Files
system76-edk2/ArmPlatformPkg/ArmVExpressPkg/Library/HdLcdArmVExpressLib/HdLcdArmVExpress.c
Ard Biesheuvel 14fa71247c ArmPlatformPkg/HdLcdArmVExpressLib: use write-combine mapping for VRAM
Replace the uncached memory mapping of the framebuffer with a write-
combining one. This improves performance, and avoids issues with
unaligned accesses and DC ZVA instructions performed by the accelerated
memcpy/memset routines.

Instead of manipulating the memory attributes directly, use the
SetMemorySpaceAttributes() DXE services, which validates the attributes
against the capabilities of the region before making the actual change.

Contributed-under: TianoCore Contribution Agreement 1.0
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Jeremy Linton <jeremy.linton@arm.com>
Tested-by: Ryan Harkin <ryan.harkin@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
2017-04-06 21:31:48 +01:00

286 lines
8.6 KiB
C

/**
Copyright (c) 2012, ARM Ltd. All rights reserved.
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include <PiDxe.h>
#include <Library/ArmPlatformSysConfigLib.h>
#include <Library/IoLib.h>
#include <Library/PcdLib.h>
#include <Library/DebugLib.h>
#include <Library/DxeServicesTableLib.h>
#include <Library/LcdPlatformLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Protocol/EdidDiscovered.h>
#include <Protocol/EdidActive.h>
#include <ArmPlatform.h>
typedef struct {
UINT32 Mode;
UINT32 HorizontalResolution;
UINT32 VerticalResolution;
LCD_BPP Bpp;
UINT32 OscFreq;
// These are used by HDLCD
UINT32 HSync;
UINT32 HBackPorch;
UINT32 HFrontPorch;
UINT32 VSync;
UINT32 VBackPorch;
UINT32 VFrontPorch;
} LCD_RESOLUTION;
LCD_RESOLUTION mResolutions[] = {
{ // Mode 0 : VGA : 640 x 480 x 24 bpp
VGA, VGA_H_RES_PIXELS, VGA_V_RES_PIXELS, LCD_BITS_PER_PIXEL_24, VGA_OSC_FREQUENCY,
VGA_H_SYNC, VGA_H_BACK_PORCH, VGA_H_FRONT_PORCH,
VGA_V_SYNC, VGA_V_BACK_PORCH, VGA_V_FRONT_PORCH
},
{ // Mode 1 : SVGA : 800 x 600 x 24 bpp
SVGA, SVGA_H_RES_PIXELS, SVGA_V_RES_PIXELS, LCD_BITS_PER_PIXEL_24, SVGA_OSC_FREQUENCY,
SVGA_H_SYNC, SVGA_H_BACK_PORCH, SVGA_H_FRONT_PORCH,
SVGA_V_SYNC, SVGA_V_BACK_PORCH, SVGA_V_FRONT_PORCH
},
{ // Mode 2 : XGA : 1024 x 768 x 24 bpp
