BZ: https://bugzilla.tianocore.org/show_bug.cgi?id=3275
Many of the integrity guarantees of SEV-SNP are enforced through the
Reverse Map Table (RMP). Each RMP entry contains the GPA at which a
particular page of DRAM should be mapped. The guest can request the
hypervisor to add pages in the RMP table via the Page State Change VMGEXIT
defined in the GHCB specification section 2.5.1 and 4.1.6. Inside each RMP
entry is a Validated flag; this flag is automatically cleared to 0 by the
CPU hardware when a new RMP entry is created for a guest. Each VM page
can be either validated or invalidated, as indicated by the Validated
flag in the RMP entry. Memory access to a private page that is not
validated generates a #VC. A VM can use the PVALIDATE instruction to
validate the private page before using it.
During the guest creation, the boot ROM memory is pre-validated by the
AMD-SEV firmware. The MemEncryptSevSnpValidateSystemRam() can be called
during the SEC and PEI phase to validate the detected system RAM.
One of the fields in the Page State Change NAE is the RMP page size. The
page size input parameter indicates that either a 4KB or 2MB page should
be used while adding the RMP entry. During the validation, when possible,
the MemEncryptSevSnpValidateSystemRam() will use the 2MB entry. A
hypervisor backing the memory may choose to use the different page size
in the RMP entry. In those cases, the PVALIDATE instruction should return
SIZEMISMATCH. If a SIZEMISMATCH is detected, then validate all 512-pages
constituting a 2MB region.
Upon completion, the PVALIDATE instruction sets the rFLAGS.CF to 0 if
instruction changed the RMP entry and to 1 if the instruction did not
change the RMP entry. The rFlags.CF will be 1 only when a memory region
is already validated. We should not double validate a memory
as it could lead to a security compromise. If double validation is
detected, terminate the boot.
Cc: Michael Roth <michael.roth@amd.com>
Cc: James Bottomley <jejb@linux.ibm.com>
Cc: Min Xu <min.m.xu@intel.com>
Cc: Jiewen Yao <jiewen.yao@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Ard Biesheuvel <ardb+tianocore@kernel.org>
Cc: Erdem Aktas <erdemaktas@google.com>
Cc: Gerd Hoffmann <kraxel@redhat.com>
Acked-by: Jiewen Yao <Jiewen.yao@intel.com>
Acked-by: Gerd Hoffmann <kraxel@redhat.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
BZ: https://bugzilla.tianocore.org/show_bug.cgi?id=3108
In order to be able to issue messages or make interface calls that cause
another #VC (e.g. GetLocalApicBaseAddress () issues RDMSR), add support
for nested #VCs.
In order to support nested #VCs, GHCB backup pages are required. If a #VC
is received while currently processing a #VC, a backup of the current GHCB
content is made. This allows the #VC handler to continue processing the
new #VC. Upon completion of the new #VC, the GHCB is restored from the
backup page. The #VC recursion level is tracked in the per-vCPU variable
area.
Support is added to handle up to one nested #VC (or two #VCs total). If
a second nested #VC is encountered, an ASSERT will be issued and the vCPU
will enter CpuDeadLoop ().
For SEC, the GHCB backup pages are reserved in the OvmfPkgX64.fdf memory
layout, with two new fixed PCDs to provide the address and size of the
backup area.
For PEI/DXE, the GHCB backup pages are allocated as boot services pages
using the memory allocation library.
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Cc: Ard Biesheuvel <ard.biesheuvel@arm.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Acked-by: Laszlo Ersek <lersek@redhat.com>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <ac2e8203fc41a351b43f60d68bdad6b57c4fb106.1610045305.git.thomas.lendacky@amd.com>
BZ: https://bugzilla.tianocore.org/show_bug.cgi?id=3108
To help mitigate against ROP attacks, add some checks to validate the
encryption bit position that is reported by the hypervisor.
The first check is to ensure that the hypervisor reports a bit position
above bit 31. After extracting the encryption bit position from the CPUID
information, the code checks that the value is above 31. If the value is
not above 31, then the bit position is not valid, so the code enters a
HLT loop.
The second check is specific to SEV-ES guests and is a two step process.
The first step will obtain random data using RDRAND and store that data to
memory before paging is enabled. When paging is not enabled, all writes to
memory are encrypted. The random data is maintained in registers, which
are protected. The second step is that, after enabling paging, the random
data in memory is compared to the register contents. If they don't match,
then the reported bit position is not valid, so the code enters a HLT
loop.
The third check is after switching to 64-bit long mode. Use the fact that
instruction fetches are automatically decrypted, while a memory fetch is
decrypted only if the encryption bit is set in the page table. By
comparing the bytes of an instruction fetch against a memory read of that
same instruction, the encryption bit position can be validated. If the
compare is not equal, then SEV/SEV-ES is active but the reported bit
position is not valid, so the code enters a HLT loop.
To keep the changes local to the OvmfPkg, an OvmfPkg version of the
Flat32ToFlat64.asm file has been created based on the UefiCpuPkg file
UefiCpuPkg/ResetVector/Vtf0/Ia32/Flat32ToFlat64.asm.
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Cc: Ard Biesheuvel <ard.biesheuvel@arm.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <cb9c5ab23ab02096cd964ed64115046cc706ce67.1610045305.git.thomas.lendacky@amd.com>
In the next three patches, we're going to modify three modules under
OvmfPkg. When OVMF is built with -D SMM_REQUIRE and runs in an SEV guest,
each affected module will have to know the page range that covers the
initial (pre-SMBASE relocation) SMRAM save state map. Add a helper
function to MemEncryptSevLib that calculates the "base address" and
"number of pages" constants for this page range.
(In a RELEASE build -- i.e., with assertions disabled and optimization
enabled --, the helper function can be compiled to store two constants
determined at compile time.)
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Tested-by: Brijesh Singh <brijesh.singh@amd.com>
Reviewed-by: Brijesh Singh <brijesh.singh@amd.com>
The declaration and the definition(s) of the function should have
identical leading comments and/or identical parameter lists. Replace any
leftover "clear" references to the C-bit with "set" references. Also
remove any excess space in the comment block, and unindent the trailing
"**/" if necessary. Correct several parameter references.
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Tested-by: Brijesh Singh <brijesh.singh@amd.com>
Reviewed-by: Brijesh Singh <brijesh.singh@amd.com>
The declaration and the definition(s) of the function should have
identical leading comments and/or identical parameter lists. Also remove
any excess space in the comment block, and unindent the trailing "**/" if
necessary. Correct several parameter references.
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Tested-by: Brijesh Singh <brijesh.singh@amd.com>
Reviewed-by: Brijesh Singh <brijesh.singh@amd.com>
The declaration and the definition(s) of the function should have
identical leading comments and/or identical parameter lists. Also remove
any excess space in the comment block, and unindent the trailing "**/" if
necessary.
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Jordan Justen <jordan.l.justen@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Laszlo Ersek <lersek@redhat.com>
Tested-by: Brijesh Singh <brijesh.singh@amd.com>
Reviewed-by: Brijesh Singh <brijesh.singh@amd.com>
Add Secure Encrypted Virtualization (SEV) helper library.
The library provides the routines to:
- set or clear memory encryption bit for a given memory region.
- query whether SEV is enabled.
Cc: Jordan Justen <jordan.l.justen@intel.com>
Cc: Laszlo Ersek <lersek@redhat.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Reviewed-by: Laszlo Ersek <lersek@redhat.com>
Acked-by: Jordan Justen <jordan.l.justen@intel.com>