/** @file
  UEFI PropertiesTable support
Copyright (c) 2015 - 2016, Intel Corporation. All rights reserved.
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution.  The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include "DxeMain.h"
#define PREVIOUS_MEMORY_DESCRIPTOR(MemoryDescriptor, Size) \
  ((EFI_MEMORY_DESCRIPTOR *)((UINT8 *)(MemoryDescriptor) - (Size)))
#define IMAGE_PROPERTIES_RECORD_CODE_SECTION_SIGNATURE SIGNATURE_32 ('I','P','R','C')
typedef struct {
  UINT32                 Signature;
  LIST_ENTRY             Link;
  EFI_PHYSICAL_ADDRESS   CodeSegmentBase;
  UINT64                 CodeSegmentSize;
} IMAGE_PROPERTIES_RECORD_CODE_SECTION;
#define IMAGE_PROPERTIES_RECORD_SIGNATURE SIGNATURE_32 ('I','P','R','D')
typedef struct {
  UINT32                 Signature;
  LIST_ENTRY             Link;
  EFI_PHYSICAL_ADDRESS   ImageBase;
  UINT64                 ImageSize;
  UINTN                  CodeSegmentCount;
  LIST_ENTRY             CodeSegmentList;
} IMAGE_PROPERTIES_RECORD;
#define IMAGE_PROPERTIES_PRIVATE_DATA_SIGNATURE SIGNATURE_32 ('I','P','P','D')
typedef struct {
  UINT32                 Signature;
  UINTN                  ImageRecordCount;
  UINTN                  CodeSegmentCountMax;
  LIST_ENTRY             ImageRecordList;
} IMAGE_PROPERTIES_PRIVATE_DATA;
IMAGE_PROPERTIES_PRIVATE_DATA  mImagePropertiesPrivateData = {
  IMAGE_PROPERTIES_PRIVATE_DATA_SIGNATURE,
  0,
  0,
  INITIALIZE_LIST_HEAD_VARIABLE (mImagePropertiesPrivateData.ImageRecordList)
};
EFI_PROPERTIES_TABLE  mPropertiesTable = {
  EFI_PROPERTIES_TABLE_VERSION,
  sizeof(EFI_PROPERTIES_TABLE),
  EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA
};
EFI_LOCK           mPropertiesTableLock = EFI_INITIALIZE_LOCK_VARIABLE (TPL_NOTIFY);
BOOLEAN            mPropertiesTableEnable;
//
// Below functions are for MemoryMap
//
/**
  Converts a number of EFI_PAGEs to a size in bytes.
  NOTE: Do not use EFI_PAGES_TO_SIZE because it handles UINTN only.
  @param  Pages     The number of EFI_PAGES.
  @return  The number of bytes associated with the number of EFI_PAGEs specified
           by Pages.
**/
STATIC
UINT64
EfiPagesToSize (
  IN UINT64 Pages
  )
{
  return LShiftU64 (Pages, EFI_PAGE_SHIFT);
}
/**
  Converts a size, in bytes, to a number of EFI_PAGESs.
  NOTE: Do not use EFI_SIZE_TO_PAGES because it handles UINTN only.
  @param  Size      A size in bytes.
  @return  The number of EFI_PAGESs associated with the number of bytes specified
           by Size.
**/
STATIC
UINT64
EfiSizeToPages (
  IN UINT64 Size
  )
{
  return RShiftU64 (Size, EFI_PAGE_SHIFT) + ((((UINTN)Size) & EFI_PAGE_MASK) ? 1 : 0);
}
/**
  Acquire memory lock on mPropertiesTableLock.
**/
STATIC
VOID
CoreAcquirePropertiesTableLock (
  VOID
  )
{
  CoreAcquireLock (&mPropertiesTableLock);
}
/**
  Release memory lock on mPropertiesTableLock.
**/
STATIC
VOID
CoreReleasePropertiesTableLock (
  VOID
  )
{
  CoreReleaseLock (&mPropertiesTableLock);
}
/**
  Sort memory map entries based upon PhysicalStart, from low to high.
  @param  MemoryMap              A pointer to the buffer in which firmware places
                                 the current memory map.
  @param  MemoryMapSize          Size, in bytes, of the MemoryMap buffer.
  @param  DescriptorSize         Size, in bytes, of an individual EFI_MEMORY_DESCRIPTOR.
**/
STATIC
VOID
SortMemoryMap (
  IN OUT EFI_MEMORY_DESCRIPTOR  *MemoryMap,
  IN UINTN                      MemoryMapSize,
  IN UINTN                      DescriptorSize
  )
{
  EFI_MEMORY_DESCRIPTOR       *MemoryMapEntry;
  EFI_MEMORY_DESCRIPTOR       *NextMemoryMapEntry;
  EFI_MEMORY_DESCRIPTOR       *MemoryMapEnd;
  EFI_MEMORY_DESCRIPTOR       TempMemoryMap;
  MemoryMapEntry = MemoryMap;
  NextMemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (MemoryMapEntry, DescriptorSize);
  MemoryMapEnd = (EFI_MEMORY_DESCRIPTOR *) ((UINT8 *) MemoryMap + MemoryMapSize);
  while (MemoryMapEntry < MemoryMapEnd) {
    while (NextMemoryMapEntry < MemoryMapEnd) {
      if (MemoryMapEntry->PhysicalStart > NextMemoryMapEntry->PhysicalStart) {
        CopyMem (&TempMemoryMap, MemoryMapEntry, sizeof(EFI_MEMORY_DESCRIPTOR));
        CopyMem (MemoryMapEntry, NextMemoryMapEntry, sizeof(EFI_MEMORY_DESCRIPTOR));
        CopyMem (NextMemoryMapEntry, &TempMemoryMap, sizeof(EFI_MEMORY_DESCRIPTOR));
      }
      NextMemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (NextMemoryMapEntry, DescriptorSize);
    }
    MemoryMapEntry      = NEXT_MEMORY_DESCRIPTOR (MemoryMapEntry, DescriptorSize);
    NextMemoryMapEntry  = NEXT_MEMORY_DESCRIPTOR (MemoryMapEntry, DescriptorSize);
  }
  return ;
}
/**
  Merge continous memory map entries whose have same attributes.
  @param  MemoryMap              A pointer to the buffer in which firmware places
                                 the current memory map.
  @param  MemoryMapSize          A pointer to the size, in bytes, of the
                                 MemoryMap buffer. On input, this is the size of
                                 the current memory map.  On output,
                                 it is the size of new memory map after merge.
  @param  DescriptorSize         Size, in bytes, of an individual EFI_MEMORY_DESCRIPTOR.
