REF: https://bugzilla.tianocore.org/show_bug.cgi?id=3737 Apply uncrustify changes to .c/.h files in the MdeModulePkg package Cc: Andrew Fish <afish@apple.com> Cc: Leif Lindholm <leif@nuviainc.com> Cc: Michael D Kinney <michael.d.kinney@intel.com> Signed-off-by: Michael Kubacki <michael.kubacki@microsoft.com> Reviewed-by: Liming Gao <gaoliming@byosoft.com.cn>
		
			
				
	
	
		
			5424 lines
		
	
	
		
			130 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			5424 lines
		
	
	
		
			130 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /** @file
 | |
|   Contains code that implements the virtual machine.
 | |
| 
 | |
| Copyright (c) 2006 - 2018, Intel Corporation. All rights reserved.<BR>
 | |
| SPDX-License-Identifier: BSD-2-Clause-Patent
 | |
| 
 | |
| **/
 | |
| 
 | |
| #include "EbcInt.h"
 | |
| #include "EbcExecute.h"
 | |
| #include "EbcDebuggerHook.h"
 | |
| 
 | |
| //
 | |
| // Define some useful data size constants to allow switch statements based on
 | |
| // size of operands or data.
 | |
| //
 | |
| #define DATA_SIZE_INVALID  0
 | |
| #define DATA_SIZE_8        1
 | |
| #define DATA_SIZE_16       2
 | |
| #define DATA_SIZE_32       4
 | |
| #define DATA_SIZE_64       8
 | |
| #define DATA_SIZE_N        48 // 4 or 8
 | |
| //
 | |
| // Structure we'll use to dispatch opcodes to execute functions.
 | |
| //
 | |
| typedef struct {
 | |
|   EFI_STATUS (*ExecuteFunction)(
 | |
|     IN VM_CONTEXT  *VmPtr
 | |
|     );
 | |
| } VM_TABLE_ENTRY;
 | |
| 
 | |
| typedef
 | |
| UINT64
 | |
| (*DATA_MANIP_EXEC_FUNCTION) (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT64      Op1,
 | |
|   IN UINT64      Op2
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Decode a 16-bit index to determine the offset. Given an index value:
 | |
| 
 | |
|     b15     - sign bit
 | |
|     b14:12  - number of bits in this index assigned to natural units (=a)
 | |
|     ba:11   - constant units = ConstUnits
 | |
|     b0:a    - natural units = NaturalUnits
 | |
| 
 | |
|   Given this info, the offset can be computed by:
 | |
|     offset = sign_bit * (ConstUnits + NaturalUnits * sizeof(UINTN))
 | |
| 
 | |
|   Max offset is achieved with index = 0x7FFF giving an offset of
 | |
|   0x27B (32-bit machine) or 0x477 (64-bit machine).
 | |
|   Min offset is achieved with index =
 | |
| 
 | |
|   @param  VmPtr             A pointer to VM context.
 | |
|   @param  CodeOffset        Offset from IP of the location of the 16-bit index
 | |
|                             to decode.
 | |
| 
 | |
|   @return The decoded offset.
 | |
| 
 | |
| **/
 | |
| INT16
 | |
| VmReadIndex16 (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT32      CodeOffset
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Decode a 32-bit index to determine the offset.
 | |
| 
 | |
|   @param  VmPtr             A pointer to VM context.
 | |
|   @param  CodeOffset        Offset from IP of the location of the 32-bit index
 | |
|                             to decode.
 | |
| 
 | |
|   @return Converted index per EBC VM specification.
 | |
| 
 | |
| **/
 | |
| INT32
 | |
| VmReadIndex32 (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT32      CodeOffset
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Decode a 64-bit index to determine the offset.
 | |
| 
 | |
|   @param  VmPtr             A pointer to VM context.s
 | |
|   @param  CodeOffset        Offset from IP of the location of the 64-bit index
 | |
|                             to decode.
 | |
| 
 | |
|   @return Converted index per EBC VM specification
 | |
| 
 | |
| **/
 | |
| INT64
 | |
| VmReadIndex64 (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT32      CodeOffset
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Reads 8-bit data form the memory address.
 | |
| 
 | |
|   @param  VmPtr             A pointer to VM context.
 | |
|   @param  Addr              The memory address.
 | |
| 
 | |
|   @return The 8-bit value from the memory address.
 | |
| 
 | |
| **/
 | |
| UINT8
 | |
| VmReadMem8 (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINTN       Addr
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Reads 16-bit data form the memory address.
 | |
| 
 | |
|   @param  VmPtr             A pointer to VM context.
 | |
|   @param  Addr              The memory address.
 | |
| 
 | |
|   @return The 16-bit value from the memory address.
 | |
| 
 | |
| **/
 | |
| UINT16
 | |
| VmReadMem16 (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINTN       Addr
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Reads 32-bit data form the memory address.
 | |
| 
 | |
|   @param  VmPtr             A pointer to VM context.
 | |
|   @param  Addr              The memory address.
 | |
| 
 | |
|   @return The 32-bit value from the memory address.
 | |
| 
 | |
| **/
 | |
| UINT32
 | |
| VmReadMem32 (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINTN       Addr
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Reads 64-bit data form the memory address.
 | |
| 
 | |
|   @param  VmPtr             A pointer to VM context.
 | |
|   @param  Addr              The memory address.
 | |
| 
 | |
|   @return The 64-bit value from the memory address.
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| VmReadMem64 (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINTN       Addr
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Read a natural value from memory. May or may not be aligned.
 | |
| 
 | |
|   @param  VmPtr             current VM context
 | |
|   @param  Addr              the address to read from
 | |
| 
 | |
|   @return The natural value at address Addr.
 | |
| 
 | |
| **/
 | |
| UINTN
 | |
| VmReadMemN (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINTN       Addr
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Writes 8-bit data to memory address.
 | |
| 
 | |
|   This routine is called by the EBC data
 | |
|   movement instructions that write to memory. Since these writes
 | |
|   may be to the stack, which looks like (high address on top) this,
 | |
| 
 | |
|   [EBC entry point arguments]
 | |
|   [VM stack]
 | |
|   [EBC stack]
 | |
| 
 | |
|   we need to detect all attempts to write to the EBC entry point argument
 | |
|   stack area and adjust the address (which will initially point into the
 | |
|   VM stack) to point into the EBC entry point arguments.
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Addr              Address to write to.
 | |
|   @param  Data              Value to write to Addr.
 | |
| 
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
|   @retval Other             Some error occurs when writing data to the address.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| VmWriteMem8 (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINTN       Addr,
 | |
|   IN UINT8       Data
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Writes 16-bit data to memory address.
 | |
| 
 | |
|   This routine is called by the EBC data
 | |
|   movement instructions that write to memory. Since these writes
 | |
|   may be to the stack, which looks like (high address on top) this,
 | |
| 
 | |
|   [EBC entry point arguments]
 | |
|   [VM stack]
 | |
|   [EBC stack]
 | |
| 
 | |
|   we need to detect all attempts to write to the EBC entry point argument
 | |
|   stack area and adjust the address (which will initially point into the
 | |
|   VM stack) to point into the EBC entry point arguments.
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Addr              Address to write to.
 | |
|   @param  Data              Value to write to Addr.
 | |
| 
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
|   @retval Other             Some error occurs when writing data to the address.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| VmWriteMem16 (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINTN       Addr,
 | |
|   IN UINT16      Data
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Writes 32-bit data to memory address.
 | |
| 
 | |
|   This routine is called by the EBC data
 | |
|   movement instructions that write to memory. Since these writes
 | |
|   may be to the stack, which looks like (high address on top) this,
 | |
| 
 | |
|   [EBC entry point arguments]
 | |
|   [VM stack]
 | |
|   [EBC stack]
 | |
| 
 | |
|   we need to detect all attempts to write to the EBC entry point argument
 | |
|   stack area and adjust the address (which will initially point into the
 | |
|   VM stack) to point into the EBC entry point arguments.
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Addr              Address to write to.
 | |
|   @param  Data              Value to write to Addr.
 | |
| 
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
|   @retval Other             Some error occurs when writing data to the address.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| VmWriteMem32 (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINTN       Addr,
 | |
|   IN UINT32      Data
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Reads 16-bit unsigned data from the code stream.
 | |
| 
 | |
|   This routine provides the ability to read raw unsigned data from the code
 | |
|   stream.
 | |
| 
 | |
|   @param  VmPtr             A pointer to VM context
 | |
|   @param  Offset            Offset from current IP to the raw data to read.
 | |
| 
 | |
|   @return The raw unsigned 16-bit value from the code stream.
 | |
| 
 | |
| **/
 | |
| UINT16
 | |
| VmReadCode16 (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT32      Offset
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Reads 32-bit unsigned data from the code stream.
 | |
| 
 | |
|   This routine provides the ability to read raw unsigned data from the code
 | |
|   stream.
 | |
| 
 | |
|   @param  VmPtr             A pointer to VM context
 | |
|   @param  Offset            Offset from current IP to the raw data to read.
 | |
| 
 | |
|   @return The raw unsigned 32-bit value from the code stream.
 | |
| 
 | |
| **/
 | |
| UINT32
 | |
| VmReadCode32 (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT32      Offset
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Reads 64-bit unsigned data from the code stream.
 | |
| 
 | |
|   This routine provides the ability to read raw unsigned data from the code
 | |
|   stream.
 | |
| 
 | |
|   @param  VmPtr             A pointer to VM context
 | |
|   @param  Offset            Offset from current IP to the raw data to read.
 | |
| 
 | |
|   @return The raw unsigned 64-bit value from the code stream.
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| VmReadCode64 (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT32      Offset
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Reads 8-bit immediate value at the offset.
 | |
| 
 | |
|   This routine is called by the EBC execute
 | |
|   functions to read EBC immediate values from the code stream.
 | |
|   Since we can't assume alignment, each tries to read in the biggest
 | |
|   chunks size available, but will revert to smaller reads if necessary.
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Offset            offset from IP of the code bytes to read.
 | |
| 
 | |
|   @return Signed data of the requested size from the specified address.
 | |
| 
 | |
| **/
 | |
| INT8
 | |
| VmReadImmed8 (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT32      Offset
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Reads 16-bit immediate value at the offset.
 | |
| 
 | |
|   This routine is called by the EBC execute
 | |
|   functions to read EBC immediate values from the code stream.
 | |
|   Since we can't assume alignment, each tries to read in the biggest
 | |
|   chunks size available, but will revert to smaller reads if necessary.
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Offset            offset from IP of the code bytes to read.
 | |
| 
 | |
|   @return Signed data of the requested size from the specified address.
 | |
| 
 | |
| **/
 | |
| INT16
 | |
| VmReadImmed16 (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT32      Offset
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Reads 32-bit immediate value at the offset.
 | |
| 
 | |
|   This routine is called by the EBC execute
 | |
|   functions to read EBC immediate values from the code stream.
 | |
|   Since we can't assume alignment, each tries to read in the biggest
 | |
|   chunks size available, but will revert to smaller reads if necessary.
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Offset            offset from IP of the code bytes to read.
 | |
| 
 | |
|   @return Signed data of the requested size from the specified address.
 | |
| 
 | |
| **/
 | |
| INT32
 | |
| VmReadImmed32 (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT32      Offset
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Reads 64-bit immediate value at the offset.
 | |
| 
 | |
|   This routine is called by the EBC execute
 | |
|   functions to read EBC immediate values from the code stream.
 | |
|   Since we can't assume alignment, each tries to read in the biggest
 | |
|   chunks size available, but will revert to smaller reads if necessary.
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Offset            offset from IP of the code bytes to read.
 | |
| 
 | |
|   @return Signed data of the requested size from the specified address.
 | |
| 
 | |
| **/
 | |
| INT64
 | |
| VmReadImmed64 (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT32      Offset
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Given an address that EBC is going to read from or write to, return
 | |
|   an appropriate address that accounts for a gap in the stack.
 | |
|   The stack for this application looks like this (high addr on top)
 | |
|   [EBC entry point arguments]
 | |
|   [VM stack]
 | |
|   [EBC stack]
 | |
|   The EBC assumes that its arguments are at the top of its stack, which
 | |
|   is where the VM stack is really. Therefore if the EBC does memory
 | |
|   accesses into the VM stack area, then we need to convert the address
 | |
|   to point to the EBC entry point arguments area. Do this here.
 | |
| 
 | |
|   @param  VmPtr             A Pointer to VM context.
 | |
|   @param  Addr              Address of interest
 | |
| 
 | |
|   @return The unchanged address if it's not in the VM stack region. Otherwise,
 | |
|           adjust for the stack gap and return the modified address.
 | |
| 
 | |
| **/
 | |
| UINTN
 | |
| ConvertStackAddr (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINTN       Addr
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Execute all the EBC data manipulation instructions.
 | |
|   Since the EBC data manipulation instructions all have the same basic form,
 | |
|   they can share the code that does the fetch of operands and the write-back
 | |
|   of the result. This function performs the fetch of the operands (even if
 | |
|   both are not needed to be fetched, like NOT instruction), dispatches to the
 | |
|   appropriate subfunction, then writes back the returned result.
 | |
| 
 | |
|   Format:
 | |
|     INSTRUCITON[32|64] {@}R1, {@}R2 {Immed16|Index16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to VM context.
 | |
|   @param  IsSignedOp        Indicates whether the operand is signed or not.
 | |
| 
 | |
|   @retval EFI_UNSUPPORTED   The opcodes/operands is not supported.
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecuteDataManip (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN BOOLEAN     IsSignedOp
 | |
|   );
 | |
| 
 | |
| //
 | |
| // Functions that execute VM opcodes
 | |
| //
 | |
| 
 | |
| /**
 | |
|   Execute the EBC BREAK instruction.
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
| 
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecuteBREAK (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Execute the JMP instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     JMP64{cs|cc} Immed64
 | |
|     JMP32{cs|cc} {@}R1 {Immed32|Index32}
 | |
| 
 | |
|   Encoding:
 | |
|     b0.7 -  immediate data present
 | |
|     b0.6 -  1 = 64 bit immediate data
 | |
|             0 = 32 bit immediate data
 | |
|     b1.7 -  1 = conditional
 | |
|     b1.6    1 = CS (condition set)
 | |
|             0 = CC (condition clear)
 | |
|     b1.4    1 = relative address
 | |
|             0 = absolute address
 | |
|     b1.3    1 = operand1 indirect
 | |
|     b1.2-0  operand 1
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
| 
 | |
|   @retval EFI_UNSUPPORTED   The opcodes/operands is not supported.
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecuteJMP (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Execute the EBC JMP8 instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     JMP8{cs|cc}  Offset/2
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
| 
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecuteJMP8 (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Implements the EBC CALL instruction.
 | |
| 
 | |
|   Instruction format:
 | |
|     CALL64 Immed64
 | |
|     CALL32 {@}R1 {Immed32|Index32}
 | |
|     CALLEX64 Immed64
 | |
|     CALLEX16 {@}R1 {Immed32}
 | |
| 
 | |
|     If Rx == R0, then it's a PC relative call to PC = PC + imm32.
