We never run any code at EL0, and so it would seem that any access permissions set for EL0 (via the AP[1] attribute in the page tables) are irrelevant. We currently set EL0 and EL1 permissions to the same value arbitrarily. However, this causes problems on hardware like the Apple M1 running the MacOS hypervisor framework, which enters EL1 with SCTLR_EL1.SPAN enabled, causing the Privileged Access Never (PAN) feature to be enabled on any exception taken to EL1, including the IRQ exceptions that handle our timer interrupt. When PAN is enabled, EL1 has no access to any mappings that are also accessible to EL0, causing the firmware to crash if it attempts to access such a mapping. Even though it is debatable whether or not SCTLR_EL1.SPAN should be disabled at entry or whether the firmware should put all UNKNOWN bits in all system registers in a consistent state (which it should), using EL0 permissions serves no purpose whatsoever so let's fix that regardless. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Tested-by: Alexander Graf <agraf@csgraf.de> Acked-by: Leif Lindholm <leif@nuviainc.com>
434 lines
14 KiB
C
434 lines
14 KiB
C
/*++
|
|
|
|
Copyright (c) 2009, Hewlett-Packard Company. All rights reserved.<BR>
|
|
Portions copyright (c) 2010, Apple Inc. All rights reserved.<BR>
|
|
Portions copyright (c) 2011-2021, Arm Limited. All rights reserved.<BR>
|
|
Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
|
|
|
|
SPDX-License-Identifier: BSD-2-Clause-Patent
|
|
|
|
|
|
--*/
|
|
|
|
#include <Library/MemoryAllocationLib.h>
|
|
#include "CpuDxe.h"
|
|
|
|
#define INVALID_ENTRY ((UINT32)~0)
|
|
|
|
#define MIN_T0SZ 16
|
|
#define BITS_PER_LEVEL 9
|
|
|
|
STATIC
|
|
VOID
|
|
GetRootTranslationTableInfo (
|
|
IN UINTN T0SZ,
|
|
OUT UINTN *RootTableLevel,
|
|
OUT UINTN *RootTableEntryCount
|
|
)
|
|
{
|
|
*RootTableLevel = (T0SZ - MIN_T0SZ) / BITS_PER_LEVEL;
|
|
*RootTableEntryCount = TT_ENTRY_COUNT >> (T0SZ - MIN_T0SZ) % BITS_PER_LEVEL;
|
|
}
|
|
|
|
STATIC
|
|
UINT64
|
|
PageAttributeToGcdAttribute (
|
|
IN UINT64 PageAttributes
|
|
)
|
|
{
|
|
UINT64 GcdAttributes;
|
|
|
|
switch (PageAttributes & TT_ATTR_INDX_MASK) {
|
|
case TT_ATTR_INDX_DEVICE_MEMORY:
|
|
GcdAttributes = EFI_MEMORY_UC;
|
|
break;
|
|
case TT_ATTR_INDX_MEMORY_NON_CACHEABLE:
|
|
GcdAttributes = EFI_MEMORY_WC;
|
|
break;
|
|
case TT_ATTR_INDX_MEMORY_WRITE_THROUGH:
|
|
GcdAttributes = EFI_MEMORY_WT;
|
|
break;
|
|
case TT_ATTR_INDX_MEMORY_WRITE_BACK:
|
|
GcdAttributes = EFI_MEMORY_WB;
|
|
break;
|
|
default:
|
|
DEBUG ((
|
|
DEBUG_ERROR,
|
|
"PageAttributeToGcdAttribute: PageAttributes:0x%lX not supported.\n",
|
|
PageAttributes
|
|
));
|
|
ASSERT (0);
|
|
// The Global Coherency Domain (GCD) value is defined as a bit set.
|
|
// Returning 0 means no attribute has been set.
