/** @file
  Common header file for MP Initialize Library.
  Copyright (c) 2016 - 2021, Intel Corporation. All rights reserved.
  Copyright (c) 2020, AMD Inc. All rights reserved.
  SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#ifndef _MP_LIB_H_
#define _MP_LIB_H_
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#define WAKEUP_AP_SIGNAL  SIGNATURE_32 ('S', 'T', 'A', 'P')
#define CPU_INIT_MP_LIB_HOB_GUID \
  { \
    0x58eb6a19, 0x3699, 0x4c68, { 0xa8, 0x36, 0xda, 0xcd, 0x8e, 0xdc, 0xad, 0x4a } \
  }
//
//  The MP data for switch BSP
//
#define CPU_SWITCH_STATE_IDLE    0
#define CPU_SWITCH_STATE_STORED  1
#define CPU_SWITCH_STATE_LOADED  2
//
// Default maximum number of entries to store the microcode patches information
//
#define DEFAULT_MAX_MICROCODE_PATCH_NUM  8
//
// Data structure for microcode patch information
//
typedef struct {
  UINTN    Address;
  UINTN    Size;
} MICROCODE_PATCH_INFO;
//
// CPU exchange information for switch BSP
//
typedef struct {
  UINT8              State;        // offset 0
  UINTN              StackPointer; // offset 4 / 8
  IA32_DESCRIPTOR    Gdtr;         // offset 8 / 16
  IA32_DESCRIPTOR    Idtr;         // offset 14 / 26
} CPU_EXCHANGE_ROLE_INFO;
//
// AP loop state when APs are in idle state
// It's value is the same with PcdCpuApLoopMode
//
typedef enum {
  ApInHltLoop   = 1,
  ApInMwaitLoop = 2,
  ApInRunLoop   = 3
} AP_LOOP_MODE;
//
// AP initialization state during APs wakeup
//
typedef enum {
  ApInitConfig   = 1,
  ApInitReconfig = 2,
  ApInitDone     = 3
} AP_INIT_STATE;
//
// AP state
//
// The state transitions for an AP when it process a procedure are:
//  Idle ----> Ready ----> Busy ----> Idle
//       [BSP]       [AP]       [AP]
//
typedef enum {
  CpuStateIdle,
  CpuStateReady,
  CpuStateBusy,
  CpuStateFinished,
  CpuStateDisabled
} CPU_STATE;
//
// CPU volatile registers around INIT-SIPI-SIPI
//
typedef struct {
  UINTN              Cr0;
  UINTN              Cr3;
  UINTN              Cr4;
  UINTN              Dr0;
  UINTN              Dr1;
  UINTN              Dr2;
  UINTN              Dr3;
  UINTN              Dr6;
  UINTN              Dr7;
  IA32_DESCRIPTOR    Gdtr;
  IA32_DESCRIPTOR    Idtr;
  UINT16             Tr;
} CPU_VOLATILE_REGISTERS;
//
// AP related data
//
typedef struct {
  SPIN_LOCK                 ApLock;
  volatile UINT32           *StartupApSignal;
  volatile UINTN            ApFunction;
  volatile UINTN            ApFunctionArgument;
  BOOLEAN                   CpuHealthy;
  volatile CPU_STATE        State;
  CPU_VOLATILE_REGISTERS    VolatileRegisters;
  BOOLEAN                   Waiting;
  BOOLEAN                   *Finished;
  UINT64                    ExpectedTime;
  UINT64                    CurrentTime;
  UINT64                    TotalTime;
  EFI_EVENT                 WaitEvent;
  UINT32                    ProcessorSignature;
  UINT8                     PlatformId;
  UINT64                    MicrocodeEntryAddr;
  UINT32                    MicrocodeRevision;
  SEV_ES_SAVE_AREA          *SevEsSaveArea;
} CPU_AP_DATA;
//
// Basic CPU information saved in Guided HOB.
// Because the contents will be shard between PEI and DXE,
// we need to make sure the each fields offset same in different
// architecture.
//
#pragma pack (1)
typedef struct {
  UINT32    InitialApicId;
  UINT32    ApicId;
  UINT32    Health;
  UINT64    ApTopOfStack;
} CPU_INFO_IN_HOB;
#pragma pack ()
//
// AP reset code information including code address and size,
// this structure will be shared be C code and assembly code.
// It is natural aligned by design.
