Jeff Fan 0a70d1c304 UefiCpuPkg: Add NULL CPU Common Features Library instance
This NULL CPU common Features Library instance will register some CPU features
defined in Intel(R) 64 and IA-32 Architectures Software Developer's Manual,
Volume 3, September 2016, Chapter 35 Model-Specific-Registers (MSR).

Add PCD PcdCpuClockModulationDutyCycle and PcdIsPowerOnReset consumed by NULL
CPU Common Features Library instance.

v2:
  1. Using MSR_IA32_EFER to enable/disable NX feature instead of using
     MSR_IA32_MISC_ENABLE.
  2. Fix bug that SMX and VMX feature is swapped.

v3:
  1. Add AesniGetConfigData() to get current register state.

v5:
  Move MSR reading from AesniGetConfigData() to AesniSupport().

Cc: Feng Tian <feng.tian@intel.com>
Cc: Michael Kinney <michael.d.kinney@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Jeff Fan <jeff.fan@intel.com>
Reviewed-by: Feng Tian <feng.tian@intel.com>
2017-03-22 10:11:58 +08:00

228 lines
6.7 KiB
C

/** @file
This library registers CPU features defined in Intel(R) 64 and IA-32
Architectures Software Developer's Manual.
Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "CpuCommonFeatures.h"
/**
Register CPU features.
@retval RETURN_SUCCESS Register successfully
**/
RETURN_STATUS
EFIAPI
CpuCommonFeaturesLibConstructor (
VOID
)
{
RETURN_STATUS Status;
if (IsCpuFeatureSupported (CPU_FEATURE_AESNI)) {
Status = RegisterCpuFeature (
"AESNI",
AesniGetConfigData,
AesniSupport,
AesniInitialize,
CPU_FEATURE_AESNI,
CPU_FEATURE_END
);
ASSERT_EFI_ERROR (Status);
}
if (IsCpuFeatureSupported (CPU_FEATURE_MWAIT)) {
Status = RegisterCpuFeature (
"MWAIT",
NULL,
MonitorMwaitSupport,
MonitorMwaitInitialize,
CPU_FEATURE_MWAIT,
CPU_FEATURE_END
);
ASSERT_EFI_ERROR (Status);
}
if (IsCpuFeatureSupported (CPU_FEATURE_ACPI)) {
Status = RegisterCpuFeature (
"ACPI",
NULL,
ClockModulationSupport,
ClockModulationInitialize,
CPU_FEATURE_ACPI,
CPU_FEATURE_END
);
ASSERT_EFI_ERROR (Status);
}
if (IsCpuFeatureSupported (CPU_FEATURE_EIST)) {
Status = RegisterCpuFeature (
"EIST",
NULL,
EistSupport,
EistInitialize,
CPU_FEATURE_EIST,
CPU_FEATURE_END
);
ASSERT_EFI_ERROR (Status);
}
if (IsCpuFeatureSupported (CPU_FEATURE_XD)) {
Status = RegisterCpuFeature (
"Execute Disable",
NULL,
ExecuteDisableSupport,
ExecuteDisableInitialize,
CPU_FEATURE_XD,
CPU_FEATURE_END
);
ASSERT_EFI_ERROR (Status);
}
if (IsCpuFeatureSupported (CPU_FEATURE_FASTSTRINGS)) {
Status = RegisterCpuFeature (
"FastStrings",
NULL,
NULL,
FastStringsInitialize,
CPU_FEATURE_FASTSTRINGS,
CPU_FEATURE_END
);
ASSERT_EFI_ERROR (Status);
}
if (IsCpuFeatureSupported (CPU_FEATURE_LOCK_FEATURE_CONTROL_REGISTER)) {