**/
STATIC
VOID
MergeMemoryMap (
  IN OUT EFI_MEMORY_DESCRIPTOR  *MemoryMap,
  IN OUT UINTN                  *MemoryMapSize,
  IN UINTN                      DescriptorSize
  )
{
  EFI_MEMORY_DESCRIPTOR       *MemoryMapEntry;
  EFI_MEMORY_DESCRIPTOR       *MemoryMapEnd;
  UINT64                      MemoryBlockLength;
  EFI_MEMORY_DESCRIPTOR       *NewMemoryMapEntry;
  EFI_MEMORY_DESCRIPTOR       *NextMemoryMapEntry;
  MemoryMapEntry = MemoryMap;
  NewMemoryMapEntry = MemoryMap;
  MemoryMapEnd = (EFI_MEMORY_DESCRIPTOR *) ((UINT8 *) MemoryMap + *MemoryMapSize);
  while ((UINTN)MemoryMapEntry < (UINTN)MemoryMapEnd) {
    CopyMem (NewMemoryMapEntry, MemoryMapEntry, sizeof(EFI_MEMORY_DESCRIPTOR));
    NextMemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (MemoryMapEntry, DescriptorSize);
    do {
      MemoryBlockLength = (UINT64) (EfiPagesToSize (MemoryMapEntry->NumberOfPages));
      if (((UINTN)NextMemoryMapEntry < (UINTN)MemoryMapEnd) &&
          (MemoryMapEntry->Type == NextMemoryMapEntry->Type) &&
          (MemoryMapEntry->Attribute == NextMemoryMapEntry->Attribute) &&
          ((MemoryMapEntry->PhysicalStart + MemoryBlockLength) == NextMemoryMapEntry->PhysicalStart)) {
        MemoryMapEntry->NumberOfPages += NextMemoryMapEntry->NumberOfPages;
        if (NewMemoryMapEntry != MemoryMapEntry) {
          NewMemoryMapEntry->NumberOfPages += NextMemoryMapEntry->NumberOfPages;
        }
        NextMemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (NextMemoryMapEntry, DescriptorSize);
        continue;
      } else {
        MemoryMapEntry = PREVIOUS_MEMORY_DESCRIPTOR (NextMemoryMapEntry, DescriptorSize);
        break;
      }
    } while (TRUE);
    MemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (MemoryMapEntry, DescriptorSize);
    NewMemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (NewMemoryMapEntry, DescriptorSize);
  }
  *MemoryMapSize = (UINTN)NewMemoryMapEntry - (UINTN)MemoryMap;
  return ;
}
/**
  Enforce memory map attributes.
  This function will set EfiRuntimeServicesData/EfiMemoryMappedIO/EfiMemoryMappedIOPortSpace to be EFI_MEMORY_XP.
  @param  MemoryMap              A pointer to the buffer in which firmware places
                                 the current memory map.
  @param  MemoryMapSize          Size, in bytes, of the MemoryMap buffer.
  @param  DescriptorSize         Size, in bytes, of an individual EFI_MEMORY_DESCRIPTOR.
**/
STATIC
VOID
EnforceMemoryMapAttribute (
  IN OUT EFI_MEMORY_DESCRIPTOR  *MemoryMap,
  IN UINTN                      MemoryMapSize,
  IN UINTN                      DescriptorSize
  )
{
  EFI_MEMORY_DESCRIPTOR       *MemoryMapEntry;
  EFI_MEMORY_DESCRIPTOR       *MemoryMapEnd;
  MemoryMapEntry = MemoryMap;
  MemoryMapEnd   = (EFI_MEMORY_DESCRIPTOR *) ((UINT8 *) MemoryMap + MemoryMapSize);
  while ((UINTN)MemoryMapEntry < (UINTN)MemoryMapEnd) {
    switch (MemoryMapEntry->Type) {
    case EfiRuntimeServicesCode:
      // do nothing
      break;
    case EfiRuntimeServicesData:
    case EfiMemoryMappedIO:
    case EfiMemoryMappedIOPortSpace:
      MemoryMapEntry->Attribute |= EFI_MEMORY_XP;
      break;
    case EfiReservedMemoryType:
    case EfiACPIMemoryNVS:
      break;
    }
    MemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (MemoryMapEntry, DescriptorSize);
  }
  return ;
}
/**
  Return the first image record, whose [ImageBase, ImageSize] covered by [Buffer, Length].
  @param Buffer  Start Address
  @param Length  Address length
  @return first image record covered by [buffer, length]
**/
STATIC
IMAGE_PROPERTIES_RECORD *
GetImageRecordByAddress (
  IN EFI_PHYSICAL_ADDRESS  Buffer,
  IN UINT64                Length
  )
{
  IMAGE_PROPERTIES_RECORD    *ImageRecord;
  LIST_ENTRY                 *ImageRecordLink;
  LIST_ENTRY                 *ImageRecordList;
  ImageRecordList = &mImagePropertiesPrivateData.ImageRecordList;
  for (ImageRecordLink = ImageRecordList->ForwardLink;
       ImageRecordLink != ImageRecordList;
       ImageRecordLink = ImageRecordLink->ForwardLink) {
    ImageRecord = CR (
                    ImageRecordLink,
                    IMAGE_PROPERTIES_RECORD,
                    Link,
                    IMAGE_PROPERTIES_RECORD_SIGNATURE
                    );
    if ((Buffer <= ImageRecord->ImageBase) &&
        (Buffer + Length >= ImageRecord->ImageBase + ImageRecord->ImageSize)) {
      return ImageRecord;
    }
  }
  return NULL;
}
/**
  Set the memory map to new entries, according to one old entry,
  based upon PE code section and data section in image record
  @param  ImageRecord            An image record whose [ImageBase, ImageSize] covered
                                 by old memory map entry.
  @param  NewRecord              A pointer to several new memory map entries.
                                 The caller gurantee the buffer size be 1 +
                                 (SplitRecordCount * DescriptorSize) calculated
                                 below.
  @param  OldRecord              A pointer to one old memory map entry.
  @param  DescriptorSize         Size, in bytes, of an individual EFI_MEMORY_DESCRIPTOR.
