- abstrated to abstracted - accessibla to accessible - addres to address - apropriate to appropriate - arry to array - availabe to available - avaliable to available - becasue to because - correponding to corresponding - etablished to established - exeuction to execution - extensiable to extensible - fileds to fields - loadding to loading - ptototypes to prototypes - prococol protocol - requried to required - resoruce to resource - runing to running - uild to build Cc: Star Zeng <star.zeng@intel.com> Cc: Feng Tian <feng.tian@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Giri P Mudusuru <giri.p.mudusuru@intel.com> Reviewed-by: Star Zeng <star.zeng@intel.com> Reviewed-by: Feng Tian <feng.tian@intel.com>
		
			
				
	
	
		
			1296 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1296 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /** @file
 | |
|   SerialIo implementation for PCI or SIO UARTs.
 | |
| 
 | |
| Copyright (c) 2006 - 2016, Intel Corporation. All rights reserved.<BR>
 | |
| This program and the accompanying materials
 | |
| are licensed and made available under the terms and conditions of the BSD License
 | |
| which accompanies this distribution.  The full text of the license may be found at
 | |
| http://opensource.org/licenses/bsd-license.php
 | |
| 
 | |
| THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
 | |
| 
 | |
| **/
 | |
| 
 | |
| #include "Serial.h"
 | |
| 
 | |
| /**
 | |
|   Skip the optional Controller device path node and return the
 | |
|   pointer to the next device path node.
 | |
| 
 | |
|   @param DevicePath             Pointer to the device path.
 | |
|   @param ContainsControllerNode Returns TRUE if the Controller device path exists.
 | |
|   @param ControllerNumber       Returns the Controller Number if Controller device path exists.
 | |
| 
 | |
|   @return     Pointer to the next device path node.
 | |
| **/
 | |
| UART_DEVICE_PATH *
 | |
| SkipControllerDevicePathNode (
 | |
|   EFI_DEVICE_PATH_PROTOCOL          *DevicePath,
 | |
|   BOOLEAN                           *ContainsControllerNode,
 | |
|   UINT32                            *ControllerNumber
 | |
|   )
 | |
| {
 | |
|   if ((DevicePathType (DevicePath) == HARDWARE_DEVICE_PATH) &&
 | |
|       (DevicePathSubType (DevicePath) == HW_CONTROLLER_DP)
 | |
|       ) {
 | |
|     if (ContainsControllerNode != NULL) {
 | |
|       *ContainsControllerNode = TRUE;
 | |
|     }
 | |
|     if (ControllerNumber != NULL) {
 | |
|       *ControllerNumber = ((CONTROLLER_DEVICE_PATH *) DevicePath)->ControllerNumber;
 | |
|     }
 | |
|     DevicePath = NextDevicePathNode (DevicePath);
 | |
|   } else {
 | |
|     if (ContainsControllerNode != NULL) {
 | |
|       *ContainsControllerNode = FALSE;
 | |
|     }
 | |
|   }
 | |
|   return (UART_DEVICE_PATH *) DevicePath;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Checks whether the UART parameters are valid and computes the Divisor.
 | |
| 
 | |
|   @param  ClockRate      The clock rate of the serial device used to verify
 | |
|                          the BaudRate. Do not verify the BaudRate if it's 0.
 | |
|   @param  BaudRate       The requested baudrate of the serial device.
 | |
|   @param  DataBits       Number of databits used in serial device.
 | |
|   @param  Parity         The type of parity used in serial device.
 | |
|   @param  StopBits       Number of stopbits used in serial device.
 | |
|   @param  Divisor        Return the divisor if ClockRate is not 0.
 | |
|   @param  ActualBaudRate Return the actual supported baudrate without
 | |
|                          exceeding BaudRate. NULL means baudrate degradation
 | |
|                          is not allowed.
 | |
|                          If the requested BaudRate is not supported, the routine
 | |
|                          returns TRUE and the Actual Baud Rate when ActualBaudRate
 | |
|                          is not NULL, returns FALSE when ActualBaudRate is NULL.
 | |
| 
 | |
|   @retval TRUE   The UART parameters are valid.
 | |
|   @retval FALSE  The UART parameters are not valid.
 | |
| **/
 | |
| BOOLEAN
 | |
| VerifyUartParameters (
 | |
|   IN     UINT32                  ClockRate,
 | |
|   IN     UINT64                  BaudRate,
 | |
|   IN     UINT8                   DataBits,
 | |
|   IN     EFI_PARITY_TYPE         Parity,
 | |
|   IN     EFI_STOP_BITS_TYPE      StopBits,
 | |
|      OUT UINT64                  *Divisor,
 | |
|      OUT UINT64                  *ActualBaudRate
 | |
|   )
 | |
| {
 | |
|   UINT64                     Remainder;
 | |
|   UINT32                     ComputedBaudRate;
 | |
|   UINT64                     ComputedDivisor;
 | |
|   UINT64                     Percent;
 | |
| 
 | |
|   if ((DataBits < 5) || (DataBits > 8) ||
 | |
|       (Parity < NoParity) || (Parity > SpaceParity) ||
 | |
|       (StopBits < OneStopBit) || (StopBits > TwoStopBits) ||
 | |
|       ((DataBits == 5) && (StopBits == TwoStopBits)) ||
 | |
|       ((DataBits >= 6) && (DataBits <= 8) && (StopBits == OneFiveStopBits))
 | |
|       ) {
 | |
|     return FALSE;
 | |
|   } 
 | |
| 
 | |
|   //
 | |
|   // Do not verify the baud rate if clock rate is unknown (0).
 | |
|   //
 | |
|   if (ClockRate == 0) {
 | |
|     return TRUE;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Compute divisor use to program the baud rate using a round determination
 | |
|   // Divisor = ClockRate / 16 / BaudRate = ClockRate / (16 * BaudRate)
 | |
|   //         = ClockRate / (BaudRate << 4)
 | |
|   //
 | |
|   ComputedDivisor = DivU64x64Remainder (ClockRate, LShiftU64 (BaudRate, 4), &Remainder);
 | |
|   //
 | |
|   // Round Divisor up by 1 if the Remainder is more than half (16 * BaudRate)
 | |
|   // BaudRate * 16 / 2 = BaudRate * 8 = (BaudRate << 3)
 | |
|   //
 | |
|   if (Remainder >= LShiftU64 (BaudRate, 3)) {
 | |
|     ComputedDivisor++;
 | |
|   }
 | |
|   //
 | |
|   // If the computed divisor is larger than the maximum value that can be programmed
 | |
|   // into the UART, then the requested baud rate can not be supported.
 | |
|   //
 | |
|   if (ComputedDivisor > MAX_UINT16) {
 | |
|     return FALSE;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // If the computed divisor is 0, then use a computed divisor of 1, which will select
 | |
|   // the maximum supported baud rate.
 | |
|   //
 | |
|   if (ComputedDivisor == 0) {
 | |
|     ComputedDivisor = 1;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Actual baud rate that the serial port will be programmed for
 | |
|   // should be with in 4% of requested one.
