These files are a subset of the python-2.7.2.tgz distribution from python.org. Changed files from PyMod-2.7.2 have been copied into the corresponding directories of this tree, replacing the original files in the distribution. Signed-off-by: daryl.mcdaniel@intel.com git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13197 6f19259b-4bc3-4df7-8a09-765794883524
		
			
				
	
	
		
			652 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			652 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import unittest
 | |
| from test import test_support
 | |
| 
 | |
| from random import random
 | |
| from math import atan2, isnan, copysign
 | |
| 
 | |
| INF = float("inf")
 | |
| NAN = float("nan")
 | |
| # These tests ensure that complex math does the right thing
 | |
| 
 | |
| class ComplexTest(unittest.TestCase):
 | |
| 
 | |
|     def assertAlmostEqual(self, a, b):
 | |
|         if isinstance(a, complex):
 | |
|             if isinstance(b, complex):
 | |
|                 unittest.TestCase.assertAlmostEqual(self, a.real, b.real)
 | |
|                 unittest.TestCase.assertAlmostEqual(self, a.imag, b.imag)
 | |
|             else:
 | |
|                 unittest.TestCase.assertAlmostEqual(self, a.real, b)
 | |
|                 unittest.TestCase.assertAlmostEqual(self, a.imag, 0.)
 | |
|         else:
 | |
|             if isinstance(b, complex):
 | |
|                 unittest.TestCase.assertAlmostEqual(self, a, b.real)
 | |
|                 unittest.TestCase.assertAlmostEqual(self, 0., b.imag)
 | |
|             else:
 | |
|                 unittest.TestCase.assertAlmostEqual(self, a, b)
 | |
| 
 | |
|     def assertCloseAbs(self, x, y, eps=1e-9):
 | |
|         """Return true iff floats x and y "are close\""""
 | |
|         # put the one with larger magnitude second
 | |
|         if abs(x) > abs(y):
 | |
|             x, y = y, x
 | |
|         if y == 0:
 | |
|             return abs(x) < eps
 | |
|         if x == 0:
 | |
|             return abs(y) < eps
 | |
|         # check that relative difference < eps
 | |
|         self.assertTrue(abs((x-y)/y) < eps)
 | |
| 
 | |
|     def assertFloatsAreIdentical(self, x, y):
 | |
|         """assert that floats x and y are identical, in the sense that:
 | |
|         (1) both x and y are nans, or
 | |
|         (2) both x and y are infinities, with the same sign, or
 | |
|         (3) both x and y are zeros, with the same sign, or
 | |
|         (4) x and y are both finite and nonzero, and x == y
 | |
| 
 | |
|         """
 | |
|         msg = 'floats {!r} and {!r} are not identical'
 | |
| 
 | |
|         if isnan(x) or isnan(y):
 | |
|             if isnan(x) and isnan(y):
 | |
|                 return
 | |
|         elif x == y:
 | |
|             if x != 0.0:
 | |
|                 return
 | |
|             # both zero; check that signs match
 | |
|             elif copysign(1.0, x) == copysign(1.0, y):
 | |
|                 return
 | |
|             else:
 | |
|                 msg += ': zeros have different signs'
 | |
|         self.fail(msg.format(x, y))
 | |
| 
 | |
|     def assertClose(self, x, y, eps=1e-9):
 | |
|         """Return true iff complexes x and y "are close\""""
 | |
|         self.assertCloseAbs(x.real, y.real, eps)
 | |
|         self.assertCloseAbs(x.imag, y.imag, eps)
 | |
| 
 | |
|     def check_div(self, x, y):
 | |
|         """Compute complex z=x*y, and check that z/x==y and z/y==x."""
 | |
|         z = x * y
 | |
|         if x != 0:
 | |
|             q = z / x
 | |
|             self.assertClose(q, y)
 | |
|             q = z.__div__(x)
 | |
|             self.assertClose(q, y)
 | |
|             q = z.__truediv__(x)
 | |
|             self.assertClose(q, y)
 | |
|         if y != 0:
 | |
|             q = z / y
 | |
|             self.assertClose(q, x)
 | |
|             q = z.__div__(y)
 | |
|             self.assertClose(q, x)
 | |
|             q = z.__truediv__(y)
 | |
|             self.assertClose(q, x)
 | |
| 
 | |
|     def test_div(self):
 | |
|         simple_real = [float(i) for i in xrange(-5, 6)]
 | |
|         simple_complex = [complex(x, y) for x in simple_real for y in simple_real]
 | |
|         for x in simple_complex:
 | |
|             for y in simple_complex:
 | |
|                 self.check_div(x, y)
 | |
| 
 | |
|         # A naive complex division algorithm (such as in 2.0) is very prone to
 | |
|         # nonsense errors for these (overflows and underflows).
 | |
|         self.check_div(complex(1e200, 1e200), 1+0j)
 | |
|         self.check_div(complex(1e-200, 1e-200), 1+0j)
 | |
| 
 | |
|         # Just for fun.