**/
STATIC
UINTN
SetNewRecord (
  IN IMAGE_PROPERTIES_RECORD       *ImageRecord,
  IN OUT EFI_MEMORY_DESCRIPTOR     *NewRecord,
  IN EFI_MEMORY_DESCRIPTOR         *OldRecord,
  IN UINTN                         DescriptorSize
  )
{
  EFI_MEMORY_DESCRIPTOR                     TempRecord;
  IMAGE_PROPERTIES_RECORD_CODE_SECTION      *ImageRecordCodeSection;
  LIST_ENTRY                                *ImageRecordCodeSectionLink;
  LIST_ENTRY                                *ImageRecordCodeSectionEndLink;
  LIST_ENTRY                                *ImageRecordCodeSectionList;
  UINTN                                     NewRecordCount;
  UINT64                                    PhysicalEnd;
  UINT64                                    ImageEnd;
  CopyMem (&TempRecord, OldRecord, sizeof(EFI_MEMORY_DESCRIPTOR));
  PhysicalEnd = TempRecord.PhysicalStart + EfiPagesToSize(TempRecord.NumberOfPages);
  NewRecordCount = 0;
  ImageRecordCodeSectionList = &ImageRecord->CodeSegmentList;
  ImageRecordCodeSectionLink = ImageRecordCodeSectionList->ForwardLink;
  ImageRecordCodeSectionEndLink = ImageRecordCodeSectionList;
  while (ImageRecordCodeSectionLink != ImageRecordCodeSectionEndLink) {
    ImageRecordCodeSection = CR (
                               ImageRecordCodeSectionLink,
                               IMAGE_PROPERTIES_RECORD_CODE_SECTION,
                               Link,
                               IMAGE_PROPERTIES_RECORD_CODE_SECTION_SIGNATURE
                               );
    ImageRecordCodeSectionLink = ImageRecordCodeSectionLink->ForwardLink;
    if (TempRecord.PhysicalStart <= ImageRecordCodeSection->CodeSegmentBase) {
      //
      // DATA
      //
      if (!mPropertiesTableEnable) {
        NewRecord->Type = TempRecord.Type;
      } else {
        NewRecord->Type = EfiRuntimeServicesData;
      }
      NewRecord->PhysicalStart = TempRecord.PhysicalStart;
      NewRecord->VirtualStart  = 0;
      NewRecord->NumberOfPages = EfiSizeToPages(ImageRecordCodeSection->CodeSegmentBase - NewRecord->PhysicalStart);
      NewRecord->Attribute     = TempRecord.Attribute | EFI_MEMORY_XP;
      if (NewRecord->NumberOfPages != 0) {
        NewRecord = NEXT_MEMORY_DESCRIPTOR (NewRecord, DescriptorSize);
        NewRecordCount ++;
      }
      //
      // CODE
      //
      if (!mPropertiesTableEnable) {
        NewRecord->Type = TempRecord.Type;
      } else {
        NewRecord->Type = EfiRuntimeServicesCode;
      }
      NewRecord->PhysicalStart = ImageRecordCodeSection->CodeSegmentBase;
      NewRecord->VirtualStart  = 0;
      NewRecord->NumberOfPages = EfiSizeToPages(ImageRecordCodeSection->CodeSegmentSize);
      NewRecord->Attribute     = (TempRecord.Attribute & (~EFI_MEMORY_XP)) | EFI_MEMORY_RO;
      if (NewRecord->NumberOfPages != 0) {
        NewRecord = NEXT_MEMORY_DESCRIPTOR (NewRecord, DescriptorSize);
        NewRecordCount ++;
      }
      TempRecord.PhysicalStart = ImageRecordCodeSection->CodeSegmentBase + EfiPagesToSize (EfiSizeToPages(ImageRecordCodeSection->CodeSegmentSize));
      TempRecord.NumberOfPages = EfiSizeToPages(PhysicalEnd - TempRecord.PhysicalStart);
      if (TempRecord.NumberOfPages == 0) {
        break;
      }
    }
  }
  ImageEnd = ImageRecord->ImageBase + ImageRecord->ImageSize;
  //
  // Final DATA
  //
  if (TempRecord.PhysicalStart < ImageEnd) {
    if (!mPropertiesTableEnable) {
      NewRecord->Type = TempRecord.Type;
    } else {
      NewRecord->Type = EfiRuntimeServicesData;
    }
    NewRecord->PhysicalStart = TempRecord.PhysicalStart;
    NewRecord->VirtualStart  = 0;
    NewRecord->NumberOfPages = EfiSizeToPages (ImageEnd - TempRecord.PhysicalStart);
    NewRecord->Attribute     = TempRecord.Attribute | EFI_MEMORY_XP;
    NewRecordCount ++;
  }
  return NewRecordCount;
}
/**
  Return the max number of new splitted entries, according to one old entry,
  based upon PE code section and data section.
  @param  OldRecord              A pointer to one old memory map entry.
  @retval  0 no entry need to be splitted.
  @return  the max number of new splitted entries
**/
STATIC
UINTN
GetMaxSplitRecordCount (
  IN EFI_MEMORY_DESCRIPTOR *OldRecord
  )
{
  IMAGE_PROPERTIES_RECORD *ImageRecord;
  UINTN                   SplitRecordCount;
  UINT64                  PhysicalStart;
  UINT64                  PhysicalEnd;
  SplitRecordCount = 0;
  PhysicalStart = OldRecord->PhysicalStart;
  PhysicalEnd = OldRecord->PhysicalStart + EfiPagesToSize(OldRecord->NumberOfPages);
  do {
    ImageRecord = GetImageRecordByAddress (PhysicalStart, PhysicalEnd - PhysicalStart);
    if (ImageRecord == NULL) {
      break;
    }
    SplitRecordCount += (2 * ImageRecord->CodeSegmentCount + 1);
    PhysicalStart = ImageRecord->ImageBase + ImageRecord->ImageSize;
  } while ((ImageRecord != NULL) && (PhysicalStart < PhysicalEnd));
  if (SplitRecordCount != 0) {
    SplitRecordCount--;
  }
  return SplitRecordCount;
}
/**
  Split the memory map to new entries, according to one old entry,
  based upon PE code section and data section.
  @param  OldRecord              A pointer to one old memory map entry.
  @param  NewRecord              A pointer to several new memory map entries.
                                 The caller gurantee the buffer size be 1 +
                                 (SplitRecordCount * DescriptorSize) calculated
                                 below.
  @param  MaxSplitRecordCount    The max number of splitted entries
  @param  DescriptorSize         Size, in bytes, of an individual EFI_MEMORY_DESCRIPTOR.
  @retval  0 no entry is splitted.
  @return  the real number of splitted record.
**/
STATIC
UINTN
SplitRecord (
  IN EFI_MEMORY_DESCRIPTOR     *OldRecord,
  IN OUT EFI_MEMORY_DESCRIPTOR *NewRecord,
  IN UINTN                     MaxSplitRecordCount,
  IN UINTN                     DescriptorSize
  )
{
  EFI_MEMORY_DESCRIPTOR   TempRecord;
  IMAGE_PROPERTIES_RECORD *ImageRecord;
  IMAGE_PROPERTIES_RECORD *NewImageRecord;
  UINT64                  PhysicalStart;
  UINT64                  PhysicalEnd;
  UINTN                   NewRecordCount;
  UINTN                   TotalNewRecordCount;
  BOOLEAN                 IsLastRecordData;
  if (MaxSplitRecordCount == 0) {
    CopyMem (NewRecord, OldRecord, DescriptorSize);
    return 0;
  }
  TotalNewRecordCount = 0;
  //
  // Override previous record
  //
  CopyMem (&TempRecord, OldRecord, sizeof(EFI_MEMORY_DESCRIPTOR));
  PhysicalStart = TempRecord.PhysicalStart;
  PhysicalEnd = TempRecord.PhysicalStart + EfiPagesToSize(TempRecord.NumberOfPages);
  ImageRecord = NULL;
  do {
    NewImageRecord = GetImageRecordByAddress (PhysicalStart, PhysicalEnd - PhysicalStart);
    if (NewImageRecord == NULL) {
      //
      // No more image covered by this range, stop
      //
      if ((PhysicalEnd > PhysicalStart) && (ImageRecord != NULL)) {
        //
        // If this is still address in this record, need record.
        //
        NewRecord = PREVIOUS_MEMORY_DESCRIPTOR (NewRecord, DescriptorSize);
        IsLastRecordData = FALSE;
        if (!mPropertiesTableEnable) {
          if ((NewRecord->Attribute & EFI_MEMORY_XP) != 0) {
            IsLastRecordData = TRUE;
          }
        } else {
          if (NewRecord->Type == EfiRuntimeServicesData) {
            IsLastRecordData = TRUE;
          }
        }
        if (IsLastRecordData) {
          //
          // Last record is DATA, just merge it.