 | |
|   //
 | |
|   ComputedBaudRate = ClockRate / ((UINT16) ComputedDivisor << 4);
 | |
|   if (ComputedBaudRate == 0) {
 | |
|     return FALSE;
 | |
|   }
 | |
| 
 | |
|   Percent = DivU64x32 (MultU64x32 (BaudRate, 100), ComputedBaudRate);
 | |
|   DEBUG ((EFI_D_INFO, "ClockRate = %d\n",  ClockRate));
 | |
|   DEBUG ((EFI_D_INFO, "Divisor   = %ld\n", ComputedDivisor));
 | |
|   DEBUG ((EFI_D_INFO, "BaudRate/Actual (%ld/%d) = %d%%\n", BaudRate, ComputedBaudRate, Percent));
 | |
| 
 | |
|   //
 | |
|   // If the requested BaudRate is not supported:
 | |
|   //  Returns TRUE and the Actual Baud Rate when ActualBaudRate is not NULL;
 | |
|   //  Returns FALSE when ActualBaudRate is NULL.
 | |
|   //
 | |
|   if ((Percent >= 96) && (Percent <= 104)) {
 | |
|     if (ActualBaudRate != NULL) {
 | |
|       *ActualBaudRate = BaudRate;
 | |
|     }
 | |
|     if (Divisor != NULL) {
 | |
|       *Divisor = ComputedDivisor;
 | |
|     }
 | |
|     return TRUE;
 | |
|   }
 | |
|   if (ComputedBaudRate < BaudRate) {
 | |
|     if (ActualBaudRate != NULL) {
 | |
|       *ActualBaudRate = ComputedBaudRate;
 | |
|     }
 | |
|     if (Divisor != NULL) {
 | |
|       *Divisor = ComputedDivisor;
 | |
|     }
 | |
|     return TRUE;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // ActualBaudRate is higher than requested baud rate and more than 4% 
 | |
|   // higher than the requested value.  Increment Divisor if it is less 
 | |
|   // than MAX_UINT16 and computed baud rate with new divisor.
 | |
|   //
 | |
|   if (ComputedDivisor == MAX_UINT16) {
 | |
|     return FALSE;
 | |
|   }
 | |
|   ComputedDivisor++;
 | |
|   ComputedBaudRate = ClockRate / ((UINT16) ComputedDivisor << 4);
 | |
|   if (ComputedBaudRate == 0) {
 | |
|     return FALSE;
 | |
|   }
 | |
| 
 | |
|   DEBUG ((EFI_D_INFO, "ClockRate = %d\n",  ClockRate));
 | |
|   DEBUG ((EFI_D_INFO, "Divisor   = %ld\n", ComputedDivisor));
 | |
|   DEBUG ((EFI_D_INFO, "BaudRate/Actual (%ld/%d) = %d%%\n", BaudRate, ComputedBaudRate, Percent));
 | |
| 
 | |
|   if (ActualBaudRate != NULL) {
 | |
|     *ActualBaudRate = ComputedBaudRate;
 | |
|   }
 | |
|   if (Divisor != NULL) {
 | |
|     *Divisor = ComputedDivisor;
 | |
|   }
 | |
|   return TRUE;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Detect whether specific FIFO is full or not.
 | |
| 
 | |
|   @param Fifo    A pointer to the Data Structure SERIAL_DEV_FIFO
 | |
| 
 | |
|   @return whether specific FIFO is full or not
 | |
| **/
 | |
| BOOLEAN
 | |
| SerialFifoFull (
 | |
|   IN SERIAL_DEV_FIFO *Fifo
 | |
|   )
 | |
| {
 | |
|   return (BOOLEAN) (((Fifo->Tail + 1) % SERIAL_MAX_FIFO_SIZE) == Fifo->Head);
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Detect whether specific FIFO is empty or not.
 | |
|  
 | |
|   @param  Fifo    A pointer to the Data Structure SERIAL_DEV_FIFO
 | |
| 
 | |
|   @return whether specific FIFO is empty or not
 | |
| **/
 | |
| BOOLEAN
 | |
| SerialFifoEmpty (
 | |
|   IN SERIAL_DEV_FIFO *Fifo
 | |
|   )
 | |
| 
 | |
| {
 | |
|   return (BOOLEAN) (Fifo->Head == Fifo->Tail);
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Add data to specific FIFO.
 | |
| 
 | |
|   @param Fifo                  A pointer to the Data Structure SERIAL_DEV_FIFO
 | |
|   @param Data                  the data added to FIFO
 | |
| 
 | |
|   @retval EFI_SUCCESS           Add data to specific FIFO successfully
 | |
|   @retval EFI_OUT_OF_RESOURCE   Failed to add data because FIFO is already full
 | |
| **/
 | |
| EFI_STATUS
 | |
| SerialFifoAdd (
 | |
|   IN OUT SERIAL_DEV_FIFO *Fifo,
 | |
|   IN     UINT8           Data
 | |
|   )
 | |
| {
 | |
|   //
 | |
|   // if FIFO full can not add data
 | |
|   //
 | |
|   if (SerialFifoFull (Fifo)) {
 | |
|     return EFI_OUT_OF_RESOURCES;
 | |
|   }
 | |
|   //
 | |
|   // FIFO is not full can add data
 | |
|   //
 | |
|   Fifo->Data[Fifo->Tail] = Data;
 | |
|   Fifo->Tail = (Fifo->Tail + 1) % SERIAL_MAX_FIFO_SIZE;
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Remove data from specific FIFO.
 | |
| 
 | |
|   @param Fifo                  A pointer to the Data Structure SERIAL_DEV_FIFO
 | |
|   @param Data                  the data removed from FIFO
 | |
| 
 | |
|   @retval EFI_SUCCESS           Remove data from specific FIFO successfully
 | |
|   @retval EFI_OUT_OF_RESOURCE   Failed to remove data because FIFO is empty
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| SerialFifoRemove (
 | |
|   IN OUT SERIAL_DEV_FIFO *Fifo,
 | |
|   OUT    UINT8           *Data
 | |
|   )
 | |
| {
 | |
|   //
 | |
|   // if FIFO is empty, no data can remove
 | |
|   //
 | |
|   if (SerialFifoEmpty (Fifo)) {
 | |
|     return EFI_OUT_OF_RESOURCES;
 | |
|   }
 | |
|   //
 | |
|   // FIFO is not empty, can remove data
 | |
|   //
 | |
|   *Data = Fifo->Data[Fifo->Head];
 | |
|   Fifo->Head = (Fifo->Head + 1) % SERIAL_MAX_FIFO_SIZE;
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Reads and writes all available data.
 | |
| 
 | |
|   @param SerialDevice           The device to transmit.
 | |
| 
 | |
|   @retval EFI_SUCCESS           Data was read/written successfully.
 | |
|   @retval EFI_OUT_OF_RESOURCE   Failed because software receive FIFO is full.  Note, when
 | |
|                                 this happens, pending writes are not done.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| SerialReceiveTransmit (
 | |
|   IN SERIAL_DEV *SerialDevice
 | |
|   )
 | |
| 
 | |
| {
 | |
|   SERIAL_PORT_LSR Lsr;
 | |
|   UINT8           Data;
 | |
|   BOOLEAN         ReceiveFifoFull;
 | |
|   SERIAL_PORT_MSR Msr;
 | |
|   SERIAL_PORT_MCR Mcr;
 | |
|   UINTN           TimeOut;
 | |
| 
 | |
|   Data = 0;
 | |
| 
 | |
|   //
 | |
|   // Begin the read or write
 | |
|   //
 | |
|   if (SerialDevice->SoftwareLoopbackEnable) {
 | |
|     do {
 | |
|       ReceiveFifoFull = SerialFifoFull (&SerialDevice->Receive);
 | |
|       if (!SerialFifoEmpty (&SerialDevice->Transmit)) {
 | |
|         SerialFifoRemove (&SerialDevice->Transmit, &Data);
 | |
|         if (ReceiveFifoFull) {
 | |
|           return EFI_OUT_OF_RESOURCES;
 | |
|         }
 | |
| 
 | |
|         SerialFifoAdd (&SerialDevice->Receive, Data);
 | |
|       }
 | |
|     } while (!SerialFifoEmpty (&SerialDevice->Transmit));
 | |
|   } else {
 | |
|     ReceiveFifoFull = SerialFifoFull (&SerialDevice->Receive);
 | |
|     //
 | |
|     // For full handshake flow control, tell the peer to send data
 | |
|     // if receive buffer is available.