 | |
|         for i in xrange(100):
 | |
|             self.check_div(complex(random(), random()),
 | |
|                            complex(random(), random()))
 | |
| 
 | |
|         self.assertRaises(ZeroDivisionError, complex.__div__, 1+1j, 0+0j)
 | |
|         # FIXME: The following currently crashes on Alpha
 | |
|         # self.assertRaises(OverflowError, pow, 1e200+1j, 1e200+1j)
 | |
| 
 | |
|     def test_truediv(self):
 | |
|         self.assertAlmostEqual(complex.__truediv__(2+0j, 1+1j), 1-1j)
 | |
|         self.assertRaises(ZeroDivisionError, complex.__truediv__, 1+1j, 0+0j)
 | |
| 
 | |
|     def test_floordiv(self):
 | |
|         self.assertAlmostEqual(complex.__floordiv__(3+0j, 1.5+0j), 2)
 | |
|         self.assertRaises(ZeroDivisionError, complex.__floordiv__, 3+0j, 0+0j)
 | |
| 
 | |
|     def test_coerce(self):
 | |
|         self.assertRaises(OverflowError, complex.__coerce__, 1+1j, 1L<<10000)
 | |
| 
 | |
|     def test_no_implicit_coerce(self):
 | |
|         # Python 2.7 removed implicit coercion from the complex type
 | |
|         class A(object):
 | |
|             def __coerce__(self, other):
 | |
|                 raise RuntimeError
 | |
|             __hash__ = None
 | |
|             def __cmp__(self, other):
 | |
|                 return -1
 | |
| 
 | |
|         a = A()
 | |
|         self.assertRaises(TypeError, lambda: a + 2.0j)
 | |
|         self.assertTrue(a < 2.0j)
 | |
| 
 | |
|     def test_richcompare(self):
 | |
|         self.assertEqual(complex.__eq__(1+1j, 1L<<10000), False)
 | |
|         self.assertEqual(complex.__lt__(1+1j, None), NotImplemented)
 | |
|         self.assertIs(complex.__eq__(1+1j, 1+1j), True)
 | |
|         self.assertIs(complex.__eq__(1+1j, 2+2j), False)
 | |
|         self.assertIs(complex.__ne__(1+1j, 1+1j), False)
 | |
|         self.assertIs(complex.__ne__(1+1j, 2+2j), True)
 | |
|         self.assertRaises(TypeError, complex.__lt__, 1+1j, 2+2j)
 | |
|         self.assertRaises(TypeError, complex.__le__, 1+1j, 2+2j)
 | |
|         self.assertRaises(TypeError, complex.__gt__, 1+1j, 2+2j)
 | |
|         self.assertRaises(TypeError, complex.__ge__, 1+1j, 2+2j)
 | |
| 
 | |
|     def test_richcompare_boundaries(self):
 | |
|         def check(n, deltas, is_equal, imag = 0.0):
 | |
|             for delta in deltas:
 | |
|                 i = n + delta
 | |
|                 z = complex(i, imag)
 | |
|                 self.assertIs(complex.__eq__(z, i), is_equal(delta))
 | |
|                 self.assertIs(complex.__ne__(z, i), not is_equal(delta))
 | |
|         # For IEEE-754 doubles the following should hold:
 | |
|         #    x in [2 ** (52 + i), 2 ** (53 + i + 1)] -> x mod 2 ** i == 0
 | |
|         # where the interval is representable, of course.
 | |
|         for i in range(1, 10):
 | |
|             pow = 52 + i
 | |
|             mult = 2 ** i
 | |
|             check(2 ** pow, range(1, 101), lambda delta: delta % mult == 0)
 | |
|             check(2 ** pow, range(1, 101), lambda delta: False, float(i))
 | |
|         check(2 ** 53, range(-100, 0), lambda delta: True)
 | |
| 
 | |
|     def test_mod(self):
 | |
|         self.assertRaises(ZeroDivisionError, (1+1j).__mod__, 0+0j)
 | |
| 
 | |
|         a = 3.33+4.43j
 | |
|         try:
 | |
|             a % 0
 | |
|         except ZeroDivisionError:
 | |
|             pass
 | |
|         else:
 | |
|             self.fail("modulo parama can't be 0")
 | |
| 
 | |
|     def test_divmod(self):
 | |
|         self.assertRaises(ZeroDivisionError, divmod, 1+1j, 0+0j)
 | |
| 
 | |
|     def test_pow(self):
 | |
|         self.assertAlmostEqual(pow(1+1j, 0+0j), 1.0)
 | |
|         self.assertAlmostEqual(pow(0+0j, 2+0j), 0.0)
 | |
|         self.assertRaises(ZeroDivisionError, pow, 0+0j, 1j)
 | |
|         self.assertAlmostEqual(pow(1j, -1), 1/1j)
 | |
|         self.assertAlmostEqual(pow(1j, 200), 1)
 | |
|         self.assertRaises(ValueError, pow, 1+1j, 1+1j, 1+1j)
 | |
| 
 | |
|         a = 3.33+4.43j
 | |
|         self.assertEqual(a ** 0j, 1)
 | |
|         self.assertEqual(a ** 0.+0.j, 1)
 | |
| 
 | |
|         self.assertEqual(3j ** 0j, 1)