          //
          NewRecord->NumberOfPages = EfiSizeToPages(PhysicalEnd - NewRecord->PhysicalStart);
        } else {
          //
          // Last record is CODE, create a new DATA entry.
          //
          NewRecord = NEXT_MEMORY_DESCRIPTOR (NewRecord, DescriptorSize);
          if (!mPropertiesTableEnable) {
            NewRecord->Type = TempRecord.Type;
          } else {
            NewRecord->Type = EfiRuntimeServicesData;
          }
          NewRecord->PhysicalStart = TempRecord.PhysicalStart;
          NewRecord->VirtualStart  = 0;
          NewRecord->NumberOfPages = TempRecord.NumberOfPages;
          NewRecord->Attribute     = TempRecord.Attribute | EFI_MEMORY_XP;
          TotalNewRecordCount ++;
        }
      }
      break;
    }
    ImageRecord = NewImageRecord;
    //
    // Set new record
    //
    NewRecordCount = SetNewRecord (ImageRecord, NewRecord, &TempRecord, DescriptorSize);
    TotalNewRecordCount += NewRecordCount;
    NewRecord = (EFI_MEMORY_DESCRIPTOR *)((UINT8 *)NewRecord + NewRecordCount * DescriptorSize);
    //
    // Update PhysicalStart, in order to exclude the image buffer already splitted.
    //
    PhysicalStart = ImageRecord->ImageBase + ImageRecord->ImageSize;
    TempRecord.PhysicalStart = PhysicalStart;
    TempRecord.NumberOfPages = EfiSizeToPages (PhysicalEnd - PhysicalStart);
  } while ((ImageRecord != NULL) && (PhysicalStart < PhysicalEnd));
  return TotalNewRecordCount - 1;
}
/**
  Split the original memory map, and add more entries to describe PE code section and data section.
  This function will set EfiRuntimeServicesData to be EFI_MEMORY_XP.
  This function will merge entries with same attributes finally.
  NOTE: It assumes PE code/data section are page aligned.
  NOTE: It assumes enough entry is prepared for new memory map.
  Split table:
   +---------------+
   | Record X      |
   +---------------+
   | Record RtCode |
   +---------------+
   | Record Y      |
   +---------------+
   ==>
   +---------------+
   | Record X      |
   +---------------+ ----
   | Record RtData |     |
   +---------------+     |
   | Record RtCode |     |-> PE/COFF1
   +---------------+     |
   | Record RtData |     |
   +---------------+ ----
   | Record RtData |     |
   +---------------+     |
   | Record RtCode |     |-> PE/COFF2
   +---------------+     |
   | Record RtData |     |
   +---------------+ ----
   | Record Y      |
   +---------------+
  @param  MemoryMapSize          A pointer to the size, in bytes, of the
                                 MemoryMap buffer. On input, this is the size of
                                 old MemoryMap before split. The actual buffer
                                 size of MemoryMap is MemoryMapSize +
                                 (AdditionalRecordCount * DescriptorSize) calculated
                                 below. On output, it is the size of new MemoryMap
                                 after split.
  @param  MemoryMap              A pointer to the buffer in which firmware places
                                 the current memory map.
  @param  DescriptorSize         Size, in bytes, of an individual EFI_MEMORY_DESCRIPTOR.
**/
STATIC
VOID
SplitTable (
  IN OUT UINTN                  *MemoryMapSize,
  IN OUT EFI_MEMORY_DESCRIPTOR  *MemoryMap,
  IN UINTN                      DescriptorSize
  )
{
  INTN        IndexOld;
  INTN        IndexNew;
  UINTN       MaxSplitRecordCount;
  UINTN       RealSplitRecordCount;
  UINTN       TotalSplitRecordCount;
  UINTN       AdditionalRecordCount;
  AdditionalRecordCount = (2 * mImagePropertiesPrivateData.CodeSegmentCountMax + 1) * mImagePropertiesPrivateData.ImageRecordCount;
  TotalSplitRecordCount = 0;
  //
  // Let old record point to end of valid MemoryMap buffer.
  //
  IndexOld = ((*MemoryMapSize) / DescriptorSize) - 1;
  //
  // Let new record point to end of full MemoryMap buffer.
  //
  IndexNew = ((*MemoryMapSize) / DescriptorSize) - 1 + AdditionalRecordCount;
  for (; IndexOld >= 0; IndexOld--) {
    MaxSplitRecordCount = GetMaxSplitRecordCount ((EFI_MEMORY_DESCRIPTOR *)((UINT8 *)MemoryMap + IndexOld * DescriptorSize));
    //
    // Split this MemoryMap record
    //
    IndexNew -= MaxSplitRecordCount;
    RealSplitRecordCount = SplitRecord (
                             (EFI_MEMORY_DESCRIPTOR *)((UINT8 *)MemoryMap + IndexOld * DescriptorSize),
                             (EFI_MEMORY_DESCRIPTOR *)((UINT8 *)MemoryMap + IndexNew * DescriptorSize),
                             MaxSplitRecordCount,
                             DescriptorSize
                             );
    //
    // Adjust IndexNew according to real split.
    //
    CopyMem (
      ((UINT8 *)MemoryMap + (IndexNew + MaxSplitRecordCount - RealSplitRecordCount) * DescriptorSize),
      ((UINT8 *)MemoryMap + IndexNew * DescriptorSize),
      RealSplitRecordCount * DescriptorSize
      );
    IndexNew = IndexNew + MaxSplitRecordCount - RealSplitRecordCount;
    TotalSplitRecordCount += RealSplitRecordCount;
    IndexNew --;
  }
  //
  // Move all records to the beginning.
  //
  CopyMem (
    MemoryMap,
    (UINT8 *)MemoryMap + (AdditionalRecordCount - TotalSplitRecordCount) * DescriptorSize,
    (*MemoryMapSize) + TotalSplitRecordCount * DescriptorSize
    );
  *MemoryMapSize = (*MemoryMapSize) + DescriptorSize * TotalSplitRecordCount;
  //
  // Sort from low to high (Just in case)
  //
  SortMemoryMap (MemoryMap, *MemoryMapSize, DescriptorSize);
  //
  // Set RuntimeData to XP
  //
  EnforceMemoryMapAttribute (MemoryMap, *MemoryMapSize, DescriptorSize);
  //
  // Merge same type to save entry size
  //
  MergeMemoryMap (MemoryMap, MemoryMapSize, DescriptorSize);
  return ;
}
/**
  This function for GetMemoryMap() with properties table capability.
  It calls original GetMemoryMap() to get the original memory map information. Then
  plus the additional memory map entries for PE Code/Data seperation.
  @param  MemoryMapSize          A pointer to the size, in bytes, of the
                                 MemoryMap buffer. On input, this is the size of
                                 the buffer allocated by the caller.  On output,
                                 it is the size of the buffer returned by the
                                 firmware  if the buffer was large enough, or the
                                 size of the buffer needed  to contain the map if
                                 the buffer was too small.
  @param  MemoryMap              A pointer to the buffer in which firmware places
                                 the current memory map.
  @param  MapKey                 A pointer to the location in which firmware
                                 returns the key for the current memory map.
  @param  DescriptorSize         A pointer to the location in which firmware
                                 returns the size, in bytes, of an individual
                                 EFI_MEMORY_DESCRIPTOR.