 | |
|     //
 | |
|     if (SerialDevice->HardwareFlowControl &&
 | |
|         !FeaturePcdGet(PcdSerialUseHalfHandshake)&&
 | |
|         !ReceiveFifoFull
 | |
|         ) {
 | |
|       Mcr.Data     = READ_MCR (SerialDevice);
 | |
|       Mcr.Bits.Rts = 1;
 | |
|       WRITE_MCR (SerialDevice, Mcr.Data);
 | |
|     }
 | |
|     do {
 | |
|       Lsr.Data = READ_LSR (SerialDevice);
 | |
| 
 | |
|       //
 | |
|       // Flush incomming data to prevent a an overrun during a long write
 | |
|       //
 | |
|       if ((Lsr.Bits.Dr == 1) && !ReceiveFifoFull) {
 | |
|         ReceiveFifoFull = SerialFifoFull (&SerialDevice->Receive);
 | |
|         if (!ReceiveFifoFull) {
 | |
|           if (Lsr.Bits.FIFOe == 1 || Lsr.Bits.Oe == 1 || Lsr.Bits.Pe == 1 || Lsr.Bits.Fe == 1 || Lsr.Bits.Bi == 1) {
 | |
|             REPORT_STATUS_CODE_WITH_DEVICE_PATH (
 | |
|               EFI_ERROR_CODE,
 | |
|               EFI_P_EC_INPUT_ERROR | EFI_PERIPHERAL_SERIAL_PORT,
 | |
|               SerialDevice->DevicePath
 | |
|               );
 | |
|             if (Lsr.Bits.FIFOe == 1 || Lsr.Bits.Pe == 1|| Lsr.Bits.Fe == 1 || Lsr.Bits.Bi == 1) {
 | |
|               Data = READ_RBR (SerialDevice);
 | |
|               continue;
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           Data = READ_RBR (SerialDevice);
 | |
| 
 | |
|           SerialFifoAdd (&SerialDevice->Receive, Data);
 | |
|           
 | |
|           //
 | |
|           // For full handshake flow control, if receive buffer full
 | |
|           // tell the peer to stop sending data.
 | |
|           //
 | |
|           if (SerialDevice->HardwareFlowControl &&
 | |
|               !FeaturePcdGet(PcdSerialUseHalfHandshake)   &&
 | |
|               SerialFifoFull (&SerialDevice->Receive)
 | |
|               ) {
 | |
|             Mcr.Data     = READ_MCR (SerialDevice);
 | |
|             Mcr.Bits.Rts = 0;
 | |
|             WRITE_MCR (SerialDevice, Mcr.Data);
 | |
|           }
 | |
| 
 | |
| 
 | |
|           continue;
 | |
|         } else {
 | |
|           REPORT_STATUS_CODE_WITH_DEVICE_PATH (
 | |
|             EFI_PROGRESS_CODE,
 | |
|             EFI_P_SERIAL_PORT_PC_CLEAR_BUFFER | EFI_PERIPHERAL_SERIAL_PORT,
 | |
|             SerialDevice->DevicePath
 | |
|             );
 | |
|         }
 | |
|       }
 | |
|       //
 | |
|       // Do the write
 | |
|       //
 | |
|       if (Lsr.Bits.Thre == 1 && !SerialFifoEmpty (&SerialDevice->Transmit)) {
 | |
|         //
 | |
|         // Make sure the transmit data will not be missed
 | |
|         //
 | |
|         if (SerialDevice->HardwareFlowControl) {
 | |
|           //
 | |
|           // For half handshake flow control assert RTS before sending.
 | |
|           //
 | |
|           if (FeaturePcdGet(PcdSerialUseHalfHandshake)) {
 | |
|             Mcr.Data     = READ_MCR (SerialDevice);
 | |
|             Mcr.Bits.Rts= 0;
 | |
|             WRITE_MCR (SerialDevice, Mcr.Data);
 | |
|           }
 | |
|           //
 | |
|           // Wait for CTS
 | |
|           //
 | |
|           TimeOut   = 0;
 | |
|           Msr.Data  = READ_MSR (SerialDevice);
 | |
|           while ((Msr.Bits.Dcd == 1) && ((Msr.Bits.Cts == 0) ^ FeaturePcdGet(PcdSerialUseHalfHandshake))) {
 | |
|             gBS->Stall (TIMEOUT_STALL_INTERVAL);
 | |
|             TimeOut++;
 | |
|             if (TimeOut > 5) {
 | |
|               break;
 | |
|             }
 | |
| 
 | |
|             Msr.Data = READ_MSR (SerialDevice);
 | |
|           }
 | |
| 
 | |
|           if ((Msr.Bits.Dcd == 0) || ((Msr.Bits.Cts == 1) ^ FeaturePcdGet(PcdSerialUseHalfHandshake))) {
 | |
|             SerialFifoRemove (&SerialDevice->Transmit, &Data);
 | |
|             WRITE_THR (SerialDevice, Data);
 | |
|           }
 | |
| 
 | |
|           //
 | |
|           // For half handshake flow control, tell DCE we are done.
 | |
|           //
 | |
|           if (FeaturePcdGet(PcdSerialUseHalfHandshake)) {
 | |
|             Mcr.Data = READ_MCR (SerialDevice);
 | |
|             Mcr.Bits.Rts = 1;
 | |
|             WRITE_MCR (SerialDevice, Mcr.Data);
 | |
|           }
 | |
|         } else {
 | |
|           SerialFifoRemove (&SerialDevice->Transmit, &Data);
 | |
|           WRITE_THR (SerialDevice, Data);
 | |
|         }
 | |
|       }
 | |
|     } while (Lsr.Bits.Thre == 1 && !SerialFifoEmpty (&SerialDevice->Transmit));
 | |
|   }
 | |
| 
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Interface Functions
 | |
| //
 | |
| /**
 | |
|   Reset serial device.
 | |
| 
 | |
|   @param This               Pointer to EFI_SERIAL_IO_PROTOCOL
 | |
| 
 | |
|   @retval EFI_SUCCESS        Reset successfully
 | |
|   @retval EFI_DEVICE_ERROR   Failed to reset
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| EFIAPI
 | |
| SerialReset (
 | |
|   IN EFI_SERIAL_IO_PROTOCOL  *This
 | |
|   )
 | |
| {
 | |
|   EFI_STATUS      Status;
 | |
|   SERIAL_DEV      *SerialDevice;
 | |
|   SERIAL_PORT_LCR Lcr;
 | |
|   SERIAL_PORT_IER Ier;
 | |
|   SERIAL_PORT_MCR Mcr;
 | |
|   SERIAL_PORT_FCR Fcr;
 | |
|   EFI_TPL         Tpl;
 | |
|   UINT32          Control;
 | |
| 
 | |
|   SerialDevice = SERIAL_DEV_FROM_THIS (This);
 | |
| 
 | |
|   //
 | |
|   // Report the status code reset the serial
 | |
|   //
 | |
|   REPORT_STATUS_CODE_WITH_DEVICE_PATH (
 | |
|     EFI_PROGRESS_CODE,
 | |
|     EFI_P_PC_RESET | EFI_PERIPHERAL_SERIAL_PORT,
 | |
|     SerialDevice->DevicePath
 | |
|     );
 | |
| 
 | |
|   Tpl = gBS->RaiseTPL (TPL_NOTIFY);
 | |
| 
 | |
|   //
 | |
|   // Make sure DLAB is 0.
