gdtoa/gdtoa.c: Several "goto" paths allowed the initialization of a variable to be bypassed. Initialized it at the top of the function in order to eliminate the error. Updated the file header and copyright notices. Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Daryl McDaniel <daryl.mcdaniel@intel.com> Reviewed-by: Erik Bjorge <erik.c.bjorge@intel.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16324 6f19259b-4bc3-4df7-8a09-765794883524
		
			
				
	
	
		
			828 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			828 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /** @file
 | |
| 
 | |
|   Copyright (c) 2010 - 2014, Intel Corporation. All rights reserved.<BR>
 | |
|   This program and the accompanying materials are licensed and made available under
 | |
|   the terms and conditions of the BSD License that accompanies this distribution.
 | |
|   The full text of the license may be found at
 | |
|   http://opensource.org/licenses/bsd-license.php.
 | |
| 
 | |
|   THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
 | |
|   WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
 | |
| 
 | |
|   ***************************************************************
 | |
| 
 | |
| The author of this software is David M. Gay.
 | |
| 
 | |
| Copyright (C) 1998, 1999 by Lucent Technologies
 | |
| All Rights Reserved
 | |
| 
 | |
| Permission to use, copy, modify, and distribute this software and
 | |
| its documentation for any purpose and without fee is hereby
 | |
| granted, provided that the above copyright notice appear in all
 | |
| copies and that both that the copyright notice and this
 | |
| permission notice and warranty disclaimer appear in supporting
 | |
| documentation, and that the name of Lucent or any of its entities
 | |
| not be used in advertising or publicity pertaining to
 | |
| distribution of the software without specific, written prior
 | |
| permission.
 | |
| 
 | |
| LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
 | |
| INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
 | |
| IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
 | |
| SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 | |
| WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
 | |
| IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
 | |
| ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
 | |
| THIS SOFTWARE.
 | |
| 
 | |
|   Please send bug reports to David M. Gay (dmg at acm dot org,
 | |
|   with " at " changed at "@" and " dot " changed to ".").
 | |
| 
 | |
|   NetBSD: gdtoa.c,v 1.1.1.1.4.1.4.1 2008/04/08 21:10:55 jdc Exp
 | |
| **/
 | |
| #include  <LibConfig.h>
 | |
| 
 | |
| #include "gdtoaimp.h"
 | |
| 
 | |
| #if defined(_MSC_VER)
 | |
|   /* Disable warnings about conversions to narrower data types. */
 | |
|   #pragma warning ( disable : 4244 )
 | |
|   // Squelch bogus warnings about uninitialized variable use.
 | |
|   #pragma warning ( disable : 4701 )
 | |
| #endif
 | |
| 
 | |
| static Bigint *
 | |
| bitstob(ULong *bits, int nbits, int *bbits)
 | |
| {
 | |
|   int i, k;
 | |
|   Bigint *b;
 | |
|   ULong *be, *x, *x0;
 | |
| 
 | |
|   i = ULbits;
 | |
|   k = 0;
 | |
|   while(i < nbits) {
 | |
|     i <<= 1;
 | |
|     k++;
 | |
|   }
 | |
| #ifndef Pack_32
 | |
|   if (!k)
 | |
|     k = 1;
 | |
| #endif
 | |
|   b = Balloc(k);
 | |
|   if (b == NULL)
 | |
|     return NULL;
 | |
|   be = bits + (((unsigned int)nbits - 1) >> kshift);
 | |
|   x = x0 = b->x;
 | |
|   do {
 | |
|     *x++ = *bits & ALL_ON;
 | |
| #ifdef Pack_16
 | |
|     *x++ = (*bits >> 16) & ALL_ON;
 | |
| #endif
 | |
|   } while(++bits <= be);
 | |
|   i = x - x0;
 | |
|   while(!x0[--i])
 | |
|     if (!i) {
 | |
|       b->wds = 0;
 | |
|       *bbits = 0;
 | |
|       goto ret;
 | |
|     }
 | |
|   b->wds = i + 1;
 | |
|   *bbits = i*ULbits + 32 - hi0bits(b->x[i]);
 | |
| ret:
 | |
|   return b;
 | |
| }
 | |
| 
 | |
| /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
 | |
|  *
 | |
|  * Inspired by "How to Print Floating-Point Numbers Accurately" by
 | |
|  * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
 | |
|  *
 | |
|  * Modifications:
 | |
|  *  1. Rather than iterating, we use a simple numeric overestimate
 | |
|  *     to determine k = floor(log10(d)).  We scale relevant
 | |
|  *     quantities using O(log2(k)) rather than O(k) multiplications.