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
| 
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecuteCALL (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Execute the EBC RET instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     RET
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
| 
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecuteRET (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Execute the EBC CMP instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     CMP[32|64][eq|lte|gte|ulte|ugte] R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
| 
 | |
|   @retval EFI_UNSUPPORTED   The opcodes/operands is not supported.
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecuteCMP (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Execute the EBC CMPI instruction
 | |
| 
 | |
|   Instruction syntax:
 | |
|     CMPI[32|64]{w|d}[eq|lte|gte|ulte|ugte] {@}Rx {Index16}, Immed16|Immed32
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
| 
 | |
|   @retval EFI_UNSUPPORTED   The opcodes/operands is not supported.
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecuteCMPI (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Execute the MOVxx instructions.
 | |
| 
 | |
|   Instruction format:
 | |
| 
 | |
|     MOV[b|w|d|q|n]{w|d} {@}R1 {Index16|32}, {@}R2 {Index16|32}
 | |
|     MOVqq {@}R1 {Index64}, {@}R2 {Index64}
 | |
| 
 | |
|     Copies contents of [R2] -> [R1], zero extending where required.
 | |
| 
 | |
|     First character indicates the size of the move.
 | |
|     Second character indicates the size of the index(s).
 | |
| 
 | |
|     Invalid to have R1 direct with index.
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
| 
 | |
|   @retval EFI_UNSUPPORTED   The opcodes/operands is not supported.
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecuteMOVxx (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Execute the EBC MOVI.
 | |
| 
 | |
|   Instruction syntax:
 | |
| 
 | |
|     MOVI[b|w|d|q][w|d|q] {@}R1 {Index16}, ImmData16|32|64
 | |
| 
 | |
|     First variable character specifies the move size
 | |
|     Second variable character specifies size of the immediate data
 | |
| 
 | |
|     Sign-extend the immediate data to the size of the operation, and zero-extend
 | |
|     if storing to a register.
 | |
| 
 | |
|     Operand1 direct with index/immed is invalid.
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
| 
 | |
|   @retval EFI_UNSUPPORTED   The opcodes/operands is not supported.
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecuteMOVI (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Execute the EBC MOV immediate natural. This instruction moves an immediate
 | |
|   index value into a register or memory location.
 | |
| 
 | |
|   Instruction syntax:
 | |
| 
 | |
|     MOVIn[w|d|q] {@}R1 {Index16}, Index16|32|64
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
| 
 | |
|   @retval EFI_UNSUPPORTED   The opcodes/operands is not supported.
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecuteMOVIn (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Execute the EBC MOVREL instruction.
 | |
|   Dest <- Ip + ImmData
 | |
| 
 | |
|   Instruction syntax:
 | |
| 
 | |
|     MOVREL[w|d|q] {@}R1 {Index16}, ImmData16|32|64
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
| 
 | |
|   @retval EFI_UNSUPPORTED   The opcodes/operands is not supported.
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecuteMOVREL (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Execute the EBC PUSHn instruction
 | |
| 
 | |
|   Instruction syntax:
 | |
|     PUSHn {@}R1 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
| 
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecutePUSHn (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Execute the EBC PUSH instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     PUSH[32|64] {@}R1 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
| 
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecutePUSH (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Execute the EBC POPn instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     POPn {@}R1 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
| 
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecutePOPn (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Execute the EBC POP instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     POPn {@}R1 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
| 
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecutePOP (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Execute all the EBC signed data manipulation instructions.
 | |
|   Since the EBC data manipulation instructions all have the same basic form,
 | |
|   they can share the code that does the fetch of operands and the write-back
 | |
|   of the result. This function performs the fetch of the operands (even if
 | |
|   both are not needed to be fetched, like NOT instruction), dispatches to the
 | |
|   appropriate subfunction, then writes back the returned result.
 | |
| 
 | |
|   Format:
 | |
|     INSTRUCITON[32|64] {@}R1, {@}R2 {Immed16|Index16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to VM context.
 | |
| 
 | |
|   @retval EFI_UNSUPPORTED   The opcodes/operands is not supported.
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecuteSignedDataManip (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Execute all the EBC unsigned data manipulation instructions.
 | |
|   Since the EBC data manipulation instructions all have the same basic form,
 | |
|   they can share the code that does the fetch of operands and the write-back
 | |
|   of the result. This function performs the fetch of the operands (even if
 | |
|   both are not needed to be fetched, like NOT instruction), dispatches to the
 | |
|   appropriate subfunction, then writes back the returned result.
 | |
| 
 | |
|   Format:
 | |
|     INSTRUCITON[32|64] {@}R1, {@}R2 {Immed16|Index16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to VM context.
 | |
| 
 | |
|   @retval EFI_UNSUPPORTED   The opcodes/operands is not supported.
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecuteUnsignedDataManip (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Execute the EBC LOADSP instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     LOADSP  SP1, R2
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
| 
 | |
|   @retval EFI_UNSUPPORTED   The opcodes/operands is not supported.
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecuteLOADSP (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Execute the EBC STORESP instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     STORESP  Rx, FLAGS|IP
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
| 
 | |
|   @retval EFI_UNSUPPORTED   The opcodes/operands is not supported.
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecuteSTORESP (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Execute the EBC MOVsnw instruction. This instruction loads a signed
 | |
|   natural value from memory or register to another memory or register. On
 | |
|   32-bit machines, the value gets sign-extended to 64 bits if the destination
 | |
|   is a register.
 | |
| 
 | |
|   Instruction syntax:
 | |
| 
 | |
|     MOVsnd {@}R1 {Indx32}, {@}R2 {Index32|Immed32}
 | |
| 
 | |
|     0:7 1=>operand1 index present
 | |
|     0:6 1=>operand2 index present
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
| 
 | |
|   @retval EFI_UNSUPPORTED   The opcodes/operands is not supported.
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecuteMOVsnd (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Execute the EBC MOVsnw instruction. This instruction loads a signed
 | |
|   natural value from memory or register to another memory or register. On
 | |
|   32-bit machines, the value gets sign-extended to 64 bits if the destination
 | |
|   is a register.
 | |
| 
 | |
|   Instruction syntax:
 | |
| 
 | |
|     MOVsnw {@}R1 {Index16}, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|     0:7 1=>operand1 index present
 | |
|     0:6 1=>operand2 index present
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
| 
 | |
|   @retval EFI_UNSUPPORTED   The opcodes/operands is not supported.
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecuteMOVsnw (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   );
 | |
| 
 | |
| //
 | |
| // Data manipulation subfunctions
 | |
| //
 | |
| 
 | |
| /**
 | |
|   Execute the EBC NOT instruction.s
 | |
| 
 | |
|   Instruction syntax:
 | |
|     NOT[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Op1               Operand 1 from the instruction
 | |
|   @param  Op2               Operand 2 from the instruction
 | |
| 
 | |
|   @return ~Op2
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| ExecuteNOT (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT64      Op1,
 | |
|   IN UINT64      Op2
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Execute the EBC NEG instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     NEG[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Op1               Operand 1 from the instruction
 | |
|   @param  Op2               Operand 2 from the instruction
 | |
| 
 | |
|   @return Op2 * -1
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| ExecuteNEG (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT64      Op1,
 | |
|   IN UINT64      Op2
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Execute the EBC ADD instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     ADD[32|64] {@}R1, {@}R2 {Index16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Op1               Operand 1 from the instruction
 | |
|   @param  Op2               Operand 2 from the instruction
 | |
| 
 | |
|   @return Op1 + Op2
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| ExecuteADD (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT64      Op1,
 | |
|   IN UINT64      Op2
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Execute the EBC SUB instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     SUB[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Op1               Operand 1 from the instruction
 | |
|   @param  Op2               Operand 2 from the instruction
 | |
| 
 | |
|   @return Op1 - Op2
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| ExecuteSUB (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT64      Op1,
 | |
|   IN UINT64      Op2
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Execute the EBC MUL instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     SUB[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Op1               Operand 1 from the instruction
 | |
|   @param  Op2               Operand 2 from the instruction
 | |
| 
 | |
|   @return Op1 * Op2
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| ExecuteMUL (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT64      Op1,
 | |
|   IN UINT64      Op2
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Execute the EBC MULU instruction
 | |
| 
 | |
|   Instruction syntax:
 | |
|     MULU[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Op1               Operand 1 from the instruction
 | |
|   @param  Op2               Operand 2 from the instruction
 | |
| 
 | |
|   @return (unsigned)Op1 * (unsigned)Op2
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| ExecuteMULU (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT64      Op1,
 | |
|   IN UINT64      Op2
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Execute the EBC DIV instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     DIV[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Op1               Operand 1 from the instruction
 | |
|   @param  Op2               Operand 2 from the instruction
 | |
| 
 | |
|   @return Op1 / Op2
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| ExecuteDIV (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT64      Op1,
 | |
|   IN UINT64      Op2
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Execute the EBC DIVU instruction
 | |
| 
 | |
|   Instruction syntax:
 | |
|     DIVU[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Op1               Operand 1 from the instruction
 | |
|   @param  Op2               Operand 2 from the instruction
 | |
| 
 | |
|   @return (unsigned)Op1 / (unsigned)Op2
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| ExecuteDIVU (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT64      Op1,
 | |
|   IN UINT64      Op2
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Execute the EBC MOD instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     MOD[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Op1               Operand 1 from the instruction
 | |
|   @param  Op2               Operand 2 from the instruction
 | |
| 
 | |
|   @return Op1 MODULUS Op2
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| ExecuteMOD (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT64      Op1,
 | |
|   IN UINT64      Op2
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Execute the EBC MODU instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     MODU[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Op1               Operand 1 from the instruction
 | |
|   @param  Op2               Operand 2 from the instruction
 | |
| 
 | |
|   @return Op1 UNSIGNED_MODULUS Op2
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| ExecuteMODU (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT64      Op1,
 | |
|   IN UINT64      Op2
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Execute the EBC AND instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     AND[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Op1               Operand 1 from the instruction
 | |
|   @param  Op2               Operand 2 from the instruction
 | |
| 
 | |
|   @return Op1 AND Op2
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| ExecuteAND (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT64      Op1,
 | |
|   IN UINT64      Op2
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Execute the EBC OR instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     OR[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Op1               Operand 1 from the instruction
 | |
|   @param  Op2               Operand 2 from the instruction
 | |
| 
 | |
|   @return Op1 OR Op2
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| ExecuteOR (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT64      Op1,
 | |
|   IN UINT64      Op2
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Execute the EBC XOR instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     XOR[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Op1               Operand 1 from the instruction
 | |
|   @param  Op2               Operand 2 from the instruction
 | |
| 
 | |
|   @return Op1 XOR Op2
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| ExecuteXOR (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT64      Op1,
 | |
|   IN UINT64      Op2
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Execute the EBC SHL shift left instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     SHL[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Op1               Operand 1 from the instruction
 | |
|   @param  Op2               Operand 2 from the instruction
 | |
| 
 | |
|   @return Op1 << Op2
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| ExecuteSHL (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT64      Op1,
 | |
|   IN UINT64      Op2
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Execute the EBC SHR instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     SHR[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Op1               Operand 1 from the instruction
 | |
|   @param  Op2               Operand 2 from the instruction
 | |
| 
 | |
|   @return Op1 >> Op2  (unsigned operands)
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| ExecuteSHR (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT64      Op1,
 | |
|   IN UINT64      Op2
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Execute the EBC ASHR instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     ASHR[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Op1               Operand 1 from the instruction
 | |
|   @param  Op2               Operand 2 from the instruction
 | |
| 
 | |
|   @return Op1 >> Op2 (signed)
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| ExecuteASHR (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT64      Op1,
 | |
|   IN UINT64      Op2
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Execute the EBC EXTNDB instruction to sign-extend a byte value.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     EXTNDB[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Op1               Operand 1 from the instruction
 | |
|   @param  Op2               Operand 2 from the instruction
 | |
| 
 | |
|   @return (INT64)(INT8)Op2
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| ExecuteEXTNDB (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT64      Op1,
 | |
|   IN UINT64      Op2
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Execute the EBC EXTNDW instruction to sign-extend a 16-bit value.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     EXTNDW[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Op1               Operand 1 from the instruction
 | |
|   @param  Op2               Operand 2 from the instruction
 | |
| 
 | |
|   @return (INT64)(INT16)Op2
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| ExecuteEXTNDW (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT64      Op1,
 | |
|   IN UINT64      Op2
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Execute the EBC EXTNDD instruction to sign-extend a 32-bit value.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     EXTNDD[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Op1               Operand 1 from the instruction
 | |
|   @param  Op2               Operand 2 from the instruction
 | |
| 
 | |
|   @return (INT64)(INT32)Op2
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| ExecuteEXTNDD (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT64      Op1,
 | |
|   IN UINT64      Op2
 | |
|   );
 | |
| 
 | |
| //
 | |
| // Once we retrieve the operands for the data manipulation instructions,
 | |
| // call these functions to perform the operation.