 | |
|   //
 | |
|   Lcr.Data      = READ_LCR (SerialDevice);
 | |
|   Lcr.Bits.DLab = 0;
 | |
|   WRITE_LCR (SerialDevice, Lcr.Data);
 | |
| 
 | |
|   //
 | |
|   // Turn off all interrupts
 | |
|   //
 | |
|   Ier.Data        = READ_IER (SerialDevice);
 | |
|   Ier.Bits.Ravie  = 0;
 | |
|   Ier.Bits.Theie  = 0;
 | |
|   Ier.Bits.Rie    = 0;
 | |
|   Ier.Bits.Mie    = 0;
 | |
|   WRITE_IER (SerialDevice, Ier.Data);
 | |
| 
 | |
|   //
 | |
|   // Reset the FIFO
 | |
|   //
 | |
|   Fcr.Data = 0;
 | |
|   Fcr.Bits.TrFIFOE = 0;
 | |
|   WRITE_FCR (SerialDevice, Fcr.Data);
 | |
| 
 | |
|   //
 | |
|   // Turn off loopback and disable device interrupt.
 | |
|   //
 | |
|   Mcr.Data      = READ_MCR (SerialDevice);
 | |
|   Mcr.Bits.Out1 = 0;
 | |
|   Mcr.Bits.Out2 = 0;
 | |
|   Mcr.Bits.Lme  = 0;
 | |
|   WRITE_MCR (SerialDevice, Mcr.Data);
 | |
| 
 | |
|   //
 | |
|   // Clear the scratch pad register
 | |
|   //
 | |
|   WRITE_SCR (SerialDevice, 0);
 | |
| 
 | |
|   //
 | |
|   // Enable FIFO
 | |
|   //
 | |
|   Fcr.Bits.TrFIFOE  = 1;
 | |
|   if (SerialDevice->ReceiveFifoDepth > 16) {
 | |
|     Fcr.Bits.TrFIFO64 = 1;
 | |
|   }
 | |
|   Fcr.Bits.ResetRF  = 1;
 | |
|   Fcr.Bits.ResetTF  = 1;
 | |
|   WRITE_FCR (SerialDevice, Fcr.Data);
 | |
| 
 | |
|   //
 | |
|   // Go set the current attributes
 | |
|   //
 | |
|   Status = This->SetAttributes (
 | |
|                    This,
 | |
|                    This->Mode->BaudRate,
 | |
|                    This->Mode->ReceiveFifoDepth,
 | |
|                    This->Mode->Timeout,
 | |
|                    (EFI_PARITY_TYPE) This->Mode->Parity,
 | |
|                    (UINT8) This->Mode->DataBits,
 | |
|                    (EFI_STOP_BITS_TYPE) This->Mode->StopBits
 | |
|                    );
 | |
| 
 | |
|   if (EFI_ERROR (Status)) {
 | |
|     gBS->RestoreTPL (Tpl);
 | |
|     return EFI_DEVICE_ERROR;
 | |
|   }
 | |
|   //
 | |
|   // Go set the current control bits
 | |
|   //
 | |
|   Control = 0;
 | |
|   if (SerialDevice->HardwareFlowControl) {
 | |
|     Control |= EFI_SERIAL_HARDWARE_FLOW_CONTROL_ENABLE;
 | |
|   }
 | |
|   if (SerialDevice->SoftwareLoopbackEnable) {
 | |
|     Control |= EFI_SERIAL_SOFTWARE_LOOPBACK_ENABLE;
 | |
|   }
 | |
|   Status = This->SetControl (
 | |
|                    This,
 | |
|                    Control
 | |
|                    );
 | |
| 
 | |
|   if (EFI_ERROR (Status)) {
 | |
|     gBS->RestoreTPL (Tpl);
 | |
|     return EFI_DEVICE_ERROR;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Reset the software FIFO
 | |
|   //
 | |
|   SerialDevice->Receive.Head = SerialDevice->Receive.Tail = 0;
 | |
|   SerialDevice->Transmit.Head = SerialDevice->Transmit.Tail = 0;
 | |
|   gBS->RestoreTPL (Tpl);
 | |
| 
 | |
|   //
 | |
|   // Device reset is complete
 | |
|   //
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Set new attributes to a serial device.
 | |
| 
 | |
|   @param This                     Pointer to EFI_SERIAL_IO_PROTOCOL
 | |
|   @param  BaudRate                 The baudrate of the serial device
 | |
|   @param  ReceiveFifoDepth         The depth of receive FIFO buffer
 | |
|   @param  Timeout                  The request timeout for a single char
 | |
|   @param  Parity                   The type of parity used in serial device
 | |
|   @param  DataBits                 Number of databits used in serial device
 | |
|   @param  StopBits                 Number of stopbits used in serial device
 | |
| 
 | |
|   @retval  EFI_SUCCESS              The new attributes were set
 | |
|   @retval  EFI_INVALID_PARAMETERS   One or more attributes have an unsupported value
 | |
|   @retval  EFI_UNSUPPORTED          Data Bits can not set to 5 or 6
 | |
|   @retval  EFI_DEVICE_ERROR         The serial device is not functioning correctly (no return)
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| EFIAPI
 | |
| SerialSetAttributes (
 | |
|   IN EFI_SERIAL_IO_PROTOCOL  *This,
 | |
|   IN UINT64                  BaudRate,
 | |
|   IN UINT32                  ReceiveFifoDepth,
 | |
|   IN UINT32                  Timeout,
 | |
|   IN EFI_PARITY_TYPE         Parity,
 | |
|   IN UINT8                   DataBits,
 | |
|   IN EFI_STOP_BITS_TYPE      StopBits
 | |
|   )
 | |
| {
 | |
|   EFI_STATUS                Status;
 | |
|   SERIAL_DEV                *SerialDevice;
 | |
|   UINT64                    Divisor;
 | |
|   SERIAL_PORT_LCR           Lcr;
 | |
|   UART_DEVICE_PATH          *Uart;
 | |
|   EFI_TPL                   Tpl;
 | |
| 
 | |
|   SerialDevice = SERIAL_DEV_FROM_THIS (This);
 | |
| 
 | |
|   //
 | |
|   // Check for default settings and fill in actual values.