 | |
|  *  2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
 | |
|  *     try to generate digits strictly left to right.  Instead, we
 | |
|  *     compute with fewer bits and propagate the carry if necessary
 | |
|  *     when rounding the final digit up.  This is often faster.
 | |
|  *  3. Under the assumption that input will be rounded nearest,
 | |
|  *     mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
 | |
|  *     That is, we allow equality in stopping tests when the
 | |
|  *     round-nearest rule will give the same floating-point value
 | |
|  *     as would satisfaction of the stopping test with strict
 | |
|  *     inequality.
 | |
|  *  4. We remove common factors of powers of 2 from relevant
 | |
|  *     quantities.
 | |
|  *  5. When converting floating-point integers less than 1e16,
 | |
|  *     we use floating-point arithmetic rather than resorting
 | |
|  *     to multiple-precision integers.
 | |
|  *  6. When asked to produce fewer than 15 digits, we first try
 | |
|  *     to get by with floating-point arithmetic; we resort to
 | |
|  *     multiple-precision integer arithmetic only if we cannot
 | |
|  *     guarantee that the floating-point calculation has given
 | |
|  *     the correctly rounded result.  For k requested digits and
 | |
|  *     "uniformly" distributed input, the probability is
 | |
|  *     something like 10^(k-15) that we must resort to the Long
 | |
|  *     calculation.
 | |
|  */
 | |
| 
 | |
|  char *
 | |
| gdtoa
 | |
|   (FPI *fpi, int be, ULong *bits, int *kindp, int mode, int ndigits, int *decpt, char **rve)
 | |
| {
 | |
|  /* Arguments ndigits and decpt are similar to the second and third
 | |
|   arguments of ecvt and fcvt; trailing zeros are suppressed from
 | |
|   the returned string.  If not null, *rve is set to point
 | |
|   to the end of the return value.  If d is +-Infinity or NaN,
 | |
|   then *decpt is set to 9999.
 | |
| 
 | |
|   mode:
 | |
|     0 ==> shortest string that yields d when read in
 | |
|       and rounded to nearest.
 | |
|     1 ==> like 0, but with Steele & White stopping rule;
 | |
|       e.g. with IEEE P754 arithmetic , mode 0 gives
 | |
|       1e23 whereas mode 1 gives 9.999999999999999e22.
 | |
|     2 ==> max(1,ndigits) significant digits.  This gives a
 | |
|       return value similar to that of ecvt, except
 | |
|       that trailing zeros are suppressed.
 | |
|     3 ==> through ndigits past the decimal point.  This
 | |
|       gives a return value similar to that from fcvt,
 | |
|       except that trailing zeros are suppressed, and
 | |
|       ndigits can be negative.
 | |
|     4-9 should give the same return values as 2-3, i.e.,
 | |
|       4 <= mode <= 9 ==> same return as mode
 | |
|       2 + (mode & 1).  These modes are mainly for
 | |
|       debugging; often they run slower but sometimes
 | |
|       faster than modes 2-3.
 | |
|     4,5,8,9 ==> left-to-right digit generation.
 | |
|     6-9 ==> don't try fast floating-point estimate
 | |
|       (if applicable).
 | |
| 
 | |
|     Values of mode other than 0-9 are treated as mode 0.
 | |
| 
 | |
|     Sufficient space is allocated to the return value
 | |
|     to hold the suppressed trailing zeros.