 | |
|         self.assertEqual(3j ** 0, 1)
 | |
| 
 | |
|         try:
 | |
|             0j ** a
 | |
|         except ZeroDivisionError:
 | |
|             pass
 | |
|         else:
 | |
|             self.fail("should fail 0.0 to negative or complex power")
 | |
| 
 | |
|         try:
 | |
|             0j ** (3-2j)
 | |
|         except ZeroDivisionError:
 | |
|             pass
 | |
|         else:
 | |
|             self.fail("should fail 0.0 to negative or complex power")
 | |
| 
 | |
|         # The following is used to exercise certain code paths
 | |
|         self.assertEqual(a ** 105, a ** 105)
 | |
|         self.assertEqual(a ** -105, a ** -105)
 | |
|         self.assertEqual(a ** -30, a ** -30)
 | |
| 
 | |
|         self.assertEqual(0.0j ** 0, 1)
 | |
| 
 | |
|         b = 5.1+2.3j
 | |
|         self.assertRaises(ValueError, pow, a, b, 0)
 | |
| 
 | |
|     def test_boolcontext(self):
 | |
|         for i in xrange(100):
 | |
|             self.assertTrue(complex(random() + 1e-6, random() + 1e-6))
 | |
|         self.assertTrue(not complex(0.0, 0.0))
 | |
| 
 | |
|     def test_conjugate(self):
 | |
|         self.assertClose(complex(5.3, 9.8).conjugate(), 5.3-9.8j)
 | |
| 
 | |
|     def test_constructor(self):
 | |
|         class OS:
 | |
|             def __init__(self, value): self.value = value
 | |
|             def __complex__(self): return self.value
 | |
|         class NS(object):
 | |
|             def __init__(self, value): self.value = value
 | |
|             def __complex__(self): return self.value
 | |
|         self.assertEqual(complex(OS(1+10j)), 1+10j)
 | |
|         self.assertEqual(complex(NS(1+10j)), 1+10j)
 | |
|         self.assertRaises(TypeError, complex, OS(None))
 | |
|         self.assertRaises(TypeError, complex, NS(None))
 | |
| 
 | |
|         self.assertAlmostEqual(complex("1+10j"), 1+10j)
 | |
|         self.assertAlmostEqual(complex(10), 10+0j)
 | |
|         self.assertAlmostEqual(complex(10.0), 10+0j)
 | |
|         self.assertAlmostEqual(complex(10L), 10+0j)
 | |
|         self.assertAlmostEqual(complex(10+0j), 10+0j)
 | |
|         self.assertAlmostEqual(complex(1,10), 1+10j)
 | |
|         self.assertAlmostEqual(complex(1,10L), 1+10j)
 | |
|         self.assertAlmostEqual(complex(1,10.0), 1+10j)
 | |
|         self.assertAlmostEqual(complex(1L,10), 1+10j)
 | |
|         self.assertAlmostEqual(complex(1L,10L), 1+10j)
 | |
|         self.assertAlmostEqual(complex(1L,10.0), 1+10j)
 | |
|         self.assertAlmostEqual(complex(1.0,10), 1+10j)
 | |
|         self.assertAlmostEqual(complex(1.0,10L), 1+10j)
 | |
|         self.assertAlmostEqual(complex(1.0,10.0), 1+10j)
 | |
|         self.assertAlmostEqual(complex(3.14+0j), 3.14+0j)
 | |
|         self.assertAlmostEqual(complex(3.14), 3.14+0j)
 | |
|         self.assertAlmostEqual(complex(314), 314.0+0j)
 | |
|         self.assertAlmostEqual(complex(314L), 314.0+0j)
 | |
|         self.assertAlmostEqual(complex(3.14+0j, 0j), 3.14+0j)
 | |
|         self.assertAlmostEqual(complex(3.14, 0.0), 3.14+0j)
 | |
|         self.assertAlmostEqual(complex(314, 0), 314.0+0j)
 | |
|         self.assertAlmostEqual(complex(314L, 0L), 314.0+0j)
 | |
|         self.assertAlmostEqual(complex(0j, 3.14j), -3.14+0j)
 | |
|         self.assertAlmostEqual(complex(0.0, 3.14j), -3.14+0j)
 | |
|         self.assertAlmostEqual(complex(0j, 3.14), 3.14j)
 | |
|         self.assertAlmostEqual(complex(0.0, 3.14), 3.14j)
 | |
|         self.assertAlmostEqual(complex("1"), 1+0j)
 | |
|         self.assertAlmostEqual(complex("1j"), 1j)
 | |
|         self.assertAlmostEqual(complex(),  0)
 | |
|         self.assertAlmostEqual(complex("-1"), -1)
 | |
|         self.assertAlmostEqual(complex("+1"), +1)
 | |
|         self.assertAlmostEqual(complex("(1+2j)"), 1+2j)
 | |
|         self.assertAlmostEqual(complex("(1.3+2.2j)"), 1.3+2.2j)
 | |
|         self.assertAlmostEqual(complex("3.14+1J"), 3.14+1j)
 | |
|         self.assertAlmostEqual(complex(" ( +3.14-6J )"), 3.14-6j)
 | |
|         self.assertAlmostEqual(complex(" ( +3.14-J )"), 3.14-1j)
 | |
|         self.assertAlmostEqual(complex(" ( +3.14+j )"), 3.14+1j)
