Files
system76-edk2/MdePkg/Library/BaseIoLibIntrinsic/IoLibInternalTdx.c
Min Xu 7012cb73c4 MdePkg: Probe Cc guest in BaseIoLibIntrinsicSev
BZ: https://bugzilla.tianocore.org/show_bug.cgi?id=3902

Bad IO performance in SEC phase is observed after TDX features was
introduced. (after commit b6b2de8848 - "MdePkg: Support mmio for
Tdx guest in BaseIoLibIntrinsic").

This is because IsTdxGuest() will be called in each MMIO operation.
It is trying to cache the result of the probe in the efi data segment.
However, that doesn't work in SEC, because the data segment is read only
(so the write seems to succeed but a read will always return the
original value), leading to us calling TdIsEnabled() check for every
mmio we do, which is causing the slowdown because it's very expensive.

This patch is to call CcProbe instead of TdIsEnabled in IsTdxGuest.
Null instance of CcProbe always returns CCGuestTypeNonEncrypted. Its
OvmfPkg version returns the guest type in Ovmf work area.

Cc: Michael D Kinney <michael.d.kinney@intel.com>
Cc: Liming Gao <gaoliming@byosoft.com.cn>
Cc: Zhiguang Liu <zhiguang.liu@intel.com>
Cc: James Bottomley <jejb@linux.ibm.com>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Jiewen Yao <jiewen.yao@intel.com>
Cc: Gerd Hoffmann <kraxel@redhat.com>
Reviewed-by: Liming Gao <gaoliming@byosoft.com.cn>
Reviewed-by: Jiewen Yao <jiewen.yao@intel.com>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Min Xu <min.m.xu@intel.com>
2022-04-19 01:26:08 +00:00

666 lines
14 KiB
C

/** @file
TDX I/O Library routines.
Copyright (c) 2020-2021, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "BaseIoLibIntrinsicInternal.h"
#include <Uefi/UefiBaseType.h>
#include <Include/IndustryStandard/Tdx.h>
#include <Library/TdxLib.h>
#include <Register/Intel/Cpuid.h>
#include <Library/CcProbeLib.h>
#include "IoLibTdx.h"
// Size of TDVMCALL Access, including IO and MMIO
#define TDVMCALL_ACCESS_SIZE_1 1
#define TDVMCALL_ACCESS_SIZE_2 2
#define TDVMCALL_ACCESS_SIZE_4 4
#define TDVMCALL_ACCESS_SIZE_8 8
// Direction of TDVMCALL Access, including IO and MMIO
#define TDVMCALL_ACCESS_READ 0
#define TDVMCALL_ACCESS_WRITE 1
/**
Check if it is Tdx guest.
@return TRUE It is Tdx guest
@return FALSE It is not Tdx guest
**/
BOOLEAN
EFIAPI
IsTdxGuest (
VOID
)
{
return CcProbe () == CcGuestTypeIntelTdx;
}
/**
Reads an 8-bit I/O port.
TDVMCALL_IO is invoked to read I/O port.
@param Port The I/O port to read.
@return The value read.
**/
UINT8
EFIAPI
TdIoRead8 (
IN UINTN Port
)
{
UINT64 Status;
UINT64 Val;
Status = TdVmCall (TDVMCALL_IO, TDVMCALL_ACCESS_SIZE_1, TDVMCALL_ACCESS_READ, Port, 0, &Val);
if (Status != 0) {
TdVmCall (TDVMCALL_HALT, 0, 0, 0, 0, 0);
}
return (UINT8)Val;
}
/**
Reads a 16-bit I/O port.
TDVMCALL_IO is invoked to write I/O port.
@param Port The I/O port to read.
@return The value read.
**/
UINT16
EFIAPI
TdIoRead16 (
IN UINTN Port
)
{
UINT64 Status;
UINT64 Val;
ASSERT ((Port & 1) == 0);
Status = TdVmCall (TDVMCALL_IO, TDVMCALL_ACCESS_SIZE_2, TDVMCALL_ACCESS_READ, Port, 0, &Val);
if (Status != 0) {
TdVmCall (TDVMCALL_HALT, 0, 0, 0, 0, 0);
}
return (UINT16)Val;
}
/**
Reads a 32-bit I/O port.
TDVMCALL_IO is invoked to read I/O port.
@param Port The I/O port to read.
@return The value read.
