On MpCore system, the primary core can now be any core of the system. To identify the primary core, you can use 'gArmTokenSpaceGuid.PcdArmPrimaryCoreMask' and 'gArmTokenSpaceGuid.PcdArmPrimaryCore'. These PCDs by default use the ClusterId and CoreId to identify the core. And the primary core is defined as the ClusetrId=0 and CoreId=0. The helper macros are: IS_PRIMARY_CORE(MpId), GET_CORE_ID(MpId), GET_CLUSTER_ID(MpId), GET_CORE_POS(MpId), PRIMARY_CORE_ID. git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@12412 6f19259b-4bc3-4df7-8a09-765794883524
261 lines
8.4 KiB
C
261 lines
8.4 KiB
C
/** @file
|
|
* Main file supporting the SEC Phase for Versatile Express
|
|
*
|
|
* Copyright (c) 2011, ARM Limited. All rights reserved.
|
|
*
|
|
* This program and the accompanying materials
|
|
* are licensed and made available under the terms and conditions of the BSD License
|
|
* which accompanies this distribution. The full text of the license may be found at
|
|
* http://opensource.org/licenses/bsd-license.php
|
|
*
|
|
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
|
*
|
|
**/
|
|
|
|
#include <Library/DebugLib.h>
|
|
#include <Library/DebugAgentLib.h>
|
|
#include <Library/PcdLib.h>
|
|
#include <Library/PrintLib.h>
|
|
#include <Library/BaseLib.h>
|
|
#include <Library/BaseMemoryLib.h>
|
|
#include <Library/ArmLib.h>
|
|
#include <Library/SerialPortLib.h>
|
|
#include <Library/ArmPlatformLib.h>
|
|
|
|
#include <Chipset/ArmV7.h>
|
|
#include <Library/ArmGicLib.h>
|
|
|
|
#define SerialPrint(txt) SerialPortWrite ((UINT8*)txt, AsciiStrLen(txt)+1);
|
|
|
|
extern VOID *monitor_vector_table;
|
|
|
|
VOID
|
|
ArmSetupGicNonSecure (
|
|
IN INTN GicDistributorBase,
|
|
IN INTN GicInterruptInterfaceBase
|
|
);
|
|
|
|
// Vector Table for Sec Phase
|
|
VOID
|
|
SecVectorTable (
|
|
VOID
|
|
);
|
|
|
|
VOID
|
|
NonSecureWaitForFirmware (
|
|
VOID
|
|
);
|
|
|
|
VOID
|
|
enter_monitor_mode(
|
|
IN VOID* Stack
|
|
);
|
|
|
|
VOID
|
|
return_from_exception (
|
|
IN UINTN NonSecureBase
|
|
);
|
|
|
|
VOID
|
|
copy_cpsr_into_spsr (
|
|
VOID
|
|
);
|
|
|
|
VOID
|
|
CEntryPoint (
|
|
IN UINTN MpId
|
|
)
|
|
{
|
|
CHAR8 Buffer[100];
|
|
UINTN CharCount;
|
|
UINTN JumpAddress;
|
|
|
|
// Primary CPU clears out the SCU tag RAMs, secondaries wait
|
|
if (IS_PRIMARY_CORE(MpId)) {
|
|
if (FixedPcdGet32(PcdMPCoreSupport)) {
|
|
ArmInvalidScu();
|
|
}
|
|
|
|
// SEC phase needs to run library constructors by hand. This assumes we are linked against the SerialLib
|
|
// In non SEC modules the init call is in autogenerated code.
|
|
SerialPortInitialize ();
|
|
|
|
// Start talking
|
|
CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"UEFI firmware built at %a on %a\n\r",__TIME__, __DATE__);
|
|
SerialPortWrite ((UINT8 *) Buffer, CharCount);
|
|
|
|
// Initialize the Debug Agent for Source Level Debugging
|
|
InitializeDebugAgent (DEBUG_AGENT_INIT_PREMEM_SEC, NULL, NULL);
|
|
SaveAndSetDebugTimerInterrupt (TRUE);
|
|
|
|
// Now we've got UART, make the check:
|
|
// - The Vector table must be 32-byte aligned
|
|
ASSERT(((UINT32)SecVectorTable & ((1 << 5)-1)) == 0);
|
|
}
|
|
|
|
// Invalidate the data cache. Doesn't have to do the Data cache clean.