  @param  DescriptorVersion      A pointer to the location in which firmware
                                 returns the version number associated with the
                                 EFI_MEMORY_DESCRIPTOR.
  @retval EFI_SUCCESS            The memory map was returned in the MemoryMap
                                 buffer.
  @retval EFI_BUFFER_TOO_SMALL   The MemoryMap buffer was too small. The current
                                 buffer size needed to hold the memory map is
                                 returned in MemoryMapSize.
  @retval EFI_INVALID_PARAMETER  One of the parameters has an invalid value.
**/
EFI_STATUS
EFIAPI
CoreGetMemoryMapWithSeparatedImageSection (
  IN OUT UINTN                  *MemoryMapSize,
  IN OUT EFI_MEMORY_DESCRIPTOR  *MemoryMap,
  OUT UINTN                     *MapKey,
  OUT UINTN                     *DescriptorSize,
  OUT UINT32                    *DescriptorVersion
  )
{
  EFI_STATUS  Status;
  UINTN       OldMemoryMapSize;
  UINTN       AdditionalRecordCount;
  //
  // If PE code/data is not aligned, just return.
  //
  if ((mPropertiesTable.MemoryProtectionAttribute & EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA) == 0) {
    return CoreGetMemoryMap (MemoryMapSize, MemoryMap, MapKey, DescriptorSize, DescriptorVersion);
  }
  if (MemoryMapSize == NULL) {
    return EFI_INVALID_PARAMETER;
  }
  CoreAcquirePropertiesTableLock ();
  AdditionalRecordCount = (2 * mImagePropertiesPrivateData.CodeSegmentCountMax + 1) * mImagePropertiesPrivateData.ImageRecordCount;
  OldMemoryMapSize = *MemoryMapSize;
  Status = CoreGetMemoryMap (MemoryMapSize, MemoryMap, MapKey, DescriptorSize, DescriptorVersion);
  if (Status == EFI_BUFFER_TOO_SMALL) {
    *MemoryMapSize = *MemoryMapSize + (*DescriptorSize) * AdditionalRecordCount;
  } else if (Status == EFI_SUCCESS) {
    ASSERT (MemoryMap != NULL);
    if (OldMemoryMapSize - *MemoryMapSize < (*DescriptorSize) * AdditionalRecordCount) {
      *MemoryMapSize = *MemoryMapSize + (*DescriptorSize) * AdditionalRecordCount;
      //
      // Need update status to buffer too small
      //
      Status = EFI_BUFFER_TOO_SMALL;
    } else {
      //
      // Split PE code/data
      //
      SplitTable (MemoryMapSize, MemoryMap, *DescriptorSize);
    }
  }
  CoreReleasePropertiesTableLock ();
  return Status;
}
//
// Below functions are for ImageRecord
//
/**
  Set PropertiesTable according to PE/COFF image section alignment.
  @param  SectionAlignment    PE/COFF section alignment
**/
STATIC
VOID
SetPropertiesTableSectionAlignment (
  IN UINT32  SectionAlignment
  )
{
  if (((SectionAlignment & (EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT - 1)) != 0) &&
      ((mPropertiesTable.MemoryProtectionAttribute & EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA) != 0)) {
    DEBUG ((EFI_D_VERBOSE, "SetPropertiesTableSectionAlignment - Clear\n"));
    mPropertiesTable.MemoryProtectionAttribute &= ~((UINT64)EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA);
    gBS->GetMemoryMap = CoreGetMemoryMap;
    gBS->Hdr.CRC32 = 0;
    gBS->CalculateCrc32 ((UINT8 *)gBS, gBS->Hdr.HeaderSize, &gBS->Hdr.CRC32);
  }
}
/**
  Swap two code sections in image record.
  @param  FirstImageRecordCodeSection    first code section in image record
  @param  SecondImageRecordCodeSection   second code section in image record
**/
STATIC
VOID
SwapImageRecordCodeSection (
  IN IMAGE_PROPERTIES_RECORD_CODE_SECTION      *FirstImageRecordCodeSection,
  IN IMAGE_PROPERTIES_RECORD_CODE_SECTION      *SecondImageRecordCodeSection
  )
{
  IMAGE_PROPERTIES_RECORD_CODE_SECTION      TempImageRecordCodeSection;
  TempImageRecordCodeSection.CodeSegmentBase = FirstImageRecordCodeSection->CodeSegmentBase;
  TempImageRecordCodeSection.CodeSegmentSize = FirstImageRecordCodeSection->CodeSegmentSize;
  FirstImageRecordCodeSection->CodeSegmentBase = SecondImageRecordCodeSection->CodeSegmentBase;
  FirstImageRecordCodeSection->CodeSegmentSize = SecondImageRecordCodeSection->CodeSegmentSize;
  SecondImageRecordCodeSection->CodeSegmentBase = TempImageRecordCodeSection.CodeSegmentBase;
  SecondImageRecordCodeSection->CodeSegmentSize = TempImageRecordCodeSection.CodeSegmentSize;
}
/**
  Sort code section in image record, based upon CodeSegmentBase from low to high.
  @param  ImageRecord    image record to be sorted
**/
STATIC
VOID
SortImageRecordCodeSection (
  IN IMAGE_PROPERTIES_RECORD              *ImageRecord
  )
{
  IMAGE_PROPERTIES_RECORD_CODE_SECTION      *ImageRecordCodeSection;
  IMAGE_PROPERTIES_RECORD_CODE_SECTION      *NextImageRecordCodeSection;
  LIST_ENTRY                                *ImageRecordCodeSectionLink;
  LIST_ENTRY                                *NextImageRecordCodeSectionLink;
  LIST_ENTRY                                *ImageRecordCodeSectionEndLink;
  LIST_ENTRY                                *ImageRecordCodeSectionList;
  ImageRecordCodeSectionList = &ImageRecord->CodeSegmentList;
  ImageRecordCodeSectionLink = ImageRecordCodeSectionList->ForwardLink;
  NextImageRecordCodeSectionLink = ImageRecordCodeSectionLink->ForwardLink;
  ImageRecordCodeSectionEndLink = ImageRecordCodeSectionList;
  while (ImageRecordCodeSectionLink != ImageRecordCodeSectionEndLink) {
    ImageRecordCodeSection = CR (
                               ImageRecordCodeSectionLink,
                               IMAGE_PROPERTIES_RECORD_CODE_SECTION,
                               Link,
                               IMAGE_PROPERTIES_RECORD_CODE_SECTION_SIGNATURE
                               );
    while (NextImageRecordCodeSectionLink != ImageRecordCodeSectionEndLink) {
      NextImageRecordCodeSection = CR (
                                     NextImageRecordCodeSectionLink,
                                     IMAGE_PROPERTIES_RECORD_CODE_SECTION,
                                     Link,
                                     IMAGE_PROPERTIES_RECORD_CODE_SECTION_SIGNATURE
                                     );
      if (ImageRecordCodeSection->CodeSegmentBase > NextImageRecordCodeSection->CodeSegmentBase) {
        SwapImageRecordCodeSection (ImageRecordCodeSection, NextImageRecordCodeSection);
      }
      NextImageRecordCodeSectionLink = NextImageRecordCodeSectionLink->ForwardLink;
    }
    ImageRecordCodeSectionLink = ImageRecordCodeSectionLink->ForwardLink;
    NextImageRecordCodeSectionLink = ImageRecordCodeSectionLink->ForwardLink;
  }
}
/**
  Check if code section in image record is valid.