**/
UINT32
EFIAPI
TdIoRead32 (
IN UINTN Port
)
{
UINT64 Status;
UINT64 Val;
ASSERT ((Port & 3) == 0);
Status = TdVmCall (TDVMCALL_IO, TDVMCALL_ACCESS_SIZE_4, TDVMCALL_ACCESS_READ, Port, 0, &Val);
if (Status != 0) {
TdVmCall (TDVMCALL_HALT, 0, 0, 0, 0, 0);
}
return (UINT32)Val;
}
/**
Writes an 8-bit I/O port.
TDVMCALL_IO is invoked to write I/O port.
@param Port The I/O port to write.
@param Value The value to write to the I/O port.
@return The value written the I/O port.
**/
UINT8
EFIAPI
TdIoWrite8 (
IN UINTN Port,
IN UINT8 Value
)
{
UINT64 Status;
UINT64 Val;
Val = Value;
Status = TdVmCall (TDVMCALL_IO, TDVMCALL_ACCESS_SIZE_1, TDVMCALL_ACCESS_WRITE, Port, Val, 0);
if (Status != 0) {
TdVmCall (TDVMCALL_HALT, 0, 0, 0, 0, 0);
}
return Value;
}
/**
Writes a 16-bit I/O port.
TDVMCALL_IO is invoked to write I/O port.
@param Port The I/O port to write.
@param Value The value to write to the I/O port.
@return The value written the I/O port.
**/
UINT16
EFIAPI
TdIoWrite16 (
IN UINTN Port,
IN UINT16 Value
)
{
UINT64 Status;
UINT64 Val;
ASSERT ((Port & 1) == 0);
Val = Value;
Status = TdVmCall (TDVMCALL_IO, TDVMCALL_ACCESS_SIZE_2, TDVMCALL_ACCESS_WRITE, Port, Val, 0);
if (Status != 0) {
TdVmCall (TDVMCALL_HALT, 0, 0, 0, 0, 0);
}
return Value;
}
/**
Writes a 32-bit I/O port.
TDVMCALL_IO is invoked to write I/O port.
@param Port The I/O port to write.
@param Value The value to write to the I/O port.
@return The value written the I/O port.
**/
UINT32
EFIAPI
TdIoWrite32 (
IN UINTN Port,
IN UINT32 Value
)
{
UINT64 Status;
UINT64 Val;
ASSERT ((Port & 3) == 0);
Val = Value;
Status = TdVmCall (TDVMCALL_IO, TDVMCALL_ACCESS_SIZE_4, TDVMCALL_ACCESS_WRITE, Port, Val, 0);
if (Status != 0) {
TdVmCall (TDVMCALL_HALT, 0, 0, 0, 0, 0);
}
return Value;
}
/**
Reads an 8-bit MMIO register.
TDVMCALL_MMIO is invoked to read MMIO registers.
@param Address The MMIO register to read.
@return The value read.
**/
UINT8
EFIAPI
TdMmioRead8 (
IN UINTN Address
)
{
UINT64 Value;
UINT64 Status;
Status = TdVmCall (TDVMCALL_MMIO, TDVMCALL_ACCESS_SIZE_1, TDVMCALL_ACCESS_READ, Address | TdSharedPageMask (), 0, &Value);
if (Status != 0) {
Value = *(volatile UINT64 *)Address;
}
return (UINT8)Value;
}
/**
Writes an 8-bit MMIO register.
TDVMCALL_MMIO is invoked to read write registers.
@param Address The MMIO register to write.
@param Value The value to write to the MMIO register.
@return Value.
**/
UINT8
EFIAPI
TdMmioWrite8 (
IN UINTN Address,
IN UINT8 Value
)
{
UINT64 Val;
UINT64 Status;
Val = Value;
Status = TdVmCall (TDVMCALL_MMIO, TDVMCALL_ACCESS_SIZE_1, TDVMCALL_ACCESS_WRITE, Address | TdSharedPageMask (), Val, 0);
if (Status != 0) {
*(volatile UINT8 *)Address = Value;
}
return Value;
}
/**
Reads a 16-bit MMIO register.
TDVMCALL_MMIO is invoked to read MMIO registers.
@param Address The MMIO register to read.
@return The value read.
**/
UINT16
EFIAPI
TdMmioRead16 (
IN UINTN Address
)
{
UINT64 Value;
UINT64 Status;
Status = TdVmCall (TDVMCALL_MMIO, TDVMCALL_ACCESS_SIZE_2, TDVMCALL_ACCESS_READ, Address | TdSharedPageMask (), 0, &Value);
if (Status != 0) {
Value = *(volatile UINT64 *)Address;
}
return (UINT16)Value;
}
/**
Writes a 16-bit MMIO register.