 | |
|         self.assertAlmostEqual(complex("J"), 1j)
 | |
|         self.assertAlmostEqual(complex("( j )"), 1j)
 | |
|         self.assertAlmostEqual(complex("+J"), 1j)
 | |
|         self.assertAlmostEqual(complex("( -j)"), -1j)
 | |
|         self.assertAlmostEqual(complex('1e-500'), 0.0 + 0.0j)
 | |
|         self.assertAlmostEqual(complex('-1e-500j'), 0.0 - 0.0j)
 | |
|         self.assertAlmostEqual(complex('-1e-500+1e-500j'), -0.0 + 0.0j)
 | |
| 
 | |
|         class complex2(complex): pass
 | |
|         self.assertAlmostEqual(complex(complex2(1+1j)), 1+1j)
 | |
|         self.assertAlmostEqual(complex(real=17, imag=23), 17+23j)
 | |
|         self.assertAlmostEqual(complex(real=17+23j), 17+23j)
 | |
|         self.assertAlmostEqual(complex(real=17+23j, imag=23), 17+46j)
 | |
|         self.assertAlmostEqual(complex(real=1+2j, imag=3+4j), -3+5j)
 | |
| 
 | |
|         # check that the sign of a zero in the real or imaginary part
 | |
|         # is preserved when constructing from two floats.  (These checks
 | |
|         # are harmless on systems without support for signed zeros.)
 | |
|         def split_zeros(x):
 | |
|             """Function that produces different results for 0. and -0."""
 | |
|             return atan2(x, -1.)
 | |
| 
 | |
|         self.assertEqual(split_zeros(complex(1., 0.).imag), split_zeros(0.))
 | |
|         self.assertEqual(split_zeros(complex(1., -0.).imag), split_zeros(-0.))
 | |
|         self.assertEqual(split_zeros(complex(0., 1.).real), split_zeros(0.))
 | |
|         self.assertEqual(split_zeros(complex(-0., 1.).real), split_zeros(-0.))
 | |
| 
 | |
|         c = 3.14 + 1j
 | |
|         self.assertTrue(complex(c) is c)
 | |
|         del c
 | |
| 
 | |
|         self.assertRaises(TypeError, complex, "1", "1")
 | |
|         self.assertRaises(TypeError, complex, 1, "1")
 | |
| 
 | |
|         if test_support.have_unicode:
 | |
|             self.assertEqual(complex(unicode("  3.14+J  ")), 3.14+1j)
 | |
| 
 | |
|         # SF bug 543840:  complex(string) accepts strings with \0
 | |
|         # Fixed in 2.3.
 | |
|         self.assertRaises(ValueError, complex, '1+1j\0j')
 | |
| 
 | |
|         self.assertRaises(TypeError, int, 5+3j)
 | |
|         self.assertRaises(TypeError, long, 5+3j)
 | |
|         self.assertRaises(TypeError, float, 5+3j)
 | |
|         self.assertRaises(ValueError, complex, "")
 | |
|         self.assertRaises(TypeError, complex, None)
 | |
|         self.assertRaises(ValueError, complex, "\0")
 | |
|         self.assertRaises(ValueError, complex, "3\09")
 | |
|         self.assertRaises(TypeError, complex, "1", "2")
 | |
|         self.assertRaises(TypeError, complex, "1", 42)
 | |
|         self.assertRaises(TypeError, complex, 1, "2")
 | |
|         self.assertRaises(ValueError, complex, "1+")
 | |
|         self.assertRaises(ValueError, complex, "1+1j+1j")
 | |
|         self.assertRaises(ValueError, complex, "--")
 | |
|         self.assertRaises(ValueError, complex, "(1+2j")
 | |
|         self.assertRaises(ValueError, complex, "1+2j)")
 | |
|         self.assertRaises(ValueError, complex, "1+(2j)")
 | |
|         self.assertRaises(ValueError, complex, "(1+2j)123")
 | |
|         if test_support.have_unicode:
 | |
|             self.assertRaises(ValueError, complex, unicode("x"))
 | |
|         self.assertRaises(ValueError, complex, "1j+2")
 | |
|         self.assertRaises(ValueError, complex, "1e1ej")
 | |
|         self.assertRaises(ValueError, complex, "1e++1ej")
 | |
|         self.assertRaises(ValueError, complex, ")1+2j(")
 | |
|         # the following three are accepted by Python 2.6
 | |
|         self.assertRaises(ValueError, complex, "1..1j")
 | |
|         self.assertRaises(ValueError, complex, "1.11.1j")
 | |
|         self.assertRaises(ValueError, complex, "1e1.1j")
 | |
| 
 | |
|         if test_support.have_unicode:
 | |
|             # check that complex accepts long unicode strings
 | |
|             self.assertEqual(type(complex(unicode("1"*500))), complex)
 | |
| 
 | |
|         class EvilExc(Exception):
 | |
|             pass
 | |
| 
