/** @file
Provides services to access SMRAM Save State Map
Copyright (c) 2010 - 2019, Intel Corporation. All rights reserved.
Copyright (C) 2023 Advanced Micro Devices, Inc. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "MmSaveState.h"
#include 
#include 
// EFER register LMA bit
#define LMA                                        BIT10
#define EFER_ADDRESS                               0xC0000080ul
#define AMD_MM_SAVE_STATE_REGISTER_SMMREVID_INDEX  1
#define AMD_MM_SAVE_STATE_REGISTER_MAX_INDEX       2
// Macro used to simplify the lookup table entries of type CPU_MM_SAVE_STATE_LOOKUP_ENTRY
#define MM_CPU_OFFSET(Field)  OFFSET_OF (AMD_SMRAM_SAVE_STATE_MAP, Field)
// Lookup table used to retrieve the widths and offsets associated with each
// supported EFI_MM_SAVE_STATE_REGISTER value
CONST CPU_MM_SAVE_STATE_LOOKUP_ENTRY  mCpuWidthOffset[] = {
  { 0, 0, 0,                            0,                                    FALSE },                                        //  Reserved
  //
  // Internally defined CPU Save State Registers. Not defined in PI SMM CPU Protocol.
  //
  { 4, 4, MM_CPU_OFFSET (x86.SMMRevId), MM_CPU_OFFSET (x64.SMMRevId),         0, FALSE},                                      // AMD_MM_SAVE_STATE_REGISTER_SMMREVID_INDEX  = 1
  //
  // CPU Save State registers defined in PI SMM CPU Protocol.
  //
  { 4, 8, MM_CPU_OFFSET (x86.GDTBase),  MM_CPU_OFFSET (x64._GDTRBaseLoDword), MM_CPU_OFFSET (x64._GDTRBaseHiDword), FALSE},   //  EFI_MM_SAVE_STATE_REGISTER_GDTBASE  = 4
  { 0, 8, 0,                            MM_CPU_OFFSET (x64._IDTRBaseLoDword), MM_CPU_OFFSET (x64._IDTRBaseLoDword), FALSE},   //  EFI_MM_SAVE_STATE_REGISTER_IDTBASE  = 5
  { 0, 8, 0,                            MM_CPU_OFFSET (x64._LDTRBaseLoDword), MM_CPU_OFFSET (x64._LDTRBaseLoDword), FALSE},   //  EFI_MM_SAVE_STATE_REGISTER_LDTBASE  = 6
  { 0, 2, 0,                            MM_CPU_OFFSET (x64._GDTRLimit),       0, FALSE},                                      //  EFI_MM_SAVE_STATE_REGISTER_GDTLIMIT = 7
  { 0, 2, 0,                            MM_CPU_OFFSET (x64._IDTRLimit),       0, FALSE},                                      //  EFI_MM_SAVE_STATE_REGISTER_IDTLIMIT = 8
  { 0, 4, 0,                            MM_CPU_OFFSET (x64._LDTRLimit),       0, FALSE},                                      //  EFI_MM_SAVE_STATE_REGISTER_LDTLIMIT = 9
  { 0, 0, 0,                            0,                                    0, FALSE},                                      //  EFI_MM_SAVE_STATE_REGISTER_LDTINFO  = 10
  { 4, 2, MM_CPU_OFFSET (x86._ES),      MM_CPU_OFFSET (x64._ES),              0, FALSE},                                      //  EFI_MM_SAVE_STATE_REGISTER_ES       = 20
  { 4, 2, MM_CPU_OFFSET (x86._CS),      MM_CPU_OFFSET (x64._CS),              0, FALSE},                                      //  EFI_MM_SAVE_STATE_REGISTER_CS       = 21
