This set of three packages: AppPkg, StdLib, StdLibPrivateInternalFiles; contains the implementation of libraries based upon non-UEFI standards such as ISO/IEC-9899, the library portion of the C Language Standard, POSIX, etc. AppPkg contains applications that make use of the standard libraries defined in the StdLib Package. StdLib contains header (include) files and the implementations of the standard libraries. StdLibPrivateInternalFiles contains files for the exclusive use of the library implementations in StdLib. These files should never be directly referenced from applications or other code. git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@11600 6f19259b-4bc3-4df7-8a09-765794883524
157 lines
4.8 KiB
C
157 lines
4.8 KiB
C
/* @(#)k_tan.c 5.1 93/09/24 */
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
#include <LibConfig.h>
|
|
#include <sys/EfiCdefs.h>
|
|
#if defined(LIBM_SCCS) && !defined(lint)
|
|
__RCSID("$NetBSD: k_tan.c,v 1.12 2004/07/22 18:24:09 drochner Exp $");
|
|
#endif
|
|
|
|
/* __kernel_tan( x, y, k )
|
|
* kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
|
|
* Input x is assumed to be bounded by ~pi/4 in magnitude.
|
|
* Input y is the tail of x.
|
|
* Input k indicates whether tan (if k=1) or
|
|
* -1/tan (if k= -1) is returned.
|
|
*
|
|
* Algorithm
|
|
* 1. Since tan(-x) = -tan(x), we need only to consider positive x.
|
|
* 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
|
|
* 3. tan(x) is approximated by a odd polynomial of degree 27 on
|
|
* [0,0.67434]
|
|
* 3 27
|
|
* tan(x) ~ x + T1*x + ... + T13*x
|
|
* where
|
|
*
|
|
* |tan(x) 2 4 26 | -59.2
|
|
* |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
|
|
* | x |
|
|
*
|
|
* Note: tan(x+y) = tan(x) + tan'(x)*y
|
|
* ~ tan(x) + (1+x*x)*y
|
|
* Therefore, for better accuracy in computing tan(x+y), let
|
|
* 3 2 2 2 2
|
|
* r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
|
|
* then
|
|
* 3 2
|
|
* tan(x+y) = x + (T1*x + (x *(r+y)+y))
|
|
*
|
|
* 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
|
|
* tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
|
|
* = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
|
|
*/
|
|
|
|
#include "math.h"
|
|
#include "math_private.h"
|
|
|
|
static const double xxx[] = {
|
|
3.33333333333334091986e-01, /* 3FD55555, 55555563 */
|
|
1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */
|
|
5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */
|
|
2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */
|
|
8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */
|
|
3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */
|
|
1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */
|
|
5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */
|
|
2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */
|
|
7.81794442939557092300e-05, /* 3F147E88, A03792A6 */
|
|
7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */
|
|
-1.85586374855275456654e-05, /* BEF375CB, DB605373 */
|
|
2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */
|
|
/* one */ 1.00000000000000000000e+00, /* 3FF00000, 00000000 */
|
|
/* pio4 */ 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */
|
|
/* pio4lo */ 3.06161699786838301793e-17 /* 3C81A626, 33145C07 */
|
|
};
|
|
#define one xxx[13]
|
|
#define pio4 xxx[14]
|
|
#define pio4lo xxx[15]
|
|
#define T xxx
|
|
|
|
double
|
|
__kernel_tan(double x, double y, int iy)
|
|
{
|
|
double z, r, v, w, s;
|
|
int32_t ix, hx;
|
|
|
|
GET_HIGH_WORD(hx, x); /* high word of x */
|
|
ix = hx & 0x7fffffff; /* high word of |x| */
|
|
if (ix < 0x3e300000) { /* x < 2**-28 */
|
|
if ((int) x == 0) { /* generate inexact */
|
|
u_int32_t low;
|
|
GET_LOW_WORD(low, x);
|
|
if(((ix | low) | (iy + 1)) == 0)
|
|
return one / fabs(x);
|
|
else {
|
|
if (iy == 1)
|
|
return x;
|
|
else { /* compute -1 / (x+y) carefully */
|
|
double a, t;
|
|
|
|
z = w = x + y;
|
|
SET_LOW_WORD(z, 0);
|
|
v = y - (z - x);
|
|
t = a = -one / w;
|
|
SET_LOW_WORD(t, 0);
|
|
s = one + t * z;
|
|
return t + a * (s + t * v);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (ix >= 0x3FE59428) { /* |x| >= 0.6744 */
|
|
if (hx < 0) {
|
|
x = -x;
|
|
y = -y;
|
|
}
|
|
z = pio4 - x;
|
|
w = pio4lo - y;
|
|
x = z + w;
|
|
y = 0.0;
|
|
}
|
|
z = x * x;
|
|
w = z * z;
|
|
/*
|
|
* Break x^5*(T[1]+x^2*T[2]+...) into
|
|
* x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
|
|
* x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
|
|
*/
|
|
r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] +
|
|
w * T[11]))));
|
|
v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] +
|
|
w * T[12])))));
|
|
s = z * x;
|
|
r = y + z * (s * (r + v) + y);
|
|
r += T[0] * s;
|
|
w = x + r;
|
|
if (ix >= 0x3FE59428) {
|
|
v = (double) iy;
|
|
return (double) (1 - ((hx >> 30) & 2)) *
|
|
(v - 2.0 * (x - (w * w / (w + v) - r)));
|
|
}
|
|
if (iy == 1)
|
|
return w;
|
|
else {
|
|
/*
|
|
* if allow error up to 2 ulp, simply return
|
|
* -1.0 / (x+r) here
|
|
*/
|
|
/* compute -1.0 / (x+r) accurately */
|
|
double a, t;
|
|
z = w;
|
|
SET_LOW_WORD(z, 0);
|
|
v = r - (z - x); /* z+v = r+x */
|
|
t = a = -1.0 / w; /* a = -1.0/w */
|
|
SET_LOW_WORD(t, 0);
|
|
s = 1.0 + t * z;
|
|
return t + a * (s + t * v);
|
|
}
|
|
}
|