Status = RegisterCpuFeature (
"Lock Feature Control Register",
FeatureControlGetConfigData,
LockFeatureControlRegisterSupport,
LockFeatureControlRegisterInitialize,
CPU_FEATURE_LOCK_FEATURE_CONTROL_REGISTER,
CPU_FEATURE_END
);
ASSERT_EFI_ERROR (Status);
}
if (IsCpuFeatureSupported (CPU_FEATURE_SENTER)) {
Status = RegisterCpuFeature (
"SENTER",
FeatureControlGetConfigData,
VmxSupport,
SenterInitialize,
CPU_FEATURE_SENTER,
CPU_FEATURE_LOCK_FEATURE_CONTROL_REGISTER | CPU_FEATURE_BEFORE,
CPU_FEATURE_SMX | CPU_FEATURE_AFTER,
CPU_FEATURE_END
);
ASSERT_EFI_ERROR (Status);
}
if (IsCpuFeatureSupported (CPU_FEATURE_SMX)) {
Status = RegisterCpuFeature (
"SMX",
FeatureControlGetConfigData,
SmxSupport,
VmxInsideSmxInitialize,
CPU_FEATURE_SMX,
CPU_FEATURE_LOCK_FEATURE_CONTROL_REGISTER | CPU_FEATURE_BEFORE,
CPU_FEATURE_END
);
ASSERT_EFI_ERROR (Status);
}
if (IsCpuFeatureSupported (CPU_FEATURE_VMX)) {
Status = RegisterCpuFeature (
"VMX",
FeatureControlGetConfigData,
SmxSupport,
VmxOutsideSmxInitialize,
CPU_FEATURE_VMX,
CPU_FEATURE_LOCK_FEATURE_CONTROL_REGISTER | CPU_FEATURE_BEFORE,
CPU_FEATURE_END
);
ASSERT_EFI_ERROR (Status);
}
if (IsCpuFeatureSupported (CPU_FEATURE_LIMIT_CPUID_MAX_VAL)) {
Status = RegisterCpuFeature (
"Limit CpuId Maximum Value",
NULL,
LimitCpuidMaxvalSupport,
LimitCpuidMaxvalInitialize,
CPU_FEATURE_LIMIT_CPUID_MAX_VAL,
CPU_FEATURE_END
);
ASSERT_EFI_ERROR (Status);
}
if (IsCpuFeatureSupported (CPU_FEATURE_MCE)) {
Status = RegisterCpuFeature (
"Machine Check Enable",
NULL,
MceSupport,
MceInitialize,
CPU_FEATURE_MCE,
CPU_FEATURE_END
);
ASSERT_EFI_ERROR (Status);
}
if (IsCpuFeatureSupported (CPU_FEATURE_MCA)) {
Status = RegisterCpuFeature (
"Machine Check Architect",
NULL,
McaSupport,
McaInitialize,
CPU_FEATURE_MCA,
CPU_FEATURE_END
);
ASSERT_EFI_ERROR (Status);
}
if (IsCpuFeatureSupported (CPU_FEATURE_MCG_CTL)) {
Status = RegisterCpuFeature (
"MCG_CTL",
NULL,
McgCtlSupport,
McgCtlInitialize,
CPU_FEATURE_MCG_CTL,
CPU_FEATURE_END
);
ASSERT_EFI_ERROR (Status);
}
if (IsCpuFeatureSupported (CPU_FEATURE_PENDING_BREAK)) {
Status = RegisterCpuFeature (
"Pending Break",
NULL,
PendingBreakSupport,
PendingBreakInitialize,
CPU_FEATURE_PENDING_BREAK,
CPU_FEATURE_END
);
ASSERT_EFI_ERROR (Status);
}
if (IsCpuFeatureSupported (CPU_FEATURE_C1E)) {
Status = RegisterCpuFeature (
"C1E",
NULL,
C1eSupport,
C1eInitialize,
CPU_FEATURE_C1E,
CPU_FEATURE_END
);
ASSERT_EFI_ERROR (Status);
}
if (IsCpuFeatureSupported (CPU_FEATURE_X2APIC)) {
Status = RegisterCpuFeature (
"X2Apic",
NULL,
X2ApicSupport,
X2ApicInitialize,
CPU_FEATURE_X2APIC,
CPU_FEATURE_END
);
ASSERT_EFI_ERROR (Status);
}
return RETURN_SUCCESS;
}