 | |
| //
 | |
| CONST DATA_MANIP_EXEC_FUNCTION  mDataManipDispatchTable[] = {
 | |
|   ExecuteNOT,
 | |
|   ExecuteNEG,
 | |
|   ExecuteADD,
 | |
|   ExecuteSUB,
 | |
|   ExecuteMUL,
 | |
|   ExecuteMULU,
 | |
|   ExecuteDIV,
 | |
|   ExecuteDIVU,
 | |
|   ExecuteMOD,
 | |
|   ExecuteMODU,
 | |
|   ExecuteAND,
 | |
|   ExecuteOR,
 | |
|   ExecuteXOR,
 | |
|   ExecuteSHL,
 | |
|   ExecuteSHR,
 | |
|   ExecuteASHR,
 | |
|   ExecuteEXTNDB,
 | |
|   ExecuteEXTNDW,
 | |
|   ExecuteEXTNDD,
 | |
| };
 | |
| 
 | |
| CONST VM_TABLE_ENTRY  mVmOpcodeTable[] = {
 | |
|   { ExecuteBREAK             }, // opcode 0x00
 | |
|   { ExecuteJMP               }, // opcode 0x01
 | |
|   { ExecuteJMP8              }, // opcode 0x02
 | |
|   { ExecuteCALL              }, // opcode 0x03
 | |
|   { ExecuteRET               }, // opcode 0x04
 | |
|   { ExecuteCMP               }, // opcode 0x05 CMPeq
 | |
|   { ExecuteCMP               }, // opcode 0x06 CMPlte
 | |
|   { ExecuteCMP               }, // opcode 0x07 CMPgte
 | |
|   { ExecuteCMP               }, // opcode 0x08 CMPulte
 | |
|   { ExecuteCMP               }, // opcode 0x09 CMPugte
 | |
|   { ExecuteUnsignedDataManip }, // opcode 0x0A NOT
 | |
|   { ExecuteSignedDataManip   }, // opcode 0x0B NEG
 | |
|   { ExecuteSignedDataManip   }, // opcode 0x0C ADD
 | |
|   { ExecuteSignedDataManip   }, // opcode 0x0D SUB
 | |
|   { ExecuteSignedDataManip   }, // opcode 0x0E MUL
 | |
|   { ExecuteUnsignedDataManip }, // opcode 0x0F MULU
 | |
|   { ExecuteSignedDataManip   }, // opcode 0x10 DIV
 | |
|   { ExecuteUnsignedDataManip }, // opcode 0x11 DIVU
 | |
|   { ExecuteSignedDataManip   }, // opcode 0x12 MOD
 | |
|   { ExecuteUnsignedDataManip }, // opcode 0x13 MODU
 | |
|   { ExecuteUnsignedDataManip }, // opcode 0x14 AND
 | |
|   { ExecuteUnsignedDataManip }, // opcode 0x15 OR
 | |
|   { ExecuteUnsignedDataManip }, // opcode 0x16 XOR
 | |
|   { ExecuteUnsignedDataManip }, // opcode 0x17 SHL
 | |
|   { ExecuteUnsignedDataManip }, // opcode 0x18 SHR
 | |
|   { ExecuteSignedDataManip   }, // opcode 0x19 ASHR
 | |
|   { ExecuteUnsignedDataManip }, // opcode 0x1A EXTNDB
 | |
|   { ExecuteUnsignedDataManip }, // opcode 0x1B EXTNDW
 | |
|   { ExecuteUnsignedDataManip }, // opcode 0x1C EXTNDD
 | |
|   { ExecuteMOVxx             }, // opcode 0x1D MOVBW
 | |
|   { ExecuteMOVxx             }, // opcode 0x1E MOVWW
 | |
|   { ExecuteMOVxx             }, // opcode 0x1F MOVDW
 | |
|   { ExecuteMOVxx             }, // opcode 0x20 MOVQW
 | |
|   { ExecuteMOVxx             }, // opcode 0x21 MOVBD
 | |
|   { ExecuteMOVxx             }, // opcode 0x22 MOVWD
 | |
|   { ExecuteMOVxx             }, // opcode 0x23 MOVDD
 | |
|   { ExecuteMOVxx             }, // opcode 0x24 MOVQD
 | |
|   { ExecuteMOVsnw            }, // opcode 0x25 MOVsnw
 | |
|   { ExecuteMOVsnd            }, // opcode 0x26 MOVsnd
 | |
|   { NULL                     }, // opcode 0x27
 | |
|   { ExecuteMOVxx             }, // opcode 0x28 MOVqq
 | |
|   { ExecuteLOADSP            }, // opcode 0x29 LOADSP SP1, R2
 | |
|   { ExecuteSTORESP           }, // opcode 0x2A STORESP R1, SP2
 | |
|   { ExecutePUSH              }, // opcode 0x2B PUSH {@}R1 [imm16]
 | |
|   { ExecutePOP               }, // opcode 0x2C POP {@}R1 [imm16]
 | |
|   { ExecuteCMPI              }, // opcode 0x2D CMPIEQ
 | |
|   { ExecuteCMPI              }, // opcode 0x2E CMPILTE
 | |
|   { ExecuteCMPI              }, // opcode 0x2F CMPIGTE
 | |
|   { ExecuteCMPI              }, // opcode 0x30 CMPIULTE
 | |
|   { ExecuteCMPI              }, // opcode 0x31 CMPIUGTE
 | |
|   { ExecuteMOVxx             }, // opcode 0x32 MOVN
 | |
|   { ExecuteMOVxx             }, // opcode 0x33 MOVND
 | |
|   { NULL                     }, // opcode 0x34
 | |
|   { ExecutePUSHn             }, // opcode 0x35
 | |
|   { ExecutePOPn              }, // opcode 0x36
 | |
|   { ExecuteMOVI              }, // opcode 0x37 - mov immediate data
 | |
|   { ExecuteMOVIn             }, // opcode 0x38 - mov immediate natural
 | |
|   { ExecuteMOVREL            }, // opcode 0x39 - move data relative to PC
 | |
|   { NULL                     }, // opcode 0x3a
 | |
|   { NULL                     }, // opcode 0x3b
 | |
|   { NULL                     }, // opcode 0x3c
 | |
|   { NULL                     }, // opcode 0x3d
 | |
|   { NULL                     }, // opcode 0x3e
 | |
|   { NULL                     }  // opcode 0x3f
 | |
| };
 | |
| 
 | |
| //
 | |
| // Length of JMP instructions, depending on upper two bits of opcode.
 | |
| //
 | |
| CONST UINT8  mJMPLen[] = { 2, 2, 6, 10 };
 | |
| 
 | |
| /**
 | |
|   Given a pointer to a new VM context, execute one or more instructions. This
 | |
|   function is only used for test purposes via the EBC VM test protocol.
 | |
| 
 | |
|   @param  This              A pointer to the EFI_EBC_VM_TEST_PROTOCOL structure.
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  InstructionCount  A pointer to a UINTN value holding the number of
 | |
|                             instructions to execute. If it holds value of 0,
 | |
|                             then the instruction to be executed is 1.
 | |
| 
 | |
|   @retval EFI_UNSUPPORTED   At least one of the opcodes is not supported.
 | |
|   @retval EFI_SUCCESS       All of the instructions are executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| EFIAPI
 | |
| EbcExecuteInstructions (
 | |
|   IN EFI_EBC_VM_TEST_PROTOCOL  *This,
 | |
|   IN VM_CONTEXT                *VmPtr,
 | |
|   IN OUT UINTN                 *InstructionCount
 | |
|   )
 | |
| {
 | |
|   UINTN       ExecFunc;
 | |
|   EFI_STATUS  Status;
 | |
|   UINTN       InstructionsLeft;
 | |
|   UINTN       SavedInstructionCount;
 | |
| 
 | |
|   Status = EFI_SUCCESS;
 | |
| 
 | |
|   if (*InstructionCount == 0) {
 | |
|     InstructionsLeft = 1;
 | |
|   } else {
 | |
|     InstructionsLeft = *InstructionCount;
 | |
|   }
 | |
| 
 | |
|   SavedInstructionCount = *InstructionCount;
 | |
|   *InstructionCount     = 0;
 | |
| 
 | |
|   //
 | |
|   // Index into the opcode table using the opcode byte for this instruction.
 | |
|   // This gives you the execute function, which we first test for null, then
 | |
|   // call it if it's not null.
 | |
|   //
 | |
|   while (InstructionsLeft != 0) {
 | |
|     ExecFunc = (UINTN)mVmOpcodeTable[(*VmPtr->Ip & OPCODE_M_OPCODE)].ExecuteFunction;
 | |
|     if (ExecFunc == (UINTN)NULL) {
 | |
|       EbcDebugSignalException (EXCEPT_EBC_INVALID_OPCODE, EXCEPTION_FLAG_FATAL, VmPtr);
 | |
|       return EFI_UNSUPPORTED;
 | |
|     } else {
 | |
|       mVmOpcodeTable[(*VmPtr->Ip & OPCODE_M_OPCODE)].ExecuteFunction (VmPtr);
 | |
|       *InstructionCount = *InstructionCount + 1;
 | |
|     }
 | |
| 
 | |
|     //
 | |
|     // Decrement counter if applicable
 | |
|     //
 | |
|     if (SavedInstructionCount != 0) {
 | |
|       InstructionsLeft--;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute an EBC image from an entry point or from a published protocol.
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
| 
 | |
|   @retval EFI_UNSUPPORTED   At least one of the opcodes is not supported.
 | |
|   @retval EFI_SUCCESS       All of the instructions are executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| EbcExecute (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   )
 | |
| {
 | |
|   UINTN                             ExecFunc;
 | |
|   UINT8                             StackCorrupted;
 | |
|   EFI_STATUS                        Status;
 | |
|   EFI_EBC_SIMPLE_DEBUGGER_PROTOCOL  *EbcSimpleDebugger;
 | |
| 
 | |
|   mVmPtr            = VmPtr;
 | |
|   EbcSimpleDebugger = NULL;
 | |
|   Status            = EFI_SUCCESS;
 | |
|   StackCorrupted    = 0;
 | |
| 
 | |
|   //
 | |
|   // Make sure the magic value has been put on the stack before we got here.
 | |
|   //
 | |
|   if (*VmPtr->StackMagicPtr != (UINTN)VM_STACK_KEY_VALUE) {
 | |
|     StackCorrupted = 1;
 | |
|   }
 | |
| 
 | |
|   VmPtr->FramePtr = (VOID *)((UINT8 *)(UINTN)VmPtr->Gpr[0] + 8);
 | |
| 
 | |
|   //
 | |
|   // Try to get the debug support for EBC
 | |
|   //
 | |
|   DEBUG_CODE_BEGIN ();
 | |
|   Status = gBS->LocateProtocol (
 | |
|                   &gEfiEbcSimpleDebuggerProtocolGuid,
 | |
|                   NULL,
 | |
|                   (VOID **)&EbcSimpleDebugger
 | |
|                   );
 | |
|   if (EFI_ERROR (Status)) {
 | |
|     EbcSimpleDebugger = NULL;
 | |
|   }
 | |
| 
 | |
|   DEBUG_CODE_END ();
 | |
| 
 | |
|   //
 | |
|   // Save the start IP for debug. For example, if we take an exception we
 | |
|   // can print out the location of the exception relative to the entry point,
 | |
|   // which could then be used in a disassembly listing to find the problem.
 | |
|   //
 | |
|   VmPtr->EntryPoint = (VOID *)VmPtr->Ip;
 | |
| 
 | |
|   //
 | |
|   // We'll wait for this flag to know when we're done. The RET
 | |
|   // instruction sets it if it runs out of stack.
 | |
|   //
 | |
|   VmPtr->StopFlags = 0;
 | |
|   while ((VmPtr->StopFlags & STOPFLAG_APP_DONE) == 0) {
 | |
|     //
 | |
|     // If we've found a simple debugger protocol, call it
 | |
|     //
 | |
|     DEBUG_CODE_BEGIN ();
 | |
|     if (EbcSimpleDebugger != NULL) {
 | |
|       EbcSimpleDebugger->Debugger (EbcSimpleDebugger, VmPtr);
 | |
|     }
 | |
| 
 | |
|     DEBUG_CODE_END ();
 | |
| 
 | |
|     //
 | |
|     // Use the opcode bits to index into the opcode dispatch table. If the
 | |
|     // function pointer is null then generate an exception.
 | |
|     //
 | |
|     ExecFunc = (UINTN)mVmOpcodeTable[(*VmPtr->Ip & OPCODE_M_OPCODE)].ExecuteFunction;
 | |
|     if (ExecFunc == (UINTN)NULL) {
 | |
|       EbcDebugSignalException (EXCEPT_EBC_INVALID_OPCODE, EXCEPTION_FLAG_FATAL, VmPtr);
 | |
|       Status = EFI_UNSUPPORTED;
 | |
|       goto Done;
 | |
|     }
 | |
| 
 | |
|     EbcDebuggerHookExecuteStart (VmPtr);
 | |
| 
 | |
|     //
 | |
|     // The EBC VM is a strongly ordered processor, so perform a fence operation before
 | |
|     // and after each instruction is executed.
 | |
|     //
 | |
|     MemoryFence ();
 | |
| 
 | |
|     mVmOpcodeTable[(*VmPtr->Ip & OPCODE_M_OPCODE)].ExecuteFunction (VmPtr);
 | |
| 
 | |
|     MemoryFence ();
 | |
| 
 | |
|     EbcDebuggerHookExecuteEnd (VmPtr);
 | |
| 
 | |
|     //
 | |
|     // If the step flag is set, signal an exception and continue. We don't
 | |
|     // clear it here. Assuming the debugger is responsible for clearing it.
 | |
|     //
 | |
|     if (VMFLAG_ISSET (VmPtr, VMFLAGS_STEP)) {
 | |
|       EbcDebugSignalException (EXCEPT_EBC_STEP, EXCEPTION_FLAG_NONE, VmPtr);
 | |
|     }
 | |
| 
 | |
|     //
 | |
|     // Make sure stack has not been corrupted. Only report it once though.
 | |
|     //
 | |
|     if ((StackCorrupted == 0) && (*VmPtr->StackMagicPtr != (UINTN)VM_STACK_KEY_VALUE)) {
 | |
|       EbcDebugSignalException (EXCEPT_EBC_STACK_FAULT, EXCEPTION_FLAG_FATAL, VmPtr);
 | |
|       StackCorrupted = 1;
 | |
|     }
 | |
| 
 | |
|     if ((StackCorrupted == 0) && ((UINT64)VmPtr->Gpr[0] <= (UINT64)(UINTN)VmPtr->StackTop)) {
 | |
|       EbcDebugSignalException (EXCEPT_EBC_STACK_FAULT, EXCEPTION_FLAG_FATAL, VmPtr);
 | |
|       StackCorrupted = 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| Done:
 | |
|   mVmPtr = NULL;
 | |
| 
 | |
|   return Status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute the MOVxx instructions.
 | |
| 
 | |
|   Instruction format:
 | |
| 
 | |
|     MOV[b|w|d|q|n]{w|d} {@}R1 {Index16|32}, {@}R2 {Index16|32}
 | |
|     MOVqq {@}R1 {Index64}, {@}R2 {Index64}
 | |
| 
 | |
|     Copies contents of [R2] -> [R1], zero extending where required.
 | |
| 
 | |
|     First character indicates the size of the move.
 | |
|     Second character indicates the size of the index(s).
 | |
| 
 | |
|     Invalid to have R1 direct with index.
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
| 
 | |
|   @retval EFI_UNSUPPORTED   The opcodes/operands is not supported.