  { 4, 2, MM_CPU_OFFSET (x86._SS),      MM_CPU_OFFSET (x64._SS),              0, FALSE},                                      //  EFI_MM_SAVE_STATE_REGISTER_SS       = 22
  { 4, 2, MM_CPU_OFFSET (x86._DS),      MM_CPU_OFFSET (x64._DS),              0, FALSE},                                      //  EFI_MM_SAVE_STATE_REGISTER_DS       = 23
  { 4, 2, MM_CPU_OFFSET (x86._FS),      MM_CPU_OFFSET (x64._FS),              0, FALSE},                                      //  EFI_MM_SAVE_STATE_REGISTER_FS       = 24
  { 4, 2, MM_CPU_OFFSET (x86._GS),      MM_CPU_OFFSET (x64._GS),              0, FALSE},                                      //  EFI_MM_SAVE_STATE_REGISTER_GS       = 25
  { 0, 2, 0,                            MM_CPU_OFFSET (x64._LDTR),            0, FALSE},                                      //  EFI_MM_SAVE_STATE_REGISTER_LDTR_SEL = 26
  { 0, 2, 0,                            MM_CPU_OFFSET (x64._TR),              0, FALSE},                                      //  EFI_MM_SAVE_STATE_REGISTER_TR_SEL   = 27
  { 4, 8, MM_CPU_OFFSET (x86._DR7),     MM_CPU_OFFSET (x64._DR7),             MM_CPU_OFFSET (x64._DR7)         + 4, FALSE},   //  EFI_MM_SAVE_STATE_REGISTER_DR7      = 28
  { 4, 8, MM_CPU_OFFSET (x86._DR6),     MM_CPU_OFFSET (x64._DR6),             MM_CPU_OFFSET (x64._DR6)         + 4, FALSE},   //  EFI_MM_SAVE_STATE_REGISTER_DR6      = 29
  { 0, 8, 0,                            MM_CPU_OFFSET (x64._R8),              MM_CPU_OFFSET (x64._R8)          + 4, TRUE},    //  EFI_MM_SAVE_STATE_REGISTER_R8       = 30
  { 0, 8, 0,                            MM_CPU_OFFSET (x64._R9),              MM_CPU_OFFSET (x64._R9)          + 4, TRUE},    //  EFI_MM_SAVE_STATE_REGISTER_R9       = 31
  { 0, 8, 0,                            MM_CPU_OFFSET (x64._R10),             MM_CPU_OFFSET (x64._R10)         + 4, TRUE},    //  EFI_MM_SAVE_STATE_REGISTER_R10      = 32
  { 0, 8, 0,                            MM_CPU_OFFSET (x64._R11),             MM_CPU_OFFSET (x64._R11)         + 4, TRUE},    //  EFI_MM_SAVE_STATE_REGISTER_R11      = 33
  { 0, 8, 0,                            MM_CPU_OFFSET (x64._R12),             MM_CPU_OFFSET (x64._R12)         + 4, TRUE},    //  EFI_MM_SAVE_STATE_REGISTER_R12      = 34
  { 0, 8, 0,                            MM_CPU_OFFSET (x64._R13),             MM_CPU_OFFSET (x64._R13)         + 4, TRUE},    //  EFI_MM_SAVE_STATE_REGISTER_R13      = 35
  { 0, 8, 0,                            MM_CPU_OFFSET (x64._R14),             MM_CPU_OFFSET (x64._R14)         + 4, TRUE},    //  EFI_MM_SAVE_STATE_REGISTER_R14      = 36
  { 0, 8, 0,                            MM_CPU_OFFSET (x64._R15),             MM_CPU_OFFSET (x64._R15)         + 4, TRUE},    //  EFI_MM_SAVE_STATE_REGISTER_R15      = 37
  { 4, 8, MM_CPU_OFFSET (x86._EAX),     MM_CPU_OFFSET (x64._RAX),             MM_CPU_OFFSET (x64._RAX)         + 4, TRUE},    //  EFI_MM_SAVE_STATE_REGISTER_RAX      = 38
  { 4, 8, MM_CPU_OFFSET (x86._EBX),     MM_CPU_OFFSET (x64._RBX),             MM_CPU_OFFSET (x64._RBX)         + 4, TRUE},    //  EFI_MM_SAVE_STATE_REGISTER_RBX      = 39