 | |
|         class evilcomplex:
 | |
|             def __complex__(self):
 | |
|                 raise EvilExc
 | |
| 
 | |
|         self.assertRaises(EvilExc, complex, evilcomplex())
 | |
| 
 | |
|         class float2:
 | |
|             def __init__(self, value):
 | |
|                 self.value = value
 | |
|             def __float__(self):
 | |
|                 return self.value
 | |
| 
 | |
|         self.assertAlmostEqual(complex(float2(42.)), 42)
 | |
|         self.assertAlmostEqual(complex(real=float2(17.), imag=float2(23.)), 17+23j)
 | |
|         self.assertRaises(TypeError, complex, float2(None))
 | |
| 
 | |
|         class complex0(complex):
 | |
|             """Test usage of __complex__() when inheriting from 'complex'"""
 | |
|             def __complex__(self):
 | |
|                 return 42j
 | |
| 
 | |
|         class complex1(complex):
 | |
|             """Test usage of __complex__() with a __new__() method"""
 | |
|             def __new__(self, value=0j):
 | |
|                 return complex.__new__(self, 2*value)
 | |
|             def __complex__(self):
 | |
|                 return self
 | |
| 
 | |
|         class complex2(complex):
 | |
|             """Make sure that __complex__() calls fail if anything other than a
 | |
|             complex is returned"""
 | |
|             def __complex__(self):
 | |
|                 return None
 | |
| 
 | |
|         self.assertAlmostEqual(complex(complex0(1j)), 42j)
 | |
|         self.assertAlmostEqual(complex(complex1(1j)), 2j)
 | |
|         self.assertRaises(TypeError, complex, complex2(1j))
 | |
| 
 | |
|     def test_subclass(self):
 | |
|         class xcomplex(complex):
 | |
|             def __add__(self,other):
 | |
|                 return xcomplex(complex(self) + other)
 | |
|             __radd__ = __add__
 | |
| 
 | |
|             def __sub__(self,other):
 | |
|                 return xcomplex(complex(self) + other)
 | |
|             __rsub__ = __sub__
 | |
| 
 | |
|             def __mul__(self,other):
 | |
|                 return xcomplex(complex(self) * other)
 | |
|             __rmul__ = __mul__
 | |
| 
 | |
|             def __div__(self,other):
 | |
|                 return xcomplex(complex(self) / other)
 | |
| 
 | |
|             def __rdiv__(self,other):
 | |
|                 return xcomplex(other / complex(self))
 | |
| 
 | |
|             __truediv__ = __div__
 | |
|             __rtruediv__ = __rdiv__
 | |
| 
 | |
|             def __floordiv__(self,other):
 | |
|                 return xcomplex(complex(self) // other)
 | |
| 
 | |
|             def __rfloordiv__(self,other):
 | |
|                 return xcomplex(other // complex(self))
 | |
| 
 | |
|             def __pow__(self,other):
 | |
|                 return xcomplex(complex(self) ** other)
 | |
| 
 | |
|             def __rpow__(self,other):
 | |
|                 return xcomplex(other ** complex(self) )
 | |
| 
 | |
|             def __mod__(self,other):
 | |
|                 return xcomplex(complex(self) % other)
 | |
| 
 | |
|             def __rmod__(self,other):
 | |
|                 return xcomplex(other % complex(self))
 | |
| 
 | |
|         infix_binops = ('+', '-', '*', '**', '%', '//', '/')
 | |
|         xcomplex_values = (xcomplex(1), xcomplex(123.0),
 | |
|                            xcomplex(-10+2j), xcomplex(3+187j),
 | |
|                            xcomplex(3-78j))
 | |
|         test_values = (1, 123.0, 10-19j, xcomplex(1+2j),
 | |
|                        xcomplex(1+87j), xcomplex(10+90j))
 | |
| 
 | |
|         for op in infix_binops:
 | |
|             for x in xcomplex_values:
 | |
|                 for y in test_values:
 | |
|                     a = 'x %s y' % op
 | |
|                     b = 'y %s x' % op
 | |
|                     self.assertTrue(type(eval(a)) is type(eval(b)) is xcomplex)
 | |
| 
 | |
|     def test_hash(self):
 | |
|         for x in xrange(-30, 30):
 | |
|             self.assertEqual(hash(x), hash(complex(x, 0)))
 | |
|             x /= 3.0    # now check against floating point
 | |
|             self.assertEqual(hash(x), hash(complex(x, 0.)))