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecuteMOVxx (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   )
 | |
| {
 | |
|   UINT8   Opcode;
 | |
|   UINT8   OpcMasked;
 | |
|   UINT8   Operands;
 | |
|   UINT8   Size;
 | |
|   UINT8   MoveSize;
 | |
|   INT16   Index16;
 | |
|   INT32   Index32;
 | |
|   INT64   Index64Op1;
 | |
|   INT64   Index64Op2;
 | |
|   UINT64  Data64;
 | |
|   UINT64  DataMask;
 | |
|   UINTN   Source;
 | |
| 
 | |
|   Opcode    = GETOPCODE (VmPtr);
 | |
|   OpcMasked = (UINT8)(Opcode & OPCODE_M_OPCODE);
 | |
| 
 | |
|   //
 | |
|   // Get the operands byte so we can get R1 and R2
 | |
|   //
 | |
|   Operands = GETOPERANDS (VmPtr);
 | |
| 
 | |
|   //
 | |
|   // Assume no indexes
 | |
|   //
 | |
|   Index64Op1 = 0;
 | |
|   Index64Op2 = 0;
 | |
|   Data64     = 0;
 | |
| 
 | |
|   //
 | |
|   // Determine if we have an index/immediate data. Base instruction size
 | |
|   // is 2 (opcode + operands). Add to this size each index specified.
 | |
|   //
 | |
|   Size = 2;
 | |
|   if ((Opcode & (OPCODE_M_IMMED_OP1 | OPCODE_M_IMMED_OP2)) != 0) {
 | |
|     //
 | |
|     // Determine size of the index from the opcode. Then get it.
 | |
|     //
 | |
|     if ((OpcMasked <= OPCODE_MOVQW) || (OpcMasked == OPCODE_MOVNW)) {
 | |
|       //
 | |
|       // MOVBW, MOVWW, MOVDW, MOVQW, and MOVNW have 16-bit immediate index.
 | |
|       // Get one or both index values.
 | |
|       //
 | |
|       if ((Opcode & OPCODE_M_IMMED_OP1) != 0) {
 | |
|         Index16    = VmReadIndex16 (VmPtr, 2);
 | |
|         Index64Op1 = (INT64)Index16;
 | |
|         Size      += sizeof (UINT16);
 | |
|       }
 | |
| 
 | |
|       if ((Opcode & OPCODE_M_IMMED_OP2) != 0) {
 | |
|         Index16    = VmReadIndex16 (VmPtr, Size);
 | |
|         Index64Op2 = (INT64)Index16;
 | |
|         Size      += sizeof (UINT16);
 | |
|       }
 | |
|     } else if ((OpcMasked <= OPCODE_MOVQD) || (OpcMasked == OPCODE_MOVND)) {
 | |
|       //
 | |
|       // MOVBD, MOVWD, MOVDD, MOVQD, and MOVND have 32-bit immediate index
 | |
|       //
 | |
|       if ((Opcode & OPCODE_M_IMMED_OP1) != 0) {
 | |
|         Index32    = VmReadIndex32 (VmPtr, 2);
 | |
|         Index64Op1 = (INT64)Index32;
 | |
|         Size      += sizeof (UINT32);
 | |
|       }
 | |
| 
 | |
|       if ((Opcode & OPCODE_M_IMMED_OP2) != 0) {
 | |
|         Index32    = VmReadIndex32 (VmPtr, Size);
 | |
|         Index64Op2 = (INT64)Index32;
 | |
|         Size      += sizeof (UINT32);
 | |
|       }
 | |
|     } else if (OpcMasked == OPCODE_MOVQQ) {
 | |
|       //
 | |
|       // MOVqq -- only form with a 64-bit index
 | |
|       //
 | |
|       if ((Opcode & OPCODE_M_IMMED_OP1) != 0) {
 | |
|         Index64Op1 = VmReadIndex64 (VmPtr, 2);
 | |
|         Size      += sizeof (UINT64);
 | |
|       }
 | |
| 
 | |
|       if ((Opcode & OPCODE_M_IMMED_OP2) != 0) {
 | |
|         Index64Op2 = VmReadIndex64 (VmPtr, Size);
 | |
|         Size      += sizeof (UINT64);
 | |
|       }
 | |
|     } else {
 | |
|       //
 | |
|       // Obsolete MOVBQ, MOVWQ, MOVDQ, and MOVNQ have 64-bit immediate index
 | |
|       //
 | |
|       EbcDebugSignalException (
 | |
|         EXCEPT_EBC_INSTRUCTION_ENCODING,
 | |
|         EXCEPTION_FLAG_FATAL,
 | |
|         VmPtr
 | |
|         );
 | |
|       return EFI_UNSUPPORTED;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Determine the size of the move, and create a mask for it so we can
 | |
|   // clear unused bits.
 | |
|   //
 | |
|   if ((OpcMasked == OPCODE_MOVBW) || (OpcMasked == OPCODE_MOVBD)) {
 | |
|     MoveSize = DATA_SIZE_8;
 | |
|     DataMask = 0xFF;
 | |
|   } else if ((OpcMasked == OPCODE_MOVWW) || (OpcMasked == OPCODE_MOVWD)) {
 | |
|     MoveSize = DATA_SIZE_16;
 | |
|     DataMask = 0xFFFF;
 | |
|   } else if ((OpcMasked == OPCODE_MOVDW) || (OpcMasked == OPCODE_MOVDD)) {
 | |
|     MoveSize = DATA_SIZE_32;
 | |
|     DataMask = 0xFFFFFFFF;
 | |
|   } else if ((OpcMasked == OPCODE_MOVQW) || (OpcMasked == OPCODE_MOVQD) || (OpcMasked == OPCODE_MOVQQ)) {
 | |
|     MoveSize = DATA_SIZE_64;
 | |
|     DataMask = (UINT64) ~0;
 | |
|   } else if ((OpcMasked == OPCODE_MOVNW) || (OpcMasked == OPCODE_MOVND)) {
 | |
|     MoveSize = DATA_SIZE_N;
 | |
|     DataMask = (UINT64) ~0 >> (64 - 8 * sizeof (UINTN));
 | |
|   } else {
 | |
|     //
 | |
|     // We were dispatched to this function and we don't recognize the opcode
 | |
|     //
 | |
|     EbcDebugSignalException (EXCEPT_EBC_UNDEFINED, EXCEPTION_FLAG_FATAL, VmPtr);
 | |
|     return EFI_UNSUPPORTED;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Now get the source address
 | |
|   //
 | |
|   if (OPERAND2_INDIRECT (Operands)) {
 | |
|     //
 | |
|     // Indirect form @R2. Compute address of operand2
 | |
|     //
 | |
|     Source = (UINTN)(VmPtr->Gpr[OPERAND2_REGNUM (Operands)] + Index64Op2);
 | |
|     //
 | |
|     // Now get the data from the source. Always 0-extend and let the compiler
 | |
|     // sign-extend where required.
 | |
|     //
 | |
|     switch (MoveSize) {
 | |
|       case DATA_SIZE_8:
 | |
|         Data64 = (UINT64)(UINT8)VmReadMem8 (VmPtr, Source);
 | |
|         break;
 | |
| 
 | |
|       case DATA_SIZE_16:
 | |
|         Data64 = (UINT64)(UINT16)VmReadMem16 (VmPtr, Source);
 | |
|         break;
 | |
| 
 | |
|       case DATA_SIZE_32:
 | |
|         Data64 = (UINT64)(UINT32)VmReadMem32 (VmPtr, Source);
 | |
|         break;
 | |
| 
 | |
|       case DATA_SIZE_64:
 | |
|         Data64 = (UINT64)VmReadMem64 (VmPtr, Source);
 | |
|         break;
 | |
| 
 | |
|       case DATA_SIZE_N:
 | |
|         Data64 = (UINT64)(UINTN)VmReadMemN (VmPtr, Source);
 | |
|         break;
 | |
| 
 | |
|       default:
 | |
|         //
 | |
|         // not reached
 | |
|         //
 | |
|         break;
 | |
|     }
 | |
|   } else {
 | |
|     //
 | |
|     // Not indirect source: MOVxx {@}Rx, Ry [Index]
 | |
|     //
 | |
|     Data64 = (UINT64)(VmPtr->Gpr[OPERAND2_REGNUM (Operands)] + Index64Op2);
 | |
|     //
 | |
|     // Did Operand2 have an index? If so, treat as two signed values since
 | |
|     // indexes are signed values.
 | |
|     //
 | |
|     if ((Opcode & OPCODE_M_IMMED_OP2) != 0) {
 | |
|       //
 | |
|       // NOTE: need to find a way to fix this, most likely by changing the VM
 | |
|       // implementation to remove the stack gap. To do that, we'd need to
 | |
|       // allocate stack space for the VM and actually set the system
 | |
|       // stack pointer to the allocated buffer when the VM starts.
 | |
|       //
 | |
|       // Special case -- if someone took the address of a function parameter
 | |
|       // then we need to make sure it's not in the stack gap. We can identify
 | |
|       // this situation if (Operand2 register == 0) && (Operand2 is direct)
 | |
|       // && (Index applies to Operand2) && (Index > 0) && (Operand1 register != 0)
 | |
|       // Situations that to be aware of:
 | |
|       //   * stack adjustments at beginning and end of functions R0 = R0 += stacksize
 | |
|       //
 | |
|       if ((OPERAND2_REGNUM (Operands) == 0) &&
 | |
|           (!OPERAND2_INDIRECT (Operands)) &&
 | |
|           (Index64Op2 > 0) &&
 | |
|           (OPERAND1_REGNUM (Operands) == 0) &&
 | |
|           (OPERAND1_INDIRECT (Operands))
 | |
|           )
 | |
|       {
 | |
|         Data64 = (UINT64)ConvertStackAddr (VmPtr, (UINTN)(INT64)Data64);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Now write it back
 | |
|   //
 | |
|   if (OPERAND1_INDIRECT (Operands)) {
 | |
|     //
 | |
|     // Reuse the Source variable to now be dest.
 | |
|     //
 | |
|     Source = (UINTN)(VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index64Op1);
 | |
|     //
 | |
|     // Do the write based on the size
 | |
|     //
 | |
|     switch (MoveSize) {
 | |
|       case DATA_SIZE_8:
 | |
|         VmWriteMem8 (VmPtr, Source, (UINT8)Data64);
 | |
|         break;
 | |
| 
 | |
|       case DATA_SIZE_16:
 | |
|         VmWriteMem16 (VmPtr, Source, (UINT16)Data64);
 | |
|         break;
 | |
| 
 | |
|       case DATA_SIZE_32:
 | |
|         VmWriteMem32 (VmPtr, Source, (UINT32)Data64);
 | |
|         break;
 | |
| 
 | |
|       case DATA_SIZE_64:
 | |
|         VmWriteMem64 (VmPtr, Source, Data64);
 | |
|         break;
 | |
| 
 | |
|       case DATA_SIZE_N:
 | |
|         VmWriteMemN (VmPtr, Source, (UINTN)Data64);
 | |
|         break;
 | |
| 
 | |
|       default:
 | |
|         //
 | |
|         // not reached
 | |
|         //
 | |
|         break;
 | |
|     }
 | |
|   } else {
 | |
|     //
 | |
|     // Operand1 direct.
 | |
|     // Make sure we didn't have an index on operand1.
 | |
|     //
 | |
|     if ((Opcode & OPCODE_M_IMMED_OP1) != 0) {
 | |
|       EbcDebugSignalException (
 | |
|         EXCEPT_EBC_INSTRUCTION_ENCODING,
 | |
|         EXCEPTION_FLAG_FATAL,
 | |
|         VmPtr
 | |
|         );
 | |
|       return EFI_UNSUPPORTED;
 | |
|     }
 | |
| 
 | |
|     //
 | |
|     // Direct storage in register. Clear unused bits and store back to
 | |
|     // register.
 | |
|     //
 | |
|     VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = Data64 & DataMask;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Advance the instruction pointer
 | |
|   //
 | |
|   VmPtr->Ip += Size;
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute the EBC BREAK instruction.
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
| 
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecuteBREAK (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   )
 | |
| {
 | |
|   EFI_STATUS  Status;
 | |
|   UINT8       Operands;
 | |
|   VOID        *EbcEntryPoint;
 | |
|   VOID        *Thunk;
 | |
|   UINT64      U64EbcEntryPoint;
 | |
|   INT32       Offset;
 | |
| 
 | |
|   Thunk    = NULL;
 | |
|   Operands = GETOPERANDS (VmPtr);
 | |
|   switch (Operands) {
 | |
|     //
 | |
|     // Runaway program break. Generate an exception and terminate
 | |
|     //
 | |
|     case 0:
 | |
|       EbcDebugSignalException (EXCEPT_EBC_BAD_BREAK, EXCEPTION_FLAG_FATAL, VmPtr);
 | |
|       break;
 | |
| 
 | |
|     //
 | |
|     // Get VM version -- return VM revision number in R7
 | |
|     //
 | |
|     case 1:
 | |
|       //
 | |
|       // Bits:
 | |
|       //  63-17 = 0
 | |
|       //  16-8  = Major version
 | |
|       //  7-0   = Minor version
 | |
|       //
 | |
|       VmPtr->Gpr[7] = GetVmVersion ();
 | |
|       break;
 | |
| 
 | |
|     //
 | |
|     // Debugger breakpoint
 | |
|     //
 | |
|     case 3:
 | |
|       VmPtr->StopFlags |= STOPFLAG_BREAKPOINT;
 | |
|       //
 | |
|       // See if someone has registered a handler
 | |
|       //
 | |
|       EbcDebugSignalException (
 | |
|         EXCEPT_EBC_BREAKPOINT,
 | |
|         EXCEPTION_FLAG_NONE,
 | |
|         VmPtr
 | |
|         );
 | |
|       break;
 | |
| 
 | |
|     //
 | |
|     // System call, which there are none, so NOP it.
 | |
|     //
 | |
|     case 4:
 | |
|       break;
 | |
| 
 | |
|     //
 | |
|     // Create a thunk for EBC code. R7 points to a 32-bit (in a 64-bit slot)
 | |
|     // "offset from self" pointer to the EBC entry point.
 | |
|     // After we're done, *(UINT64 *)R7 will be the address of the new thunk.
 | |
|     //
 | |
|     case 5:
 | |
|       Offset           = (INT32)VmReadMem32 (VmPtr, (UINTN)VmPtr->Gpr[7]);
 | |
|       U64EbcEntryPoint = (UINT64)(VmPtr->Gpr[7] + Offset + 4);
 | |
|       EbcEntryPoint    = (VOID *)(UINTN)U64EbcEntryPoint;
 | |
| 
 | |
|       //
 | |
|       // Now create a new thunk
 | |
|       //
 | |
|       Status = EbcCreateThunks (VmPtr->ImageHandle, EbcEntryPoint, &Thunk, 0);
 | |
|       if (EFI_ERROR (Status)) {
 | |
|         return Status;
 | |
|       }
 | |
| 
 | |
|       //
 | |
|       // Finally replace the EBC entry point memory with the thunk address
 | |
|       //
 | |
|       VmWriteMem64 (VmPtr, (UINTN)VmPtr->Gpr[7], (UINT64)(UINTN)Thunk);
 | |
|       break;
 | |
| 
 | |
|     //
 | |
|     // Compiler setting version per value in R7
 | |
|     //
 | |
|     case 6:
 | |
|       VmPtr->CompilerVersion = (UINT32)VmPtr->Gpr[7];
 | |
|       //
 | |
|       // Check compiler version against VM version?
 | |
|       //
 | |
|       break;
 | |
| 
 | |
|     //
 | |
|     // Unhandled break code. Signal exception.
 | |
|     //
 | |
|     default:
 | |
|       EbcDebugSignalException (EXCEPT_EBC_BAD_BREAK, EXCEPTION_FLAG_FATAL, VmPtr);
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Advance IP
 | |
|   //
 | |
|   VmPtr->Ip += 2;
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute the JMP instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     JMP64{cs|cc} Immed64
 | |
|     JMP32{cs|cc} {@}R1 {Immed32|Index32}
 | |
| 
 | |
|   Encoding:
 | |
|     b0.7 -  immediate data present
 | |
|     b0.6 -  1 = 64 bit immediate data
 | |
|             0 = 32 bit immediate data
 | |
|     b1.7 -  1 = conditional
 | |
|     b1.6    1 = CS (condition set)
 | |
|             0 = CC (condition clear)
 | |
|     b1.4    1 = relative address
 | |
|             0 = absolute address
 | |
|     b1.3    1 = operand1 indirect
 | |
|     b1.2-0  operand 1
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
| 
 | |
|   @retval EFI_UNSUPPORTED   The opcodes/operands is not supported.