 | |
|   */
 | |
| 
 | |
|   int bbits, b2, b5, be0, dig, i, ieps, ilim = 0, ilim0, ilim1 = 0, inex;
 | |
|   int j, jj1, k, k0, k_check, kind, leftright, m2, m5, nbits;
 | |
|   int rdir, s2, s5, spec_case, try_quick;
 | |
|   Long L;
 | |
|   Bigint *b, *b1, *delta, *mlo, *mhi, *mhi1, *S;
 | |
|   double d, d2, ds, eps;
 | |
|   char *s, *s0;
 | |
| 
 | |
|   mlo = NULL;
 | |
| 
 | |
| #ifndef MULTIPLE_THREADS
 | |
|   if (dtoa_result) {
 | |
|     freedtoa(dtoa_result);
 | |
|     dtoa_result = 0;
 | |
|   }
 | |
| #endif
 | |
|   inex = 0;
 | |
|   if (*kindp & STRTOG_NoMemory)
 | |
|     return NULL;
 | |
|   kind = *kindp &= ~STRTOG_Inexact;
 | |
|   switch(kind & STRTOG_Retmask) {
 | |
|     case STRTOG_Zero:
 | |
|       goto ret_zero;
 | |
|     case STRTOG_Normal:
 | |
|     case STRTOG_Denormal:
 | |
|       break;
 | |
|     case STRTOG_Infinite:
 | |
|       *decpt = -32768;
 | |
|       return nrv_alloc("Infinity", rve, 8);
 | |
|     case STRTOG_NaN:
 | |
|       *decpt = -32768;
 | |
|       return nrv_alloc("NaN", rve, 3);
 | |
|     default:
 | |
|       return 0;
 | |
|   }
 | |
|   b = bitstob(bits, nbits = fpi->nbits, &bbits);
 | |
|   if (b == NULL)
 | |
|     return NULL;
 | |
|   be0 = be;
 | |
|   if ( (i = trailz(b)) !=0) {
 | |
|     rshift(b, i);
 | |
|     be += i;
 | |
|     bbits -= i;
 | |
|   }
 | |
|   if (!b->wds) {
 | |
|     Bfree(b);
 | |
| ret_zero:
 | |
|     *decpt = 1;
 | |
|     return nrv_alloc("0", rve, 1);
 | |
|   }
 | |
| 
 | |
|   dval(d) = b2d(b, &i);
 | |
|   i = be + bbits - 1;
 | |
|   word0(d) &= Frac_mask1;
 | |
|   word0(d) |= Exp_11;
 | |
| #ifdef IBM
 | |
|   if ( (j = 11 - hi0bits(word0(d) & Frac_mask)) !=0)
 | |
|     dval(d) /= 1 << j;
 | |
| #endif
 | |
| 
 | |
|   /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
 | |
|    * log10(x)  =  log(x) / log(10)
 | |
|    *    ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
 | |
|    * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
 | |
|    *
 | |
|    * This suggests computing an approximation k to log10(d) by
 | |
|    *
 | |
|    * k = (i - Bias)*0.301029995663981
 | |
|    *  + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
 | |
|    *
 | |
|    * We want k to be too large rather than too small.
 | |
|    * The error in the first-order Taylor series approximation
 | |
|    * is in our favor, so we just round up the constant enough
 | |
|    * to compensate for any error in the multiplication of
 | |
|    * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
 | |
|    * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
 | |
|    * adding 1e-13 to the constant term more than suffices.
 | |
|    * Hence we adjust the constant term to 0.1760912590558.
 | |
|    * (We could get a more accurate k by invoking log10,
 | |
|    *  but this is probably not worthwhile.)