 | |
|   //
 | |
|   if (BaudRate == 0) {
 | |
|     BaudRate = PcdGet64 (PcdUartDefaultBaudRate);
 | |
|   }
 | |
| 
 | |
|   if (ReceiveFifoDepth == 0) {
 | |
|     ReceiveFifoDepth = SerialDevice->ReceiveFifoDepth;
 | |
|   }
 | |
| 
 | |
|   if (Timeout == 0) {
 | |
|     Timeout = SERIAL_PORT_DEFAULT_TIMEOUT;
 | |
|   }
 | |
| 
 | |
|   if (Parity == DefaultParity) {
 | |
|     Parity = (EFI_PARITY_TYPE) PcdGet8 (PcdUartDefaultParity);
 | |
|   }
 | |
| 
 | |
|   if (DataBits == 0) {
 | |
|     DataBits = PcdGet8 (PcdUartDefaultDataBits);
 | |
|   }
 | |
| 
 | |
|   if (StopBits == DefaultStopBits) {
 | |
|     StopBits = (EFI_STOP_BITS_TYPE) PcdGet8 (PcdUartDefaultStopBits);
 | |
|   }
 | |
| 
 | |
|   if (!VerifyUartParameters (SerialDevice->ClockRate, BaudRate, DataBits, Parity, StopBits, &Divisor, &BaudRate)) {
 | |
|     return EFI_INVALID_PARAMETER;
 | |
|   }
 | |
| 
 | |
|   if ((ReceiveFifoDepth == 0) || (ReceiveFifoDepth > SerialDevice->ReceiveFifoDepth)) {
 | |
|     return EFI_INVALID_PARAMETER;
 | |
|   }
 | |
| 
 | |
|   if ((Timeout < SERIAL_PORT_MIN_TIMEOUT) || (Timeout > SERIAL_PORT_MAX_TIMEOUT)) {
 | |
|     return EFI_INVALID_PARAMETER;
 | |
|   }
 | |
| 
 | |
|   Tpl = gBS->RaiseTPL (TPL_NOTIFY);
 | |
| 
 | |
|   //
 | |
|   // Put serial port on Divisor Latch Mode
 | |
|   //
 | |
|   Lcr.Data      = READ_LCR (SerialDevice);
 | |
|   Lcr.Bits.DLab = 1;
 | |
|   WRITE_LCR (SerialDevice, Lcr.Data);
 | |
| 
 | |
|   //
 | |
|   // Write the divisor to the serial port
 | |
|   //
 | |
|   WRITE_DLL (SerialDevice, (UINT8) Divisor);
 | |
|   WRITE_DLM (SerialDevice, (UINT8) ((UINT16) Divisor >> 8));
 | |
| 
 | |
|   //
 | |
|   // Put serial port back in normal mode and set remaining attributes.
 | |
|   //
 | |
|   Lcr.Bits.DLab = 0;
 | |
| 
 | |
|   switch (Parity) {
 | |
|   case NoParity:
 | |
|     Lcr.Bits.ParEn    = 0;
 | |
|     Lcr.Bits.EvenPar  = 0;
 | |
|     Lcr.Bits.SticPar  = 0;
 | |
|     break;
 | |
| 
 | |
|   case EvenParity:
 | |
|     Lcr.Bits.ParEn    = 1;
 | |
|     Lcr.Bits.EvenPar  = 1;
 | |
|     Lcr.Bits.SticPar  = 0;
 | |
|     break;
 | |
| 
 | |
|   case OddParity:
 | |
|     Lcr.Bits.ParEn    = 1;
 | |
|     Lcr.Bits.EvenPar  = 0;
 | |
|     Lcr.Bits.SticPar  = 0;
 | |
|     break;
 | |
| 
 | |
|   case SpaceParity:
 | |
|     Lcr.Bits.ParEn    = 1;
 | |
|     Lcr.Bits.EvenPar  = 1;
 | |
|     Lcr.Bits.SticPar  = 1;
 | |
|     break;
 | |
| 
 | |
|   case MarkParity:
 | |
|     Lcr.Bits.ParEn    = 1;
 | |
|     Lcr.Bits.EvenPar  = 0;
 | |
|     Lcr.Bits.SticPar  = 1;
 | |
|     break;
 | |
| 
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   switch (StopBits) {
 | |
|   case OneStopBit:
 | |
|     Lcr.Bits.StopB = 0;
 | |
|     break;
 | |
| 
 | |
|   case OneFiveStopBits:
 | |
|   case TwoStopBits:
 | |
|     Lcr.Bits.StopB = 1;
 | |
|     break;
 | |
| 
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
|   //
 | |
|   // DataBits
 | |
|   //
 | |
|   Lcr.Bits.SerialDB = (UINT8) ((DataBits - 5) & 0x03);
 | |
|   WRITE_LCR (SerialDevice, Lcr.Data);
 | |
| 
 | |
|   //
 | |
|   // Set the Serial I/O mode
 | |
|   //
 | |
|   This->Mode->BaudRate          = BaudRate;
 | |
|   This->Mode->ReceiveFifoDepth  = ReceiveFifoDepth;
 | |
|   This->Mode->Timeout           = Timeout;
 | |
|   This->Mode->Parity            = Parity;
 | |
|   This->Mode->DataBits          = DataBits;
 | |
|   This->Mode->StopBits          = StopBits;
 | |
| 
 | |
|   //
 | |
|   // See if Device Path Node has actually changed
 | |
|   //
 | |
|   if (SerialDevice->UartDevicePath.BaudRate == BaudRate &&
 | |
|       SerialDevice->UartDevicePath.DataBits == DataBits &&
 | |
|       SerialDevice->UartDevicePath.Parity == Parity &&
 | |
|       SerialDevice->UartDevicePath.StopBits == StopBits
 | |
|       ) {
 | |
|     gBS->RestoreTPL (Tpl);
 | |
|     return EFI_SUCCESS;
 | |
|   }
 | |
|   //
 | |
|   // Update the device path
 | |
|   //
 | |
|   SerialDevice->UartDevicePath.BaudRate = BaudRate;
 | |
|   SerialDevice->UartDevicePath.DataBits = DataBits;
 | |
|   SerialDevice->UartDevicePath.Parity   = (UINT8) Parity;
 | |
|   SerialDevice->UartDevicePath.StopBits = (UINT8) StopBits;
 | |
| 
 | |
|   Status = EFI_SUCCESS;
 | |
|   if (SerialDevice->Handle != NULL) {
 | |
| 
 | |
|     //
 | |
|     // Skip the optional Controller device path node
 | |
|     //
 | |
|     Uart = SkipControllerDevicePathNode (
 | |
|              (EFI_DEVICE_PATH_PROTOCOL *) (
 | |
|                (UINT8 *) SerialDevice->DevicePath + GetDevicePathSize (SerialDevice->ParentDevicePath) - END_DEVICE_PATH_LENGTH
 | |
|                ),
 | |
|              NULL,
 | |
|              NULL
 | |
|              );
 | |
|     CopyMem (Uart, &SerialDevice->UartDevicePath, sizeof (UART_DEVICE_PATH));
 | |
|     Status = gBS->ReinstallProtocolInterface (
 | |
|                     SerialDevice->Handle,
 | |
|                     &gEfiDevicePathProtocolGuid,
 | |
|                     SerialDevice->DevicePath,
 | |
|                     SerialDevice->DevicePath
 | |
|                     );
 | |
|   }
 | |
| 
 | |
|   gBS->RestoreTPL (Tpl);
 | |
| 
 | |
|   return Status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Set Control Bits.