  @param  ImageRecord    image record to be checked
  @retval TRUE  image record is valid
  @retval FALSE image record is invalid
**/
STATIC
BOOLEAN
IsImageRecordCodeSectionValid (
  IN IMAGE_PROPERTIES_RECORD              *ImageRecord
  )
{
  IMAGE_PROPERTIES_RECORD_CODE_SECTION      *ImageRecordCodeSection;
  IMAGE_PROPERTIES_RECORD_CODE_SECTION      *LastImageRecordCodeSection;
  LIST_ENTRY                                *ImageRecordCodeSectionLink;
  LIST_ENTRY                                *ImageRecordCodeSectionEndLink;
  LIST_ENTRY                                *ImageRecordCodeSectionList;
  DEBUG ((EFI_D_VERBOSE, "ImageCode SegmentCount - 0x%x\n", ImageRecord->CodeSegmentCount));
  ImageRecordCodeSectionList = &ImageRecord->CodeSegmentList;
  ImageRecordCodeSectionLink = ImageRecordCodeSectionList->ForwardLink;
  ImageRecordCodeSectionEndLink = ImageRecordCodeSectionList;
  LastImageRecordCodeSection = NULL;
  while (ImageRecordCodeSectionLink != ImageRecordCodeSectionEndLink) {
    ImageRecordCodeSection = CR (
                               ImageRecordCodeSectionLink,
                               IMAGE_PROPERTIES_RECORD_CODE_SECTION,
                               Link,
                               IMAGE_PROPERTIES_RECORD_CODE_SECTION_SIGNATURE
                               );
    if (ImageRecordCodeSection->CodeSegmentSize == 0) {
      return FALSE;
    }
    if (ImageRecordCodeSection->CodeSegmentBase < ImageRecord->ImageBase) {
      return FALSE;
    }
    if (ImageRecordCodeSection->CodeSegmentBase >= MAX_ADDRESS - ImageRecordCodeSection->CodeSegmentSize) {
      return FALSE;
    }
    if ((ImageRecordCodeSection->CodeSegmentBase + ImageRecordCodeSection->CodeSegmentSize) > (ImageRecord->ImageBase + ImageRecord->ImageSize)) {
      return FALSE;
    }
    if (LastImageRecordCodeSection != NULL) {
      if ((LastImageRecordCodeSection->CodeSegmentBase + LastImageRecordCodeSection->CodeSegmentSize) > ImageRecordCodeSection->CodeSegmentBase) {
        return FALSE;
      }
    }
    LastImageRecordCodeSection = ImageRecordCodeSection;
    ImageRecordCodeSectionLink = ImageRecordCodeSectionLink->ForwardLink;
  }
  return TRUE;
}
/**
  Swap two image records.
  @param  FirstImageRecord   first image record.
  @param  SecondImageRecord  second image record.
**/
STATIC
VOID
SwapImageRecord (
  IN IMAGE_PROPERTIES_RECORD      *FirstImageRecord,
  IN IMAGE_PROPERTIES_RECORD      *SecondImageRecord
  )
{
  IMAGE_PROPERTIES_RECORD      TempImageRecord;
  TempImageRecord.ImageBase = FirstImageRecord->ImageBase;
  TempImageRecord.ImageSize = FirstImageRecord->ImageSize;
  TempImageRecord.CodeSegmentCount = FirstImageRecord->CodeSegmentCount;
  FirstImageRecord->ImageBase = SecondImageRecord->ImageBase;
  FirstImageRecord->ImageSize = SecondImageRecord->ImageSize;
  FirstImageRecord->CodeSegmentCount = SecondImageRecord->CodeSegmentCount;
  SecondImageRecord->ImageBase = TempImageRecord.ImageBase;
  SecondImageRecord->ImageSize = TempImageRecord.ImageSize;
  SecondImageRecord->CodeSegmentCount = TempImageRecord.CodeSegmentCount;
  SwapListEntries (&FirstImageRecord->CodeSegmentList, &SecondImageRecord->CodeSegmentList);
}
/**
  Sort image record based upon the ImageBase from low to high.
**/
STATIC
VOID
SortImageRecord (
  VOID
  )
{
  IMAGE_PROPERTIES_RECORD      *ImageRecord;
  IMAGE_PROPERTIES_RECORD      *NextImageRecord;
  LIST_ENTRY                   *ImageRecordLink;
  LIST_ENTRY                   *NextImageRecordLink;
  LIST_ENTRY                   *ImageRecordEndLink;
  LIST_ENTRY                   *ImageRecordList;
  ImageRecordList = &mImagePropertiesPrivateData.ImageRecordList;
  ImageRecordLink = ImageRecordList->ForwardLink;
  NextImageRecordLink = ImageRecordLink->ForwardLink;
  ImageRecordEndLink = ImageRecordList;
  while (ImageRecordLink != ImageRecordEndLink) {
    ImageRecord = CR (
                    ImageRecordLink,
                    IMAGE_PROPERTIES_RECORD,
                    Link,
                    IMAGE_PROPERTIES_RECORD_SIGNATURE
                    );
    while (NextImageRecordLink != ImageRecordEndLink) {
      NextImageRecord = CR (
                          NextImageRecordLink,
                          IMAGE_PROPERTIES_RECORD,
                          Link,
                          IMAGE_PROPERTIES_RECORD_SIGNATURE
                          );
      if (ImageRecord->ImageBase > NextImageRecord->ImageBase) {
        SwapImageRecord (ImageRecord, NextImageRecord);
      }
      NextImageRecordLink = NextImageRecordLink->ForwardLink;
    }
    ImageRecordLink = ImageRecordLink->ForwardLink;
    NextImageRecordLink = ImageRecordLink->ForwardLink;
  }
}
/**
  Dump image record.
**/
STATIC
VOID
DumpImageRecord (
  VOID
  )
{
  IMAGE_PROPERTIES_RECORD      *ImageRecord;
  LIST_ENTRY                   *ImageRecordLink;
  LIST_ENTRY                   *ImageRecordList;
  UINTN                        Index;
  ImageRecordList = &mImagePropertiesPrivateData.ImageRecordList;
  for (ImageRecordLink = ImageRecordList->ForwardLink, Index= 0;
       ImageRecordLink != ImageRecordList;
       ImageRecordLink = ImageRecordLink->ForwardLink, Index++) {
    ImageRecord = CR (
                    ImageRecordLink,
                    IMAGE_PROPERTIES_RECORD,
                    Link,
                    IMAGE_PROPERTIES_RECORD_SIGNATURE
                    );
    DEBUG ((EFI_D_VERBOSE, "  Image[%d]: 0x%016lx - 0x%016lx\n", Index, ImageRecord->ImageBase, ImageRecord->ImageSize));
  }
}
/**
  Insert image record.