//
typedef struct {
  UINT8    *RendezvousFunnelAddress;
  UINTN    ModeEntryOffset;
  UINTN    RendezvousFunnelSize;
  UINT8    *RelocateApLoopFuncAddress;
  UINTN    RelocateApLoopFuncSize;
  UINTN    ModeTransitionOffset;
  UINTN    SwitchToRealSize;
  UINTN    SwitchToRealOffset;
  UINTN    SwitchToRealNoNxOffset;
  UINTN    SwitchToRealPM16ModeOffset;
  UINTN    SwitchToRealPM16ModeSize;
} MP_ASSEMBLY_ADDRESS_MAP;
typedef struct _CPU_MP_DATA CPU_MP_DATA;
#pragma pack(1)
//
// MP CPU exchange information for AP reset code
// This structure is required to be packed because fixed field offsets
// into this structure are used in assembly code in this module
//
typedef struct {
  UINTN              StackStart;
  UINTN              StackSize;
  UINTN              CFunction;
  IA32_DESCRIPTOR    GdtrProfile;
  IA32_DESCRIPTOR    IdtrProfile;
  UINTN              BufferStart;
  UINTN              ModeOffset;
  UINTN              ApIndex;
  UINTN              CodeSegment;
  UINTN              DataSegment;
  UINTN              EnableExecuteDisable;
  UINTN              Cr3;
  UINTN              InitFlag;
  CPU_INFO_IN_HOB    *CpuInfo;
  UINTN              NumApsExecuting;
  CPU_MP_DATA        *CpuMpData;
  UINTN              InitializeFloatingPointUnitsAddress;
  UINT32             ModeTransitionMemory;
  UINT16             ModeTransitionSegment;
  UINT32             ModeHighMemory;
  UINT16             ModeHighSegment;
  //
  // Enable5LevelPaging indicates whether 5-level paging is enabled in long mode.
  //
  BOOLEAN            Enable5LevelPaging;
  BOOLEAN            SevEsIsEnabled;
  BOOLEAN            SevSnpIsEnabled;
  UINTN              GhcbBase;
  BOOLEAN            ExtTopoAvail;
} MP_CPU_EXCHANGE_INFO;
#pragma pack()
//
// CPU MP Data save in memory
//
struct _CPU_MP_DATA {
  UINT64                           CpuInfoInHob;
  UINT32                           CpuCount;
  UINT32                           BspNumber;
  //
  // The above fields data will be passed from PEI to DXE
  // Please make sure the fields offset same in the different
  // architecture.
  //
  SPIN_LOCK                        MpLock;
  UINTN                            Buffer;
  UINTN                            CpuApStackSize;
  MP_ASSEMBLY_ADDRESS_MAP          AddressMap;
  UINTN                            WakeupBuffer;
  UINTN                            WakeupBufferHigh;
  UINTN                            BackupBuffer;
  UINTN                            BackupBufferSize;
  volatile UINT32                  FinishedCount;
  UINT32                           RunningCount;
  BOOLEAN                          SingleThread;
  EFI_AP_PROCEDURE                 Procedure;
  VOID                             *ProcArguments;
  BOOLEAN                          *Finished;
  UINT64                           ExpectedTime;
  UINT64                           CurrentTime;
  UINT64                           TotalTime;
  EFI_EVENT                        WaitEvent;
  UINTN                            **FailedCpuList;
  AP_INIT_STATE                    InitFlag;
  BOOLEAN                          SwitchBspFlag;
  UINTN                            NewBspNumber;
  CPU_EXCHANGE_ROLE_INFO           BSPInfo;
  CPU_EXCHANGE_ROLE_INFO           APInfo;
  MTRR_SETTINGS                    MtrrTable;
  UINT8                            ApLoopMode;
  UINT8                            ApTargetCState;
  UINT16                           PmCodeSegment;
  UINT16                           Pm16CodeSegment;
  CPU_AP_DATA                      *CpuData;
  volatile MP_CPU_EXCHANGE_INFO    *MpCpuExchangeInfo;
  UINT32                           CurrentTimerCount;
  UINTN                            DivideValue;
  UINT8                            Vector;
  BOOLEAN                          PeriodicMode;
  BOOLEAN                          TimerInterruptState;
  UINT64                           MicrocodePatchAddress;
  UINT64                           MicrocodePatchRegionSize;
  //
  // Whether need to use Init-Sipi-Sipi to wake up the APs.