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecuteJMP (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   )
 | |
| {
 | |
|   UINT8   Opcode;
 | |
|   UINT8   CompareSet;
 | |
|   UINT8   ConditionFlag;
 | |
|   UINT8   Size;
 | |
|   UINT8   Operand;
 | |
|   UINT64  Data64;
 | |
|   INT32   Index32;
 | |
|   UINTN   Addr;
 | |
| 
 | |
|   Operand = GETOPERANDS (VmPtr);
 | |
|   Opcode  = GETOPCODE (VmPtr);
 | |
| 
 | |
|   //
 | |
|   // Get instruction length from the opcode. The upper two bits are used here
 | |
|   // to index into the length array.
 | |
|   //
 | |
|   Size = mJMPLen[(Opcode >> 6) & 0x03];
 | |
| 
 | |
|   //
 | |
|   // Decode instruction conditions
 | |
|   // If we haven't met the condition, then simply advance the IP and return.
 | |
|   //
 | |
|   CompareSet    = (UINT8)(((Operand & JMP_M_CS) != 0) ? 1 : 0);
 | |
|   ConditionFlag = (UINT8)VMFLAG_ISSET (VmPtr, VMFLAGS_CC);
 | |
|   if ((Operand & CONDITION_M_CONDITIONAL) != 0) {
 | |
|     if (CompareSet != ConditionFlag) {
 | |
|       EbcDebuggerHookJMPStart (VmPtr);
 | |
|       VmPtr->Ip += Size;
 | |
|       EbcDebuggerHookJMPEnd (VmPtr);
 | |
|       return EFI_SUCCESS;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Check for 64-bit form and do it right away since it's the most
 | |
|   // straight-forward form.
 | |
|   //
 | |
|   if ((Opcode & OPCODE_M_IMMDATA64) != 0) {
 | |
|     //
 | |
|     // Double check for immediate-data, which is required. If not there,
 | |
|     // then signal an exception
 | |
|     //
 | |
|     if ((Opcode & OPCODE_M_IMMDATA) == 0) {
 | |
|       EbcDebugSignalException (
 | |
|         EXCEPT_EBC_INSTRUCTION_ENCODING,
 | |
|         EXCEPTION_FLAG_ERROR,
 | |
|         VmPtr
 | |
|         );
 | |
|       return EFI_UNSUPPORTED;
 | |
|     }
 | |
| 
 | |
|     //
 | |
|     // 64-bit immediate data is full address. Read the immediate data,
 | |
|     // check for alignment, and jump absolute.
 | |
|     //
 | |
|     Data64 = (UINT64)VmReadImmed64 (VmPtr, 2);
 | |
|     if (!IS_ALIGNED ((UINTN)Data64, sizeof (UINT16))) {
 | |
|       EbcDebugSignalException (
 | |
|         EXCEPT_EBC_ALIGNMENT_CHECK,
 | |
|         EXCEPTION_FLAG_FATAL,
 | |
|         VmPtr
 | |
|         );
 | |
| 
 | |
|       return EFI_UNSUPPORTED;
 | |
|     }
 | |
| 
 | |
|     //
 | |
|     // Take jump -- relative or absolute
 | |
|     //
 | |
|     EbcDebuggerHookJMPStart (VmPtr);
 | |
|     if ((Operand & JMP_M_RELATIVE) != 0) {
 | |
|       VmPtr->Ip += (UINTN)Data64 + Size;
 | |
|     } else {
 | |
|       VmPtr->Ip = (VMIP)(UINTN)Data64;
 | |
|     }
 | |
| 
 | |
|     EbcDebuggerHookJMPEnd (VmPtr);
 | |
| 
 | |
|     return EFI_SUCCESS;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // 32-bit forms:
 | |
|   // Get the index if there is one. May be either an index, or an immediate
 | |
|   // offset depending on indirect operand.
 | |
|   //   JMP32 @R1 Index32 -- immediate data is an index
 | |
|   //   JMP32 R1 Immed32  -- immedate data is an offset
 | |
|   //
 | |
|   if ((Opcode & OPCODE_M_IMMDATA) != 0) {
 | |
|     if (OPERAND1_INDIRECT (Operand)) {
 | |
|       Index32 = VmReadIndex32 (VmPtr, 2);
 | |
|     } else {
 | |
|       Index32 = VmReadImmed32 (VmPtr, 2);
 | |
|     }
 | |
|   } else {
 | |
|     Index32 = 0;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Get the register data. If R == 0, then special case where it's ignored.
 | |
|   //
 | |
|   if (OPERAND1_REGNUM (Operand) == 0) {
 | |
|     Data64 = 0;
 | |
|   } else {
 | |
|     Data64 = (UINT64)OPERAND1_REGDATA (VmPtr, Operand);
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Decode the forms
 | |
|   //
 | |
|   if (OPERAND1_INDIRECT (Operand)) {
 | |
|     //
 | |
|     // Form: JMP32 @Rx {Index32}
 | |
|     //
 | |
|     Addr = VmReadMemN (VmPtr, (UINTN)Data64 + Index32);
 | |
|     if (!IS_ALIGNED ((UINTN)Addr, sizeof (UINT16))) {
 | |
|       EbcDebugSignalException (
 | |
|         EXCEPT_EBC_ALIGNMENT_CHECK,
 | |
|         EXCEPTION_FLAG_FATAL,
 | |
|         VmPtr
 | |
|         );
 | |
| 
 | |
|       return EFI_UNSUPPORTED;
 | |
|     }
 | |
| 
 | |
|     EbcDebuggerHookJMPStart (VmPtr);
 | |
|     if ((Operand & JMP_M_RELATIVE) != 0) {
 | |
|       VmPtr->Ip += (UINTN)Addr + Size;
 | |
|     } else {
 | |
|       VmPtr->Ip = (VMIP)Addr;
 | |
|     }
 | |
| 
 | |
|     EbcDebuggerHookJMPEnd (VmPtr);
 | |
|   } else {
 | |
|     //
 | |
|     // Form: JMP32 Rx {Immed32}
 | |
|     //
 | |
|     Addr = (UINTN)(Data64 + Index32);
 | |
|     if (!IS_ALIGNED ((UINTN)Addr, sizeof (UINT16))) {
 | |
|       EbcDebugSignalException (
 | |
|         EXCEPT_EBC_ALIGNMENT_CHECK,
 | |
|         EXCEPTION_FLAG_FATAL,
 | |
|         VmPtr
 | |
|         );
 | |
| 
 | |
|       return EFI_UNSUPPORTED;
 | |
|     }
 | |
| 
 | |
|     EbcDebuggerHookJMPStart (VmPtr);
 | |
|     if ((Operand & JMP_M_RELATIVE) != 0) {
 | |
|       VmPtr->Ip += (UINTN)Addr + Size;
 | |
|     } else {
 | |
|       VmPtr->Ip = (VMIP)Addr;
 | |
|     }
 | |
| 
 | |
|     EbcDebuggerHookJMPEnd (VmPtr);
 | |
|   }
 | |
| 
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute the EBC JMP8 instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     JMP8{cs|cc}  Offset/2
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
| 
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecuteJMP8 (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   )
 | |
| {
 | |
|   UINT8  Opcode;
 | |
|   UINT8  ConditionFlag;
 | |
|   UINT8  CompareSet;
 | |
|   INT8   Offset;
 | |
| 
 | |
|   //
 | |
|   // Decode instruction.
 | |
|   //
 | |
|   Opcode        = GETOPCODE (VmPtr);
 | |
|   CompareSet    = (UINT8)(((Opcode & JMP_M_CS) != 0) ? 1 : 0);
 | |
|   ConditionFlag = (UINT8)VMFLAG_ISSET (VmPtr, VMFLAGS_CC);
 | |
| 
 | |
|   //
 | |
|   // If we haven't met the condition, then simply advance the IP and return
 | |
|   //
 | |
|   if ((Opcode & CONDITION_M_CONDITIONAL) != 0) {
 | |
|     if (CompareSet != ConditionFlag) {
 | |
|       EbcDebuggerHookJMP8Start (VmPtr);
 | |
|       VmPtr->Ip += 2;
 | |
|       EbcDebuggerHookJMP8End (VmPtr);
 | |
|       return EFI_SUCCESS;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Get the offset from the instruction stream. It's relative to the
 | |
|   // following instruction, and divided by 2.
 | |
|   //
 | |
|   Offset = VmReadImmed8 (VmPtr, 1);
 | |
|   //
 | |
|   // Want to check for offset == -2 and then raise an exception?
 | |
|   //
 | |
|   EbcDebuggerHookJMP8Start (VmPtr);
 | |
|   VmPtr->Ip += (Offset * 2) + 2;
 | |
|   EbcDebuggerHookJMP8End (VmPtr);
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute the EBC MOVI.
 | |
| 
 | |
|   Instruction syntax:
 | |
| 
 | |
|     MOVI[b|w|d|q][w|d|q] {@}R1 {Index16}, ImmData16|32|64
 | |
| 
 | |
|     First variable character specifies the move size
 | |
|     Second variable character specifies size of the immediate data
 | |
| 
 | |
|     Sign-extend the immediate data to the size of the operation, and zero-extend
 | |
|     if storing to a register.
 | |
| 
 | |
|     Operand1 direct with index/immed is invalid.
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
| 
 | |
|   @retval EFI_UNSUPPORTED   The opcodes/operands is not supported.
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecuteMOVI (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   )
 | |
| {
 | |
|   UINT8   Opcode;
 | |
|   UINT8   Operands;
 | |
|   UINT8   Size;
 | |
|   INT16   Index16;
 | |
|   INT64   ImmData64;
 | |
|   UINT64  Op1;
 | |
|   UINT64  Mask64;
 | |
| 
 | |
|   //
 | |
|   // Get the opcode and operands byte so we can get R1 and R2
 | |
|   //
 | |
|   Opcode   = GETOPCODE (VmPtr);
 | |
|   Operands = GETOPERANDS (VmPtr);
 | |
| 
 | |
|   //
 | |
|   // Get the index (16-bit) if present
 | |
|   //
 | |
|   if ((Operands & MOVI_M_IMMDATA) != 0) {
 | |
|     Index16 = VmReadIndex16 (VmPtr, 2);
 | |
|     Size    = 4;
 | |
|   } else {
 | |
|     Index16 = 0;
 | |
|     Size    = 2;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Extract the immediate data. Sign-extend always.
 | |
|   //
 | |
|   if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH16) {
 | |
|     ImmData64 = (INT64)(INT16)VmReadImmed16 (VmPtr, Size);
 | |
|     Size     += 2;
 | |
|   } else if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH32) {
 | |
|     ImmData64 = (INT64)(INT32)VmReadImmed32 (VmPtr, Size);
 | |
|     Size     += 4;
 | |
|   } else if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH64) {
 | |
|     ImmData64 = (INT64)VmReadImmed64 (VmPtr, Size);
 | |
|     Size     += 8;
 | |
|   } else {
 | |
|     //
 | |
|     // Invalid encoding
 | |
|     //
 | |
|     EbcDebugSignalException (
 | |
|       EXCEPT_EBC_INSTRUCTION_ENCODING,
 | |
|       EXCEPTION_FLAG_FATAL,
 | |
|       VmPtr
 | |
|       );
 | |
|     return EFI_UNSUPPORTED;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Now write back the result
 | |
|   //
 | |
|   if (!OPERAND1_INDIRECT (Operands)) {
 | |
|     //
 | |
|     // Operand1 direct. Make sure it didn't have an index.
 | |
|     //
 | |
|     if ((Operands & MOVI_M_IMMDATA) != 0) {
 | |
|       EbcDebugSignalException (
 | |
|         EXCEPT_EBC_INSTRUCTION_ENCODING,
 | |
|         EXCEPTION_FLAG_FATAL,
 | |
|         VmPtr
 | |
|         );
 | |
|       return EFI_UNSUPPORTED;
 | |
|     }
 | |
| 
 | |
|     //
 | |
|     // Writing directly to a register. Clear unused bits.
 | |
|     //
 | |
|     if ((Operands & MOVI_M_MOVEWIDTH) == MOVI_MOVEWIDTH8) {
 | |
|       Mask64 = 0x000000FF;
 | |
|     } else if ((Operands & MOVI_M_MOVEWIDTH) == MOVI_MOVEWIDTH16) {
 | |
|       Mask64 = 0x0000FFFF;
 | |
|     } else if ((Operands & MOVI_M_MOVEWIDTH) == MOVI_MOVEWIDTH32) {
 | |
|       Mask64 = 0x00000000FFFFFFFF;
 | |
|     } else {
 | |
|       Mask64 = (UINT64) ~0;
 | |
|     }
 | |
| 
 | |
|     VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = ImmData64 & Mask64;
 | |
|   } else {
 | |
|     //
 | |
|     // Get the address then write back based on size of the move
 | |
|     //
 | |
|     Op1 = (UINT64)VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16;
 | |
|     if ((Operands & MOVI_M_MOVEWIDTH) == MOVI_MOVEWIDTH8) {
 | |
|       VmWriteMem8 (VmPtr, (UINTN)Op1, (UINT8)ImmData64);
 | |
|     } else if ((Operands & MOVI_M_MOVEWIDTH) == MOVI_MOVEWIDTH16) {
 | |
|       VmWriteMem16 (VmPtr, (UINTN)Op1, (UINT16)ImmData64);
 | |
|     } else if ((Operands & MOVI_M_MOVEWIDTH) == MOVI_MOVEWIDTH32) {
 | |
|       VmWriteMem32 (VmPtr, (UINTN)Op1, (UINT32)ImmData64);
 | |
|     } else {
 | |
|       VmWriteMem64 (VmPtr, (UINTN)Op1, (UINT64)ImmData64);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Advance the instruction pointer
 | |
|   //
 | |
|   VmPtr->Ip += Size;
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute the EBC MOV immediate natural. This instruction moves an immediate
 | |
|   index value into a register or memory location.
 | |
| 
 | |
|   Instruction syntax:
 | |
| 
 | |
|     MOVIn[w|d|q] {@}R1 {Index16}, Index16|32|64
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
| 
 | |
|   @retval EFI_UNSUPPORTED   The opcodes/operands is not supported.