|
|
ArmInvalidateDataCache();
|
|
|
|
//Invalidate Instruction Cache
|
|
ArmInvalidateInstructionCache();
|
|
|
|
//Invalidate I & D TLBs
|
|
ArmInvalidateInstructionAndDataTlb();
|
|
|
|
// Enable Full Access to CoProcessors
|
|
ArmWriteCPACR (CPACR_CP_FULL_ACCESS);
|
|
|
|
// Enable SWP instructions
|
|
ArmEnableSWPInstruction();
|
|
|
|
// Enable program flow prediction, if supported.
|
|
ArmEnableBranchPrediction();
|
|
|
|
if (FixedPcdGet32(PcdVFPEnabled)) {
|
|
ArmEnableVFP();
|
|
}
|
|
|
|
if (IS_PRIMARY_CORE(MpId)) {
|
|
// Initialize peripherals that must be done at the early stage
|
|
// Example: Some L2x0 controllers must be initialized in Secure World
|
|
ArmPlatformSecInitialize ();
|
|
|
|
// If we skip the PEI Core we could want to initialize the DRAM in the SEC phase.
|
|
// If we are in standalone, we need the initialization to copy the UEFI firmware into DRAM
|
|
if (FeaturePcdGet(PcdSystemMemoryInitializeInSec)) {
|
|
// Initialize system memory (DRAM)
|
|
ArmPlatformInitializeSystemMemory ();
|
|
}
|
|
|
|
// Some platform can change their physical memory mapping
|
|
ArmPlatformBootRemapping ();
|
|
}
|
|
|
|
// Test if Trustzone is supported on this platform
|
|
if (ArmPlatformTrustzoneSupported()) {
|
|
if (FixedPcdGet32(PcdMPCoreSupport)) {
|
|
// Setup SMP in Non Secure world
|
|
ArmSetupSmpNonSecure (GET_CORE_ID(MpId));
|
|
}
|
|
|
|
// Enter Monitor Mode
|
|
enter_monitor_mode ((VOID*)(PcdGet32(PcdCPUCoresSecMonStackBase) + (PcdGet32(PcdCPUCoreSecMonStackSize) * GET_CORE_POS(MpId))));
|
|
|
|
//Write the monitor mode vector table address
|
|
ArmWriteVMBar((UINT32) &monitor_vector_table);
|
|
|
|
//-------------------- Monitor Mode ---------------------
|
|
// Setup the Trustzone Chipsets
|
|
if (IS_PRIMARY_CORE(MpId)) {
|
|
ArmPlatformTrustzoneInit();
|
|
|
|
// Wake up the secondary cores by sending a interrupt to everyone else
|
|
// NOTE 1: The Software Generated Interrupts are always enabled on Cortex-A9
|
|
// MPcore test chip on Versatile Express board, So the Software doesn't have to
|
|
// enable SGI's explicitly.
|
|
// 2: As no other Interrupts are enabled, doesn't have to worry about the priority.
|
|
// 3: As all the cores are in secure state, use secure SGI's
|
|
//
|
|
|
|
ArmGicEnableDistributor (PcdGet32(PcdGicDistributorBase));
|
|
ArmGicEnableInterruptInterface (PcdGet32(PcdGicInterruptInterfaceBase));
|
|
|
|
// Send SGI to all Secondary core to wake them up from WFI state.
|
|
ArmGicSendSgiTo (PcdGet32(PcdGicDistributorBase), ARM_GIC_ICDSGIR_FILTER_EVERYONEELSE, 0x0E);
|
|
} else {
|
|
// The secondary cores need to wait until the Trustzone chipsets configuration is done
|
|
// before switching to Non Secure World
|
|
|
|
// Enabled GIC CPU Interface
|
|
ArmGicEnableInterruptInterface (PcdGet32(PcdGicInterruptInterfaceBase));
|
|
|
|
// Waiting for the SGI from the primary core
|
|
ArmCallWFI();
|
|
|
|
// Acknowledge the interrupt and send End of Interrupt signal.