  // Two cases need to set this value to TRUE. One is in HLT
  // loop mode, the other is resume from S3 which loop mode
  // will be hardcode change to HLT mode by PiSmmCpuDxeSmm
  // driver.
  //
  BOOLEAN        WakeUpByInitSipiSipi;
  BOOLEAN        SevEsIsEnabled;
  BOOLEAN        SevSnpIsEnabled;
  BOOLEAN        UseSevEsAPMethod;
  UINTN          SevEsAPBuffer;
  UINTN          SevEsAPResetStackStart;
  CPU_MP_DATA    *NewCpuMpData;
  UINT64         GhcbBase;
};
#define AP_SAFE_STACK_SIZE   128
#define AP_RESET_STACK_SIZE  AP_SAFE_STACK_SIZE
#pragma pack(1)
typedef struct {
  UINT8     InsnBuffer[8];
  UINT16    Rip;
  UINT16    Segment;
} SEV_ES_AP_JMP_FAR;
#pragma pack()
/**
  Assembly code to move an AP from long mode to real mode.
  Move an AP from long mode to real mode in preparation to invoking
  the reset vector.  This is used for SEV-ES guests where a hypervisor
  is not allowed to set the CS and RIP to point to the reset vector.
  @param[in]  BufferStart  The reset vector target.
  @param[in]  Code16       16-bit protected mode code segment value.
  @param[in]  Code32       32-bit protected mode code segment value.
  @param[in]  StackStart   The start of a stack to be used for transitioning
                           from long mode to real mode.
**/
typedef
  VOID
(EFIAPI AP_RESET)(
  IN UINTN    BufferStart,
  IN UINT16   Code16,
  IN UINT16   Code32,
  IN UINTN    StackStart
  );
extern EFI_GUID  mCpuInitMpLibHobGuid;
/**
  Assembly code to place AP into safe loop mode.
  Place AP into targeted C-State if MONITOR is supported, otherwise
  place AP into hlt state.
  Place AP in protected mode if the current is long mode. Due to AP maybe
  wakeup by some hardware event. It could avoid accessing page table that
  may not available during booting to OS.
  @param[in] MwaitSupport    TRUE indicates MONITOR is supported.
                             FALSE indicates MONITOR is not supported.
  @param[in] ApTargetCState  Target C-State value.
  @param[in] PmCodeSegment   Protected mode code segment value.
**/
typedef
  VOID
(EFIAPI *ASM_RELOCATE_AP_LOOP)(
  IN BOOLEAN                 MwaitSupport,
  IN UINTN                   ApTargetCState,
  IN UINTN                   PmCodeSegment,
  IN UINTN                   TopOfApStack,
  IN UINTN                   NumberToFinish,
  IN UINTN                   Pm16CodeSegment,
  IN UINTN                   SevEsAPJumpTable,
  IN UINTN                   WakeupBuffer
  );
/**
  Assembly code to get starting address and size of the rendezvous entry for APs.
  Information for fixing a jump instruction in the code is also returned.
  @param[out] AddressMap  Output buffer for address map information.
**/
VOID
EFIAPI
AsmGetAddressMap (
  OUT MP_ASSEMBLY_ADDRESS_MAP  *AddressMap
  );
/**
  This function is called by both the BSP and the AP which is to become the BSP to
  Exchange execution context including stack between them. After return from this
  function, the BSP becomes AP and the AP becomes the BSP.
  @param[in] MyInfo      Pointer to buffer holding the exchanging information for the executing processor.
  @param[in] OthersInfo  Pointer to buffer holding the exchanging information for the peer.
**/
VOID
EFIAPI
AsmExchangeRole (
  IN CPU_EXCHANGE_ROLE_INFO  *MyInfo,
  IN CPU_EXCHANGE_ROLE_INFO  *OthersInfo
  );
/**
  Get the pointer to CPU MP Data structure.
  @return  The pointer to CPU MP Data structure.
**/
CPU_MP_DATA *
GetCpuMpData (
  VOID
  );
/**
  Save the pointer to CPU MP Data structure.
  @param[in] CpuMpData  The pointer to CPU MP Data structure will be saved.
**/
VOID
SaveCpuMpData (
  IN CPU_MP_DATA  *CpuMpData
  );
/**
  Get available system memory below 1MB by specified size.
  @param[in] WakeupBufferSize   Wakeup buffer size required
  @retval other   Return wakeup buffer address below 1MB.
  @retval -1      Cannot find free memory below 1MB.