TDVMCALL_MMIO is invoked to write MMIO registers.
@param Address The MMIO register to write.
@param Value The value to write to the MMIO register.
@return Value.
**/
UINT16
EFIAPI
TdMmioWrite16 (
IN UINTN Address,
IN UINT16 Value
)
{
UINT64 Val;
UINT64 Status;
ASSERT ((Address & 1) == 0);
Val = Value;
Status = TdVmCall (TDVMCALL_MMIO, TDVMCALL_ACCESS_SIZE_2, TDVMCALL_ACCESS_WRITE, Address | TdSharedPageMask (), Val, 0);
if (Status != 0) {
*(volatile UINT16 *)Address = Value;
}
return Value;
}
/**
Reads a 32-bit MMIO register.
TDVMCALL_MMIO is invoked to read MMIO registers.
@param Address The MMIO register to read.
@return The value read.
**/
UINT32
EFIAPI
TdMmioRead32 (
IN UINTN Address
)
{
UINT64 Value;
UINT64 Status;
Status = TdVmCall (TDVMCALL_MMIO, TDVMCALL_ACCESS_SIZE_4, TDVMCALL_ACCESS_READ, Address | TdSharedPageMask (), 0, &Value);
if (Status != 0) {
Value = *(volatile UINT64 *)Address;
}
return (UINT32)Value;
}
/**
Writes a 32-bit MMIO register.
TDVMCALL_MMIO is invoked to write MMIO registers.
@param Address The MMIO register to write.
@param Value The value to write to the MMIO register.
@return Value.
**/
UINT32
EFIAPI
TdMmioWrite32 (
IN UINTN Address,
IN UINT32 Value
)
{
UINT64 Val;
UINT64 Status;
ASSERT ((Address & 3) == 0);
Val = Value;
Status = TdVmCall (TDVMCALL_MMIO, TDVMCALL_ACCESS_SIZE_4, TDVMCALL_ACCESS_WRITE, Address | TdSharedPageMask (), Val, 0);
if (Status != 0) {
*(volatile UINT32 *)Address = Value;
}
return Value;
}
/**
Reads a 64-bit MMIO register.
TDVMCALL_MMIO is invoked to read MMIO registers.
@param Address The MMIO register to read.
@return The value read.
**/
UINT64
EFIAPI
TdMmioRead64 (
IN UINTN Address
)
{
UINT64 Value;
UINT64 Status;
Status = TdVmCall (TDVMCALL_MMIO, TDVMCALL_ACCESS_SIZE_8, TDVMCALL_ACCESS_READ, Address | TdSharedPageMask (), 0, &Value);
if (Status != 0) {
Value = *(volatile UINT64 *)Address;
}
return Value;
}
/**
Writes a 64-bit MMIO register.
TDVMCALL_MMIO is invoked to write MMIO registers.
@param Address The MMIO register to write.
@param Value The value to write to the MMIO register.
**/
UINT64
EFIAPI
TdMmioWrite64 (
IN UINTN Address,
IN UINT64 Value
)
{
UINT64 Status;
UINT64 Val;
ASSERT ((Address & 7) == 0);
Val = Value;
Status = TdVmCall (TDVMCALL_MMIO, TDVMCALL_ACCESS_SIZE_8, TDVMCALL_ACCESS_WRITE, Address | TdSharedPageMask (), Val, 0);
if (Status != 0) {
*(volatile UINT64 *)Address = Value;
}
return Value;
}
/**
Reads an 8-bit I/O port fifo into a block of memory.
Reads the 8-bit I/O fifo port specified by Port.
The port is read Count times, and the read data is
stored in the provided Buffer.
This function must guarantee that all I/O read and write operations are
serialized.
If 8-bit I/O port operations are not supported, then ASSERT().
In TDX a serial of TdIoRead8 is invoked to read the I/O port fifo.
@param Port The I/O port to read.
@param Count The number of times to read I/O port.
@param Buffer The buffer to store the read data into.
**/
VOID
EFIAPI
TdIoReadFifo8 (
IN UINTN Port,
IN UINTN Count,
OUT VOID *Buffer
)
{
UINT8 *Buf8;
UINTN Index;
Buf8 = (UINT8 *)Buffer;
for (Index = 0; Index < Count; Index++) {
Buf8[Index] = TdIoRead8 (Port);
}
}
/**
Writes a block of memory into an 8-bit I/O port fifo.