  { 4, 8, MM_CPU_OFFSET (x86._ECX),     MM_CPU_OFFSET (x64._RCX),             MM_CPU_OFFSET (x64._RCX)         + 4, TRUE},    //  EFI_MM_SAVE_STATE_REGISTER_RBX      = 39
  { 4, 8, MM_CPU_OFFSET (x86._EDX),     MM_CPU_OFFSET (x64._RDX),             MM_CPU_OFFSET (x64._RDX)         + 4, TRUE},    //  EFI_MM_SAVE_STATE_REGISTER_RDX      = 41
  { 4, 8, MM_CPU_OFFSET (x86._ESP),     MM_CPU_OFFSET (x64._RSP),             MM_CPU_OFFSET (x64._RSP)         + 4, TRUE},    //  EFI_MM_SAVE_STATE_REGISTER_RSP      = 42
  { 4, 8, MM_CPU_OFFSET (x86._EBP),     MM_CPU_OFFSET (x64._RBP),             MM_CPU_OFFSET (x64._RBP)         + 4, TRUE},    //  EFI_MM_SAVE_STATE_REGISTER_RBP      = 43
  { 4, 8, MM_CPU_OFFSET (x86._ESI),     MM_CPU_OFFSET (x64._RSI),             MM_CPU_OFFSET (x64._RSI)         + 4, TRUE},    //  EFI_MM_SAVE_STATE_REGISTER_RSI      = 44
  { 4, 8, MM_CPU_OFFSET (x86._EDI),     MM_CPU_OFFSET (x64._RDI),             MM_CPU_OFFSET (x64._RDI)         + 4, TRUE},    //  EFI_MM_SAVE_STATE_REGISTER_RDI      = 45
  { 4, 8, MM_CPU_OFFSET (x86._EIP),     MM_CPU_OFFSET (x64._RIP),             MM_CPU_OFFSET (x64._RIP)         + 4, TRUE},    //  EFI_MM_SAVE_STATE_REGISTER_RIP      = 46
  { 4, 8, MM_CPU_OFFSET (x86._EFLAGS),  MM_CPU_OFFSET (x64._RFLAGS),          MM_CPU_OFFSET (x64._RFLAGS)      + 4, TRUE},    //  EFI_MM_SAVE_STATE_REGISTER_RFLAGS   = 51
  { 4, 8, MM_CPU_OFFSET (x86._CR0),     MM_CPU_OFFSET (x64._CR0),             MM_CPU_OFFSET (x64._CR0)         + 4, FALSE},   //  EFI_MM_SAVE_STATE_REGISTER_CR0      = 52
  { 4, 8, MM_CPU_OFFSET (x86._CR3),     MM_CPU_OFFSET (x64._CR3),             MM_CPU_OFFSET (x64._CR3)         + 4, FALSE},   //  EFI_MM_SAVE_STATE_REGISTER_CR3      = 53
  { 0, 8, 0,                            MM_CPU_OFFSET (x64._CR4),             MM_CPU_OFFSET (x64._CR4)         + 4, FALSE},   //  EFI_MM_SAVE_STATE_REGISTER_CR4      = 54
  { 0, 0, 0,                            0,                                    0     }
};
/**
  Read a save state register on the target processor.  If this function
  returns EFI_UNSUPPORTED, then the caller is responsible for reading the
  MM Save State register.
  @param[in]  CpuIndex  The index of the CPU to read the Save State register.
                        The value must be between 0 and the NumberOfCpus field in
                        the System Management System Table (SMST).
  @param[in]  Register  The MM Save State register to read.
  @param[in]  Width     The number of bytes to read from the CPU save state.
  @param[out] Buffer    Upon return, this holds the CPU register value read
                        from the save state.
  @retval EFI_SUCCESS           The register was read from Save State.
  @retval EFI_INVALID_PARAMTER  Buffer is NULL.
  @retval EFI_UNSUPPORTED       This function does not support reading Register.
  @retval EFI_NOT_FOUND         If desired Register not found.