**/
UINTN
GetWakeupBuffer (
  IN UINTN  WakeupBufferSize
  );
/**
  Get available EfiBootServicesCode memory below 4GB by specified size.
  This buffer is required to safely transfer AP from real address mode to
  protected mode or long mode, due to the fact that the buffer returned by
  GetWakeupBuffer() may be marked as non-executable.
  @param[in] BufferSize   Wakeup transition buffer size.
  @retval other   Return wakeup transition buffer address below 4GB.
  @retval 0       Cannot find free memory below 4GB.
**/
UINTN
GetModeTransitionBuffer (
  IN UINTN  BufferSize
  );
/**
  Return the address of the SEV-ES AP jump table.
  This buffer is required in order for an SEV-ES guest to transition from
  UEFI into an OS.
  @return         Return SEV-ES AP jump table buffer
**/
UINTN
GetSevEsAPMemory (
  VOID
  );
/**
  This function will be called by BSP to wakeup AP.
  @param[in] CpuMpData          Pointer to CPU MP Data
  @param[in] Broadcast          TRUE:  Send broadcast IPI to all APs
                                FALSE: Send IPI to AP by ApicId
  @param[in] ProcessorNumber    The handle number of specified processor
  @param[in] Procedure          The function to be invoked by AP
  @param[in] ProcedureArgument  The argument to be passed into AP function
  @param[in] WakeUpDisabledAps  Whether need to wake up disabled APs in broadcast mode.
**/
VOID
WakeUpAP (
  IN CPU_MP_DATA       *CpuMpData,
  IN BOOLEAN           Broadcast,
  IN UINTN             ProcessorNumber,
  IN EFI_AP_PROCEDURE  Procedure               OPTIONAL,
  IN VOID              *ProcedureArgument      OPTIONAL,
  IN BOOLEAN           WakeUpDisabledAps       OPTIONAL
  );
/**
  Initialize global data for MP support.
  @param[in] CpuMpData  The pointer to CPU MP Data structure.
**/
VOID
InitMpGlobalData (
  IN CPU_MP_DATA  *CpuMpData
  );
/**
  Worker function to execute a caller provided function on all enabled APs.
  @param[in]  Procedure               A pointer to the function to be run on
                                      enabled APs of the system.
  @param[in]  SingleThread            If TRUE, then all the enabled APs execute
                                      the function specified by Procedure one by
                                      one, in ascending order of processor handle
                                      number.  If FALSE, then all the enabled APs
                                      execute the function specified by Procedure
                                      simultaneously.
  @param[in]  ExcludeBsp              Whether let BSP also trig this task.
  @param[in]  WaitEvent               The event created by the caller with CreateEvent()
                                      service.
  @param[in]  TimeoutInMicroseconds   Indicates the time limit in microseconds for
                                      APs to return from Procedure, either for
                                      blocking or non-blocking mode.
  @param[in]  ProcedureArgument       The parameter passed into Procedure for
                                      all APs.
  @param[out] FailedCpuList           If all APs finish successfully, then its
                                      content is set to NULL. If not all APs
                                      finish before timeout expires, then its
                                      content is set to address of the buffer
                                      holding handle numbers of the failed APs.
  @retval EFI_SUCCESS             In blocking mode, all APs have finished before
                                  the timeout expired.
  @retval EFI_SUCCESS             In non-blocking mode, function has been dispatched
                                  to all enabled APs.
  @retval others                  Failed to Startup all APs.
**/
EFI_STATUS
StartupAllCPUsWorker (
  IN  EFI_AP_PROCEDURE  Procedure,
  IN  BOOLEAN           SingleThread,
  IN  BOOLEAN           ExcludeBsp,
  IN  EFI_EVENT         WaitEvent               OPTIONAL,
  IN  UINTN             TimeoutInMicroseconds,
  IN  VOID              *ProcedureArgument      OPTIONAL,
  OUT UINTN             **FailedCpuList         OPTIONAL
  );
/**
  Worker function to let the caller get one enabled AP to execute a caller-provided
  function.
  @param[in]  Procedure               A pointer to the function to be run on
                                      enabled APs of the system.
  @param[in]  ProcessorNumber         The handle number of the AP.
  @param[in]  WaitEvent               The event created by the caller with CreateEvent()
                                      service.
  @param[in]  TimeoutInMicroseconds   Indicates the time limit in microseconds for
                                      APs to return from Procedure, either for
                                      blocking or non-blocking mode.