Writes the 8-bit I/O fifo port specified by Port.
The port is written Count times, and the write data is
retrieved from the provided Buffer.
This function must guarantee that all I/O write and write operations are
serialized.
If 8-bit I/O port operations are not supported, then ASSERT().
In TDX a serial of TdIoWrite8 is invoked to write data to the I/O port.
@param Port The I/O port to write.
@param Count The number of times to write I/O port.
@param Buffer The buffer to retrieve the write data from.
**/
VOID
EFIAPI
TdIoWriteFifo8 (
IN UINTN Port,
IN UINTN Count,
IN VOID *Buffer
)
{
UINT8 *Buf8;
UINTN Index;
Buf8 = (UINT8 *)Buffer;
for (Index = 0; Index < Count; Index++) {
TdIoWrite8 (Port, Buf8[Index]);
}
}
/**
Reads a 16-bit I/O port fifo into a block of memory.
Reads the 16-bit I/O fifo port specified by Port.
The port is read Count times, and the read data is
stored in the provided Buffer.
This function must guarantee that all I/O read and write operations are
serialized.
If 16-bit I/O port operations are not supported, then ASSERT().
In TDX a serial of TdIoRead16 is invoked to read data from the I/O port.
@param Port The I/O port to read.
@param Count The number of times to read I/O port.
@param Buffer The buffer to store the read data into.
**/
VOID
EFIAPI
TdIoReadFifo16 (
IN UINTN Port,
IN UINTN Count,
OUT VOID *Buffer
)
{
UINT16 *Buf16;
UINTN Index;
Buf16 = (UINT16 *)Buffer;
for (Index = 0; Index < Count; Index++) {
Buf16[Index] = TdIoRead16 (Port);
}
}
/**
Writes a block of memory into a 16-bit I/O port fifo.
Writes the 16-bit I/O fifo port specified by Port.
The port is written Count times, and the write data is
retrieved from the provided Buffer.
This function must guarantee that all I/O write and write operations are
serialized.
If 16-bit I/O port operations are not supported, then ASSERT().
In TDX a serial of TdIoWrite16 is invoked to write data to the I/O port.
@param Port The I/O port to write.
@param Count The number of times to write I/O port.
@param Buffer The buffer to retrieve the write data from.
**/
VOID
EFIAPI
TdIoWriteFifo16 (
IN UINTN Port,
IN UINTN Count,
IN VOID *Buffer
)
{
UINT16 *Buf16;
UINTN Index;
Buf16 = (UINT16 *)Buffer;
for (Index = 0; Index < Count; Index++) {
TdIoWrite16 (Port, Buf16[Index]);
}
}
/**
Reads a 32-bit I/O port fifo into a block of memory.
Reads the 32-bit I/O fifo port specified by Port.
The port is read Count times, and the read data is
stored in the provided Buffer.
This function must guarantee that all I/O read and write operations are
serialized.
If 32-bit I/O port operations are not supported, then ASSERT().
In TDX a serial of TdIoRead32 is invoked to read data from the I/O port.
@param Port The I/O port to read.
@param Count The number of times to read I/O port.
@param Buffer The buffer to store the read data into.
**/
VOID
EFIAPI
TdIoReadFifo32 (
IN UINTN Port,
IN UINTN Count,
OUT VOID *Buffer
)
{
UINT32 *Buf32;
UINTN Index;
Buf32 = (UINT32 *)Buffer;
for (Index = 0; Index < Count; Index++) {
Buf32[Index] = TdIoRead32 (Port);
}
}
/**
Writes a block of memory into a 32-bit I/O port fifo.
Writes the 32-bit I/O fifo port specified by Port.
The port is written Count times, and the write data is
retrieved from the provided Buffer.
This function must guarantee that all I/O write and write operations are
serialized.
If 32-bit I/O port operations are not supported, then ASSERT().
In TDX a serial of TdIoWrite32 is invoked to write data to the I/O port.
@param Port The I/O port to write.
@param Count The number of times to write I/O port.
@param Buffer The buffer to retrieve the write data from.
**/
VOID
EFIAPI
TdIoWriteFifo32 (
IN UINTN Port,
IN UINTN Count,
IN VOID *Buffer
)
{
UINT32 *Buf32;
UINTN Index;
Buf32 = (UINT32 *)Buffer;
for (Index = 0; Index < Count; Index++) {
TdIoWrite32 (Port, Buf32[Index]);
}
}