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecuteMOVIn (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   )
 | |
| {
 | |
|   UINT8   Opcode;
 | |
|   UINT8   Operands;
 | |
|   UINT8   Size;
 | |
|   INT16   Index16;
 | |
|   INT16   ImmedIndex16;
 | |
|   INT32   ImmedIndex32;
 | |
|   INT64   ImmedIndex64;
 | |
|   UINT64  Op1;
 | |
| 
 | |
|   //
 | |
|   // Get the opcode and operands byte so we can get R1 and R2
 | |
|   //
 | |
|   Opcode   = GETOPCODE (VmPtr);
 | |
|   Operands = GETOPERANDS (VmPtr);
 | |
| 
 | |
|   //
 | |
|   // Get the operand1 index (16-bit) if present
 | |
|   //
 | |
|   if ((Operands & MOVI_M_IMMDATA) != 0) {
 | |
|     Index16 = VmReadIndex16 (VmPtr, 2);
 | |
|     Size    = 4;
 | |
|   } else {
 | |
|     Index16 = 0;
 | |
|     Size    = 2;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Extract the immediate data and convert to a 64-bit index.
 | |
|   //
 | |
|   if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH16) {
 | |
|     ImmedIndex16 = VmReadIndex16 (VmPtr, Size);
 | |
|     ImmedIndex64 = (INT64)ImmedIndex16;
 | |
|     Size        += 2;
 | |
|   } else if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH32) {
 | |
|     ImmedIndex32 = VmReadIndex32 (VmPtr, Size);
 | |
|     ImmedIndex64 = (INT64)ImmedIndex32;
 | |
|     Size        += 4;
 | |
|   } else if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH64) {
 | |
|     ImmedIndex64 = VmReadIndex64 (VmPtr, Size);
 | |
|     Size        += 8;
 | |
|   } else {
 | |
|     //
 | |
|     // Invalid encoding
 | |
|     //
 | |
|     EbcDebugSignalException (
 | |
|       EXCEPT_EBC_INSTRUCTION_ENCODING,
 | |
|       EXCEPTION_FLAG_FATAL,
 | |
|       VmPtr
 | |
|       );
 | |
|     return EFI_UNSUPPORTED;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Now write back the result
 | |
|   //
 | |
|   if (!OPERAND1_INDIRECT (Operands)) {
 | |
|     //
 | |
|     // Check for MOVIn R1 Index16, Immed (not indirect, with index), which
 | |
|     // is illegal
 | |
|     //
 | |
|     if ((Operands & MOVI_M_IMMDATA) != 0) {
 | |
|       EbcDebugSignalException (
 | |
|         EXCEPT_EBC_INSTRUCTION_ENCODING,
 | |
|         EXCEPTION_FLAG_FATAL,
 | |
|         VmPtr
 | |
|         );
 | |
|       return EFI_UNSUPPORTED;
 | |
|     }
 | |
| 
 | |
|     VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = ImmedIndex64;
 | |
|   } else {
 | |
|     //
 | |
|     // Get the address
 | |
|     //
 | |
|     Op1 = (UINT64)VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16;
 | |
|     VmWriteMemN (VmPtr, (UINTN)Op1, (UINTN)(INTN)ImmedIndex64);
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Advance the instruction pointer
 | |
|   //
 | |
|   VmPtr->Ip += Size;
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute the EBC MOVREL instruction.
 | |
|   Dest <- Ip + ImmData
 | |
| 
 | |
|   Instruction syntax:
 | |
| 
 | |
|     MOVREL[w|d|q] {@}R1 {Index16}, ImmData16|32|64
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
| 
 | |
|   @retval EFI_UNSUPPORTED   The opcodes/operands is not supported.
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecuteMOVREL (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   )
 | |
| {
 | |
|   UINT8   Opcode;
 | |
|   UINT8   Operands;
 | |
|   UINT8   Size;
 | |
|   INT16   Index16;
 | |
|   INT64   ImmData64;
 | |
|   UINT64  Op1;
 | |
|   UINT64  Op2;
 | |
| 
 | |
|   //
 | |
|   // Get the opcode and operands byte so we can get R1 and R2
 | |
|   //
 | |
|   Opcode   = GETOPCODE (VmPtr);
 | |
|   Operands = GETOPERANDS (VmPtr);
 | |
| 
 | |
|   //
 | |
|   // Get the Operand 1 index (16-bit) if present
 | |
|   //
 | |
|   if ((Operands & MOVI_M_IMMDATA) != 0) {
 | |
|     Index16 = VmReadIndex16 (VmPtr, 2);
 | |
|     Size    = 4;
 | |
|   } else {
 | |
|     Index16 = 0;
 | |
|     Size    = 2;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Get the immediate data.
 | |
|   //
 | |
|   if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH16) {
 | |
|     ImmData64 = (INT64)VmReadImmed16 (VmPtr, Size);
 | |
|     Size     += 2;
 | |
|   } else if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH32) {
 | |
|     ImmData64 = (INT64)VmReadImmed32 (VmPtr, Size);
 | |
|     Size     += 4;
 | |
|   } else if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH64) {
 | |
|     ImmData64 = VmReadImmed64 (VmPtr, Size);
 | |
|     Size     += 8;
 | |
|   } else {
 | |
|     //
 | |
|     // Invalid encoding
 | |
|     //
 | |
|     EbcDebugSignalException (
 | |
|       EXCEPT_EBC_INSTRUCTION_ENCODING,
 | |
|       EXCEPTION_FLAG_FATAL,
 | |
|       VmPtr
 | |
|       );
 | |
|     return EFI_UNSUPPORTED;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Compute the value and write back the result
 | |
|   //
 | |
|   Op2 = (UINT64)((INT64)((UINT64)(UINTN)VmPtr->Ip) + (INT64)ImmData64 + Size);
 | |
|   if (!OPERAND1_INDIRECT (Operands)) {
 | |
|     //
 | |
|     // Check for illegal combination of operand1 direct with immediate data
 | |
|     //
 | |
|     if ((Operands & MOVI_M_IMMDATA) != 0) {
 | |
|       EbcDebugSignalException (
 | |
|         EXCEPT_EBC_INSTRUCTION_ENCODING,
 | |
|         EXCEPTION_FLAG_FATAL,
 | |
|         VmPtr
 | |
|         );
 | |
|       return EFI_UNSUPPORTED;
 | |
|     }
 | |
| 
 | |
|     VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = (VM_REGISTER)Op2;
 | |
|   } else {
 | |
|     //
 | |
|     // Get the address = [Rx] + Index16
 | |
|     // Write back the result. Always a natural size write, since
 | |
|     // we're talking addresses here.
 | |
|     //
 | |
|     Op1 = (UINT64)VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16;
 | |
|     VmWriteMemN (VmPtr, (UINTN)Op1, (UINTN)Op2);
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Advance the instruction pointer
 | |
|   //
 | |
|   VmPtr->Ip += Size;
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute the EBC MOVsnw instruction. This instruction loads a signed
 | |
|   natural value from memory or register to another memory or register. On
 | |
|   32-bit machines, the value gets sign-extended to 64 bits if the destination
 | |
|   is a register.
 | |
| 
 | |
|   Instruction syntax:
 | |
| 
 | |
|     MOVsnw {@}R1 {Index16}, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|     0:7 1=>operand1 index present
 | |
|     0:6 1=>operand2 index present
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
| 
 | |
|   @retval EFI_UNSUPPORTED   The opcodes/operands is not supported.
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecuteMOVsnw (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   )
 | |
| {
 | |
|   UINT8   Opcode;
 | |
|   UINT8   Operands;
 | |
|   UINT8   Size;
 | |
|   INT16   Op1Index;
 | |
|   INT16   Op2Index;
 | |
|   UINT64  Op2;
 | |
| 
 | |
|   //
 | |
|   // Get the opcode and operand bytes
 | |
|   //
 | |
|   Opcode   = GETOPCODE (VmPtr);
 | |
|   Operands = GETOPERANDS (VmPtr);
 | |
| 
 | |
|   Op1Index = Op2Index = 0;
 | |
| 
 | |
|   //
 | |
|   // Get the indexes if present.
 | |
|   //
 | |
|   Size = 2;
 | |
|   if ((Opcode & OPCODE_M_IMMED_OP1) != 0) {
 | |
|     if (OPERAND1_INDIRECT (Operands)) {
 | |
|       Op1Index = VmReadIndex16 (VmPtr, 2);
 | |
|     } else {
 | |
|       //
 | |
|       // Illegal form operand1 direct with index:  MOVsnw R1 Index16, {@}R2
 | |
|       //
 | |
|       EbcDebugSignalException (
 | |
|         EXCEPT_EBC_INSTRUCTION_ENCODING,
 | |
|         EXCEPTION_FLAG_FATAL,
 | |
|         VmPtr
 | |
|         );
 | |
|       return EFI_UNSUPPORTED;
 | |
|     }
 | |
| 
 | |
|     Size += sizeof (UINT16);
 | |
|   }
 | |
| 
 | |
|   if ((Opcode & OPCODE_M_IMMED_OP2) != 0) {
 | |
|     if (OPERAND2_INDIRECT (Operands)) {
 | |
|       Op2Index = VmReadIndex16 (VmPtr, Size);
 | |
|     } else {
 | |
|       Op2Index = VmReadImmed16 (VmPtr, Size);
 | |
|     }
 | |
| 
 | |
|     Size += sizeof (UINT16);
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Get the data from the source.
 | |
|   //
 | |
|   Op2 = (UINT64)(INT64)(INTN)(VmPtr->Gpr[OPERAND2_REGNUM (Operands)] + Op2Index);
 | |
|   if (OPERAND2_INDIRECT (Operands)) {
 | |
|     Op2 = (UINT64)(INT64)(INTN)VmReadMemN (VmPtr, (UINTN)Op2);
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Now write back the result.
 | |
|   //
 | |
|   if (!OPERAND1_INDIRECT (Operands)) {
 | |
|     VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = Op2;
 | |
|   } else {
 | |
|     VmWriteMemN (VmPtr, (UINTN)(VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Op1Index), (UINTN)Op2);
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Advance the instruction pointer
 | |
|   //
 | |
|   VmPtr->Ip += Size;
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute the EBC MOVsnw instruction. This instruction loads a signed
 | |
|   natural value from memory or register to another memory or register. On
 | |
|   32-bit machines, the value gets sign-extended to 64 bits if the destination
 | |
|   is a register.
 | |
| 
 | |
|   Instruction syntax:
 | |
| 
 | |
|     MOVsnd {@}R1 {Indx32}, {@}R2 {Index32|Immed32}
 | |
| 
 | |
|     0:7 1=>operand1 index present
 | |
|     0:6 1=>operand2 index present
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
| 
 | |
|   @retval EFI_UNSUPPORTED   The opcodes/operands is not supported.
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecuteMOVsnd (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   )
 | |
| {
 | |
|   UINT8   Opcode;
 | |
|   UINT8   Operands;
 | |
|   UINT8   Size;
 | |
|   INT32   Op1Index;
 | |
|   INT32   Op2Index;
 | |
|   UINT64  Op2;
 | |
| 
 | |
|   //
 | |
|   // Get the opcode and operand bytes
 | |
|   //
 | |
|   Opcode   = GETOPCODE (VmPtr);
 | |
|   Operands = GETOPERANDS (VmPtr);
 | |
| 
 | |
|   Op1Index = Op2Index = 0;
 | |
| 
 | |
|   //
 | |
|   // Get the indexes if present.
 | |
|   //
 | |
|   Size = 2;
 | |
|   if ((Opcode & OPCODE_M_IMMED_OP1) != 0) {
 | |
|     if (OPERAND1_INDIRECT (Operands)) {
 | |
|       Op1Index = VmReadIndex32 (VmPtr, 2);
 | |
|     } else {
 | |
|       //
 | |
|       // Illegal form operand1 direct with index:  MOVsnd R1 Index16,..
 | |
|       //
 | |
|       EbcDebugSignalException (
 | |
|         EXCEPT_EBC_INSTRUCTION_ENCODING,
 | |
|         EXCEPTION_FLAG_FATAL,
 | |
|         VmPtr
 | |
|         );
 | |
|       return EFI_UNSUPPORTED;
 | |
|     }
 | |
| 
 | |
|     Size += sizeof (UINT32);
 | |
|   }
 | |
| 
 | |
|   if ((Opcode & OPCODE_M_IMMED_OP2) != 0) {
 | |
|     if (OPERAND2_INDIRECT (Operands)) {
 | |
|       Op2Index = VmReadIndex32 (VmPtr, Size);
 | |
|     } else {
 | |
|       Op2Index = VmReadImmed32 (VmPtr, Size);
 | |
|     }
 | |
| 
 | |
|     Size += sizeof (UINT32);
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Get the data from the source.
 | |
|   //
 | |
|   Op2 = (UINT64)(INT64)(INTN)(INT64)(VmPtr->Gpr[OPERAND2_REGNUM (Operands)] + Op2Index);
 | |
|   if (OPERAND2_INDIRECT (Operands)) {
 | |
|     Op2 = (UINT64)(INT64)(INTN)(INT64)VmReadMemN (VmPtr, (UINTN)Op2);
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Now write back the result.
 | |
|   //
 | |
|   if (!OPERAND1_INDIRECT (Operands)) {
 | |
|     VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = Op2;
 | |
|   } else {
 | |
|     VmWriteMemN (VmPtr, (UINTN)(VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Op1Index), (UINTN)Op2);
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Advance the instruction pointer
 | |
|   //
 | |
|   VmPtr->Ip += Size;
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute the EBC PUSHn instruction
 | |
| 
 | |
|   Instruction syntax:
 | |
|     PUSHn {@}R1 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
| 
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecutePUSHn (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   )
 | |
| {
 | |
|   UINT8  Opcode;
 | |
|   UINT8  Operands;
 | |
|   INT16  Index16;
 | |
|   UINTN  DataN;
 | |
| 
 | |
|   //
 | |
|   // Get opcode and operands
 | |
|   //
 | |
|   Opcode   = GETOPCODE (VmPtr);
 | |
|   Operands = GETOPERANDS (VmPtr);
 | |
| 
 | |
|   //
 | |
|   // Get index if present
 | |
|   //
 | |
|   if ((Opcode & PUSHPOP_M_IMMDATA) != 0) {
 | |
|     if (OPERAND1_INDIRECT (Operands)) {
 | |
|       Index16 = VmReadIndex16 (VmPtr, 2);
 | |
|     } else {
 | |
|       Index16 = VmReadImmed16 (VmPtr, 2);
 | |
|     }
 | |
| 
 | |
|     VmPtr->Ip += 4;
 | |
|   } else {
 | |
|     Index16    = 0;
 | |
|     VmPtr->Ip += 2;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Get the data to push
 | |
|   //
 | |
|   if (OPERAND1_INDIRECT (Operands)) {
 | |
|     DataN = VmReadMemN (VmPtr, (UINTN)(VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16));
 | |
|   } else {
 | |
|     DataN = (UINTN)(VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16);
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Adjust the stack down.
 | |
|   //
 | |
|   VmPtr->Gpr[0] -= sizeof (UINTN);
 | |
|   VmWriteMemN (VmPtr, (UINTN)VmPtr->Gpr[0], DataN);
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute the EBC PUSH instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     PUSH[32|64] {@}R1 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
| 
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecutePUSH (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   )
 | |
| {
 | |
|   UINT8   Opcode;
 | |
|   UINT8   Operands;
 | |
|   UINT32  Data32;
 | |
|   UINT64  Data64;
 | |
|   INT16   Index16;
 | |
| 
 | |
|   //
 | |
|   // Get opcode and operands
 | |
|   //
 | |
|   Opcode   = GETOPCODE (VmPtr);
 | |
|   Operands = GETOPERANDS (VmPtr);
 | |
|   //
 | |
|   // Get immediate index if present, then advance the IP.
