDLE mInstallHandle = NULL;
EFI_HANDLE mInstallHandle = NULL;
typedef struct {
VENDOR_DEVICE_PATH Guid;
UART_DEVICE_PATH Uart;
EFI_DEVICE_PATH_PROTOCOL End;
VENDOR_DEVICE_PATH Guid;
UART_DEVICE_PATH Uart;
EFI_DEVICE_PATH_PROTOCOL End;
} SIMPLE_TEXT_OUT_DEVICE_PATH;
SIMPLE_TEXT_OUT_DEVICE_PATH mDevicePath = {
SIMPLE_TEXT_OUT_DEVICE_PATH mDevicePath = {
{
{ HARDWARE_DEVICE_PATH, HW_VENDOR_DP, { sizeof (VENDOR_DEVICE_PATH), 0} },
{ HARDWARE_DEVICE_PATH, HW_VENDOR_DP, { sizeof (VENDOR_DEVICE_PATH), 0 }
},
EFI_CALLER_ID_GUID
},
{
{ MESSAGING_DEVICE_PATH, MSG_UART_DP, { sizeof (UART_DEVICE_PATH), 0} },
0, // Reserved
FixedPcdGet64 (PcdUartDefaultBaudRate), // BaudRate
FixedPcdGet8 (PcdUartDefaultDataBits), // DataBits
FixedPcdGet8 (PcdUartDefaultParity), // Parity (N)
FixedPcdGet8 (PcdUartDefaultStopBits) // StopBits
{ MESSAGING_DEVICE_PATH, MSG_UART_DP, { sizeof (UART_DEVICE_PATH), 0 }
},
0, // Reserved
FixedPcdGet64 (PcdUartDefaultBaudRate), // BaudRate
FixedPcdGet8 (PcdUartDefaultDataBits), // DataBits
FixedPcdGet8 (PcdUartDefaultParity), // Parity (N)
FixedPcdGet8 (PcdUartDefaultStopBits) // StopBits
},
{ END_DEVICE_PATH_TYPE, END_ENTIRE_DEVICE_PATH_SUBTYPE, { sizeof (EFI_DEVICE_PATH_PROTOCOL), 0} }
{ END_DEVICE_PATH_TYPE, END_ENTIRE_DEVICE_PATH_SUBTYPE, { sizeof (EFI_DEVICE_PATH_PROTOCOL), 0 }
}
};
BOOLEAN
TextOutIsValidAscii (
IN CHAR16 Ascii
IN CHAR16 Ascii
)
{
//
@ -236,59 +224,56 @@ TextOutIsValidAscii (
return FALSE;
}
BOOLEAN
TextOutIsValidEfiCntlChar (
IN CHAR16 Char
IN CHAR16 Char
)
{
//
// only support four control characters.
//
if (Char == CHAR_NULL ||
Char == CHAR_BACKSPACE ||
Char == CHAR_LINEFEED ||
Char == CHAR_CARRIAGE_RETURN ||
Char == CHAR_TAB ) {
if ((Char == CHAR_NULL) ||
(Char == CHAR_BACKSPACE) ||
(Char == CHAR_LINEFEED) ||
(Char == CHAR_CARRIAGE_RETURN) ||
(Char == CHAR_TAB))
{
return TRUE;
}
return FALSE;
}
VOID
EFIAPI
WaitForKeyEvent (
IN EFI_EVENT Event,
IN VOID *Context
IN EFI_EVENT Event,
IN VOID *Context
)
{
if (SerialPortPoll ()) {
if (SerialPortPoll ()) {
gBS->SignalEvent (Event);
}
}
EFI_STATUS
EFIAPI
TextInReset (
IN EFI_SIMPLE_TEXT_INPUT_PROTOCOL *This,
IN BOOLEAN ExtendedVerification
IN EFI_SIMPLE_TEXT_INPUT_PROTOCOL *This,
IN BOOLEAN ExtendedVerification
)
{
return EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
ReadKeyStroke (
IN EFI_SIMPLE_TEXT_INPUT_PROTOCOL *This,
OUT EFI_INPUT_KEY *Key
IN EFI_SIMPLE_TEXT_INPUT_PROTOCOL *This,
OUT EFI_INPUT_KEY *Key
)
{
CHAR8 Char;
CHAR8 Char;
if (!SerialPortPoll ()) {
return EFI_NOT_READY;
@ -310,113 +295,114 @@ ReadKeyStroke (
if (Char == '[') {
SerialPortRead ((UINT8 *)&Char, 1);
switch (Char) {