 | |
| 
 | |
|     def test_abs(self):
 | |
|         nums = [complex(x/3., y/7.) for x in xrange(-9,9) for y in xrange(-9,9)]
 | |
|         for num in nums:
 | |
|             self.assertAlmostEqual((num.real**2 + num.imag**2)  ** 0.5, abs(num))
 | |
| 
 | |
|     def test_repr(self):
 | |
|         self.assertEqual(repr(1+6j), '(1+6j)')
 | |
|         self.assertEqual(repr(1-6j), '(1-6j)')
 | |
| 
 | |
|         self.assertNotEqual(repr(-(1+0j)), '(-1+-0j)')
 | |
| 
 | |
|         self.assertEqual(1-6j,complex(repr(1-6j)))
 | |
|         self.assertEqual(1+6j,complex(repr(1+6j)))
 | |
|         self.assertEqual(-6j,complex(repr(-6j)))
 | |
|         self.assertEqual(6j,complex(repr(6j)))
 | |
| 
 | |
|         self.assertEqual(repr(complex(1., INF)), "(1+infj)")
 | |
|         self.assertEqual(repr(complex(1., -INF)), "(1-infj)")
 | |
|         self.assertEqual(repr(complex(INF, 1)), "(inf+1j)")
 | |
|         self.assertEqual(repr(complex(-INF, INF)), "(-inf+infj)")
 | |
|         self.assertEqual(repr(complex(NAN, 1)), "(nan+1j)")
 | |
|         self.assertEqual(repr(complex(1, NAN)), "(1+nanj)")
 | |
|         self.assertEqual(repr(complex(NAN, NAN)), "(nan+nanj)")
 | |
| 
 | |
|         self.assertEqual(repr(complex(0, INF)), "infj")
 | |
|         self.assertEqual(repr(complex(0, -INF)), "-infj")
 | |
|         self.assertEqual(repr(complex(0, NAN)), "nanj")
 | |
| 
 | |
|     def test_neg(self):
 | |
|         self.assertEqual(-(1+6j), -1-6j)
 | |
| 
 | |
|     def test_file(self):
 | |
|         a = 3.33+4.43j
 | |
|         b = 5.1+2.3j
 | |
| 
 | |
|         fo = None
 | |
|         try:
 | |
|             fo = open(test_support.TESTFN, "wb")
 | |
|             print >>fo, a, b
 | |
|             fo.close()
 | |
|             fo = open(test_support.TESTFN, "rb")
 | |
|             self.assertEqual(fo.read(), "%s %s\n" % (a, b))
 | |
|         finally:
 | |
|             if (fo is not None) and (not fo.closed):
 | |
|                 fo.close()
 | |
|             test_support.unlink(test_support.TESTFN)
 | |
| 
 | |
|     def test_getnewargs(self):
 | |
|         self.assertEqual((1+2j).__getnewargs__(), (1.0, 2.0))
 | |
|         self.assertEqual((1-2j).__getnewargs__(), (1.0, -2.0))
 | |
|         self.assertEqual((2j).__getnewargs__(), (0.0, 2.0))
 | |
|         self.assertEqual((-0j).__getnewargs__(), (0.0, -0.0))
 | |
|         self.assertEqual(complex(0, INF).__getnewargs__(), (0.0, INF))
 | |
|         self.assertEqual(complex(INF, 0).__getnewargs__(), (INF, 0.0))
 | |
| 
 | |
|     if float.__getformat__("double").startswith("IEEE"):
 | |
|         def test_plus_minus_0j(self):
 | |
|             # test that -0j and 0j literals are not identified
 | |
|             z1, z2 = 0j, -0j
 | |
|             self.assertEqual(atan2(z1.imag, -1.), atan2(0., -1.))
 | |
|             self.assertEqual(atan2(z2.imag, -1.), atan2(-0., -1.))