 | |
|   //
 | |
|   if ((Opcode & PUSHPOP_M_IMMDATA) != 0) {
 | |
|     if (OPERAND1_INDIRECT (Operands)) {
 | |
|       Index16 = VmReadIndex16 (VmPtr, 2);
 | |
|     } else {
 | |
|       Index16 = VmReadImmed16 (VmPtr, 2);
 | |
|     }
 | |
| 
 | |
|     VmPtr->Ip += 4;
 | |
|   } else {
 | |
|     Index16    = 0;
 | |
|     VmPtr->Ip += 2;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Get the data to push
 | |
|   //
 | |
|   if ((Opcode & PUSHPOP_M_64) != 0) {
 | |
|     if (OPERAND1_INDIRECT (Operands)) {
 | |
|       Data64 = VmReadMem64 (VmPtr, (UINTN)(VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16));
 | |
|     } else {
 | |
|       Data64 = (UINT64)VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16;
 | |
|     }
 | |
| 
 | |
|     //
 | |
|     // Adjust the stack down, then write back the data
 | |
|     //
 | |
|     VmPtr->Gpr[0] -= sizeof (UINT64);
 | |
|     VmWriteMem64 (VmPtr, (UINTN)VmPtr->Gpr[0], Data64);
 | |
|   } else {
 | |
|     //
 | |
|     // 32-bit data
 | |
|     //
 | |
|     if (OPERAND1_INDIRECT (Operands)) {
 | |
|       Data32 = VmReadMem32 (VmPtr, (UINTN)(VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16));
 | |
|     } else {
 | |
|       Data32 = (UINT32)VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16;
 | |
|     }
 | |
| 
 | |
|     //
 | |
|     // Adjust the stack down and write the data
 | |
|     //
 | |
|     VmPtr->Gpr[0] -= sizeof (UINT32);
 | |
|     VmWriteMem32 (VmPtr, (UINTN)VmPtr->Gpr[0], Data32);
 | |
|   }
 | |
| 
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute the EBC POPn instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     POPn {@}R1 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
| 
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecutePOPn (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   )
 | |
| {
 | |
|   UINT8  Opcode;
 | |
|   UINT8  Operands;
 | |
|   INT16  Index16;
 | |
|   UINTN  DataN;
 | |
| 
 | |
|   //
 | |
|   // Get opcode and operands
 | |
|   //
 | |
|   Opcode   = GETOPCODE (VmPtr);
 | |
|   Operands = GETOPERANDS (VmPtr);
 | |
|   //
 | |
|   // Get immediate data if present, and advance the IP
 | |
|   //
 | |
|   if ((Opcode & PUSHPOP_M_IMMDATA) != 0) {
 | |
|     if (OPERAND1_INDIRECT (Operands)) {
 | |
|       Index16 = VmReadIndex16 (VmPtr, 2);
 | |
|     } else {
 | |
|       Index16 = VmReadImmed16 (VmPtr, 2);
 | |
|     }
 | |
| 
 | |
|     VmPtr->Ip += 4;
 | |
|   } else {
 | |
|     Index16    = 0;
 | |
|     VmPtr->Ip += 2;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Read the data off the stack, then adjust the stack pointer
 | |
|   //
 | |
|   DataN          = VmReadMemN (VmPtr, (UINTN)VmPtr->Gpr[0]);
 | |
|   VmPtr->Gpr[0] += sizeof (UINTN);
 | |
|   //
 | |
|   // Do the write-back
 | |
|   //
 | |
|   if (OPERAND1_INDIRECT (Operands)) {
 | |
|     VmWriteMemN (VmPtr, (UINTN)(VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16), DataN);
 | |
|   } else {
 | |
|     VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = (INT64)(UINT64)(UINTN)(DataN + Index16);
 | |
|   }
 | |
| 
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute the EBC POP instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     POPn {@}R1 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
| 
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecutePOP (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   )
 | |
| {
 | |
|   UINT8   Opcode;
 | |
|   UINT8   Operands;
 | |
|   INT16   Index16;
 | |
|   INT32   Data32;
 | |
|   UINT64  Data64;
 | |
| 
 | |
|   //
 | |
|   // Get opcode and operands
 | |
|   //
 | |
|   Opcode   = GETOPCODE (VmPtr);
 | |
|   Operands = GETOPERANDS (VmPtr);
 | |
|   //
 | |
|   // Get immediate data if present, and advance the IP.
 | |
|   //
 | |
|   if ((Opcode & PUSHPOP_M_IMMDATA) != 0) {
 | |
|     if (OPERAND1_INDIRECT (Operands)) {
 | |
|       Index16 = VmReadIndex16 (VmPtr, 2);
 | |
|     } else {
 | |
|       Index16 = VmReadImmed16 (VmPtr, 2);
 | |
|     }
 | |
| 
 | |
|     VmPtr->Ip += 4;
 | |
|   } else {
 | |
|     Index16    = 0;
 | |
|     VmPtr->Ip += 2;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Get the data off the stack, then write it to the appropriate location
 | |
|   //
 | |
|   if ((Opcode & PUSHPOP_M_64) != 0) {
 | |
|     //
 | |
|     // Read the data off the stack, then adjust the stack pointer
 | |
|     //
 | |
|     Data64         = VmReadMem64 (VmPtr, (UINTN)VmPtr->Gpr[0]);
 | |
|     VmPtr->Gpr[0] += sizeof (UINT64);
 | |
|     //
 | |
|     // Do the write-back
 | |
|     //
 | |
|     if (OPERAND1_INDIRECT (Operands)) {
 | |
|       VmWriteMem64 (VmPtr, (UINTN)(VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16), Data64);
 | |
|     } else {
 | |
|       VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = Data64 + Index16;
 | |
|     }
 | |
|   } else {
 | |
|     //
 | |
|     // 32-bit pop. Read it off the stack and adjust the stack pointer
 | |
|     //
 | |
|     Data32         = (INT32)VmReadMem32 (VmPtr, (UINTN)VmPtr->Gpr[0]);
 | |
|     VmPtr->Gpr[0] += sizeof (UINT32);
 | |
|     //
 | |
|     // Do the write-back
 | |
|     //
 | |
|     if (OPERAND1_INDIRECT (Operands)) {
 | |
|       VmWriteMem32 (VmPtr, (UINTN)(VmPtr->Gpr[OPERAND1_REGNUM (Operands)] + Index16), Data32);
 | |
|     } else {
 | |
|       VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = (INT64)Data32 + Index16;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Implements the EBC CALL instruction.
 | |
| 
 | |
|   Instruction format:
 | |
|     CALL64 Immed64
 | |
|     CALL32 {@}R1 {Immed32|Index32}
 | |
|     CALLEX64 Immed64
 | |
|     CALLEX16 {@}R1 {Immed32}
 | |
| 
 | |
|     If Rx == R0, then it's a PC relative call to PC = PC + imm32.
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
| 
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecuteCALL (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   )
 | |
| {
 | |
|   UINT8  Opcode;
 | |
|   UINT8  Operands;
 | |
|   INT32  Immed32;
 | |
|   UINT8  Size;
 | |
|   INT64  Immed64;
 | |
|   VOID   *FramePtr;
 | |
| 
 | |
|   //
 | |
|   // Get opcode and operands
 | |
|   //
 | |
|   Opcode   = GETOPCODE (VmPtr);
 | |
|   Operands = GETOPERANDS (VmPtr);
 | |
| 
 | |
|   if ((Operands & OPERAND_M_NATIVE_CALL) != 0) {
 | |
|     EbcDebuggerHookCALLEXStart (VmPtr);
 | |
|   } else {
 | |
|     EbcDebuggerHookCALLStart (VmPtr);
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Assign these as well to avoid compiler warnings
 | |
|   //
 | |
|   Immed64 = 0;
 | |
|   Immed32 = 0;
 | |
| 
 | |
|   FramePtr = VmPtr->FramePtr;
 | |
|   //
 | |
|   // Determine the instruction size, and get immediate data if present
 | |
|   //
 | |
|   if ((Opcode & OPCODE_M_IMMDATA) != 0) {
 | |
|     if ((Opcode & OPCODE_M_IMMDATA64) != 0) {
 | |
|       Immed64 = VmReadImmed64 (VmPtr, 2);
 | |
|       Size    = 10;
 | |
|     } else {
 | |
|       //
 | |
|       // If register operand is indirect, then the immediate data is an index
 | |
|       //
 | |
|       if (OPERAND1_INDIRECT (Operands)) {
 | |
|         Immed32 = VmReadIndex32 (VmPtr, 2);
 | |
|       } else {
 | |
|         Immed32 = VmReadImmed32 (VmPtr, 2);
 | |
|       }
 | |
| 
 | |
|       Size = 6;
 | |
|     }
 | |
|   } else {
 | |
|     Size = 2;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // If it's a call to EBC, adjust the stack pointer down 16 bytes and
 | |
|   // put our return address and frame pointer on the VM stack.
 | |
|   //
 | |
|   if ((Operands & OPERAND_M_NATIVE_CALL) == 0) {
 | |
|     VmPtr->Gpr[0] -= 8;
 | |
|     VmWriteMemN (VmPtr, (UINTN)VmPtr->Gpr[0], (UINTN)FramePtr);
 | |
|     VmPtr->FramePtr = (VOID *)(UINTN)VmPtr->Gpr[0];
 | |
|     VmPtr->Gpr[0]  -= 8;
 | |
|     VmWriteMem64 (VmPtr, (UINTN)VmPtr->Gpr[0], (UINT64)(UINTN)(VmPtr->Ip + Size));
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // If 64-bit data, then absolute jump only
 | |
|   //
 | |
|   if ((Opcode & OPCODE_M_IMMDATA64) != 0) {
 | |
|     //
 | |
|     // Native or EBC call?
 | |
|     //
 | |
|     if ((Operands & OPERAND_M_NATIVE_CALL) == 0) {
 | |
|       VmPtr->Ip = (VMIP)(UINTN)Immed64;
 | |
|     } else {
 | |
|       //
 | |
|       // Call external function, get the return value, and advance the IP
 | |
|       //
 | |
|       EbcLLCALLEX (VmPtr, (UINTN)Immed64, (UINTN)VmPtr->Gpr[0], FramePtr, Size);
 | |
|     }
 | |
|   } else {
 | |
|     //
 | |
|     // Get the register data. If operand1 == 0, then ignore register and
 | |
|     // take immediate data as relative or absolute address.
 | |
|     // Compiler should take care of upper bits if 32-bit machine.
 | |
|     //
 | |
|     if (OPERAND1_REGNUM (Operands) != 0) {
 | |
|       Immed64 = (UINT64)(UINTN)VmPtr->Gpr[OPERAND1_REGNUM (Operands)];
 | |
|     }
 | |
| 
 | |
|     //
 | |
|     // Get final address
 | |
|     //
 | |
|     if (OPERAND1_INDIRECT (Operands)) {
 | |
|       Immed64 = (INT64)(UINT64)(UINTN)VmReadMemN (VmPtr, (UINTN)(Immed64 + Immed32));
 | |
|     } else {
 | |
|       Immed64 += Immed32;
 | |
|     }
 | |
| 
 | |
|     //
 | |
|     // Now determine if external call, and then if relative or absolute
 | |
|     //
 | |
|     if ((Operands & OPERAND_M_NATIVE_CALL) == 0) {
 | |
|       //
 | |
|       // EBC call. Relative or absolute? If relative, then it's relative to the
 | |
|       // start of the next instruction.
 | |
|       //
 | |
|       if ((Operands & OPERAND_M_RELATIVE_ADDR) != 0) {
 | |
|         VmPtr->Ip += Immed64 + Size;
 | |
|       } else {
 | |
|         VmPtr->Ip = (VMIP)(UINTN)Immed64;
 | |
|       }
 | |
|     } else {
 | |
|       //
 | |
|       // Native call. Relative or absolute?
 | |
|       //
 | |
|       if ((Operands & OPERAND_M_RELATIVE_ADDR) != 0) {
 | |
|         EbcLLCALLEX (VmPtr, (UINTN)(Immed64 + VmPtr->Ip + Size), (UINTN)VmPtr->Gpr[0], FramePtr, Size);
 | |
|       } else {
 | |
|         if ((VmPtr->StopFlags & STOPFLAG_BREAK_ON_CALLEX) != 0) {
 | |
|           CpuBreakpoint ();
 | |
|         }
 | |
| 
 | |
|         EbcLLCALLEX (VmPtr, (UINTN)Immed64, (UINTN)VmPtr->Gpr[0], FramePtr, Size);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if ((Operands & OPERAND_M_NATIVE_CALL) != 0) {
 | |
|     EbcDebuggerHookCALLEXEnd (VmPtr);
 | |
|   } else {
 | |
|     EbcDebuggerHookCALLEnd (VmPtr);
 | |
|   }
 | |
| 
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute the EBC RET instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     RET
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
| 
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecuteRET (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   )
 | |
| {
 | |
|   EbcDebuggerHookRETStart (VmPtr);
 | |
| 
 | |
|   //
 | |
|   // If we're at the top of the stack, then simply set the done
 | |
|   // flag and return
 | |
|   //
 | |
|   if (VmPtr->StackRetAddr == (UINT64)VmPtr->Gpr[0]) {
 | |
|     VmPtr->StopFlags |= STOPFLAG_APP_DONE;
 | |
|   } else {
 | |
|     //
 | |
|     // Pull the return address off the VM app's stack and set the IP
 | |
|     // to it
 | |
|     //
 | |
|     if (!IS_ALIGNED ((UINTN)VmPtr->Gpr[0], sizeof (UINT16))) {
 | |
|       EbcDebugSignalException (
 | |
|         EXCEPT_EBC_ALIGNMENT_CHECK,
 | |
|         EXCEPTION_FLAG_FATAL,
 | |
|         VmPtr
 | |
|         );
 | |
|     }
 | |
| 
 | |
|     //
 | |
|     // Restore the IP and frame pointer from the stack
 | |
|     //
 | |
|     VmPtr->Ip       = (VMIP)(UINTN)VmReadMem64 (VmPtr, (UINTN)VmPtr->Gpr[0]);
 | |
|     VmPtr->Gpr[0]  += 8;
 | |
|     VmPtr->FramePtr = (VOID *)VmReadMemN (VmPtr, (UINTN)VmPtr->Gpr[0]);
 | |
|     VmPtr->Gpr[0]  += 8;
 | |
|   }
 | |
| 
 | |
|   EbcDebuggerHookRETEnd (VmPtr);
 | |
| 
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute the EBC CMP instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     CMP[32|64][eq|lte|gte|ulte|ugte] R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
| 
 | |
|   @retval EFI_UNSUPPORTED   The opcodes/operands is not supported.