case 'A':
Key->ScanCode = SCAN_UP;
break;
case 'B':
Key->ScanCode = SCAN_DOWN;
break;
case 'C':
Key->ScanCode = SCAN_RIGHT;
break;
case 'D':
Key->ScanCode = SCAN_LEFT;
break;
case 'H':
Key->ScanCode = SCAN_HOME;
break;
case 'K':
case 'F': // PC ANSI
Key->ScanCode = SCAN_END;
break;
case '@':
case 'L':
Key->ScanCode = SCAN_INSERT;
break;
case 'P':
case 'X': // PC ANSI
Key->ScanCode = SCAN_DELETE;
break;
case 'U':
case '/':
case 'G': // PC ANSI
Key->ScanCode = SCAN_PAGE_DOWN;
break;
case 'V':
case '?':
case 'I': // PC ANSI
Key->ScanCode = SCAN_PAGE_UP;
break;
case 'A':
Key->ScanCode = SCAN_UP;
break;
case 'B':
Key->ScanCode = SCAN_DOWN;
break;
case 'C':
Key->ScanCode = SCAN_RIGHT;
break;
case 'D':
Key->ScanCode = SCAN_LEFT;
break;
case 'H':
Key->ScanCode = SCAN_HOME;
break;
case 'K':
case 'F': // PC ANSI
Key->ScanCode = SCAN_END;
break;
case '@':
case 'L':
Key->ScanCode = SCAN_INSERT;
break;
case 'P':
case 'X': // PC ANSI
Key->ScanCode = SCAN_DELETE;
break;
case 'U':
case '/':
case 'G': // PC ANSI
Key->ScanCode = SCAN_PAGE_DOWN;
break;
case 'V':
case '?':
case 'I': // PC ANSI
Key->ScanCode = SCAN_PAGE_UP;
break;
// PCANSI that does not conflict with VT100
case 'M':
Key->ScanCode = SCAN_F1;
break;
case 'N':
Key->ScanCode = SCAN_F2;
break;
case 'O':
Key->ScanCode = SCAN_F3;
break;
case 'Q':
Key->ScanCode = SCAN_F5;
break;
case 'R':
Key->ScanCode = SCAN_F6;
break;
case 'S':
Key->ScanCode = SCAN_F7;
break;
case 'T':
Key->ScanCode = SCAN_F8;
break;
// PCANSI that does not conflict with VT100
case 'M':
Key->ScanCode = SCAN_F1;
break;
case 'N':
Key->ScanCode = SCAN_F2;
break;
case 'O':
Key->ScanCode = SCAN_F3;
break;
case 'Q':
Key->ScanCode = SCAN_F5;
break;
case 'R':
Key->ScanCode = SCAN_F6;
break;
case 'S':
Key->ScanCode = SCAN_F7;
break;
case 'T':
Key->ScanCode = SCAN_F8;
break;
default:
Key->UnicodeChar = Char;
break;
default:
Key->UnicodeChar = Char;
break;
}
} else if (Char == '0') {
SerialPortRead ((UINT8 *)&Char, 1);
switch (Char) {
case 'P':
Key->ScanCode = SCAN_F1;
break;
case 'Q':
Key->ScanCode = SCAN_F2;
break;
case 'w':
Key->ScanCode = SCAN_F3;
break;
case 'x':
Key->ScanCode = SCAN_F4;
break;
case 't':
Key->ScanCode = SCAN_F5;
break;
case 'u':
Key->ScanCode = SCAN_F6;
break;
case 'q':
Key->ScanCode = SCAN_F7;
break;
case 'r':
Key->ScanCode = SCAN_F8;
break;
case 'p':
Key->ScanCode = SCAN_F9;
break;
case 'm':
Key->ScanCode = SCAN_F10;
break;
default :
break;
case 'P':
Key->ScanCode = SCAN_F1;
break;
case 'Q':
Key->ScanCode = SCAN_F2;
break;
case 'w':
Key->ScanCode = SCAN_F3;
break;
case 'x':
Key->ScanCode = SCAN_F4;
break;
case 't':
Key->ScanCode = SCAN_F5;
break;
case 'u':