 | |
|    */
 | |
| #ifdef IBM
 | |
|   i <<= 2;
 | |
|   i += j;
 | |
| #endif
 | |
|   ds = (dval(d)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
 | |
| 
 | |
|   /* correct assumption about exponent range */
 | |
|   if ((j = i) < 0)
 | |
|     j = -j;
 | |
|   if ((j -= 1077) > 0)
 | |
|     ds += j * 7e-17;
 | |
| 
 | |
|   k = (int)ds;
 | |
|   if (ds < 0. && ds != k)
 | |
|     k--;  /* want k = floor(ds) */
 | |
|   k_check = 1;
 | |
| #ifdef IBM
 | |
|   j = be + bbits - 1;
 | |
|   if ( (jj1 = j & 3) !=0)
 | |
|     dval(d) *= 1 << jj1;
 | |
|   word0(d) += j << Exp_shift - 2 & Exp_mask;
 | |
| #else
 | |
|   word0(d) += (be + bbits - 1) << Exp_shift;
 | |
| #endif
 | |
|   if (k >= 0 && k <= Ten_pmax) {
 | |
|     if (dval(d) < tens[k])
 | |
|       k--;
 | |
|     k_check = 0;
 | |
|   }
 | |
|   j = bbits - i - 1;
 | |
|   if (j >= 0) {
 | |
|     b2 = 0;
 | |
|     s2 = j;
 | |
|   }
 | |
|   else {
 | |
|     b2 = -j;
 | |
|     s2 = 0;
 | |
|   }
 | |
|   if (k >= 0) {
 | |
|     b5 = 0;
 | |
|     s5 = k;
 | |
|     s2 += k;
 | |
|   }
 | |
|   else {
 | |
|     b2 -= k;
 | |
|     b5 = -k;
 | |
|     s5 = 0;
 | |
|   }
 | |
|   if (mode < 0 || mode > 9)
 | |
|     mode = 0;
 | |
|   try_quick = 1;
 | |
|   if (mode > 5) {
 | |
|     mode -= 4;
 | |
|     try_quick = 0;
 | |
|   }
 | |
|   leftright = 1;
 | |
|   switch(mode) {
 | |
|     case 0:
 | |
|     case 1:
 | |
|       ilim = ilim1 = -1;
 | |
|       i = (int)(nbits * .30103) + 3;
 | |
|       ndigits = 0;
 | |
|       break;
 | |
|     case 2:
 | |
|       leftright = 0;
 | |
|       /*FALLTHROUGH*/
 | |
|     case 4:
 | |
|       if (ndigits <= 0)
 | |
|         ndigits = 1;
 | |
|       ilim = ilim1 = i = ndigits;
 | |
|       break;
 | |
|     case 3:
 | |
|       leftright = 0;
 | |
|       /*FALLTHROUGH*/
 | |
|     case 5:
 | |
|       i = ndigits + k + 1;
 | |
|       ilim = i;
 | |
|       ilim1 = i - 1;
 | |
|       if (i <= 0)
 | |
|         i = 1;
 | |
|   }
 | |
|   s = s0 = rv_alloc((size_t)i);
 | |
|   if (s == NULL)
 | |
|     return NULL;
 | |
| 
 | |
|   if ( (rdir = fpi->rounding - 1) !=0) {
 | |
|     if (rdir < 0)
 | |
|       rdir = 2;
 | |
|     if (kind & STRTOG_Neg)
 | |
|       rdir = 3 - rdir;
 | |
|   }
 | |
| 
 | |
|   /* Now rdir = 0 ==> round near, 1 ==> round up, 2 ==> round down. */
 | |
| 
 | |
|   if (ilim >= 0 && ilim <= Quick_max && try_quick && !rdir
 | |
| #ifndef IMPRECISE_INEXACT
 | |
|     && k == 0
 | |
| #endif
 | |
|                 ) {
 | |
| 
 | |
|     /* Try to get by with floating-point arithmetic. */
 | |
| 
 | |
|     i = 0;
 | |
|     d2 = dval(d);
 | |
| #ifdef IBM
 | |
|     if ( (j = 11 - hi0bits(word0(d) & Frac_mask)) !=0)
 | |
|       dval(d) /= 1 << j;
 | |
| #endif
 | |
|     k0 = k;
 | |
|     ilim0 = ilim;
 | |
|     ieps = 2; /* conservative */
 | |
|     if (k > 0) {
 | |
|       ds = tens[k&0xf];
 | |
|       j = (unsigned int)k >> 4;
 | |
|       if (j & Bletch) {
 | |
|         /* prevent overflows */
 | |
|         j &= Bletch - 1;
 | |
|         dval(d) /= bigtens[n_bigtens-1];
 | |
|         ieps++;
 | |
|       }
 | |
|       for(; j; j /= 2, i++)
 | |
|         if (j & 1) {
 | |
|           ieps++;
 | |
|           ds *= bigtens[i];
 | |
|         }
 | |
|     }
 | |
|     else  {
 | |
|       ds = 1.;
 | |
|       if ( (jj1 = -k) !=0) {
 | |
|         dval(d) *= tens[jj1 & 0xf];
 | |
|         for(j = jj1 >> 4; j; j >>= 1, i++)
 | |
|           if (j & 1) {
 | |
|             ieps++;
 | |
|             dval(d) *= bigtens[i];
 | |
|           }
 | |
|       }
 | |
|     }
 | |
|     if (k_check && dval(d) < 1. && ilim > 0) {
 | |
|       if (ilim1 <= 0)
 | |
|         goto fast_failed;
 | |
|       ilim = ilim1;
 | |
|       k--;
 | |
|       dval(d) *= 10.;
 | |
|       ieps++;
 | |
|     }
 | |
|     dval(eps) = ieps*dval(d) + 7.;
 | |
|     word0(eps) -= (P-1)*Exp_msk1;
 | |
|     if (ilim == 0) {
 | |
|       S = mhi = 0;
 | |
|       dval(d) -= 5.;
 | |
|       if (dval(d) > dval(eps))
 | |
|         goto one_digit;
 | |
|       if (dval(d) < -dval(eps))
 | |
|         goto no_digits;
 | |
|       goto fast_failed;
 | |
|     }
 | |
| #ifndef No_leftright
 | |
|     if (leftright) {
 | |
|       /* Use Steele & White method of only
 | |
|        * generating digits needed.
