Today's implementation allocates below 1MB memory for the 16bit, 32bit and 64bit code. But it's not necessary since now the 32bit and 64bit code run at high memory no matter in PEI and DXE phase. The patch simplifies the logic to remove the code that handles the case when WakeupBufferHigh is 0. It also reduce the memory foot print under 1MB by allocating memory for 16bit code only. MP_CPU_EXCHANGE_INFO is still under 1MB which is immediate after the 16bit code. Signed-off-by: Ray Ni <ray.ni@intel.com> Reviewed-by: Eric Dong <eric.dong@intel.com>
263 lines
6.6 KiB
C
263 lines
6.6 KiB
C
/** @file
|
|
CPU MP Initialize helper function for AMD SEV.
|
|
|
|
Copyright (c) 2021, AMD Inc. All rights reserved.<BR>
|
|
|
|
SPDX-License-Identifier: BSD-2-Clause-Patent
|
|
|
|
**/
|
|
|
|
#include "MpLib.h"
|
|
#include <Library/VmgExitLib.h>
|
|
|
|
/**
|
|
Get Protected mode code segment with 16-bit default addressing
|
|
from current GDT table.
|
|
|
|
@return Protected mode 16-bit code segment value.
|
|
**/
|
|
STATIC
|
|
UINT16
|
|
GetProtectedMode16CS (
|
|
VOID
|
|
)
|
|
{
|
|
IA32_DESCRIPTOR GdtrDesc;
|
|
IA32_SEGMENT_DESCRIPTOR *GdtEntry;
|
|
UINTN GdtEntryCount;
|
|
UINT16 Index;
|
|
|
|
Index = (UINT16)-1;
|
|
AsmReadGdtr (&GdtrDesc);
|
|
GdtEntryCount = (GdtrDesc.Limit + 1) / sizeof (IA32_SEGMENT_DESCRIPTOR);
|
|
GdtEntry = (IA32_SEGMENT_DESCRIPTOR *)GdtrDesc.Base;
|
|
for (Index = 0; Index < GdtEntryCount; Index++) {
|
|
if ((GdtEntry->Bits.L == 0) &&
|
|
(GdtEntry->Bits.DB == 0) &&
|
|
(GdtEntry->Bits.Type > 8))
|
|
{
|
|
break;
|
|
}
|
|
|
|
GdtEntry++;
|
|
}
|
|
|
|
ASSERT (Index != GdtEntryCount);
|
|
return Index * 8;
|
|
}
|
|
|
|
/**
|
|
Get Protected mode code segment with 32-bit default addressing
|
|
from current GDT table.
|
|
|
|
@return Protected mode 32-bit code segment value.
|
|
**/
|
|
STATIC
|
|
UINT16
|
|
GetProtectedMode32CS (
|
|
VOID
|
|
)
|
|
{
|
|
IA32_DESCRIPTOR GdtrDesc;
|
|
IA32_SEGMENT_DESCRIPTOR *GdtEntry;
|
|
UINTN GdtEntryCount;
|
|
UINT16 Index;
|
|
|
|
Index = (UINT16)-1;
|
|
AsmReadGdtr (&GdtrDesc);
|
|
GdtEntryCount = (GdtrDesc.Limit + 1) / sizeof (IA32_SEGMENT_DESCRIPTOR);
|
|
GdtEntry = (IA32_SEGMENT_DESCRIPTOR *)GdtrDesc.Base;
|
|
for (Index = 0; Index < GdtEntryCount; Index++) {
|
|
if ((GdtEntry->Bits.L == 0) &&
|
|
(GdtEntry->Bits.DB == 1) &&
|
|
(GdtEntry->Bits.Type > 8))
|
|
{
|
|
break;
|
|
}
|
|
|
|
GdtEntry++;
|
|
}
|
|
|
|
ASSERT (Index != GdtEntryCount);
|
|
return Index * 8;
|
|
}
|
|
|
|
/**
|
|
Reset an AP when in SEV-ES mode.
|
|
|
|
If successful, this function never returns.
|
|
|
|
@param[in] Ghcb Pointer to the GHCB
|
|
@param[in] CpuMpData Pointer to CPU MP Data
|
|
|
|
**/
|
|
VOID
|
|
MpInitLibSevEsAPReset (
|
|
IN GHCB *Ghcb,
|
|
IN CPU_MP_DATA *CpuMpData
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
UINTN ProcessorNumber;
|
|
UINT16 Code16, Code32;
|
|
AP_RESET *APResetFn;
|
|
UINTN BufferStart;
|
|
UINTN StackStart;
|
|
|
|
Status = GetProcessorNumber (CpuMpData, &ProcessorNumber);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
Code16 = GetProtectedMode16CS ();
|
|
Code32 = GetProtectedMode32CS ();
|
|
|
|
APResetFn = (AP_RESET *)(CpuMpData->WakeupBufferHigh + CpuMpData->AddressMap.SwitchToRealNoNxOffset);
|
|
|
|
BufferStart = CpuMpData->MpCpuExchangeInfo->BufferStart;
|
|
StackStart = CpuMpData->SevEsAPResetStackStart -
|
|
(AP_RESET_STACK_SIZE * ProcessorNumber);
|
|
|
|
//
|
|
// This call never returns.
|
|
//
|
|
APResetFn (BufferStart, Code16, Code32, StackStart);
|
|
}
|
|
|
|
/**
|
|
Allocate the SEV-ES AP jump table buffer.
|
|
|
|
@param[in, out] CpuMpData The pointer to CPU MP Data structure.
