- Copy Brotli algorithm 3rd party source code for tool Cc: Liming Gao <liming.gao@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Bell Song <binx.song@intel.com> Reviewed-by: Liming Gao <liming.gao@intel.com>
		
			
				
	
	
		
			128 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			128 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* NOLINT(build/header_guard) */
 | |
| /* Copyright 2013 Google Inc. All Rights Reserved.
 | |
| 
 | |
|    Distributed under MIT license.
 | |
|    See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
 | |
| */
 | |
| 
 | |
| /* template parameters: FN */
 | |
| 
 | |
| #define HistogramType FN(Histogram)
 | |
| 
 | |
| double FN(BrotliPopulationCost)(const HistogramType* histogram) {
 | |
|   static const double kOneSymbolHistogramCost = 12;
 | |
|   static const double kTwoSymbolHistogramCost = 20;
 | |
|   static const double kThreeSymbolHistogramCost = 28;
 | |
|   static const double kFourSymbolHistogramCost = 37;
 | |
|   const size_t data_size = FN(HistogramDataSize)();
 | |
|   int count = 0;
 | |
|   size_t s[5];
 | |
|   double bits = 0.0;
 | |
|   size_t i;
 | |
|   if (histogram->total_count_ == 0) {
 | |
|     return kOneSymbolHistogramCost;
 | |
|   }
 | |
|   for (i = 0; i < data_size; ++i) {
 | |
|     if (histogram->data_[i] > 0) {
 | |
|       s[count] = i;
 | |
|       ++count;
 | |
|       if (count > 4) break;
 | |
|     }
 | |
|   }
 | |
|   if (count == 1) {
 | |
|     return kOneSymbolHistogramCost;
 | |
|   }
 | |
|   if (count == 2) {
 | |
|     return (kTwoSymbolHistogramCost + (double)histogram->total_count_);
 | |
|   }
 | |
|   if (count == 3) {
 | |
|     const uint32_t histo0 = histogram->data_[s[0]];
 | |
|     const uint32_t histo1 = histogram->data_[s[1]];
 | |
|     const uint32_t histo2 = histogram->data_[s[2]];
 | |
|     const uint32_t histomax =
 | |
|         BROTLI_MAX(uint32_t, histo0, BROTLI_MAX(uint32_t, histo1, histo2));
 | |
|     return (kThreeSymbolHistogramCost +
 | |
|             2 * (histo0 + histo1 + histo2) - histomax);
 | |
|   }
 | |
|   if (count == 4) {
 | |
|     uint32_t histo[4];
 | |
|     uint32_t h23;
 | |
|     uint32_t histomax;
 | |
|     for (i = 0; i < 4; ++i) {
 | |
|       histo[i] = histogram->data_[s[i]];
 | |
|     }
 | |
|     /* Sort */
 | |
|     for (i = 0; i < 4; ++i) {
 | |
|       size_t j;
 | |
|       for (j = i + 1; j < 4; ++j) {
 | |
|         if (histo[j] > histo[i]) {
 | |
|           BROTLI_SWAP(uint32_t, histo, j, i);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     h23 = histo[2] + histo[3];
 | |
|     histomax = BROTLI_MAX(uint32_t, h23, histo[0]);
 | |
|     return (kFourSymbolHistogramCost +
 | |
|             3 * h23 + 2 * (histo[0] + histo[1]) - histomax);
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     /* In this loop we compute the entropy of the histogram and simultaneously
 | |
|        build a simplified histogram of the code length codes where we use the
 | |
|        zero repeat code 17, but we don't use the non-zero repeat code 16. */
 | |
|     size_t max_depth = 1;
 | |
|     uint32_t depth_histo[BROTLI_CODE_LENGTH_CODES] = { 0 };
 | |
|     const double log2total = FastLog2(histogram->total_count_);
 | |
|     for (i = 0; i < data_size;) {
 | |
|       if (histogram->data_[i] > 0) {
 | |
|         /* Compute -log2(P(symbol)) = -log2(count(symbol)/total_count) =
 | |
|                                     = log2(total_count) - log2(count(symbol)) */
 | |
|         double log2p = log2total - FastLog2(histogram->data_[i]);
 | |
|         /* Approximate the bit depth by round(-log2(P(symbol))) */
 | |
|         size_t depth = (size_t)(log2p + 0.5);
 | |
|         bits += histogram->data_[i] * log2p;
 | |
|         if (depth > 15) {
 | |
|           depth = 15;
 | |
|         }
 | |
|         if (depth > max_depth) {
 | |
|           max_depth = depth;
 | |
|         }
 | |
|         ++depth_histo[depth];
 | |
|         ++i;
 | |
|       } else {
 | |
|         /* Compute the run length of zeros and add the appropriate number of 0
 | |
|            and 17 code length codes to the code length code histogram. */
 | |
|         uint32_t reps = 1;
 | |
|         size_t k;
 | |
|         for (k = i + 1; k < data_size && histogram->data_[k] == 0; ++k) {
 | |
|           ++reps;
 | |
|         }
 | |
|         i += reps;
 | |
|         if (i == data_size) {
 | |
|           /* Don't add any cost for the last zero run, since these are encoded
 | |
|              only implicitly. */
 | |
|           break;
 | |
|         }
 | |
|         if (reps < 3) {
 | |
|           depth_histo[0] += reps;
 | |
|         } else {
 | |
|           reps -= 2;
 | |
|           while (reps > 0) {
 | |
|             ++depth_histo[BROTLI_REPEAT_ZERO_CODE_LENGTH];
 | |
|             /* Add the 3 extra bits for the 17 code length code. */
 | |
|             bits += 3;
 | |
|             reps >>= 3;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     /* Add the estimated encoding cost of the code length code histogram. */
 | |
|     bits += (double)(18 + 2 * max_depth);
 | |
|     /* Add the entropy of the code length code histogram. */
 | |
|     bits += BitsEntropy(depth_histo, BROTLI_CODE_LENGTH_CODES);
 | |
|   }
 | |
|   return bits;
 | |
| }
 | |
| 
 | |
| #undef HistogramType
 |