XGA, XGA_H_RES_PIXELS, XGA_V_RES_PIXELS, LCD_BITS_PER_PIXEL_24, XGA_OSC_FREQUENCY,
XGA_H_SYNC, XGA_H_BACK_PORCH, XGA_H_FRONT_PORCH,
XGA_V_SYNC, XGA_V_BACK_PORCH, XGA_V_FRONT_PORCH
},
{ // Mode 3 : SXGA : 1280 x 1024 x 24 bpp
SXGA, SXGA_H_RES_PIXELS, SXGA_V_RES_PIXELS, LCD_BITS_PER_PIXEL_24, (SXGA_OSC_FREQUENCY/2),
SXGA_H_SYNC, SXGA_H_BACK_PORCH, SXGA_H_FRONT_PORCH,
SXGA_V_SYNC, SXGA_V_BACK_PORCH, SXGA_V_FRONT_PORCH
},
{ // Mode 4 : UXGA : 1600 x 1200 x 24 bpp
UXGA, UXGA_H_RES_PIXELS, UXGA_V_RES_PIXELS, LCD_BITS_PER_PIXEL_24, (UXGA_OSC_FREQUENCY/2),
UXGA_H_SYNC, UXGA_H_BACK_PORCH, UXGA_H_FRONT_PORCH,
UXGA_V_SYNC, UXGA_V_BACK_PORCH, UXGA_V_FRONT_PORCH
},
{ // Mode 5 : HD : 1920 x 1080 x 24 bpp
HD, HD_H_RES_PIXELS, HD_V_RES_PIXELS, LCD_BITS_PER_PIXEL_24, (HD_OSC_FREQUENCY/2),
HD_H_SYNC, HD_H_BACK_PORCH, HD_H_FRONT_PORCH,
HD_V_SYNC, HD_V_BACK_PORCH, HD_V_FRONT_PORCH
}
};
EFI_EDID_DISCOVERED_PROTOCOL mEdidDiscovered = {
0,
NULL
};
EFI_EDID_ACTIVE_PROTOCOL mEdidActive = {
0,
NULL
};
EFI_STATUS
LcdPlatformInitializeDisplay (
IN EFI_HANDLE Handle
)
{
EFI_STATUS Status;
// Set the FPGA multiplexer to select the video output from the motherboard or the daughterboard
Status = ArmPlatformSysConfigSet (SYS_CFG_MUXFPGA, ARM_VE_DAUGHTERBOARD_1_SITE);
if (EFI_ERROR(Status)) {
return Status;
}
// Install the EDID Protocols
Status = gBS->InstallMultipleProtocolInterfaces (
&Handle,
&gEfiEdidDiscoveredProtocolGuid, &mEdidDiscovered,
&gEfiEdidActiveProtocolGuid, &mEdidActive,
NULL
);
return Status;
}
EFI_STATUS
LcdPlatformGetVram (
OUT EFI_PHYSICAL_ADDRESS* VramBaseAddress,
OUT UINTN* VramSize
)
{
EFI_STATUS Status;
EFI_ALLOCATE_TYPE AllocationType;
// Set the vram size
*VramSize = LCD_VRAM_SIZE;
*VramBaseAddress = (EFI_PHYSICAL_ADDRESS)LCD_VRAM_CORE_TILE_BASE;
// Allocate the VRAM from the DRAM so that nobody else uses it.
if (*VramBaseAddress == 0) {
AllocationType = AllocateAnyPages;
} else {
AllocationType = AllocateAddress;
}
Status = gBS->AllocatePages (AllocationType, EfiBootServicesData, EFI_SIZE_TO_PAGES(((UINTN)LCD_VRAM_SIZE)), VramBaseAddress);
if (EFI_ERROR(Status)) {
return Status;
}
// Mark the VRAM as write-combining. The VRAM is inside the DRAM, which is cacheable.