|
|
**/
|
|
VOID
|
|
AllocateSevEsAPMemory (
|
|
IN OUT CPU_MP_DATA *CpuMpData
|
|
)
|
|
{
|
|
if (CpuMpData->SevEsAPBuffer == (UINTN)-1) {
|
|
CpuMpData->SevEsAPBuffer =
|
|
CpuMpData->SevEsIsEnabled ? GetSevEsAPMemory () : 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
Program the SEV-ES AP jump table buffer.
|
|
|
|
@param[in] SipiVector The SIPI vector used for the AP Reset
|
|
**/
|
|
VOID
|
|
SetSevEsJumpTable (
|
|
IN UINTN SipiVector
|
|
)
|
|
{
|
|
SEV_ES_AP_JMP_FAR *JmpFar;
|
|
UINT32 Offset, InsnByte;
|
|
UINT8 LoNib, HiNib;
|
|
|
|
JmpFar = (SEV_ES_AP_JMP_FAR *)(UINTN)FixedPcdGet32 (PcdSevEsWorkAreaBase);
|
|
ASSERT (JmpFar != NULL);
|
|
|
|
//
|
|
// Obtain the address of the Segment/Rip location in the workarea.
|
|
// This will be set to a value derived from the SIPI vector and will
|
|
// be the memory address used for the far jump below.
|
|
//
|
|
Offset = FixedPcdGet32 (PcdSevEsWorkAreaBase);
|
|
Offset += sizeof (JmpFar->InsnBuffer);
|
|
LoNib = (UINT8)Offset;
|
|
HiNib = (UINT8)(Offset >> 8);
|
|
|
|
//
|
|
// Program the workarea (which is the initial AP boot address) with
|
|
// far jump to the SIPI vector (where XX and YY represent the
|
|
// address of where the SIPI vector is stored.
|
|
//
|
|
// JMP FAR [CS:XXYY] => 2E FF 2E YY XX
|
|
//
|
|
InsnByte = 0;
|
|
JmpFar->InsnBuffer[InsnByte++] = 0x2E; // CS override prefix
|
|
JmpFar->InsnBuffer[InsnByte++] = 0xFF; // JMP (FAR)
|
|
JmpFar->InsnBuffer[InsnByte++] = 0x2E; // ModRM (JMP memory location)
|
|
JmpFar->InsnBuffer[InsnByte++] = LoNib; // YY offset ...
|
|
JmpFar->InsnBuffer[InsnByte++] = HiNib; // XX offset ...
|
|
|
|
//
|
|
// Program the Segment/Rip based on the SIPI vector (always at least
|
|
// 16-byte aligned, so Rip is set to 0).
|
|
//
|
|
JmpFar->Rip = 0;
|
|
JmpFar->Segment = (UINT16)(SipiVector >> 4);
|
|
}
|
|
|
|
/**
|
|
The function puts the AP in halt loop.
|
|
|
|
@param[in] CpuMpData The pointer to CPU MP Data structure.
|
|
**/
|
|
VOID
|
|
SevEsPlaceApHlt (
|
|
CPU_MP_DATA *CpuMpData
|
|
)
|
|
{
|
|
MSR_SEV_ES_GHCB_REGISTER Msr;
|
|
GHCB *Ghcb;
|
|
UINT64 Status;
|
|
BOOLEAN DoDecrement;
|
|
BOOLEAN InterruptState;
|
|
|
|
DoDecrement = (BOOLEAN)(CpuMpData->InitFlag == ApInitConfig);
|
|
|
|
while (TRUE) {
|
|
Msr.GhcbPhysicalAddress = AsmReadMsr64 (MSR_SEV_ES_GHCB);
|
|
Ghcb = Msr.Ghcb;
|
|
|
|
VmgInit (Ghcb, &InterruptState);
|
|
|
|
if (DoDecrement) {
|
|
DoDecrement = FALSE;
|
|
|
|
//
|
|
// Perform the delayed decrement just before issuing the first
|
|
// VMGEXIT with AP_RESET_HOLD.
|
|
//
|
|
InterlockedDecrement ((UINT32 *)&CpuMpData->MpCpuExchangeInfo->NumApsExecuting);
|
|
}
|
|
|
|
Status = VmgExit (Ghcb, SVM_EXIT_AP_RESET_HOLD, 0, 0);
|
|
if ((Status == 0) && (Ghcb->SaveArea.SwExitInfo2 != 0)) {
|
|
VmgDone (Ghcb, InterruptState);
|
|
break;
|
|
}
|
|
|
|
VmgDone (Ghcb, InterruptState);
|
|
}
|
|
|
|
//
|
|
// Awakened in a new phase? Use the new CpuMpData
|
|
//
|
|
if (CpuMpData->NewCpuMpData != NULL) {
|
|
CpuMpData = CpuMpData->NewCpuMpData;
|
|
}
|
|
|
|
MpInitLibSevEsAPReset (Ghcb, CpuMpData);
|
|
}
|
|
|
|
/**
|
|
The function fills the exchange data for the AP.
|
|
|
|
@param[in] ExchangeInfo The pointer to CPU Exchange Data structure
|
|
**/
|
|
VOID
|
|
FillExchangeInfoDataSevEs (
|
|
IN volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo
|
|
)
|
|
{
|
|
UINT32 StdRangeMax;
|
|
|
|
AsmCpuid (CPUID_SIGNATURE, &StdRangeMax, NULL, NULL, NULL);
|
|
if (StdRangeMax >= CPUID_EXTENDED_TOPOLOGY) {
|
|
CPUID_EXTENDED_TOPOLOGY_EBX ExtTopoEbx;
|
|
|
|
AsmCpuid (CPUID_EXTENDED_TOPOLOGY, NULL, &ExtTopoEbx.Uint32, NULL, NULL);
|
|
ExchangeInfo->ExtTopoAvail = !!ExtTopoEbx.Bits.LogicalProcessors;
|
|
}
|
|
}
|