Key->ScanCode = SCAN_F6;
break;
case 'q':
Key->ScanCode = SCAN_F7;
break;
case 'r':
Key->ScanCode = SCAN_F8;
break;
case 'p':
Key->ScanCode = SCAN_F9;
break;
case 'm':
Key->ScanCode = SCAN_F10;
break;
default:
break;
}
}
} else if (Char < ' ') {
if ((Char == CHAR_BACKSPACE) ||
(Char == CHAR_TAB) ||
(Char == CHAR_LINEFEED) ||
(Char == CHAR_CARRIAGE_RETURN)) {
(Char == CHAR_CARRIAGE_RETURN))
{
// Only let through EFI required control characters
Key->UnicodeChar = (CHAR16)Char;
}
@ -429,7 +415,6 @@ ReadKeyStroke (
return EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
TextOutReset (
@ -437,12 +422,12 @@ TextOutReset (
IN BOOLEAN ExtendedVerification
)
{
EFI_STATUS Status;
EFI_STATUS Status;
This->SetAttribute(
This,
EFI_TEXT_ATTR(This->Mode->Attribute & 0x0F, EFI_BACKGROUND_BLACK)
);
This->SetAttribute (
This,
EFI_TEXT_ATTR (This->Mode->Attribute & 0x0F, EFI_BACKGROUND_BLACK)
);
Status = This->SetMode (This, 0);
@ -452,11 +437,11 @@ TextOutReset (
CHAR8 *
EFIAPI
SafeUnicodeStrToAsciiStr (
IN CONST CHAR16 *Source,
OUT CHAR8 *Destination
IN CONST CHAR16 *Source,
OUT CHAR8 *Destination
)
{
CHAR8 *ReturnValue;
CHAR8 *ReturnValue;
ASSERT (Destination != NULL);
@ -469,9 +454,8 @@ SafeUnicodeStrToAsciiStr (
//
// Source and Destination should not overlap
//
ASSERT ((UINTN) ((CHAR16 *) Destination - Source) > StrLen (Source));
ASSERT ((UINTN) ((CHAR8 *) Source - Destination) > StrLen (Source));
ASSERT ((UINTN)((CHAR16 *)Destination - Source) > StrLen (Source));
ASSERT ((UINTN)((CHAR8 *)Source - Destination) > StrLen (Source));
ReturnValue = Destination;
while (*Source != '\0') {
@ -479,11 +463,11 @@ SafeUnicodeStrToAsciiStr (
// If any non-ascii characters in Source then replace it with '?'.
//
if (*Source < 0x80) {
*Destination = (CHAR8) *Source;
*Destination = (CHAR8)*Source;
} else {
*Destination = '?';
//Surrogate pair check.
// Surrogate pair check.
if ((*Source >= 0xD800) && (*Source <= 0xDFFF)) {
Source++;
}
@ -511,19 +495,19 @@ OutputString (
IN CHAR16 *String
)
{
UINTN Size;
CHAR8* OutputString;
EFI_STATUS Status;
EFI_SIMPLE_TEXT_OUTPUT_MODE *Mode;
UINTN MaxColumn;
UINTN MaxRow;
UINTN Size;
CHAR8 *OutputString;
EFI_STATUS Status;
EFI_SIMPLE_TEXT_OUTPUT_MODE *Mode;
UINTN MaxColumn;
UINTN MaxRow;
Size = StrLen(String) + 1;
OutputString = AllocatePool(Size);
Size = StrLen (String) + 1;
OutputString = AllocatePool (Size);
//If there is any non-ascii characters in String buffer then replace it with '?'
//Eventually, UnicodeStrToAsciiStr API should be fixed.
SafeUnicodeStrToAsciiStr(String, OutputString);
// If there is any non-ascii characters in String buffer then replace it with '?'