 | |
| 
 | |
|     @unittest.skipUnless(float.__getformat__("double").startswith("IEEE"),
 | |
|                          "test requires IEEE 754 doubles")
 | |
|     def test_overflow(self):
 | |
|         self.assertEqual(complex("1e500"), complex(INF, 0.0))
 | |
|         self.assertEqual(complex("-1e500j"), complex(0.0, -INF))
 | |
|         self.assertEqual(complex("-1e500+1.8e308j"), complex(-INF, INF))
 | |
| 
 | |
|     @unittest.skipUnless(float.__getformat__("double").startswith("IEEE"),
 | |
|                          "test requires IEEE 754 doubles")
 | |
|     def test_repr_roundtrip(self):
 | |
|         vals = [0.0, 1e-500, 1e-315, 1e-200, 0.0123, 3.1415, 1e50, INF, NAN]
 | |
|         vals += [-v for v in vals]
 | |
| 
 | |
|         # complex(repr(z)) should recover z exactly, even for complex
 | |
|         # numbers involving an infinity, nan, or negative zero
 | |
|         for x in vals:
 | |
|             for y in vals:
 | |
|                 z = complex(x, y)
 | |
|                 roundtrip = complex(repr(z))
 | |
|                 self.assertFloatsAreIdentical(z.real, roundtrip.real)
 | |
|                 self.assertFloatsAreIdentical(z.imag, roundtrip.imag)
 | |
| 
 | |
|         # if we predefine some constants, then eval(repr(z)) should
 | |
|         # also work, except that it might change the sign of zeros
 | |
|         inf, nan = float('inf'), float('nan')
 | |
|         infj, nanj = complex(0.0, inf), complex(0.0, nan)
 | |
|         for x in vals:
 | |
|             for y in vals:
 | |
|                 z = complex(x, y)
 | |
|                 roundtrip = eval(repr(z))
 | |
|                 # adding 0.0 has no effect beside changing -0.0 to 0.0
 | |
|                 self.assertFloatsAreIdentical(0.0 + z.real,
 | |
|                                               0.0 + roundtrip.real)
 | |
|                 self.assertFloatsAreIdentical(0.0 + z.imag,
 | |
|                                               0.0 + roundtrip.imag)
 | |
| 
 | |
|     def test_format(self):
 | |
|         # empty format string is same as str()
 | |
|         self.assertEqual(format(1+3j, ''), str(1+3j))
 | |
|         self.assertEqual(format(1.5+3.5j, ''), str(1.5+3.5j))
 | |
|         self.assertEqual(format(3j, ''), str(3j))
 | |
|         self.assertEqual(format(3.2j, ''), str(3.2j))
 | |
|         self.assertEqual(format(3+0j, ''), str(3+0j))
 | |
|         self.assertEqual(format(3.2+0j, ''), str(3.2+0j))
 | |
| 
 | |
|         # empty presentation type should still be analogous to str,
 | |
|         # even when format string is nonempty (issue #5920).
 | |
|         self.assertEqual(format(3.2+0j, '-'), str(3.2+0j))
 | |
|         self.assertEqual(format(3.2+0j, '<'), str(3.2+0j))
 | |
|         z = 4/7. - 100j/7.
 | |
|         self.assertEqual(format(z, ''), str(z))
 | |
|         self.assertEqual(format(z, '-'), str(z))
 | |
|         self.assertEqual(format(z, '<'), str(z))
 | |
|         self.assertEqual(format(z, '10'), str(z))
 | |
|         z = complex(0.0, 3.0)
 | |
|         self.assertEqual(format(z, ''), str(z))
 | |
|         self.assertEqual(format(z, '-'), str(z))
 | |
|         self.assertEqual(format(z, '<'), str(z))
 | |
|         self.assertEqual(format(z, '2'), str(z))
 | |
|         z = complex(-0.0, 2.0)
 | |
|         self.assertEqual(format(z, ''), str(z))
 | |
|         self.assertEqual(format(z, '-'), str(z))
 | |
|         self.assertEqual(format(z, '<'), str(z))
 | |
|         self.assertEqual(format(z, '3'), str(z))
 | |
| 
 | |
|         self.assertEqual(format(1+3j, 'g'), '1+3j')
 | |
|         self.assertEqual(format(3j, 'g'), '0+3j')
 | |
|         self.assertEqual(format(1.5+3.5j, 'g'), '1.5+3.5j')
 | |
| 
 | |
|         self.assertEqual(format(1.5+3.5j, '+g'), '+1.5+3.5j')
 | |
|         self.assertEqual(format(1.5-3.5j, '+g'), '+1.5-3.5j')
 | |
|         self.assertEqual(format(1.5-3.5j, '-g'), '1.5-3.5j')
 | |
|         self.assertEqual(format(1.5+3.5j, ' g'), ' 1.5+3.5j')
 | |
|         self.assertEqual(format(1.5-3.5j, ' g'), ' 1.5-3.5j')
 | |
|         self.assertEqual(format(-1.5+3.5j, ' g'), '-1.5+3.5j')
 | |
|         self.assertEqual(format(-1.5-3.5j, ' g'), '-1.5-3.5j')
 | |
| 
 | |
|         self.assertEqual(format(-1.5-3.5e-20j, 'g'), '-1.5-3.5e-20j')