 | |
| 
 | |
|   @param This              Pointer to EFI_SERIAL_IO_PROTOCOL
 | |
|   @param Control           Control bits that can be settable
 | |
| 
 | |
|   @retval EFI_SUCCESS       New Control bits were set successfully
 | |
|   @retval EFI_UNSUPPORTED   The Control bits wanted to set are not supported
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| EFIAPI
 | |
| SerialSetControl (
 | |
|   IN EFI_SERIAL_IO_PROTOCOL  *This,
 | |
|   IN UINT32                  Control
 | |
|   )
 | |
| {
 | |
|   SERIAL_DEV                    *SerialDevice;
 | |
|   SERIAL_PORT_MCR               Mcr;
 | |
|   EFI_TPL                       Tpl;
 | |
|   UART_FLOW_CONTROL_DEVICE_PATH *FlowControl;
 | |
|   EFI_STATUS                    Status;
 | |
| 
 | |
|   //
 | |
|   // The control bits that can be set are :
 | |
|   //     EFI_SERIAL_DATA_TERMINAL_READY: 0x0001  // WO
 | |
|   //     EFI_SERIAL_REQUEST_TO_SEND: 0x0002  // WO
 | |
|   //     EFI_SERIAL_HARDWARE_LOOPBACK_ENABLE: 0x1000  // RW
 | |
|   //     EFI_SERIAL_SOFTWARE_LOOPBACK_ENABLE: 0x2000  // RW
 | |
|   //     EFI_SERIAL_HARDWARE_FLOW_CONTROL_ENABLE: 0x4000 // RW
 | |
|   //
 | |
|   SerialDevice = SERIAL_DEV_FROM_THIS (This);
 | |
| 
 | |
|   //
 | |
|   // first determine the parameter is invalid
 | |
|   //
 | |
|   if ((Control & (~(EFI_SERIAL_REQUEST_TO_SEND | EFI_SERIAL_DATA_TERMINAL_READY |
 | |
|                     EFI_SERIAL_HARDWARE_LOOPBACK_ENABLE | EFI_SERIAL_SOFTWARE_LOOPBACK_ENABLE |
 | |
|                     EFI_SERIAL_HARDWARE_FLOW_CONTROL_ENABLE))) != 0) {
 | |
|     return EFI_UNSUPPORTED;
 | |
|   }
 | |
| 
 | |
|   Tpl = gBS->RaiseTPL (TPL_NOTIFY);
 | |
| 
 | |
|   Mcr.Data = READ_MCR (SerialDevice);
 | |
|   Mcr.Bits.DtrC = 0;
 | |
|   Mcr.Bits.Rts = 0;
 | |
|   Mcr.Bits.Lme = 0;
 | |
|   SerialDevice->SoftwareLoopbackEnable = FALSE;
 | |
|   SerialDevice->HardwareFlowControl = FALSE;
 | |
| 
 | |
|   if ((Control & EFI_SERIAL_DATA_TERMINAL_READY) == EFI_SERIAL_DATA_TERMINAL_READY) {
 | |
|     Mcr.Bits.DtrC = 1;
 | |
|   }
 | |
| 
 | |
|   if ((Control & EFI_SERIAL_REQUEST_TO_SEND) == EFI_SERIAL_REQUEST_TO_SEND) {
 | |
|     Mcr.Bits.Rts = 1;
 | |
|   }
 | |
| 
 | |
|   if ((Control & EFI_SERIAL_HARDWARE_LOOPBACK_ENABLE) == EFI_SERIAL_HARDWARE_LOOPBACK_ENABLE) {
 | |
|     Mcr.Bits.Lme = 1;
 | |
|   }
 | |
| 
 | |
|   if ((Control & EFI_SERIAL_HARDWARE_FLOW_CONTROL_ENABLE) == EFI_SERIAL_HARDWARE_FLOW_CONTROL_ENABLE) {
 | |
|     SerialDevice->HardwareFlowControl = TRUE;
 | |
|   }
 | |
| 
 | |
|   WRITE_MCR (SerialDevice, Mcr.Data);
 | |
| 
 | |
|   if ((Control & EFI_SERIAL_SOFTWARE_LOOPBACK_ENABLE) == EFI_SERIAL_SOFTWARE_LOOPBACK_ENABLE) {
 | |
|     SerialDevice->SoftwareLoopbackEnable = TRUE;
 | |
|   }
 | |
| 
 | |
|   Status = EFI_SUCCESS;
 | |
|   if (SerialDevice->Handle != NULL) {
 | |
|     FlowControl = (UART_FLOW_CONTROL_DEVICE_PATH *) (
 | |
|                     (UINTN) SerialDevice->DevicePath
 | |
|                     + GetDevicePathSize (SerialDevice->ParentDevicePath)
 | |
|                     - END_DEVICE_PATH_LENGTH
 | |
|                     + sizeof (UART_DEVICE_PATH)
 | |
|                     );
 | |
|     if (IsUartFlowControlDevicePathNode (FlowControl) &&
 | |
|         ((BOOLEAN) (ReadUnaligned32 (&FlowControl->FlowControlMap) == UART_FLOW_CONTROL_HARDWARE) != SerialDevice->HardwareFlowControl)) {
 | |
|       //
 | |
|       // Flow Control setting is changed, need to reinstall device path protocol
 | |
|       //
 | |
|       WriteUnaligned32 (&FlowControl->FlowControlMap, SerialDevice->HardwareFlowControl ? UART_FLOW_CONTROL_HARDWARE : 0);
 | |
|       Status = gBS->ReinstallProtocolInterface (
 | |
|                       SerialDevice->Handle,
 | |
|                       &gEfiDevicePathProtocolGuid,
 | |
|                       SerialDevice->DevicePath,
 | |
|                       SerialDevice->DevicePath
 | |
|                       );
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   gBS->RestoreTPL (Tpl);
 | |
| 
 | |
|   return Status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Get ControlBits.
 | |
| 
 | |
|   @param This          Pointer to EFI_SERIAL_IO_PROTOCOL
 | |
|   @param Control       Control signals of the serial device
 | |
| 
 | |
|   @retval EFI_SUCCESS   Get Control signals successfully
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| EFIAPI
 | |
| SerialGetControl (
 | |
|   IN EFI_SERIAL_IO_PROTOCOL  *This,
 | |
|   OUT UINT32                 *Control
 | |
|   )
 | |
| {
 | |
|   SERIAL_DEV      *SerialDevice;
 | |
|   SERIAL_PORT_MSR Msr;
 | |
|   SERIAL_PORT_MCR Mcr;
 | |
|   EFI_TPL         Tpl;
 | |
| 
 | |
|   Tpl           = gBS->RaiseTPL (TPL_NOTIFY);
 | |
| 
 | |
|   SerialDevice  = SERIAL_DEV_FROM_THIS (This);
 | |
| 
 | |
|   *Control      = 0;
 | |
| 
 | |
|   //
 | |
|   // Read the Modem Status Register
 | |
|   //
 | |
|   Msr.Data = READ_MSR (SerialDevice);
 | |
| 
 | |
|   if (Msr.Bits.Cts == 1) {
 | |
|     *Control |= EFI_SERIAL_CLEAR_TO_SEND;
 | |
|   }
 | |
| 
 | |
|   if (Msr.Bits.Dsr == 1) {
 | |
|     *Control |= EFI_SERIAL_DATA_SET_READY;
 | |
|   }
 | |
| 
 | |
|   if (Msr.Bits.Ri == 1) {
 | |
|     *Control |= EFI_SERIAL_RING_INDICATE;
 | |
|   }
 | |
| 
 | |
|   if (Msr.Bits.Dcd == 1) {
 | |
|     *Control |= EFI_SERIAL_CARRIER_DETECT;
 | |
|   }
 | |
|   //
 | |
|   // Read the Modem Control Register
 | |
|   //
 | |
|   Mcr.Data = READ_MCR (SerialDevice);
 | |
| 
 | |
|   if (Mcr.Bits.DtrC == 1) {
 | |
|     *Control |= EFI_SERIAL_DATA_TERMINAL_READY;
 | |
|   }
 | |
| 
 | |
|   if (Mcr.Bits.Rts == 1) {
 | |
|     *Control |= EFI_SERIAL_REQUEST_TO_SEND;
 | |
|   }
 | |
| 
 | |
|   if (Mcr.Bits.Lme == 1) {
 | |
|     *Control |= EFI_SERIAL_HARDWARE_LOOPBACK_ENABLE;
 | |
|   }
 | |
| 
 | |
|   if (SerialDevice->HardwareFlowControl) {
 | |
|     *Control |= EFI_SERIAL_HARDWARE_FLOW_CONTROL_ENABLE;
 | |
|   }
 | |
|   //
 | |
|   // Update FIFO status
 | |
|   //
 | |
|   SerialReceiveTransmit (SerialDevice);
 | |
| 
 | |
|   //
 | |
|   // See if the Transmit FIFO is empty
 | |
|   //
 | |
|   if (SerialFifoEmpty (&SerialDevice->Transmit)) {
 | |
|     *Control |= EFI_SERIAL_OUTPUT_BUFFER_EMPTY;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // See if the Receive FIFO is empty.