  @param[in]  ProcedureArgument       The parameter passed into Procedure for
                                      all APs.
  @param[out] Finished                If AP returns from Procedure before the
                                      timeout expires, its content is set to TRUE.
                                      Otherwise, the value is set to FALSE.
  @retval EFI_SUCCESS             In blocking mode, specified AP finished before
                                  the timeout expires.
  @retval others                  Failed to Startup AP.
**/
EFI_STATUS
StartupThisAPWorker (
  IN  EFI_AP_PROCEDURE  Procedure,
  IN  UINTN             ProcessorNumber,
  IN  EFI_EVENT         WaitEvent               OPTIONAL,
  IN  UINTN             TimeoutInMicroseconds,
  IN  VOID              *ProcedureArgument      OPTIONAL,
  OUT BOOLEAN           *Finished               OPTIONAL
  );
/**
  Worker function to switch the requested AP to be the BSP from that point onward.
  @param[in] ProcessorNumber   The handle number of AP that is to become the new BSP.
  @param[in] EnableOldBSP      If TRUE, then the old BSP will be listed as an
                               enabled AP. Otherwise, it will be disabled.
  @retval EFI_SUCCESS          BSP successfully switched.
  @retval others               Failed to switch BSP.
**/
EFI_STATUS
SwitchBSPWorker (
  IN UINTN    ProcessorNumber,
  IN BOOLEAN  EnableOldBSP
  );
/**
  Worker function to let the caller enable or disable an AP from this point onward.
  This service may only be called from the BSP.
  @param[in] ProcessorNumber   The handle number of AP.
  @param[in] EnableAP          Specifies the new state for the processor for
                               enabled, FALSE for disabled.
  @param[in] HealthFlag        If not NULL, a pointer to a value that specifies
                               the new health status of the AP.
  @retval EFI_SUCCESS          The specified AP was enabled or disabled successfully.
  @retval others               Failed to Enable/Disable AP.
**/
EFI_STATUS
EnableDisableApWorker (
  IN  UINTN    ProcessorNumber,
  IN  BOOLEAN  EnableAP,
  IN  UINT32   *HealthFlag OPTIONAL
  );
/**
  Get pointer to CPU MP Data structure from GUIDed HOB.
  @return  The pointer to CPU MP Data structure.
**/
CPU_MP_DATA *
GetCpuMpDataFromGuidedHob (
  VOID
  );
/** Checks status of specified AP.
  This function checks whether the specified AP has finished the task assigned
  by StartupThisAP(), and whether timeout expires.
  @param[in]  ProcessorNumber       The handle number of processor.
  @retval EFI_SUCCESS           Specified AP has finished task assigned by StartupThisAPs().
  @retval EFI_TIMEOUT           The timeout expires.
  @retval EFI_NOT_READY         Specified AP has not finished task and timeout has not expired.
**/
EFI_STATUS
CheckThisAP (
  IN UINTN  ProcessorNumber
  );
/**
  Checks status of all APs.
  This function checks whether all APs have finished task assigned by StartupAllAPs(),
  and whether timeout expires.
  @retval EFI_SUCCESS           All APs have finished task assigned by StartupAllAPs().
  @retval EFI_TIMEOUT           The timeout expires.
  @retval EFI_NOT_READY         APs have not finished task and timeout has not expired.
**/
EFI_STATUS
CheckAllAPs (
  VOID
  );
/**
  Checks APs status and updates APs status if needed.
**/
VOID
CheckAndUpdateApsStatus (
  VOID
  );
/**
  Detect whether specified processor can find matching microcode patch and load it.
  @param[in]  CpuMpData        The pointer to CPU MP Data structure.
  @param[in]  ProcessorNumber  The handle number of the processor. The range is
                               from 0 to the total number of logical processors
                               minus 1.
**/
VOID
MicrocodeDetect (
  IN CPU_MP_DATA  *CpuMpData,
  IN UINTN        ProcessorNumber
  );
/**
  Shadow the required microcode patches data into memory.
  @param[in, out]  CpuMpData    The pointer to CPU MP Data structure.
**/
VOID
ShadowMicrocodeUpdatePatch (
  IN OUT CPU_MP_DATA  *CpuMpData
  );
/**
  Get the cached microcode patch base address and size from the microcode patch
  information cache HOB.
  @param[out] Address       Base address of the microcode patches data.
                            It will be updated if the microcode patch
                            information cache HOB is found.
  @param[out] RegionSize    Size of the microcode patches data.