**/
EFI_STATUS
EFIAPI
MmSaveStateReadRegister (
  IN  UINTN                       CpuIndex,
  IN  EFI_MM_SAVE_STATE_REGISTER  Register,
  IN  UINTN                       Width,
  OUT VOID                        *Buffer
  )
{
  UINT32                     SmmRevId;
  EFI_MM_SAVE_STATE_IO_INFO  *IoInfo;
  AMD_SMRAM_SAVE_STATE_MAP   *CpuSaveState;
  UINT8                      DataWidth;
  // Read CPU State
  CpuSaveState = (AMD_SMRAM_SAVE_STATE_MAP *)gMmst->CpuSaveState[CpuIndex];
  // Check for special EFI_MM_SAVE_STATE_REGISTER_LMA
  if (Register == EFI_MM_SAVE_STATE_REGISTER_LMA) {
    // Only byte access is supported for this register
    if (Width != 1) {
      return EFI_INVALID_PARAMETER;
    }
    *(UINT8 *)Buffer = MmSaveStateGetRegisterLma ();
    return EFI_SUCCESS;
  }
  // Check for special EFI_MM_SAVE_STATE_REGISTER_IO
  if (Register == EFI_MM_SAVE_STATE_REGISTER_IO) {
    //
    // Get SMM Revision ID
    //
    MmSaveStateReadRegisterByIndex (CpuIndex, AMD_MM_SAVE_STATE_REGISTER_SMMREVID_INDEX, sizeof (SmmRevId), &SmmRevId);
    //
    // See if the CPU supports the IOMisc register in the save state
    //
    if (SmmRevId < AMD_SMM_MIN_REV_ID_X64) {
      return EFI_NOT_FOUND;
    }
    // Check if IO Restart Dword [IO Trap] is valid or not using bit 1.
    if (!(CpuSaveState->x64.IO_DWord & 0x02u)) {
      return EFI_NOT_FOUND;
    }
    // Zero the IoInfo structure that will be returned in Buffer
    IoInfo = (EFI_MM_SAVE_STATE_IO_INFO *)Buffer;
    ZeroMem (IoInfo, sizeof (EFI_MM_SAVE_STATE_IO_INFO));
    IoInfo->IoPort = (UINT16)(CpuSaveState->x64.IO_DWord >> 16u);
    if (CpuSaveState->x64.IO_DWord & 0x10u) {
      IoInfo->IoWidth = EFI_MM_SAVE_STATE_IO_WIDTH_UINT8;
      DataWidth       = 0x01u;
    } else if (CpuSaveState->x64.IO_DWord & 0x20u) {
      IoInfo->IoWidth = EFI_MM_SAVE_STATE_IO_WIDTH_UINT16;
      DataWidth       = 0x02u;
    } else {
      IoInfo->IoWidth = EFI_MM_SAVE_STATE_IO_WIDTH_UINT32;
      DataWidth       = 0x04u;
    }
    if (CpuSaveState->x64.IO_DWord & 0x01u) {
      IoInfo->IoType = EFI_MM_SAVE_STATE_IO_TYPE_INPUT;
    } else {
      IoInfo->IoType = EFI_MM_SAVE_STATE_IO_TYPE_OUTPUT;
    }
    if ((IoInfo->IoType == EFI_MM_SAVE_STATE_IO_TYPE_INPUT) || (IoInfo->IoType == EFI_MM_SAVE_STATE_IO_TYPE_OUTPUT)) {
      MmSaveStateReadRegister (CpuIndex, EFI_MM_SAVE_STATE_REGISTER_RAX, DataWidth, &IoInfo->IoData);
    }
    return EFI_SUCCESS;
  }
  // Convert Register to a register lookup table index
  return MmSaveStateReadRegisterByIndex (CpuIndex, MmSaveStateGetRegisterIndex (Register, AMD_MM_SAVE_STATE_REGISTER_MAX_INDEX), Width, Buffer);
}
/**
  Writes a save state register on the target processor.  If this function
  returns EFI_UNSUPPORTED, then the caller is responsible for writing the
  MM save state register.
  @param[in] CpuIndex  The index of the CPU to write the MM Save State.  The
                       value must be between 0 and the NumberOfCpus field in
                       the System Management System Table (SMST).
  @param[in] Register  The MM Save State register to write.
  @param[in] Width     The number of bytes to write to the CPU save state.
  @param[in] Buffer    Upon entry, this holds the new CPU register value.