 | |
|   //
 | |
|   if (SerialFifoEmpty (&SerialDevice->Receive)) {
 | |
|     *Control |= EFI_SERIAL_INPUT_BUFFER_EMPTY;
 | |
|   }
 | |
| 
 | |
|   if (SerialDevice->SoftwareLoopbackEnable) {
 | |
|     *Control |= EFI_SERIAL_SOFTWARE_LOOPBACK_ENABLE;
 | |
|   }
 | |
| 
 | |
|   gBS->RestoreTPL (Tpl);
 | |
| 
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Write the specified number of bytes to serial device.
 | |
| 
 | |
|   @param This               Pointer to EFI_SERIAL_IO_PROTOCOL
 | |
|   @param  BufferSize         On input the size of Buffer, on output the amount of
 | |
|                        data actually written
 | |
|   @param  Buffer             The buffer of data to write
 | |
| 
 | |
|   @retval EFI_SUCCESS        The data were written successfully
 | |
|   @retval EFI_DEVICE_ERROR   The device reported an error
 | |
|   @retval EFI_TIMEOUT        The write operation was stopped due to timeout
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| EFIAPI
 | |
| SerialWrite (
 | |
|   IN EFI_SERIAL_IO_PROTOCOL  *This,
 | |
|   IN OUT UINTN               *BufferSize,
 | |
|   IN VOID                    *Buffer
 | |
|   )
 | |
| {
 | |
|   SERIAL_DEV  *SerialDevice;
 | |
|   UINT8       *CharBuffer;
 | |
|   UINT32      Index;
 | |
|   UINTN       Elapsed;
 | |
|   UINTN       ActualWrite;
 | |
|   EFI_TPL     Tpl;
 | |
|   UINTN       Timeout;
 | |
|   UINTN       BitsPerCharacter;
 | |
| 
 | |
|   SerialDevice  = SERIAL_DEV_FROM_THIS (This);
 | |
|   Elapsed       = 0;
 | |
|   ActualWrite   = 0;
 | |
| 
 | |
|   if (*BufferSize == 0) {
 | |
|     return EFI_SUCCESS;
 | |
|   }
 | |
| 
 | |
|   if (Buffer == NULL) {
 | |
|     REPORT_STATUS_CODE_WITH_DEVICE_PATH (
 | |
|       EFI_ERROR_CODE,
 | |
|       EFI_P_EC_OUTPUT_ERROR | EFI_PERIPHERAL_SERIAL_PORT,
 | |
|       SerialDevice->DevicePath
 | |
|       );
 | |
| 
 | |
|     return EFI_DEVICE_ERROR;
 | |
|   }
 | |
| 
 | |
|   Tpl         = gBS->RaiseTPL (TPL_NOTIFY);
 | |
| 
 | |
|   CharBuffer  = (UINT8 *) Buffer;
 | |
| 
 | |
|   //
 | |
|   // Compute the number of bits in a single character.  This is a start bit,
 | |
|   // followed by the number of data bits, followed by the number of stop bits.
 | |
|   // The number of stop bits is specified by an enumeration that includes
 | |
|   // support for 1.5 stop bits.  Treat 1.5 stop bits as 2 stop bits.
 | |
|   //
 | |
|   BitsPerCharacter =
 | |
|     1 +
 | |
|     This->Mode->DataBits +
 | |
|     ((This->Mode->StopBits == TwoStopBits) ? 2 : This->Mode->StopBits);
 | |
| 
 | |
|   //
 | |
|   // Compute the timeout in microseconds to wait for a single byte to be
 | |
|   // transmitted.  The Mode structure contans a Timeout field that is the
 | |
|   // maximum time to transmit or receive a character.  However, many UARTs
 | |
|   // have a FIFO for transmits, so the time required to add one new character
 | |
|   // to the transmit FIFO may be the time required to flush a full FIFO.  If
 | |
|   // the Timeout in the Mode structure is smaller than the time required to
 | |
|   // flush a full FIFO at the current baud rate, then use a timeout value that
 | |
|   // is required to flush a full transmit FIFO.
 | |
|   //
 | |
|   Timeout = MAX (
 | |
|               This->Mode->Timeout,
 | |
|               (UINTN)DivU64x64Remainder (
 | |
|                 BitsPerCharacter * (SerialDevice->TransmitFifoDepth + 1) * 1000000,
 | |
|                 This->Mode->BaudRate,
 | |
|                 NULL
 | |
|                 )
 | |
|               );
 | |
|   
 | |
|   for (Index = 0; Index < *BufferSize; Index++) {
 | |
|     SerialFifoAdd (&SerialDevice->Transmit, CharBuffer[Index]);
 | |
| 
 | |
|     while (SerialReceiveTransmit (SerialDevice) != EFI_SUCCESS || !SerialFifoEmpty (&SerialDevice->Transmit)) {
 | |
|       //
 | |
|       //  Unsuccessful write so check if timeout has expired, if not,
 | |
|       //  stall for a bit, increment time elapsed, and try again
 | |
|       //
 | |
|       if (Elapsed >= Timeout) {
 | |
|         *BufferSize = ActualWrite;
 | |
|         gBS->RestoreTPL (Tpl);
 | |
|         return EFI_TIMEOUT;
 | |
|       }
 | |
| 
 | |
|       gBS->Stall (TIMEOUT_STALL_INTERVAL);
 | |
| 
 | |
|       Elapsed += TIMEOUT_STALL_INTERVAL;
 | |
|     }
 | |
| 
 | |
|     ActualWrite++;
 | |
|     //
 | |
|     //  Successful write so reset timeout
 | |
|     //
 | |
|     Elapsed = 0;
 | |
|   }
 | |
| 
 | |
|   gBS->RestoreTPL (Tpl);
 | |
| 
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Read the specified number of bytes from serial device.