 | |
|        */
 | |
|       dval(eps) = ds*0.5/tens[ilim-1] - dval(eps);
 | |
|       for(i = 0;;) {
 | |
|         L = (Long)(dval(d)/ds);
 | |
|         dval(d) -= L*ds;
 | |
|         *s++ = '0' + (int)L;
 | |
|         if (dval(d) < dval(eps)) {
 | |
|           if (dval(d))
 | |
|             inex = STRTOG_Inexlo;
 | |
|           goto ret1;
 | |
|         }
 | |
|         if (ds - dval(d) < dval(eps))
 | |
|           goto bump_up;
 | |
|         if (++i >= ilim)
 | |
|           break;
 | |
|         dval(eps) *= 10.;
 | |
|         dval(d) *= 10.;
 | |
|       }
 | |
|     }
 | |
|     else {
 | |
| #endif
 | |
|       /* Generate ilim digits, then fix them up. */
 | |
|       dval(eps) *= tens[ilim-1];
 | |
|       for(i = 1;; i++, dval(d) *= 10.) {
 | |
|         if ( (L = (Long)(dval(d)/ds)) !=0)
 | |
|           dval(d) -= L*ds;
 | |
|         *s++ = '0' + (int)L;
 | |
|         if (i == ilim) {
 | |
|           ds *= 0.5;
 | |
|           if (dval(d) > ds + dval(eps))
 | |
|             goto bump_up;
 | |
|           else if (dval(d) < ds - dval(eps)) {
 | |
|             while(*--s == '0'){}
 | |
|             s++;
 | |
|             if (dval(d))
 | |
|               inex = STRTOG_Inexlo;
 | |
|             goto ret1;
 | |
|           }
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| #ifndef No_leftright
 | |
|     }
 | |
| #endif
 | |
| fast_failed:
 | |
|     s = s0;
 | |
|     dval(d) = d2;
 | |
|     k = k0;
 | |
|     ilim = ilim0;
 | |
|   }
 | |
| 
 | |
|   /* Do we have a "small" integer? */
 | |
| 
 | |
|   if (be >= 0 && k <= Int_max) {
 | |
|     /* Yes. */
 | |
|     ds = tens[k];
 | |
|     if (ndigits < 0 && ilim <= 0) {
 | |
|       S = mhi = 0;
 | |
|       if (ilim < 0 || dval(d) <= 5*ds)
 | |
|         goto no_digits;
 | |
|       goto one_digit;
 | |
|     }
 | |
|     for(i = 1;; i++, dval(d) *= 10.) {
 | |
|       L = dval(d) / ds;
 | |
|       dval(d) -= L*ds;
 | |
| #ifdef Check_FLT_ROUNDS
 | |
|       /* If FLT_ROUNDS == 2, L will usually be high by 1 */
 | |
|       if (dval(d) < 0) {
 | |
|         L--;
 | |
|         dval(d) += ds;
 | |
|       }
 | |
| #endif
 | |
|       *s++ = '0' + (int)L;
 | |
|       if (dval(d) == 0.)