|
|
GcdAttributes = 0;
|
|
}
|
|
|
|
// Determine protection attributes
|
|
if (((PageAttributes & TT_AP_MASK) == TT_AP_NO_RO) ||
|
|
((PageAttributes & TT_AP_MASK) == TT_AP_RO_RO))
|
|
{
|
|
// Read only cases map to write-protect
|
|
GcdAttributes |= EFI_MEMORY_RO;
|
|
}
|
|
|
|
// Process eXecute Never attribute
|
|
if ((PageAttributes & (TT_PXN_MASK | TT_UXN_MASK)) != 0) {
|
|
GcdAttributes |= EFI_MEMORY_XP;
|
|
}
|
|
|
|
return GcdAttributes;
|
|
}
|
|
|
|
STATIC
|
|
UINT64
|
|
GetFirstPageAttribute (
|
|
IN UINT64 *FirstLevelTableAddress,
|
|
IN UINTN TableLevel
|
|
)
|
|
{
|
|
UINT64 FirstEntry;
|
|
|
|
// Get the first entry of the table
|
|
FirstEntry = *FirstLevelTableAddress;
|
|
|
|
if ((TableLevel != 3) && ((FirstEntry & TT_TYPE_MASK) == TT_TYPE_TABLE_ENTRY)) {
|
|
// Only valid for Levels 0, 1 and 2
|
|
|
|
// Get the attribute of the subsequent table
|
|
return GetFirstPageAttribute ((UINT64 *)(FirstEntry & TT_ADDRESS_MASK_DESCRIPTION_TABLE), TableLevel + 1);
|
|
} else if (((FirstEntry & TT_TYPE_MASK) == TT_TYPE_BLOCK_ENTRY) ||
|
|
((TableLevel == 3) && ((FirstEntry & TT_TYPE_MASK) == TT_TYPE_BLOCK_ENTRY_LEVEL3)))
|
|
{
|
|
return FirstEntry & TT_ATTR_INDX_MASK;
|
|
} else {
|
|
return INVALID_ENTRY;
|
|
}
|
|
}
|
|
|
|
STATIC
|
|
UINT64
|
|
GetNextEntryAttribute (
|
|
IN UINT64 *TableAddress,
|
|
IN UINTN EntryCount,
|
|
IN UINTN TableLevel,
|
|
IN UINT64 BaseAddress,
|
|
IN OUT UINT32 *PrevEntryAttribute,
|
|
IN OUT UINT64 *StartGcdRegion
|
|
)
|
|
{
|
|
UINTN Index;
|
|
UINT64 Entry;
|
|
UINT32 EntryAttribute;
|
|
UINT32 EntryType;
|
|
EFI_STATUS Status;
|
|
UINTN NumberOfDescriptors;
|
|
EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap;
|
|
|
|
// Get the memory space map from GCD
|
|
MemorySpaceMap = NULL;
|
|
Status = gDS->GetMemorySpaceMap (&NumberOfDescriptors, &MemorySpaceMap);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
// We cannot get more than 3-level page table
|
|
ASSERT (TableLevel <= 3);
|
|
|
|
// While the top level table might not contain TT_ENTRY_COUNT entries;
|
|
// the subsequent ones should be filled up
|
|
for (Index = 0; Index < EntryCount; Index++) {
|
|
Entry = TableAddress[Index];
|
|
EntryType = Entry & TT_TYPE_MASK;
|
|
EntryAttribute = Entry & TT_ATTR_INDX_MASK;
|
|
|
|
// If Entry is a Table Descriptor type entry then go through the sub-level table
|
|
if ((EntryType == TT_TYPE_BLOCK_ENTRY) ||
|
|
((TableLevel == 3) && (EntryType == TT_TYPE_BLOCK_ENTRY_LEVEL3)))
|
|
{
|
|
if ((*PrevEntryAttribute == INVALID_ENTRY) || (EntryAttribute != *PrevEntryAttribute)) {
|
|
if (*PrevEntryAttribute != INVALID_ENTRY) {
|
|
// Update GCD with the last region
|
|
SetGcdMemorySpaceAttributes (
|
|
MemorySpaceMap,
|
|