Status = gDS->SetMemorySpaceAttributes (*VramBaseAddress, *VramSize,
EFI_MEMORY_WC);
ASSERT_EFI_ERROR(Status);
if (EFI_ERROR(Status)) {
gBS->FreePages (*VramBaseAddress, EFI_SIZE_TO_PAGES (*VramSize));
return Status;
}
return EFI_SUCCESS;
}
UINT32
LcdPlatformGetMaxMode (
VOID
)
{
//
// The following line will report correctly the total number of graphics modes
// that could be supported by the graphics driver:
//
return (sizeof(mResolutions) / sizeof(LCD_RESOLUTION));
}
EFI_STATUS
LcdPlatformSetMode (
IN UINT32 ModeNumber
)
{
EFI_STATUS Status;
if (ModeNumber >= LcdPlatformGetMaxMode ()) {
return EFI_INVALID_PARAMETER;
}
// Set the video mode oscillator
do {
Status = ArmPlatformSysConfigSetDevice (SYS_CFG_OSC_SITE1, PcdGet32(PcdHdLcdVideoModeOscId), mResolutions[ModeNumber].OscFreq);
} while (Status == EFI_TIMEOUT);
if (EFI_ERROR(Status)) {
ASSERT_EFI_ERROR (Status);
return Status;
}
// Set the DVI into the new mode
do {
Status = ArmPlatformSysConfigSet (SYS_CFG_DVIMODE, mResolutions[ModeNumber].Mode);
} while (Status == EFI_TIMEOUT);
if (EFI_ERROR(Status)) {
ASSERT_EFI_ERROR (Status);
return Status;
}
// Set the multiplexer
Status = ArmPlatformSysConfigSet (SYS_CFG_MUXFPGA, ARM_VE_DAUGHTERBOARD_1_SITE);
if (EFI_ERROR(Status)) {
ASSERT_EFI_ERROR (Status);
return Status;
}
return Status;
}
EFI_STATUS
LcdPlatformQueryMode (
IN UINT32 ModeNumber,
OUT EFI_GRAPHICS_OUTPUT_MODE_INFORMATION *Info
)
{
if (ModeNumber >= LcdPlatformGetMaxMode ()) {
return EFI_INVALID_PARAMETER;
}
Info->Version = 0;
Info->HorizontalResolution = mResolutions[ModeNumber].HorizontalResolution;
Info->VerticalResolution = mResolutions[ModeNumber].VerticalResolution;
Info->PixelsPerScanLine = mResolutions[ModeNumber].HorizontalResolution;
switch (mResolutions[ModeNumber].Bpp) {
case LCD_BITS_PER_PIXEL_24:
Info->PixelFormat = PixelRedGreenBlueReserved8BitPerColor;
Info->PixelInformation.RedMask = LCD_24BPP_RED_MASK;
Info->PixelInformation.GreenMask = LCD_24BPP_GREEN_MASK;
Info->PixelInformation.BlueMask = LCD_24BPP_BLUE_MASK;
Info->PixelInformation.ReservedMask = LCD_24BPP_RESERVED_MASK;
break;
case LCD_BITS_PER_PIXEL_16_555:
case LCD_BITS_PER_PIXEL_16_565:
case LCD_BITS_PER_PIXEL_12_444:
case LCD_BITS_PER_PIXEL_8:
case LCD_BITS_PER_PIXEL_4:
case LCD_BITS_PER_PIXEL_2:
case LCD_BITS_PER_PIXEL_1:
default:
// These are not supported
ASSERT(FALSE);
break;
}
return EFI_SUCCESS;
}
EFI_STATUS
LcdPlatformGetTimings (
IN UINT32 ModeNumber,
OUT UINT32* HRes,
OUT UINT32* HSync,
OUT UINT32* HBackPorch,
OUT UINT32* HFrontPorch,
OUT UINT32* VRes,
OUT UINT32* VSync,
OUT UINT32* VBackPorch,
OUT UINT32* VFrontPorch
)
{
if (ModeNumber >= LcdPlatformGetMaxMode ()) {
return EFI_INVALID_PARAMETER;
}
*HRes = mResolutions[ModeNumber].HorizontalResolution;
*HSync = mResolutions[ModeNumber].HSync;
*HBackPorch = mResolutions[ModeNumber].HBackPorch;
*HFrontPorch = mResolutions[ModeNumber].HFrontPorch;
*VRes = mResolutions[ModeNumber].VerticalResolution;
*VSync = mResolutions[ModeNumber].VSync;
*VBackPorch = mResolutions[ModeNumber].VBackPorch;
*VFrontPorch = mResolutions[ModeNumber].VFrontPorch;
return EFI_SUCCESS;
}
EFI_STATUS
LcdPlatformGetBpp (
IN UINT32 ModeNumber,
OUT LCD_BPP * Bpp
)
{
if (ModeNumber >= LcdPlatformGetMaxMode ()) {
return EFI_INVALID_PARAMETER;
}
*Bpp = mResolutions[ModeNumber].Bpp;
return EFI_SUCCESS;
}