  @param  RuntimeImage    Runtime image information
**/
VOID
InsertImageRecord (
  IN EFI_RUNTIME_IMAGE_ENTRY  *RuntimeImage
  )
{
  VOID                                 *ImageAddress;
  EFI_IMAGE_DOS_HEADER                 *DosHdr;
  UINT32                               PeCoffHeaderOffset;
  UINT32                               SectionAlignment;
  EFI_IMAGE_SECTION_HEADER             *Section;
  EFI_IMAGE_OPTIONAL_HEADER_PTR_UNION  Hdr;
  UINT8                                *Name;
  UINTN                                Index;
  IMAGE_PROPERTIES_RECORD              *ImageRecord;
  CHAR8                                *PdbPointer;
  IMAGE_PROPERTIES_RECORD_CODE_SECTION *ImageRecordCodeSection;
  UINT16                               Magic;
  DEBUG ((EFI_D_VERBOSE, "InsertImageRecord - 0x%x\n", RuntimeImage));
  DEBUG ((EFI_D_VERBOSE, "InsertImageRecord - 0x%016lx - 0x%016lx\n", (EFI_PHYSICAL_ADDRESS)(UINTN)RuntimeImage->ImageBase, RuntimeImage->ImageSize));
  ImageRecord = AllocatePool (sizeof(*ImageRecord));
  if (ImageRecord == NULL) {
    return ;
  }
  ImageRecord->Signature = IMAGE_PROPERTIES_RECORD_SIGNATURE;
  DEBUG ((EFI_D_VERBOSE, "ImageRecordCount - 0x%x\n", mImagePropertiesPrivateData.ImageRecordCount));
  //
  // Step 1: record whole region
  //
  ImageRecord->ImageBase = (EFI_PHYSICAL_ADDRESS)(UINTN)RuntimeImage->ImageBase;
  ImageRecord->ImageSize = RuntimeImage->ImageSize;
  ImageAddress = RuntimeImage->ImageBase;
  PdbPointer = PeCoffLoaderGetPdbPointer ((VOID*) (UINTN) ImageAddress);
  if (PdbPointer != NULL) {
    DEBUG ((EFI_D_VERBOSE, "  Image - %a\n", PdbPointer));
  }
  //
  // Check PE/COFF image
  //
  DosHdr = (EFI_IMAGE_DOS_HEADER *) (UINTN) ImageAddress;
  PeCoffHeaderOffset = 0;
  if (DosHdr->e_magic == EFI_IMAGE_DOS_SIGNATURE) {
    PeCoffHeaderOffset = DosHdr->e_lfanew;
  }
  Hdr.Pe32 = (EFI_IMAGE_NT_HEADERS32 *)((UINT8 *) (UINTN) ImageAddress + PeCoffHeaderOffset);
  if (Hdr.Pe32->Signature != EFI_IMAGE_NT_SIGNATURE) {
    DEBUG ((EFI_D_VERBOSE, "Hdr.Pe32->Signature invalid - 0x%x\n", Hdr.Pe32->Signature));
    // It might be image in SMM.
    goto Finish;
  }
  //
  // Get SectionAlignment
  //
  if (Hdr.Pe32->FileHeader.Machine == IMAGE_FILE_MACHINE_IA64 && Hdr.Pe32->OptionalHeader.Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
    //
    // NOTE: Some versions of Linux ELILO for Itanium have an incorrect magic value
    //       in the PE/COFF Header. If the MachineType is Itanium(IA64) and the
    //       Magic value in the OptionalHeader is EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC
    //       then override the magic value to EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC
    //
    Magic = EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC;
  } else {
    //
    // Get the magic value from the PE/COFF Optional Header
    //
    Magic = Hdr.Pe32->OptionalHeader.Magic;
  }
  if (Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) {
    SectionAlignment  = Hdr.Pe32->OptionalHeader.SectionAlignment;
  } else {
    SectionAlignment  = Hdr.Pe32Plus->OptionalHeader.SectionAlignment;
  }
  SetPropertiesTableSectionAlignment (SectionAlignment);
  if ((SectionAlignment & (EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT - 1)) != 0) {
    DEBUG ((EFI_D_WARN, "!!!!!!!!  InsertImageRecord - Section Alignment(0x%x) is not %dK  !!!!!!!!\n",
      SectionAlignment, EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT >> 10));
    PdbPointer = PeCoffLoaderGetPdbPointer ((VOID*) (UINTN) ImageAddress);
    if (PdbPointer != NULL) {
      DEBUG ((EFI_D_WARN, "!!!!!!!!  Image - %a  !!!!!!!!\n", PdbPointer));
    }
    goto Finish;
  }
  Section = (EFI_IMAGE_SECTION_HEADER *) (
               (UINT8 *) (UINTN) ImageAddress +
               PeCoffHeaderOffset +
               sizeof(UINT32) +
               sizeof(EFI_IMAGE_FILE_HEADER) +
               Hdr.Pe32->FileHeader.SizeOfOptionalHeader
               );
  ImageRecord->CodeSegmentCount = 0;
  InitializeListHead (&ImageRecord->CodeSegmentList);
  for (Index = 0; Index < Hdr.Pe32->FileHeader.NumberOfSections; Index++) {
    Name = Section[Index].Name;
    DEBUG ((
      EFI_D_VERBOSE,
      "  Section - '%c%c%c%c%c%c%c%c'\n",
      Name[0],
      Name[1],
      Name[2],
      Name[3],
      Name[4],
      Name[5],
      Name[6],
      Name[7]
      ));
    if ((Section[Index].Characteristics & EFI_IMAGE_SCN_CNT_CODE) != 0) {
      DEBUG ((EFI_D_VERBOSE, "  VirtualSize          - 0x%08x\n", Section[Index].Misc.VirtualSize));
      DEBUG ((EFI_D_VERBOSE, "  VirtualAddress       - 0x%08x\n", Section[Index].VirtualAddress));
      DEBUG ((EFI_D_VERBOSE, "  SizeOfRawData        - 0x%08x\n", Section[Index].SizeOfRawData));
      DEBUG ((EFI_D_VERBOSE, "  PointerToRawData     - 0x%08x\n", Section[Index].PointerToRawData));
      DEBUG ((EFI_D_VERBOSE, "  PointerToRelocations - 0x%08x\n", Section[Index].PointerToRelocations));
      DEBUG ((EFI_D_VERBOSE, "  PointerToLinenumbers - 0x%08x\n", Section[Index].PointerToLinenumbers));
      DEBUG ((EFI_D_VERBOSE, "  NumberOfRelocations  - 0x%08x\n", Section[Index].NumberOfRelocations));
      DEBUG ((EFI_D_VERBOSE, "  NumberOfLinenumbers  - 0x%08x\n", Section[Index].NumberOfLinenumbers));
      DEBUG ((EFI_D_VERBOSE, "  Characteristics      - 0x%08x\n", Section[Index].Characteristics));
      //
      // Step 2: record code section
      //
      ImageRecordCodeSection = AllocatePool (sizeof(*ImageRecordCodeSection));
      if (ImageRecordCodeSection == NULL) {
        return ;
      }
      ImageRecordCodeSection->Signature = IMAGE_PROPERTIES_RECORD_CODE_SECTION_SIGNATURE;
      ImageRecordCodeSection->CodeSegmentBase = (UINTN)ImageAddress + Section[Index].VirtualAddress;
      ImageRecordCodeSection->CodeSegmentSize = Section[Index].SizeOfRawData;
      DEBUG ((EFI_D_VERBOSE, "ImageCode: 0x%016lx - 0x%016lx\n", ImageRecordCodeSection->CodeSegmentBase, ImageRecordCodeSection->CodeSegmentSize));
      InsertTailList (&ImageRecord->CodeSegmentList, &ImageRecordCodeSection->Link);
      ImageRecord->CodeSegmentCount++;
    }
  }
  if (ImageRecord->CodeSegmentCount == 0) {
    SetPropertiesTableSectionAlignment (1);
    DEBUG ((EFI_D_ERROR, "!!!!!!!!  InsertImageRecord - CodeSegmentCount is 0  !!!!!!!!\n"));
    PdbPointer = PeCoffLoaderGetPdbPointer ((VOID*) (UINTN) ImageAddress);
    if (PdbPointer != NULL) {
      DEBUG ((EFI_D_ERROR, "!!!!!!!!  Image - %a  !!!!!!!!\n", PdbPointer));
    }
    goto Finish;
  }
  //
  // Final
  //
  SortImageRecordCodeSection (ImageRecord);
  //
  // Check overlap all section in ImageBase/Size
  //
  if (!IsImageRecordCodeSectionValid (ImageRecord)) {
    DEBUG ((EFI_D_ERROR, "IsImageRecordCodeSectionValid - FAIL\n"));
    goto Finish;
  }
  InsertTailList (&mImagePropertiesPrivateData.ImageRecordList, &ImageRecord->Link);
  mImagePropertiesPrivateData.ImageRecordCount++;
  SortImageRecord ();
  if (mImagePropertiesPrivateData.CodeSegmentCountMax < ImageRecord->CodeSegmentCount) {
    mImagePropertiesPrivateData.CodeSegmentCountMax = ImageRecord->CodeSegmentCount;
  }
Finish:
  return ;
}
/**
  Find image record according to image base and size.