NumberOfDescriptors,
|
|
*StartGcdRegion,
|
|
(BaseAddress + (Index * TT_ADDRESS_AT_LEVEL (TableLevel))) - *StartGcdRegion,
|
|
PageAttributeToGcdAttribute (*PrevEntryAttribute)
|
|
);
|
|
}
|
|
|
|
// Start of the new region
|
|
*StartGcdRegion = BaseAddress + (Index * TT_ADDRESS_AT_LEVEL (TableLevel));
|
|
*PrevEntryAttribute = EntryAttribute;
|
|
} else {
|
|
continue;
|
|
}
|
|
} else if (EntryType == TT_TYPE_TABLE_ENTRY) {
|
|
// Table Entry type is only valid for Level 0, 1, 2
|
|
ASSERT (TableLevel < 3);
|
|
|
|
// Increase the level number and scan the sub-level table
|
|
GetNextEntryAttribute (
|
|
(UINT64 *)(Entry & TT_ADDRESS_MASK_DESCRIPTION_TABLE),
|
|
TT_ENTRY_COUNT,
|
|
TableLevel + 1,
|
|
(BaseAddress + (Index * TT_ADDRESS_AT_LEVEL (TableLevel))),
|
|
PrevEntryAttribute,
|
|
StartGcdRegion
|
|
);
|
|
} else {
|
|
if (*PrevEntryAttribute != INVALID_ENTRY) {
|
|
// Update GCD with the last region
|
|
SetGcdMemorySpaceAttributes (
|
|
MemorySpaceMap,
|
|
NumberOfDescriptors,
|
|
*StartGcdRegion,
|
|
(BaseAddress + (Index * TT_ADDRESS_AT_LEVEL (TableLevel))) - *StartGcdRegion,
|
|
PageAttributeToGcdAttribute (*PrevEntryAttribute)
|
|
);
|
|
|
|
// Start of the new region
|
|
*StartGcdRegion = BaseAddress + (Index * TT_ADDRESS_AT_LEVEL (TableLevel));
|
|
*PrevEntryAttribute = INVALID_ENTRY;
|
|
}
|
|
}
|
|
}
|
|
|
|
FreePool (MemorySpaceMap);
|
|
|
|
return BaseAddress + (EntryCount * TT_ADDRESS_AT_LEVEL (TableLevel));
|
|
}
|
|
|
|
EFI_STATUS
|
|
SyncCacheConfig (
|
|
IN EFI_CPU_ARCH_PROTOCOL *CpuProtocol
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
UINT32 PageAttribute;
|
|
UINT64 *FirstLevelTableAddress;
|
|
UINTN TableLevel;
|
|
UINTN TableCount;
|
|
UINTN NumberOfDescriptors;
|
|
EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap;
|
|
UINTN Tcr;
|
|
UINTN T0SZ;
|
|
UINT64 BaseAddressGcdRegion;
|
|
UINT64 EndAddressGcdRegion;
|
|
|
|
// This code assumes MMU is enabled and filed with section translations
|
|
ASSERT (ArmMmuEnabled ());
|
|
|
|
//
|
|
// Get the memory space map from GCD
|
|
//
|
|
MemorySpaceMap = NULL;
|
|
Status = gDS->GetMemorySpaceMap (&NumberOfDescriptors, &MemorySpaceMap);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
// The GCD implementation maintains its own copy of the state of memory space attributes. GCD needs
|
|
// to know what the initial memory space attributes are. The CPU Arch. Protocol does not provide a
|
|
// GetMemoryAttributes function for GCD to get this so we must resort to calling GCD (as if we were
|
|
// a client) to update its copy of the attributes. This is bad architecture and should be replaced
|
|
// with a way for GCD to query the CPU Arch. driver of the existing memory space attributes instead.