// Eventually, UnicodeStrToAsciiStr API should be fixed.
SafeUnicodeStrToAsciiStr (String, OutputString);
SerialPortWrite ((UINT8 *)OutputString, Size - 1);
//
@ -542,47 +526,49 @@ OutputString (
return Status;
}
for (; *String != CHAR_NULL; String++) {
for ( ; *String != CHAR_NULL; String++) {
switch (*String) {
case CHAR_BACKSPACE:
if (Mode->CursorColumn > 0) {
Mode->CursorColumn--;
}
break;
case CHAR_BACKSPACE:
if (Mode->CursorColumn > 0) {
Mode->CursorColumn--;
}
case CHAR_LINEFEED:
if (Mode->CursorRow < (INT32) (MaxRow - 1)) {
Mode->CursorRow++;
}
break;
break;
case CHAR_CARRIAGE_RETURN:
Mode->CursorColumn = 0;
break;
default:
if (Mode->CursorColumn >= (INT32) (MaxColumn - 1)) {
// Move the cursor as if we print CHAR_CARRIAGE_RETURN & CHAR_LINE_FEED
// CHAR_LINEFEED
if (Mode->CursorRow < (INT32) (MaxRow - 1)) {
case CHAR_LINEFEED:
if (Mode->CursorRow < (INT32)(MaxRow - 1)) {
Mode->CursorRow++;
}
// CHAR_CARIAGE_RETURN
break;
case CHAR_CARRIAGE_RETURN:
Mode->CursorColumn = 0;
} else {
Mode->CursorColumn++;
}
break;
break;
default:
if (Mode->CursorColumn >= (INT32)(MaxColumn - 1)) {
// Move the cursor as if we print CHAR_CARRIAGE_RETURN & CHAR_LINE_FEED
// CHAR_LINEFEED
if (Mode->CursorRow < (INT32)(MaxRow - 1)) {
Mode->CursorRow++;
}
// CHAR_CARIAGE_RETURN
Mode->CursorColumn = 0;
} else {
Mode->CursorColumn++;
}
break;
}
}
FreePool(OutputString);
FreePool (OutputString);
return EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
TestString (
@ -590,7 +576,7 @@ TestString (
IN CHAR16 *String
)
{
CHAR8 Character;
CHAR8 Character;
for ( ; *String != CHAR_NULL; String++) {
Character = (CHAR8)*String;
@ -602,14 +588,13 @@ TestString (
return EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
QueryMode (
IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This,
IN UINTN ModeNumber,
OUT UINTN *Columns,
OUT UINTN *Rows
OUT UINTN *Columns,
OUT UINTN *Rows
)
{
if (This->Mode->MaxMode > 1) {
@ -617,20 +602,19 @@ QueryMode (
}
if (ModeNumber == 0) {
*Columns = MODE0_COLUMN_COUNT;
*Rows = MODE0_ROW_COUNT;
*Columns = MODE0_COLUMN_COUNT;
*Rows = MODE0_ROW_COUNT;
return EFI_SUCCESS;
}
return EFI_UNSUPPORTED;
}
EFI_STATUS
EFIAPI
SetMode (
IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This,
IN UINTN ModeNumber
IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This,
IN UINTN ModeNumber
)
{
if (ModeNumber != 0) {
@ -642,54 +626,51 @@ SetMode (
return EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
SetAttribute(
IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This,
IN UINTN Attribute
SetAttribute (
IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This,
IN UINTN Attribute
)
{
This->Mode->Attribute = (INT32)Attribute;
return EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
ClearScreen (
IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This
IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This
)
{
EFI_STATUS Status;
EFI_STATUS Status;
Status = This->SetCursorPosition (This, 0, 0);
return Status;