  @param  ImageBase    Base of PE image
  @param  ImageSize    Size of PE image
  @return image record
**/
STATIC
IMAGE_PROPERTIES_RECORD *
FindImageRecord (
  IN EFI_PHYSICAL_ADDRESS  ImageBase,
  IN UINT64                ImageSize
  )
{
  IMAGE_PROPERTIES_RECORD    *ImageRecord;
  LIST_ENTRY                 *ImageRecordLink;
  LIST_ENTRY                 *ImageRecordList;
  ImageRecordList = &mImagePropertiesPrivateData.ImageRecordList;
  for (ImageRecordLink = ImageRecordList->ForwardLink;
       ImageRecordLink != ImageRecordList;
       ImageRecordLink = ImageRecordLink->ForwardLink) {
    ImageRecord = CR (
                    ImageRecordLink,
                    IMAGE_PROPERTIES_RECORD,
                    Link,
                    IMAGE_PROPERTIES_RECORD_SIGNATURE
                    );
    if ((ImageBase == ImageRecord->ImageBase) &&
        (ImageSize == ImageRecord->ImageSize)) {
      return ImageRecord;
    }
  }
  return NULL;
}
/**
  Remove Image record.
  @param  RuntimeImage    Runtime image information
**/
VOID
RemoveImageRecord (
  IN EFI_RUNTIME_IMAGE_ENTRY  *RuntimeImage
  )
{
  IMAGE_PROPERTIES_RECORD              *ImageRecord;
  LIST_ENTRY                           *CodeSegmentListHead;
  IMAGE_PROPERTIES_RECORD_CODE_SECTION *ImageRecordCodeSection;
  DEBUG ((EFI_D_VERBOSE, "RemoveImageRecord - 0x%x\n", RuntimeImage));
  DEBUG ((EFI_D_VERBOSE, "RemoveImageRecord - 0x%016lx - 0x%016lx\n", (EFI_PHYSICAL_ADDRESS)(UINTN)RuntimeImage->ImageBase, RuntimeImage->ImageSize));
  ImageRecord = FindImageRecord ((EFI_PHYSICAL_ADDRESS)(UINTN)RuntimeImage->ImageBase, RuntimeImage->ImageSize);
  if (ImageRecord == NULL) {
    DEBUG ((EFI_D_ERROR, "!!!!!!!! ImageRecord not found !!!!!!!!\n"));
    return ;
  }
  CodeSegmentListHead = &ImageRecord->CodeSegmentList;
  while (!IsListEmpty (CodeSegmentListHead)) {
    ImageRecordCodeSection = CR (
                               CodeSegmentListHead->ForwardLink,
                               IMAGE_PROPERTIES_RECORD_CODE_SECTION,
                               Link,
                               IMAGE_PROPERTIES_RECORD_CODE_SECTION_SIGNATURE
                               );
    RemoveEntryList (&ImageRecordCodeSection->Link);
    FreePool (ImageRecordCodeSection);
  }
  RemoveEntryList (&ImageRecord->Link);
  FreePool (ImageRecord);
  mImagePropertiesPrivateData.ImageRecordCount--;
}
/**
  Install PropertiesTable.
  @param[in]  Event     The Event this notify function registered to.
  @param[in]  Context   Pointer to the context data registered to the Event.
**/
VOID
EFIAPI
InstallPropertiesTable (
  EFI_EVENT                               Event,
  VOID                                    *Context
  )
{
  if (PcdGetBool (PcdPropertiesTableEnable)) {
    EFI_STATUS  Status;
    Status = gBS->InstallConfigurationTable (&gEfiPropertiesTableGuid, &mPropertiesTable);
    ASSERT_EFI_ERROR (Status);
    DEBUG ((EFI_D_INFO, "MemoryProtectionAttribute - 0x%016lx\n", mPropertiesTable.MemoryProtectionAttribute));
    if ((mPropertiesTable.MemoryProtectionAttribute & EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA) == 0) {
      DEBUG ((EFI_D_ERROR, "MemoryProtectionAttribute NON_EXECUTABLE_PE_DATA is not set, "));
      DEBUG ((EFI_D_ERROR, "because Runtime Driver Section Alignment is not %dK.\n", EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT >> 10));
      return ;
    }
    gBS->GetMemoryMap = CoreGetMemoryMapWithSeparatedImageSection;
    gBS->Hdr.CRC32 = 0;
    gBS->CalculateCrc32 ((UINT8 *)gBS, gBS->Hdr.HeaderSize, &gBS->Hdr.CRC32);
    DEBUG ((EFI_D_VERBOSE, "Total Image Count - 0x%x\n", mImagePropertiesPrivateData.ImageRecordCount));
    DEBUG ((EFI_D_VERBOSE, "Dump ImageRecord:\n"));
    DumpImageRecord ();
    mPropertiesTableEnable = TRUE;
  }
}
/**
  Initialize PropertiesTable support.
**/
VOID
EFIAPI
CoreInitializePropertiesTable (
  VOID
  )
{
  EFI_STATUS  Status;
  EFI_EVENT   EndOfDxeEvent;
  Status = gBS->CreateEventEx (
                  EVT_NOTIFY_SIGNAL,
                  TPL_NOTIFY,
                  InstallPropertiesTable,
                  NULL,
                  &gEfiEndOfDxeEventGroupGuid,
                  &EndOfDxeEvent
                  );
  ASSERT_EFI_ERROR (Status);
  return ;
}