|
|
|
|
// Obtain page table base
|
|
FirstLevelTableAddress = (UINT64 *)(ArmGetTTBR0BaseAddress ());
|
|
|
|
// Get Translation Control Register value
|
|
Tcr = ArmGetTCR ();
|
|
// Get Address Region Size
|
|
T0SZ = Tcr & TCR_T0SZ_MASK;
|
|
|
|
// Get the level of the first table for the indicated Address Region Size
|
|
GetRootTranslationTableInfo (T0SZ, &TableLevel, &TableCount);
|
|
|
|
// First Attribute of the Page Tables
|
|
PageAttribute = GetFirstPageAttribute (FirstLevelTableAddress, TableLevel);
|
|
|
|
// We scan from the start of the memory map (ie: at the address 0x0)
|
|
BaseAddressGcdRegion = 0x0;
|
|
EndAddressGcdRegion = GetNextEntryAttribute (
|
|
FirstLevelTableAddress,
|
|
TableCount,
|
|
TableLevel,
|
|
BaseAddressGcdRegion,
|
|
&PageAttribute,
|
|
&BaseAddressGcdRegion
|
|
);
|
|
|
|
// Update GCD with the last region if valid
|
|
if (PageAttribute != INVALID_ENTRY) {
|
|
SetGcdMemorySpaceAttributes (
|
|
MemorySpaceMap,
|
|
NumberOfDescriptors,
|
|
BaseAddressGcdRegion,
|
|
EndAddressGcdRegion - BaseAddressGcdRegion,
|
|
PageAttributeToGcdAttribute (PageAttribute)
|
|
);
|
|
}
|
|
|
|
FreePool (MemorySpaceMap);
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
UINT64
|
|
EfiAttributeToArmAttribute (
|
|
IN UINT64 EfiAttributes
|
|
)
|
|
{
|
|
UINT64 ArmAttributes;
|
|
|
|
switch (EfiAttributes & EFI_MEMORY_CACHETYPE_MASK) {
|
|
case EFI_MEMORY_UC:
|
|
if (ArmReadCurrentEL () == AARCH64_EL2) {
|
|
ArmAttributes = TT_ATTR_INDX_DEVICE_MEMORY | TT_XN_MASK;
|
|
} else {
|
|
ArmAttributes = TT_ATTR_INDX_DEVICE_MEMORY | TT_UXN_MASK | TT_PXN_MASK;
|
|
}
|
|
|
|
break;
|
|
case EFI_MEMORY_WC:
|
|
ArmAttributes = TT_ATTR_INDX_MEMORY_NON_CACHEABLE;
|
|
break;
|
|
case EFI_MEMORY_WT:
|
|
ArmAttributes = TT_ATTR_INDX_MEMORY_WRITE_THROUGH | TT_SH_INNER_SHAREABLE;
|
|
break;
|
|
case EFI_MEMORY_WB:
|
|
ArmAttributes = TT_ATTR_INDX_MEMORY_WRITE_BACK | TT_SH_INNER_SHAREABLE;
|
|
break;
|
|
default:
|
|
ArmAttributes = TT_ATTR_INDX_MASK;
|
|
}
|
|
|
|
// Set the access flag to match the block attributes
|
|
ArmAttributes |= TT_AF;
|
|
|
|
// Determine protection attributes
|
|
if ((EfiAttributes & EFI_MEMORY_RO) != 0) {
|
|
ArmAttributes |= TT_AP_NO_RO;
|
|
}
|
|
|
|
// Process eXecute Never attribute
|
|
if ((EfiAttributes & EFI_MEMORY_XP) != 0) {
|
|
ArmAttributes |= TT_PXN_MASK;
|
|
}
|
|
|
|
return ArmAttributes;
|
|
}
|
|
|
|
// This function will recursively go down the page table to find the first block address linked to 'BaseAddress'.
|
|
// And then the function will identify the size of the region that has the same page table attribute.