 | |
|         self.assertEqual(format(-1.5-3.5j, 'f'), '-1.500000-3.500000j')
 | |
|         self.assertEqual(format(-1.5-3.5j, 'F'), '-1.500000-3.500000j')
 | |
|         self.assertEqual(format(-1.5-3.5j, 'e'), '-1.500000e+00-3.500000e+00j')
 | |
|         self.assertEqual(format(-1.5-3.5j, '.2e'), '-1.50e+00-3.50e+00j')
 | |
|         self.assertEqual(format(-1.5-3.5j, '.2E'), '-1.50E+00-3.50E+00j')
 | |
|         self.assertEqual(format(-1.5e10-3.5e5j, '.2G'), '-1.5E+10-3.5E+05j')
 | |
| 
 | |
|         self.assertEqual(format(1.5+3j, '<20g'),  '1.5+3j              ')
 | |
|         self.assertEqual(format(1.5+3j, '*<20g'), '1.5+3j**************')
 | |
|         self.assertEqual(format(1.5+3j, '>20g'),  '              1.5+3j')
 | |
|         self.assertEqual(format(1.5+3j, '^20g'),  '       1.5+3j       ')
 | |
|         self.assertEqual(format(1.5+3j, '<20'),   '(1.5+3j)            ')
 | |
|         self.assertEqual(format(1.5+3j, '>20'),   '            (1.5+3j)')
 | |
|         self.assertEqual(format(1.5+3j, '^20'),   '      (1.5+3j)      ')
 | |
|         self.assertEqual(format(1.123-3.123j, '^20.2'), '     (1.1-3.1j)     ')
 | |
| 
 | |
|         self.assertEqual(format(1.5+3j, '20.2f'), '          1.50+3.00j')
 | |
|         self.assertEqual(format(1.5+3j, '>20.2f'), '          1.50+3.00j')
 | |
|         self.assertEqual(format(1.5+3j, '<20.2f'), '1.50+3.00j          ')
 | |
|         self.assertEqual(format(1.5e20+3j, '<20.2f'), '150000000000000000000.00+3.00j')
 | |
|         self.assertEqual(format(1.5e20+3j, '>40.2f'), '          150000000000000000000.00+3.00j')
 | |
|         self.assertEqual(format(1.5e20+3j, '^40,.2f'), '  150,000,000,000,000,000,000.00+3.00j  ')
 | |
|         self.assertEqual(format(1.5e21+3j, '^40,.2f'), ' 1,500,000,000,000,000,000,000.00+3.00j ')
 | |
|         self.assertEqual(format(1.5e21+3000j, ',.2f'), '1,500,000,000,000,000,000,000.00+3,000.00j')
 | |
| 
 | |
|         # alternate is invalid
 | |
|         self.assertRaises(ValueError, (1.5+0.5j).__format__, '#f')
 | |
| 
 | |
|         # zero padding is invalid
 | |
|         self.assertRaises(ValueError, (1.5+0.5j).__format__, '010f')
 | |
| 
 | |
|         # '=' alignment is invalid
 | |
|         self.assertRaises(ValueError, (1.5+3j).__format__, '=20')
 | |
| 
 | |
|         # integer presentation types are an error
 | |
|         for t in 'bcdoxX':
 | |
|             self.assertRaises(ValueError, (1.5+0.5j).__format__, t)
 | |
| 
 | |
|         # make sure everything works in ''.format()
 | |
|         self.assertEqual('*{0:.3f}*'.format(3.14159+2.71828j), '*3.142+2.718j*')
 | |
| 
 | |
|         # issue 3382: 'f' and 'F' with inf's and nan's
 | |
|         self.assertEqual('{0:f}'.format(INF+0j), 'inf+0.000000j')
 | |
|         self.assertEqual('{0:F}'.format(INF+0j), 'INF+0.000000j')
 | |
|         self.assertEqual('{0:f}'.format(-INF+0j), '-inf+0.000000j')
 | |
|         self.assertEqual('{0:F}'.format(-INF+0j), '-INF+0.000000j')
 | |
|         self.assertEqual('{0:f}'.format(complex(INF, INF)), 'inf+infj')
 | |
|         self.assertEqual('{0:F}'.format(complex(INF, INF)), 'INF+INFj')
 | |
|         self.assertEqual('{0:f}'.format(complex(INF, -INF)), 'inf-infj')
 | |
|         self.assertEqual('{0:F}'.format(complex(INF, -INF)), 'INF-INFj')
 | |
|         self.assertEqual('{0:f}'.format(complex(-INF, INF)), '-inf+infj')
 | |
|         self.assertEqual('{0:F}'.format(complex(-INF, INF)), '-INF+INFj')
 | |
|         self.assertEqual('{0:f}'.format(complex(-INF, -INF)), '-inf-infj')
 | |
|         self.assertEqual('{0:F}'.format(complex(-INF, -INF)), '-INF-INFj')
 | |
| 
 | |
|         self.assertEqual('{0:f}'.format(complex(NAN, 0)), 'nan+0.000000j')
 | |
|         self.assertEqual('{0:F}'.format(complex(NAN, 0)), 'NAN+0.000000j')
 | |
|         self.assertEqual('{0:f}'.format(complex(NAN, NAN)), 'nan+nanj')
 | |
|         self.assertEqual('{0:F}'.format(complex(NAN, NAN)), 'NAN+NANj')
 | |
| 
 | |
| def test_main():
 | |
|     with test_support.check_warnings(("complex divmod.., // and % are "
 | |
|                                       "deprecated", DeprecationWarning)):
 | |
|         test_support.run_unittest(ComplexTest)
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     test_main()
 |