}
EFI_STATUS
EFIAPI
SetCursorPosition (
IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This,
IN UINTN Column,
IN UINTN Row
IN EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL *This,
IN UINTN Column,
IN UINTN Row
)
{
EFI_SIMPLE_TEXT_OUTPUT_MODE *Mode;
EFI_STATUS Status;
UINTN MaxColumn;
UINTN MaxRow;
EFI_SIMPLE_TEXT_OUTPUT_MODE *Mode;
EFI_STATUS Status;
UINTN MaxColumn;
UINTN MaxRow;
Mode = This->Mode;
Status = This->QueryMode(
This,
Mode->Mode,
&MaxColumn,
&MaxRow
);
if (EFI_ERROR(Status)) {
Status = This->QueryMode (
This,
Mode->Mode,
&MaxColumn,
&MaxRow
);
if (EFI_ERROR (Status)) {
return EFI_UNSUPPORTED;
}
@ -698,12 +679,11 @@ SetCursorPosition (
}
Mode->CursorColumn = (INT32)Column;
Mode->CursorRow = (INT32)Row;
Mode->CursorRow = (INT32)Row;
return EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
EnableCursor (
@ -718,15 +698,14 @@ EnableCursor (
return EFI_SUCCESS;
}
EFI_STATUS
EFIAPI
SimpleTextInOutEntryPoint (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
EFI_STATUS Status;
Status = gBS->CreateEvent (
EVT_NOTIFY_WAIT,
@ -737,16 +716,19 @@ SimpleTextInOutEntryPoint (
);
ASSERT_EFI_ERROR (Status);
Status = gBS->InstallMultipleProtocolInterfaces(
Status = gBS->InstallMultipleProtocolInterfaces (
&mInstallHandle,
&gEfiSimpleTextInProtocolGuid, &mSimpleTextIn,
&gEfiSimpleTextOutProtocolGuid, &mSimpleTextOut,
&gEfiDevicePathProtocolGuid, &mDevicePath,
&gEfiSimpleTextInProtocolGuid,
&mSimpleTextIn,
&gEfiSimpleTextOutProtocolGuid,
&mSimpleTextOut,
&gEfiDevicePathProtocolGuid,
&mDevicePath,
NULL
);
if (!EFI_ERROR (Status)) {
gST->ConOut = &mSimpleTextOut;
gST->ConIn = &mSimpleTextIn;
gST->ConIn = &mSimpleTextIn;
}
return Status;

View File

@ -21,16 +21,16 @@ GLOBAL_REMOVE_IF_UNREFERENCED EFI_COMPONENT_NAME_PROTOCOL gMmcComponentName = {
//
// EFI Component Name 2 Protocol
//
GLOBAL_REMOVE_IF_UNREFERENCED EFI_COMPONENT_NAME2_PROTOCOL gMmcComponentName2 = {
(EFI_COMPONENT_NAME2_GET_DRIVER_NAME) MmcGetDriverName,
(EFI_COMPONENT_NAME2_GET_CONTROLLER_NAME) MmcGetControllerName,
GLOBAL_REMOVE_IF_UNREFERENCED EFI_COMPONENT_NAME2_PROTOCOL gMmcComponentName2 = {
(EFI_COMPONENT_NAME2_GET_DRIVER_NAME)MmcGetDriverName,
(EFI_COMPONENT_NAME2_GET_CONTROLLER_NAME)MmcGetControllerName,
"en"
};
GLOBAL_REMOVE_IF_UNREFERENCED EFI_UNICODE_STRING_TABLE
mMmcDriverNameTable[] = {
{"eng;en", L"MMC/SD Card Interface Driver"},
{NULL, NULL}
mMmcDriverNameTable[] = {
{ "eng;en", L"MMC/SD Card Interface Driver" },
{ NULL, NULL }
};
/**
@ -145,11 +145,11 @@ MmcGetDriverName (
EFI_STATUS
EFIAPI
MmcGetControllerName (
IN EFI_COMPONENT_NAME_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN EFI_HANDLE ChildHandle OPTIONAL,
IN CHAR8 *Language,
OUT CHAR16 **ControllerName
IN EFI_COMPONENT_NAME_PROTOCOL *This,
IN EFI_HANDLE ControllerHandle,
IN EFI_HANDLE ChildHandle OPTIONAL,
IN CHAR8 *Language,
OUT CHAR16 **ControllerName
)
{
return EFI_UNSUPPORTED;

Some files were not shown because too many files have changed in this diff Show More