                            It will be updated if the microcode patch
                            information cache HOB is found.
  @retval  TRUE     The microcode patch information cache HOB is found.
  @retval  FALSE    The microcode patch information cache HOB is not found.
**/
BOOLEAN
GetMicrocodePatchInfoFromHob (
  UINT64  *Address,
  UINT64  *RegionSize
  );
/**
  Detect whether Mwait-monitor feature is supported.
  @retval TRUE    Mwait-monitor feature is supported.
  @retval FALSE   Mwait-monitor feature is not supported.
**/
BOOLEAN
IsMwaitSupport (
  VOID
  );
/**
  Enable Debug Agent to support source debugging on AP function.
**/
VOID
EnableDebugAgent (
  VOID
  );
/**
  Find the current Processor number by APIC ID.
  @param[in]  CpuMpData         Pointer to PEI CPU MP Data
  @param[out] ProcessorNumber   Return the pocessor number found
  @retval EFI_SUCCESS          ProcessorNumber is found and returned.
  @retval EFI_NOT_FOUND        ProcessorNumber is not found.
**/
EFI_STATUS
GetProcessorNumber (
  IN CPU_MP_DATA  *CpuMpData,
  OUT UINTN       *ProcessorNumber
  );
/**
  This funtion will try to invoke platform specific microcode shadow logic to
  relocate microcode update patches into memory.
  @param[in, out] CpuMpData  The pointer to CPU MP Data structure.
  @retval EFI_SUCCESS              Shadow microcode success.
  @retval EFI_OUT_OF_RESOURCES     No enough resource to complete the operation.
  @retval EFI_UNSUPPORTED          Can't find platform specific microcode shadow
                                   PPI/Protocol.
**/
EFI_STATUS
PlatformShadowMicrocode (
  IN OUT CPU_MP_DATA  *CpuMpData
  );
/**
  Allocate the SEV-ES AP jump table buffer.
  @param[in, out]  CpuMpData  The pointer to CPU MP Data structure.
**/
VOID
AllocateSevEsAPMemory (
  IN OUT CPU_MP_DATA  *CpuMpData
  );
/**
  Program the SEV-ES AP jump table buffer.
  @param[in]  SipiVector  The SIPI vector used for the AP Reset
**/
VOID
SetSevEsJumpTable (
  IN UINTN  SipiVector
  );
/**
  The function puts the AP in halt loop.
  @param[in]  CpuMpData  The pointer to CPU MP Data structure.
**/
VOID
SevEsPlaceApHlt (
  CPU_MP_DATA  *CpuMpData
  );
/**
 Check if the specified confidential computing attribute is active.
 @retval TRUE   The specified Attr is active.
 @retval FALSE  The specified Attr is not active.
**/
BOOLEAN
EFIAPI
ConfidentialComputingGuestHas (
  CONFIDENTIAL_COMPUTING_GUEST_ATTR  Attr
  );
/**
  The function fills the exchange data for the AP.
  @param[in]   ExchangeInfo  The pointer to CPU Exchange Data structure
**/
VOID
FillExchangeInfoDataSevEs (
  IN volatile MP_CPU_EXCHANGE_INFO  *ExchangeInfo
  );
/**
  Issue RMPADJUST to adjust the VMSA attribute of an SEV-SNP page.
  @param[in]  PageAddress
  @param[in]  VmsaPage
  @return  RMPADJUST return value
**/
UINT32
SevSnpRmpAdjust (
  IN  EFI_PHYSICAL_ADDRESS  PageAddress,
  IN  BOOLEAN               VmsaPage
  );
/**
  Create an SEV-SNP AP save area (VMSA) for use in running the vCPU.
  @param[in]  CpuMpData        Pointer to CPU MP Data
  @param[in]  CpuData          Pointer to CPU AP Data
  @param[in]  ApicId           APIC ID of the vCPU
**/
VOID
SevSnpCreateSaveArea (
  IN CPU_MP_DATA  *CpuMpData,
  IN CPU_AP_DATA  *CpuData,
  UINT32          ApicId
  );
/**
  Create SEV-SNP APs.
  @param[in]  CpuMpData        Pointer to CPU MP Data
  @param[in]  ProcessorNumber  The handle number of specified processor
                               (-1 for all APs)
**/
VOID
SevSnpCreateAP (
  IN CPU_MP_DATA  *CpuMpData,
  IN INTN         ProcessorNumber
  );
#endif