 | |
|         break;
 | |
|       if (i == ilim) {
 | |
|         if (rdir) {
 | |
|           if (rdir == 1)
 | |
|             goto bump_up;
 | |
|           inex = STRTOG_Inexlo;
 | |
|           goto ret1;
 | |
|         }
 | |
|         dval(d) += dval(d);
 | |
|         if (dval(d) > ds || (dval(d) == ds && L & 1)) {
 | |
| bump_up:
 | |
|           inex = STRTOG_Inexhi;
 | |
|           while(*--s == '9')
 | |
|             if (s == s0) {
 | |
|               k++;
 | |
|               *s = '0';
 | |
|               break;
 | |
|             }
 | |
|           ++*s++;
 | |
|         }
 | |
|         else
 | |
|           inex = STRTOG_Inexlo;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     goto ret1;
 | |
|   }
 | |
| 
 | |
|   m2 = b2;
 | |
|   m5 = b5;
 | |
|   mhi = NULL;
 | |
|   mlo = NULL;
 | |
|   if (leftright) {
 | |
|     if (mode < 2) {
 | |
|       i = nbits - bbits;
 | |
|       if (be - i++ < fpi->emin)
 | |
|         /* denormal */
 | |
|         i = be - fpi->emin + 1;
 | |
|     }
 | |
|     else {
 | |
|       j = ilim - 1;
 | |
|       if (m5 >= j)
 | |
|         m5 -= j;
 | |
|       else {
 | |
|         s5 += j -= m5;
 | |
|         b5 += j;
 | |
|         m5 = 0;
 | |
|       }
 | |
|       if ((i = ilim) < 0) {
 | |
|         m2 -= i;
 | |
|         i = 0;
 | |
|       }
 | |
|     }
 | |
|     b2 += i;
 | |
|     s2 += i;
 | |
|     mhi = i2b(1);
 | |
|   }
 | |
|   if (m2 > 0 && s2 > 0) {
 | |
|     i = m2 < s2 ? m2 : s2;
 | |
|     b2 -= i;
 | |
|     m2 -= i;
 | |
|     s2 -= i;
 | |
|   }
 | |
|   if (b5 > 0) {
 | |
|     if (leftright) {
 | |
|       if (m5 > 0) {
 | |
|         mhi = pow5mult(mhi, m5);
 | |
|         if (mhi == NULL)
 | |
|           return NULL;
 | |
|         b1 = mult(mhi, b);
 | |
|         if (b1 == NULL)
 | |
|           return NULL;
 | |
|         Bfree(b);
 | |
|         b = b1;
 | |
|       }
 | |
|       if ( (j = b5 - m5) !=0) {
 | |
|         b = pow5mult(b, j);
 | |
|         if (b == NULL)
 | |
|           return NULL;
 | |
|       }
 | |
|     }
 | |
|     else {
 | |
|       b = pow5mult(b, b5);
 | |
|       if (b == NULL)
 | |
|         return NULL;
 | |
|     }
 | |
|   }
 | |
|   S = i2b(1);
 | |
|   if (S == NULL)
 | |
|     return NULL;
 | |
|   if (s5 > 0) {
 | |
|     S = pow5mult(S, s5);
 | |
|     if (S == NULL)
 | |
|       return NULL;
 | |
|   }
 | |
| 
 | |
|   /* Check for special case that d is a normalized power of 2. */
 | |
| 
 | |
|   spec_case = 0;
 | |
|   if (mode < 2) {
 | |
|     if (bbits == 1 && be0 > fpi->emin + 1) {
 | |
|       /* The special case */
 | |
|       b2++;
 | |
|       s2++;
 | |
|       spec_case = 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Arrange for convenient computation of quotients:
 | |
|    * shift left if necessary so divisor has 4 leading 0 bits.
 | |
|    *
 | |
|    * Perhaps we should just compute leading 28 bits of S once
 | |
|    * and for all and pass them and a shift to quorem, so it
 | |
|    * can do shifts and ors to compute the numerator for q.