 | |
| 
 | |
|   @param This               Pointer to EFI_SERIAL_IO_PROTOCOL
 | |
|   @param BufferSize         On input the size of Buffer, on output the amount of
 | |
|                             data returned in buffer
 | |
|   @param Buffer             The buffer to return the data into
 | |
| 
 | |
|   @retval EFI_SUCCESS        The data were read successfully
 | |
|   @retval EFI_DEVICE_ERROR   The device reported an error
 | |
|   @retval EFI_TIMEOUT        The read operation was stopped due to timeout
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| EFIAPI
 | |
| SerialRead (
 | |
|   IN EFI_SERIAL_IO_PROTOCOL  *This,
 | |
|   IN OUT UINTN               *BufferSize,
 | |
|   OUT VOID                   *Buffer
 | |
|   )
 | |
| {
 | |
|   SERIAL_DEV  *SerialDevice;
 | |
|   UINT32      Index;
 | |
|   UINT8       *CharBuffer;
 | |
|   UINTN       Elapsed;
 | |
|   EFI_STATUS  Status;
 | |
|   EFI_TPL     Tpl;
 | |
| 
 | |
|   SerialDevice  = SERIAL_DEV_FROM_THIS (This);
 | |
|   Elapsed       = 0;
 | |
| 
 | |
|   if (*BufferSize == 0) {
 | |
|     return EFI_SUCCESS;
 | |
|   }
 | |
| 
 | |
|   if (Buffer == NULL) {
 | |
|     return EFI_DEVICE_ERROR;
 | |
|   }
 | |
| 
 | |
|   Tpl     = gBS->RaiseTPL (TPL_NOTIFY);
 | |
| 
 | |
|   Status  = SerialReceiveTransmit (SerialDevice);
 | |
| 
 | |
|   if (EFI_ERROR (Status)) {
 | |
|     *BufferSize = 0;
 | |
| 
 | |
|     REPORT_STATUS_CODE_WITH_DEVICE_PATH (
 | |
|       EFI_ERROR_CODE,
 | |
|       EFI_P_EC_INPUT_ERROR | EFI_PERIPHERAL_SERIAL_PORT,
 | |
|       SerialDevice->DevicePath
 | |
|       );
 | |
| 
 | |
|     gBS->RestoreTPL (Tpl);
 | |
| 
 | |
|     return EFI_DEVICE_ERROR;
 | |
|   }
 | |
| 
 | |
|   CharBuffer = (UINT8 *) Buffer;
 | |
|   for (Index = 0; Index < *BufferSize; Index++) {
 | |
|     while (SerialFifoRemove (&SerialDevice->Receive, &(CharBuffer[Index])) != EFI_SUCCESS) {
 | |
|       //
 | |
|       //  Unsuccessful read so check if timeout has expired, if not,
 | |
|       //  stall for a bit, increment time elapsed, and try again
 | |
|       //  Need this time out to get conspliter to work.
 | |
|       //
 | |
|       if (Elapsed >= This->Mode->Timeout) {
 | |
|         *BufferSize = Index;
 | |
|         gBS->RestoreTPL (Tpl);
 | |
|         return EFI_TIMEOUT;
 | |
|       }
 | |
| 
 | |
|       gBS->Stall (TIMEOUT_STALL_INTERVAL);
 | |
|       Elapsed += TIMEOUT_STALL_INTERVAL;
 | |
| 
 | |
|       Status = SerialReceiveTransmit (SerialDevice);
 | |
|       if (Status == EFI_DEVICE_ERROR) {
 | |
|         *BufferSize = Index;
 | |
|         gBS->RestoreTPL (Tpl);
 | |
|         return EFI_DEVICE_ERROR;
 | |
|       }
 | |
|     }
 | |
|     //
 | |
|     //  Successful read so reset timeout
 | |
|     //
 | |
|     Elapsed = 0;
 | |
|   }
 | |
| 
 | |
|   SerialReceiveTransmit (SerialDevice);
 | |
| 
 | |
|   gBS->RestoreTPL (Tpl);
 | |
| 
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Use scratchpad register to test if this serial port is present.
 | |
| 
 | |
|   @param SerialDevice   Pointer to serial device structure
 | |
| 
 | |
|   @return if this serial port is present
 | |
| **/
 | |
| BOOLEAN
 | |
| SerialPresent (
 | |
|   IN SERIAL_DEV *SerialDevice
 | |
|   )
 | |
| 
 | |
| {
 | |
|   UINT8   Temp;
 | |
|   BOOLEAN Status;
 | |
| 
 | |
|   Status = TRUE;
 | |
| 
 | |
|   //
 | |
|   // Save SCR reg
 | |
|   //
 | |
|   Temp = READ_SCR (SerialDevice);
 | |
|   WRITE_SCR (SerialDevice, 0xAA);
 | |
| 
 | |
|   if (READ_SCR (SerialDevice) != 0xAA) {
 | |
|     Status = FALSE;
 | |
|   }
 | |
| 
 | |
|   WRITE_SCR (SerialDevice, 0x55);
 | |
| 
 | |
|   if (READ_SCR (SerialDevice) != 0x55) {
 | |
|     Status = FALSE;
 | |
|   }
 | |
|   //
 | |
|   // Restore SCR
 | |
|   //
 | |
|   WRITE_SCR (SerialDevice, Temp);
 | |
|   return Status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Read serial port.
 | |
| 
 | |
|   @param SerialDev     Pointer to serial device
 | |
|   @param Offset        Offset in register group
 | |
| 
 | |
|   @return Data read from serial port
 | |
| 
 | |
| **/
 | |
| UINT8
 | |
| SerialReadRegister (
 | |
|   IN SERIAL_DEV                            *SerialDev,
 | |
|   IN UINT32                                Offset
 | |
|   )
 | |
| {
 | |
|   UINT8                                    Data;
 | |
|   EFI_STATUS                               Status;
 | |
| 
 | |
|   if (SerialDev->PciDeviceInfo == NULL) {
 | |
|     return IoRead8 ((UINTN) SerialDev->BaseAddress + Offset * SerialDev->RegisterStride);
 | |
|   } else {
 | |
|     if (SerialDev->MmioAccess) {
 | |
|       Status = SerialDev->PciDeviceInfo->PciIo->Mem.Read (SerialDev->PciDeviceInfo->PciIo, EfiPciIoWidthUint8, EFI_PCI_IO_PASS_THROUGH_BAR,
 | |
|                                                           SerialDev->BaseAddress + Offset * SerialDev->RegisterStride, 1, &Data);
 | |
|     } else {
 | |
|       Status = SerialDev->PciDeviceInfo->PciIo->Io.Read (SerialDev->PciDeviceInfo->PciIo, EfiPciIoWidthUint8, EFI_PCI_IO_PASS_THROUGH_BAR,
 | |
|                                                          SerialDev->BaseAddress + Offset * SerialDev->RegisterStride, 1, &Data);
 | |
|     }
 | |
|     ASSERT_EFI_ERROR (Status);
 | |
|     return Data;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Write serial port.
 | |
| 
 | |
|   @param  SerialDev     Pointer to serial device
 | |
|   @param  Offset        Offset in register group
 | |
|   @param  Data          data which is to be written to some serial port register
 | |
| **/
 | |
| VOID
 | |
| SerialWriteRegister (
 | |
|   IN SERIAL_DEV                            *SerialDev,
 | |
|   IN UINT32                                Offset,
 | |
|   IN UINT8                                 Data
 | |
|   )
 | |
| {
 | |
|   EFI_STATUS                               Status;
 | |
| 
 | |
|   if (SerialDev->PciDeviceInfo == NULL) {
 | |
|     IoWrite8 ((UINTN) SerialDev->BaseAddress + Offset * SerialDev->RegisterStride, Data);
 | |
|   } else {
 | |
|     if (SerialDev->MmioAccess) {
 | |
|       Status = SerialDev->PciDeviceInfo->PciIo->Mem.Write (SerialDev->PciDeviceInfo->PciIo, EfiPciIoWidthUint8, EFI_PCI_IO_PASS_THROUGH_BAR,
 | |
|                                                            SerialDev->BaseAddress + Offset * SerialDev->RegisterStride, 1, &Data);
 | |
|     } else {
 | |
|       Status = SerialDev->PciDeviceInfo->PciIo->Io.Write (SerialDev->PciDeviceInfo->PciIo, EfiPciIoWidthUint8, EFI_PCI_IO_PASS_THROUGH_BAR,
 | |
|                                                           SerialDev->BaseAddress + Offset * SerialDev->RegisterStride, 1, &Data);
 | |
|     }
 | |
|     ASSERT_EFI_ERROR (Status);
 | |
|   }
 | |
| }
 |