These files are a subset of the python-2.7.2.tgz distribution from python.org. Changed files from PyMod-2.7.2 have been copied into the corresponding directories of this tree, replacing the original files in the distribution. Signed-off-by: daryl.mcdaniel@intel.com git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13197 6f19259b-4bc3-4df7-8a09-765794883524
		
			
				
	
	
		
			86 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			86 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #! /usr/bin/env python
 | |
| 
 | |
| """N queens problem.
 | |
| 
 | |
| The (well-known) problem is due to Niklaus Wirth.
 | |
| 
 | |
| This solution is inspired by Dijkstra (Structured Programming).  It is
 | |
| a classic recursive backtracking approach.
 | |
| 
 | |
| """
 | |
| 
 | |
| N = 8                                   # Default; command line overrides
 | |
| 
 | |
| class Queens:
 | |
| 
 | |
|     def __init__(self, n=N):
 | |
|         self.n = n
 | |
|         self.reset()
 | |
| 
 | |
|     def reset(self):
 | |
|         n = self.n
 | |
|         self.y = [None] * n             # Where is the queen in column x
 | |
|         self.row = [0] * n              # Is row[y] safe?
 | |
|         self.up = [0] * (2*n-1)         # Is upward diagonal[x-y] safe?
 | |
|         self.down = [0] * (2*n-1)       # Is downward diagonal[x+y] safe?
 | |
|         self.nfound = 0                 # Instrumentation
 | |
| 
 | |
|     def solve(self, x=0):               # Recursive solver
 | |
|         for y in range(self.n):
 | |
|             if self.safe(x, y):
 | |
|                 self.place(x, y)
 | |
|                 if x+1 == self.n:
 | |
|                     self.display()
 | |
|                 else:
 | |
|                     self.solve(x+1)
 | |
|                 self.remove(x, y)
 | |
| 
 | |
|     def safe(self, x, y):
 | |
|         return not self.row[y] and not self.up[x-y] and not self.down[x+y]
 | |
| 
 | |
|     def place(self, x, y):
 | |
|         self.y[x] = y
 | |
|         self.row[y] = 1
 | |
|         self.up[x-y] = 1
 | |
|         self.down[x+y] = 1
 | |
| 
 | |
|     def remove(self, x, y):
 | |
|         self.y[x] = None
 | |
|         self.row[y] = 0
 | |
|         self.up[x-y] = 0
 | |
|         self.down[x+y] = 0
 | |
| 
 | |
|     silent = 0                          # If true, count solutions only
 | |
| 
 | |
|     def display(self):
 | |
|         self.nfound = self.nfound + 1
 | |
|         if self.silent:
 | |
|             return
 | |
|         print '+-' + '--'*self.n + '+'
 | |
|         for y in range(self.n-1, -1, -1):
 | |
|             print '|',
 | |
|             for x in range(self.n):
 | |
|                 if self.y[x] == y:
 | |
|                     print "Q",
 | |
|                 else:
 | |
|                     print ".",
 | |
|             print '|'
 | |
|         print '+-' + '--'*self.n + '+'
 | |
| 
 | |
| def main():
 | |
|     import sys
 | |
|     silent = 0
 | |
|     n = N
 | |
|     if sys.argv[1:2] == ['-n']:
 | |
|         silent = 1
 | |
|         del sys.argv[1]
 | |
|     if sys.argv[1:]:
 | |
|         n = int(sys.argv[1])
 | |
|     q = Queens(n)
 | |
|     q.silent = silent
 | |
|     q.solve()
 | |
|     print "Found", q.nfound, "solutions."
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     main()
 |