 | |
|    */
 | |
| #ifdef Pack_32
 | |
|   if ( (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f) !=0)
 | |
|     i = 32 - i;
 | |
| #else
 | |
|   if ( (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf) !=0)
 | |
|     i = 16 - i;
 | |
| #endif
 | |
|   if (i > 4) {
 | |
|     i -= 4;
 | |
|     b2 += i;
 | |
|     m2 += i;
 | |
|     s2 += i;
 | |
|   }
 | |
|   else if (i < 4) {
 | |
|     i += 28;
 | |
|     b2 += i;
 | |
|     m2 += i;
 | |
|     s2 += i;
 | |
|   }
 | |
|   if (b2 > 0)
 | |
|     b = lshift(b, b2);
 | |
|   if (s2 > 0)
 | |
|     S = lshift(S, s2);
 | |
|   if (k_check) {
 | |
|     if (cmp(b,S) < 0) {
 | |
|       k--;
 | |
|       b = multadd(b, 10, 0);  /* we botched the k estimate */
 | |
|       if (b == NULL)
 | |
|         return NULL;
 | |
|       if (leftright) {
 | |
|         mhi = multadd(mhi, 10, 0);
 | |
|         if (mhi == NULL)
 | |
|           return NULL;
 | |
|       }
 | |
|       ilim = ilim1;
 | |
|     }
 | |
|   }
 | |
|   if (ilim <= 0 && mode > 2) {
 | |
|     if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
 | |
|       /* no digits, fcvt style */
 | |
| no_digits:
 | |
|       k = -1 - ndigits;
 | |
|       inex = STRTOG_Inexlo;
 | |
|       goto ret;
 | |
|     }
 | |
| one_digit:
 | |
|     inex = STRTOG_Inexhi;
 | |
|     *s++ = '1';
 | |
|     k++;
 | |
|     goto ret;
 | |
|   }
 | |
|   if (leftright) {
 | |
|     if (m2 > 0) {
 | |
|       mhi = lshift(mhi, m2);
 | |
|       if (mhi == NULL)
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     /* Compute mlo -- check for special case
 | |
|      * that d is a normalized power of 2.
 | |
|      */
 | |
| 
 | |
|     mlo = mhi;
 | |
|     if (spec_case) {
 | |
|       mhi = Balloc(mhi->k);
 | |
|       if (mhi == NULL)
 | |
|         return NULL;
 | |
|       Bcopy(mhi, mlo);
 | |
|       mhi = lshift(mhi, 1);
 | |
|       if (mhi == NULL)
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     for(i = 1;;i++) {
 | |
|       dig = quorem(b,S) + '0';
 | |
|       /* Do we yet have the shortest decimal string
 | |
|        * that will round to d?
 | |
|        */
 | |
|       j = cmp(b, mlo);
 | |
|       delta = diff(S, mhi);
 | |
|       if (delta == NULL)
 | |
|         return NULL;
 | |
|       jj1 = delta->sign ? 1 : cmp(b, delta);
 | |
|       Bfree(delta);
 | |
| #ifndef ROUND_BIASED
 | |
|       if (jj1 == 0 && !mode && !(bits[0] & 1) && !rdir) {
 | |
|         if (dig == '9')
 | |
|           goto round_9_up;
 | |
|         if (j <= 0) {
 | |
|           if (b->wds > 1 || b->x[0])
 | |
|             inex = STRTOG_Inexlo;
 | |
|         }
 | |
|         else {
 | |
|           dig++;
 | |
|           inex = STRTOG_Inexhi;
 | |
|         }
 | |
|         *s++ = dig;
 | |
|         goto ret;
 | |
|       }
 | |
| #endif
 | |
|       if (j < 0 || (j == 0 && !mode
 | |
| #ifndef ROUND_BIASED
 | |
|               && !(bits[0] & 1)
 | |
| #endif
 | |
|           )) {
 | |
|         if (rdir && (b->wds > 1 || b->x[0])) {
 | |
|           if (rdir == 2) {
 | |
|             inex = STRTOG_Inexlo;
 | |
|             goto accept;
 | |
|           }
 | |
|           while (cmp(S,mhi) > 0) {
 | |
|             *s++ = dig;
 | |
|             mhi1 = multadd(mhi, 10, 0);