|
|
ArmGicAcknowledgeSgiFrom (PcdGet32(PcdGicInterruptInterfaceBase), PRIMARY_CORE_ID);
|
|
}
|
|
|
|
// Transfer the interrupt to Non-secure World
|
|
ArmGicSetupNonSecure (PcdGet32(PcdGicDistributorBase),PcdGet32(PcdGicInterruptInterfaceBase));
|
|
|
|
// Write to CP15 Non-secure Access Control Register :
|
|
// - Enable CP10 and CP11 accesses in NS World
|
|
// - Enable Access to Preload Engine in NS World
|
|
// - Enable lockable TLB entries allocation in NS world
|
|
// - Enable R/W access to SMP bit of Auxiliary Control Register in NS world
|
|
ArmWriteNsacr(NSACR_NS_SMP | NSACR_TL | NSACR_PLE | NSACR_CP(10) | NSACR_CP(11));
|
|
|
|
// CP15 Secure Configuration Register with Non Secure bit (SCR_NS), CPSR.A modified in any
|
|
// security state (SCR_AW), CPSR.F modified in any security state (SCR_FW)
|
|
ArmWriteScr(SCR_NS | SCR_FW | SCR_AW);
|
|
} else {
|
|
if (IS_PRIMARY_CORE(MpId)) {
|
|
SerialPrint ("Trust Zone Configuration is disabled\n\r");
|
|
}
|
|
|
|
// Trustzone is not enabled, just enable the Distributor and CPU interface
|
|
if (IS_PRIMARY_CORE(MpId)) {
|
|
ArmGicEnableDistributor (PcdGet32(PcdGicDistributorBase));
|
|
}
|
|
ArmGicEnableInterruptInterface (PcdGet32(PcdGicInterruptInterfaceBase));
|
|
|
|
// With Trustzone support the transition from Sec to Normal world is done by return_from_exception().
|
|
// If we want to keep this function call we need to ensure the SVC's SPSR point to the same Program
|
|
// Status Register as the the current one (CPSR).
|
|
copy_cpsr_into_spsr ();
|
|
}
|
|
|
|
JumpAddress = PcdGet32 (PcdNormalFvBaseAddress);
|
|
ArmPlatformSecExtraAction (MpId, &JumpAddress);
|
|
|
|
return_from_exception (JumpAddress);
|
|
//-------------------- Non Secure Mode ---------------------
|
|
|
|
// PEI Core should always load and never return
|
|
ASSERT (FALSE);
|
|
}
|
|
|
|
VOID
|
|
SecCommonExceptionEntry (
|
|
IN UINT32 Entry,
|
|
IN UINT32 LR
|
|
)
|
|
{
|
|
CHAR8 Buffer[100];
|
|
UINTN CharCount;
|
|
|
|
switch (Entry) {
|
|
case 0:
|
|
CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"Reset Exception at 0x%X\n\r",LR);
|
|
break;
|
|
case 1:
|
|
CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"Undefined Exception at 0x%X\n\r",LR);
|
|
break;
|
|
case 2:
|
|
CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"SWI Exception at 0x%X\n\r",LR);
|
|
break;
|
|
case 3:
|
|
CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"PrefetchAbort Exception at 0x%X\n\r",LR);
|
|
break;
|
|
case 4:
|
|
CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"DataAbort Exception at 0x%X\n\r",LR);
|
|
break;
|
|
case 5:
|
|
CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"Reserved Exception at 0x%X\n\r",LR);
|
|
break;
|
|
case 6:
|
|
CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"IRQ Exception at 0x%X\n\r",LR);
|
|
break;
|
|
case 7:
|
|
CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"FIQ Exception at 0x%X\n\r",LR);
|
|
break;
|
|
default:
|
|
CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"Unknown Exception at 0x%X\n\r",LR);
|
|
break;
|
|
}
|
|
SerialPortWrite ((UINT8 *) Buffer, CharCount);
|
|
while(1);
|
|
}
|