  @retval EFI_SUCCESS           The register was written to Save State.
  @retval EFI_INVALID_PARAMTER  Buffer is NULL.
  @retval EFI_UNSUPPORTED       This function does not support writing Register.
  @retval EFI_NOT_FOUND         If desired Register not found.
**/
EFI_STATUS
EFIAPI
MmSaveStateWriteRegister (
  IN UINTN                       CpuIndex,
  IN EFI_MM_SAVE_STATE_REGISTER  Register,
  IN UINTN                       Width,
  IN CONST VOID                  *Buffer
  )
{
  UINTN                     RegisterIndex;
  AMD_SMRAM_SAVE_STATE_MAP  *CpuSaveState;
  //
  // Writes to EFI_MM_SAVE_STATE_REGISTER_LMA are ignored
  //
  if (Register == EFI_MM_SAVE_STATE_REGISTER_LMA) {
    return EFI_SUCCESS;
  }
  //
  // Writes to EFI_MM_SAVE_STATE_REGISTER_IO are not supported
  //
  if (Register == EFI_MM_SAVE_STATE_REGISTER_IO) {
    return EFI_NOT_FOUND;
  }
  //
  // Convert Register to a register lookup table index
  //
  RegisterIndex = MmSaveStateGetRegisterIndex (Register, AMD_MM_SAVE_STATE_REGISTER_MAX_INDEX);
  if (RegisterIndex == 0) {
    return EFI_NOT_FOUND;
  }
  CpuSaveState = gMmst->CpuSaveState[CpuIndex];
  //
  // Do not write non-writable SaveState, because it will cause exception.
  //
  if (!mCpuWidthOffset[RegisterIndex].Writeable) {
    return EFI_UNSUPPORTED;
  }
  //
  // Check CPU mode
  //
  if (MmSaveStateGetRegisterLma () == EFI_MM_SAVE_STATE_REGISTER_LMA_32BIT) {
    //
    // If 32-bit mode width is zero, then the specified register can not be accessed
    //
    if (mCpuWidthOffset[RegisterIndex].Width32 == 0) {
      return EFI_NOT_FOUND;
    }
    //
    // If Width is bigger than the 32-bit mode width, then the specified register can not be accessed
    //
    if (Width > mCpuWidthOffset[RegisterIndex].Width32) {
      return EFI_INVALID_PARAMETER;
    }
    //
    // Write SMM State register
    //
    ASSERT (CpuSaveState != NULL);
    CopyMem ((UINT8 *)CpuSaveState + mCpuWidthOffset[RegisterIndex].Offset32, Buffer, Width);
  } else {
    //
    // If 64-bit mode width is zero, then the specified register can not be accessed
    //
    if (mCpuWidthOffset[RegisterIndex].Width64 == 0) {
      return EFI_NOT_FOUND;
    }
    //
    // If Width is bigger than the 64-bit mode width, then the specified register can not be accessed
    //
    if (Width > mCpuWidthOffset[RegisterIndex].Width64) {
      return EFI_INVALID_PARAMETER;
    }
    //
    // Write lower 32-bits of SMM State register
    //
    CopyMem ((UINT8 *)CpuSaveState + mCpuWidthOffset[RegisterIndex].Offset64Lo, Buffer, MIN (4, Width));
    if (Width >= 4) {
      //
      // Write upper 32-bits of SMM State register
      //
      CopyMem ((UINT8 *)CpuSaveState + mCpuWidthOffset[RegisterIndex].Offset64Hi, (UINT8 *)Buffer + 4, Width - 4);
    }
  }
  return EFI_SUCCESS;
}
/**
  Returns LMA value of the Processor.
  @retval     UINT8     returns LMA bit value.
**/
UINT8
MmSaveStateGetRegisterLma (
  VOID
  )
{
  UINT32  LMAValue;
  LMAValue = (UINT32)AsmReadMsr64 (EFER_ADDRESS) & LMA;
  if (LMAValue) {
    return EFI_MM_SAVE_STATE_REGISTER_LMA_64BIT;
  }
  return EFI_MM_SAVE_STATE_REGISTER_LMA_32BIT;
}