 | |
|             if (mhi1 == NULL)
 | |
|               return NULL;
 | |
|             if (mlo == mhi)
 | |
|               mlo = mhi1;
 | |
|             mhi = mhi1;
 | |
|             b = multadd(b, 10, 0);
 | |
|             if (b == NULL)
 | |
|               return NULL;
 | |
|             dig = quorem(b,S) + '0';
 | |
|           }
 | |
|           if (dig++ == '9')
 | |
|             goto round_9_up;
 | |
|           inex = STRTOG_Inexhi;
 | |
|           goto accept;
 | |
|         }
 | |
|         if (jj1 > 0) {
 | |
|           b = lshift(b, 1);
 | |
|           if (b == NULL)
 | |
|             return NULL;
 | |
|           jj1 = cmp(b, S);
 | |
|           if ((jj1 > 0 || (jj1 == 0 && dig & 1))
 | |
|           && dig++ == '9')
 | |
|             goto round_9_up;
 | |
|           inex = STRTOG_Inexhi;
 | |
|         }
 | |
|         if (b->wds > 1 || b->x[0])
 | |
|           inex = STRTOG_Inexlo;
 | |
| accept:
 | |
|         *s++ = dig;
 | |
|         goto ret;
 | |
|       }
 | |
|       if (jj1 > 0 && rdir != 2) {
 | |
|         if (dig == '9') { /* possible if i == 1 */
 | |
| round_9_up:
 | |
|           *s++ = '9';
 | |
|           inex = STRTOG_Inexhi;
 | |
|           goto roundoff;
 | |
|         }
 | |
|         inex = STRTOG_Inexhi;
 | |
|         *s++ = dig + 1;
 | |
|         goto ret;
 | |
|       }
 | |
|       *s++ = dig;
 | |
|       if (i == ilim)
 | |
|         break;
 | |
|       b = multadd(b, 10, 0);
 | |
|       if (b == NULL)
 | |
|         return NULL;
 | |
|       if (mlo == mhi) {
 | |
|         mlo = mhi = multadd(mhi, 10, 0);
 | |
|         if (mlo == NULL)
 | |
|           return NULL;
 | |
|       }
 | |
|       else {
 | |
|         mlo = multadd(mlo, 10, 0);
 | |
|         if (mlo == NULL)
 | |
|           return NULL;
 | |
|         mhi = multadd(mhi, 10, 0);
 | |
|         if (mhi == NULL)
 | |
|           return NULL;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   else
 | |
|     for(i = 1;; i++) {
 | |
|       *s++ = dig = quorem(b,S) + '0';
 | |
|       if (i >= ilim)
 | |
|         break;
 | |
|       b = multadd(b, 10, 0);
 | |
|       if (b == NULL)
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|   /* Round off last digit */
 | |
| 
 | |
|   if (rdir) {
 | |
|     if (rdir == 2 || (b->wds <= 1 && !b->x[0]))
 | |
|       goto chopzeros;
 | |
|     goto roundoff;
 | |
|   }
 | |
|   b = lshift(b, 1);
 | |
|   if (b == NULL)
 | |
|     return NULL;
 | |
|   j = cmp(b, S);
 | |
|   if (j > 0 || (j == 0 && dig & 1)) {
 | |
| roundoff:
 | |
|     inex = STRTOG_Inexhi;
 | |
|     while(*--s == '9')
 | |
|       if (s == s0) {
 | |
|         k++;
 | |
|         *s++ = '1';
 | |
|         goto ret;
 | |
|       }
 | |
|     ++*s++;
 | |
|   }
 | |
|   else {
 | |
| chopzeros:
 | |
|     if (b->wds > 1 || b->x[0])
 | |
|       inex = STRTOG_Inexlo;
 | |
|     while(*--s == '0'){}
 | |
|     s++;
 | |
|   }
 | |
| ret:
 | |
|   Bfree(S);
 | |
|   if (mhi) {
 | |
|     if (mlo && mlo != mhi)
 | |
|       Bfree(mlo);
 | |
|     Bfree(mhi);
 | |
|   }
 | |
| ret1:
 | |
|   Bfree(b);
 | |
|   *s = 0;
 | |
|   *decpt = k + 1;
 | |
|   if (rve)
 | |
|     *rve = s;
 | |
|   *kindp |= inex;
 | |
|   return s0;
 | |
| }
 |