|
|
EFI_STATUS
|
|
GetMemoryRegionRec (
|
|
IN UINT64 *TranslationTable,
|
|
IN UINTN TableLevel,
|
|
IN UINT64 *LastBlockEntry,
|
|
IN OUT UINTN *BaseAddress,
|
|
OUT UINTN *RegionLength,
|
|
OUT UINTN *RegionAttributes
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
UINT64 *NextTranslationTable;
|
|
UINT64 *BlockEntry;
|
|
UINT64 BlockEntryType;
|
|
UINT64 EntryType;
|
|
|
|
if (TableLevel != 3) {
|
|
BlockEntryType = TT_TYPE_BLOCK_ENTRY;
|
|
} else {
|
|
BlockEntryType = TT_TYPE_BLOCK_ENTRY_LEVEL3;
|
|
}
|
|
|
|
// Find the block entry linked to the Base Address
|
|
BlockEntry = (UINT64 *)TT_GET_ENTRY_FOR_ADDRESS (TranslationTable, TableLevel, *BaseAddress);
|
|
EntryType = *BlockEntry & TT_TYPE_MASK;
|
|
|
|
if ((TableLevel < 3) && (EntryType == TT_TYPE_TABLE_ENTRY)) {
|
|
NextTranslationTable = (UINT64 *)(*BlockEntry & TT_ADDRESS_MASK_DESCRIPTION_TABLE);
|
|
|
|
// The entry is a page table, so we go to the next level
|
|
Status = GetMemoryRegionRec (
|
|
NextTranslationTable, // Address of the next level page table
|
|
TableLevel + 1, // Next Page Table level
|
|
(UINTN *)TT_LAST_BLOCK_ADDRESS (NextTranslationTable, TT_ENTRY_COUNT),
|
|
BaseAddress,
|
|
RegionLength,
|
|
RegionAttributes
|
|
);
|
|
|
|
// In case of 'Success', it means the end of the block region has been found into the upper
|
|
// level translation table
|
|
if (!EFI_ERROR (Status)) {
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
// Now we processed the table move to the next entry
|
|
BlockEntry++;
|
|
} else if (EntryType == BlockEntryType) {
|
|
// We have found the BlockEntry attached to the address. We save its start address (the start
|
|
// address might be before the 'BaseAddress') and attributes
|
|
*BaseAddress = *BaseAddress & ~(TT_ADDRESS_AT_LEVEL (TableLevel) - 1);
|
|
*RegionLength = 0;
|
|
*RegionAttributes = *BlockEntry & TT_ATTRIBUTES_MASK;
|
|
} else {
|
|
// We have an 'Invalid' entry
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
while (BlockEntry <= LastBlockEntry) {
|
|
if ((*BlockEntry & TT_ATTRIBUTES_MASK) == *RegionAttributes) {
|
|
*RegionLength = *RegionLength + TT_BLOCK_ENTRY_SIZE_AT_LEVEL (TableLevel);
|
|
} else {
|
|
// In case we have found the end of the region we return success
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
BlockEntry++;
|
|
}
|
|
|
|
// If we have reached the end of the TranslationTable and we have not found the end of the region then
|
|
// we return EFI_NOT_FOUND.
|
|
// The caller will continue to look for the memory region at its level
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
EFI_STATUS
|
|
GetMemoryRegion (
|
|
IN OUT UINTN *BaseAddress,
|
|
OUT UINTN *RegionLength,
|
|
OUT UINTN *RegionAttributes
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
UINT64 *TranslationTable;
|
|
UINTN TableLevel;
|
|
UINTN EntryCount;
|
|
UINTN T0SZ;
|
|
|
|
ASSERT ((BaseAddress != NULL) && (RegionLength != NULL) && (RegionAttributes != NULL));
|
|
|
|
TranslationTable = ArmGetTTBR0BaseAddress ();
|
|
|
|
T0SZ = ArmGetTCR () & TCR_T0SZ_MASK;
|
|
// Get the Table info from T0SZ
|
|
GetRootTranslationTableInfo (T0SZ, &TableLevel, &EntryCount);
|
|
|
|
Status = GetMemoryRegionRec (
|
|
TranslationTable,
|
|
TableLevel,
|
|
(UINTN *)TT_LAST_BLOCK_ADDRESS (TranslationTable, EntryCount),
|
|
BaseAddress,
|
|
RegionLength,
|
|
RegionAttributes
|
|
);
|
|
|
|
// If the region continues up to the end of the root table then GetMemoryRegionRec()
|
|
// will return EFI_NOT_FOUND
|
|
if (Status == EFI_NOT_FOUND) {
|
|
return EFI_SUCCESS;
|
|
} else {
|
|
return Status;
|
|
}
|
|
}
|