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecuteCMP (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   )
 | |
| {
 | |
|   UINT8   Opcode;
 | |
|   UINT8   Operands;
 | |
|   UINT8   Size;
 | |
|   INT16   Index16;
 | |
|   UINT32  Flag;
 | |
|   INT64   Op2;
 | |
|   INT64   Op1;
 | |
| 
 | |
|   //
 | |
|   // Get opcode and operands
 | |
|   //
 | |
|   Opcode   = GETOPCODE (VmPtr);
 | |
|   Operands = GETOPERANDS (VmPtr);
 | |
|   //
 | |
|   // Get the register data we're going to compare to
 | |
|   //
 | |
|   Op1 = VmPtr->Gpr[OPERAND1_REGNUM (Operands)];
 | |
|   //
 | |
|   // Get immediate data
 | |
|   //
 | |
|   if ((Opcode & OPCODE_M_IMMDATA) != 0) {
 | |
|     if (OPERAND2_INDIRECT (Operands)) {
 | |
|       Index16 = VmReadIndex16 (VmPtr, 2);
 | |
|     } else {
 | |
|       Index16 = VmReadImmed16 (VmPtr, 2);
 | |
|     }
 | |
| 
 | |
|     Size = 4;
 | |
|   } else {
 | |
|     Index16 = 0;
 | |
|     Size    = 2;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Now get Op2
 | |
|   //
 | |
|   if (OPERAND2_INDIRECT (Operands)) {
 | |
|     if ((Opcode & OPCODE_M_64BIT) != 0) {
 | |
|       Op2 = (INT64)VmReadMem64 (VmPtr, (UINTN)(VmPtr->Gpr[OPERAND2_REGNUM (Operands)] + Index16));
 | |
|     } else {
 | |
|       //
 | |
|       // 32-bit operations. 0-extend the values for all cases.
 | |
|       //
 | |
|       Op2 = (INT64)(UINT64)((UINT32)VmReadMem32 (VmPtr, (UINTN)(VmPtr->Gpr[OPERAND2_REGNUM (Operands)] + Index16)));
 | |
|     }
 | |
|   } else {
 | |
|     Op2 = VmPtr->Gpr[OPERAND2_REGNUM (Operands)] + Index16;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Now do the compare
 | |
|   //
 | |
|   Flag = 0;
 | |
|   if ((Opcode & OPCODE_M_64BIT) != 0) {
 | |
|     //
 | |
|     // 64-bit compares
 | |
|     //
 | |
|     switch (Opcode & OPCODE_M_OPCODE) {
 | |
|       case OPCODE_CMPEQ:
 | |
|         if (Op1 == Op2) {
 | |
|           Flag = 1;
 | |
|         }
 | |
| 
 | |
|         break;
 | |
| 
 | |
|       case OPCODE_CMPLTE:
 | |
|         if (Op1 <= Op2) {
 | |
|           Flag = 1;
 | |
|         }
 | |
| 
 | |
|         break;
 | |
| 
 | |
|       case OPCODE_CMPGTE:
 | |
|         if (Op1 >= Op2) {
 | |
|           Flag = 1;
 | |
|         }
 | |
| 
 | |
|         break;
 | |
| 
 | |
|       case OPCODE_CMPULTE:
 | |
|         if ((UINT64)Op1 <= (UINT64)Op2) {
 | |
|           Flag = 1;
 | |
|         }
 | |
| 
 | |
|         break;
 | |
| 
 | |
|       case OPCODE_CMPUGTE:
 | |
|         if ((UINT64)Op1 >= (UINT64)Op2) {
 | |
|           Flag = 1;
 | |
|         }
 | |
| 
 | |
|         break;
 | |
| 
 | |
|       default:
 | |
|         ASSERT (0);
 | |
|     }
 | |
|   } else {
 | |
|     //
 | |
|     // 32-bit compares
 | |
|     //
 | |
|     switch (Opcode & OPCODE_M_OPCODE) {
 | |
|       case OPCODE_CMPEQ:
 | |
|         if ((INT32)Op1 == (INT32)Op2) {
 | |
|           Flag = 1;
 | |
|         }
 | |
| 
 | |
|         break;
 | |
| 
 | |
|       case OPCODE_CMPLTE:
 | |
|         if ((INT32)Op1 <= (INT32)Op2) {
 | |
|           Flag = 1;
 | |
|         }
 | |
| 
 | |
|         break;
 | |
| 
 | |
|       case OPCODE_CMPGTE:
 | |
|         if ((INT32)Op1 >= (INT32)Op2) {
 | |
|           Flag = 1;
 | |
|         }
 | |
| 
 | |
|         break;
 | |
| 
 | |
|       case OPCODE_CMPULTE:
 | |
|         if ((UINT32)Op1 <= (UINT32)Op2) {
 | |
|           Flag = 1;
 | |
|         }
 | |
| 
 | |
|         break;
 | |
| 
 | |
|       case OPCODE_CMPUGTE:
 | |
|         if ((UINT32)Op1 >= (UINT32)Op2) {
 | |
|           Flag = 1;
 | |
|         }
 | |
| 
 | |
|         break;
 | |
| 
 | |
|       default:
 | |
|         ASSERT (0);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Now set the flag accordingly for the comparison
 | |
|   //
 | |
|   if (Flag != 0) {
 | |
|     VMFLAG_SET (VmPtr, VMFLAGS_CC);
 | |
|   } else {
 | |
|     VMFLAG_CLEAR (VmPtr, (UINT64)VMFLAGS_CC);
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Advance the IP
 | |
|   //
 | |
|   VmPtr->Ip += Size;
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute the EBC CMPI instruction
 | |
| 
 | |
|   Instruction syntax:
 | |
|     CMPI[32|64]{w|d}[eq|lte|gte|ulte|ugte] {@}Rx {Index16}, Immed16|Immed32
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
| 
 | |
|   @retval EFI_UNSUPPORTED   The opcodes/operands is not supported.
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecuteCMPI (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   )
 | |
| {
 | |
|   UINT8   Opcode;
 | |
|   UINT8   Operands;
 | |
|   UINT8   Size;
 | |
|   INT64   Op1;
 | |
|   INT64   Op2;
 | |
|   INT16   Index16;
 | |
|   UINT32  Flag;
 | |
| 
 | |
|   //
 | |
|   // Get opcode and operands
 | |
|   //
 | |
|   Opcode   = GETOPCODE (VmPtr);
 | |
|   Operands = GETOPERANDS (VmPtr);
 | |
| 
 | |
|   //
 | |
|   // Get operand1 index if present
 | |
|   //
 | |
|   Size = 2;
 | |
|   if ((Operands & OPERAND_M_CMPI_INDEX) != 0) {
 | |
|     Index16 = VmReadIndex16 (VmPtr, 2);
 | |
|     Size   += 2;
 | |
|   } else {
 | |
|     Index16 = 0;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Get operand1 data we're going to compare to
 | |
|   //
 | |
|   Op1 = (INT64)VmPtr->Gpr[OPERAND1_REGNUM (Operands)];
 | |
|   if (OPERAND1_INDIRECT (Operands)) {
 | |
|     //
 | |
|     // Indirect operand1. Fetch 32 or 64-bit value based on compare size.
 | |
|     //
 | |
|     if ((Opcode & OPCODE_M_CMPI64) != 0) {
 | |
|       Op1 = (INT64)VmReadMem64 (VmPtr, (UINTN)Op1 + Index16);
 | |
|     } else {
 | |
|       Op1 = (INT64)VmReadMem32 (VmPtr, (UINTN)Op1 + Index16);
 | |
|     }
 | |
|   } else {
 | |
|     //
 | |
|     // Better not have been an index with direct. That is, CMPI R1 Index,...
 | |
|     // is illegal.
 | |
|     //
 | |
|     if ((Operands & OPERAND_M_CMPI_INDEX) != 0) {
 | |
|       EbcDebugSignalException (
 | |
|         EXCEPT_EBC_INSTRUCTION_ENCODING,
 | |
|         EXCEPTION_FLAG_ERROR,
 | |
|         VmPtr
 | |
|         );
 | |
|       VmPtr->Ip += Size;
 | |
|       return EFI_UNSUPPORTED;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Get immediate data -- 16- or 32-bit sign extended
 | |
|   //
 | |
|   if ((Opcode & OPCODE_M_CMPI32_DATA) != 0) {
 | |
|     Op2   = (INT64)VmReadImmed32 (VmPtr, Size);
 | |
|     Size += 4;
 | |
|   } else {
 | |
|     //
 | |
|     // 16-bit immediate data. Sign extend always.
 | |
|     //
 | |
|     Op2   = (INT64)((INT16)VmReadImmed16 (VmPtr, Size));
 | |
|     Size += 2;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Now do the compare
 | |
|   //
 | |
|   Flag = 0;
 | |
|   if ((Opcode & OPCODE_M_CMPI64) != 0) {
 | |
|     //
 | |
|     // 64 bit comparison
 | |
|     //
 | |
|     switch (Opcode & OPCODE_M_OPCODE) {
 | |
|       case OPCODE_CMPIEQ:
 | |
|         if (Op1 == (INT64)Op2) {
 | |
|           Flag = 1;
 | |
|         }
 | |
| 
 | |
|         break;
 | |
| 
 | |
|       case OPCODE_CMPILTE:
 | |
|         if (Op1 <= (INT64)Op2) {
 | |
|           Flag = 1;
 | |
|         }
 | |
| 
 | |
|         break;
 | |
| 
 | |
|       case OPCODE_CMPIGTE:
 | |
|         if (Op1 >= (INT64)Op2) {
 | |
|           Flag = 1;
 | |
|         }
 | |
| 
 | |
|         break;
 | |
| 
 | |
|       case OPCODE_CMPIULTE:
 | |
|         if ((UINT64)Op1 <= (UINT64)((UINT32)Op2)) {
 | |
|           Flag = 1;
 | |
|         }
 | |
| 
 | |
|         break;
 | |
| 
 | |
|       case OPCODE_CMPIUGTE:
 | |
|         if ((UINT64)Op1 >= (UINT64)((UINT32)Op2)) {
 | |
|           Flag = 1;
 | |
|         }
 | |
| 
 | |
|         break;
 | |
| 
 | |
|       default:
 | |
|         ASSERT (0);
 | |
|     }
 | |
|   } else {
 | |
|     //
 | |
|     // 32-bit comparisons
 | |
|     //
 | |
|     switch (Opcode & OPCODE_M_OPCODE) {
 | |
|       case OPCODE_CMPIEQ:
 | |
|         if ((INT32)Op1 == Op2) {
 | |
|           Flag = 1;
 | |
|         }
 | |
| 
 | |
|         break;
 | |
| 
 | |
|       case OPCODE_CMPILTE:
 | |
|         if ((INT32)Op1 <= Op2) {
 | |
|           Flag = 1;
 | |
|         }
 | |
| 
 | |
|         break;
 | |
| 
 | |
|       case OPCODE_CMPIGTE:
 | |
|         if ((INT32)Op1 >= Op2) {
 | |
|           Flag = 1;
 | |
|         }
 | |
| 
 | |
|         break;
 | |
| 
 | |
|       case OPCODE_CMPIULTE:
 | |
|         if ((UINT32)Op1 <= (UINT32)Op2) {
 | |
|           Flag = 1;
 | |
|         }
 | |
| 
 | |
|         break;
 | |
| 
 | |
|       case OPCODE_CMPIUGTE:
 | |
|         if ((UINT32)Op1 >= (UINT32)Op2) {
 | |
|           Flag = 1;
 | |
|         }
 | |
| 
 | |
|         break;
 | |
| 
 | |
|       default:
 | |
|         ASSERT (0);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Now set the flag accordingly for the comparison
 | |
|   //
 | |
|   if (Flag != 0) {
 | |
|     VMFLAG_SET (VmPtr, VMFLAGS_CC);
 | |
|   } else {
 | |
|     VMFLAG_CLEAR (VmPtr, (UINT64)VMFLAGS_CC);
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Advance the IP
 | |
|   //
 | |
|   VmPtr->Ip += Size;
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute the EBC NOT instruction.s
 | |
| 
 | |
|   Instruction syntax:
 | |
|     NOT[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Op1               Operand 1 from the instruction
 | |
|   @param  Op2               Operand 2 from the instruction
 | |
| 
 | |
|   @return ~Op2
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| ExecuteNOT (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT64      Op1,
 | |
|   IN UINT64      Op2
 | |
|   )
 | |
| {
 | |
|   return ~Op2;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute the EBC NEG instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     NEG[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Op1               Operand 1 from the instruction
 | |
|   @param  Op2               Operand 2 from the instruction
 | |
| 
 | |
|   @return Op2 * -1
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| ExecuteNEG (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT64      Op1,
 | |
|   IN UINT64      Op2
 | |
|   )
 | |
| {
 | |
|   return ~Op2 + 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute the EBC ADD instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     ADD[32|64] {@}R1, {@}R2 {Index16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Op1               Operand 1 from the instruction
 | |
|   @param  Op2               Operand 2 from the instruction
 | |
| 
 | |
|   @return Op1 + Op2
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| ExecuteADD (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT64      Op1,
 | |
|   IN UINT64      Op2
 | |
|   )
 | |
| {
 | |
|   return Op1 + Op2;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute the EBC SUB instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     SUB[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Op1               Operand 1 from the instruction
 | |
|   @param  Op2               Operand 2 from the instruction
 | |
| 
 | |
|   @return Op1 - Op2
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| ExecuteSUB (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT64      Op1,
 | |
|   IN UINT64      Op2
 | |
|   )
 | |
| {
 | |
|   if ((*VmPtr->Ip & DATAMANIP_M_64) != 0) {
 | |
|     return (UINT64)((INT64)((INT64)Op1 - (INT64)Op2));
 | |
|   } else {
 | |
|     return (UINT64)((INT64)((INT32)((INT32)Op1 - (INT32)Op2)));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute the EBC MUL instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     SUB[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Op1               Operand 1 from the instruction
 | |
|   @param  Op2               Operand 2 from the instruction
 | |
| 
 | |
|   @return Op1 * Op2
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| ExecuteMUL (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT64      Op1,
 | |
|   IN UINT64      Op2
 | |
|   )
 | |
| {
 | |
|   if ((*VmPtr->Ip & DATAMANIP_M_64) != 0) {
 | |
|     return MultS64x64 ((INT64)Op1, (INT64)Op2);
 | |
|   } else {
 | |
|     return (UINT64)((INT64)((INT32)((INT32)Op1 * (INT32)Op2)));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute the EBC MULU instruction
 | |
| 
 | |
|   Instruction syntax:
 | |
|     MULU[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Op1               Operand 1 from the instruction
 | |
|   @param  Op2               Operand 2 from the instruction
 | |
| 
 | |
|   @return (unsigned)Op1 * (unsigned)Op2
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| ExecuteMULU (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT64      Op1,
 | |
|   IN UINT64      Op2
 | |
|   )
 | |
| {
 | |
|   if ((*VmPtr->Ip & DATAMANIP_M_64) != 0) {
 | |
|     return MultU64x64 (Op1, Op2);
 | |
|   } else {
 | |
|     return (UINT64)((UINT32)((UINT32)Op1 * (UINT32)Op2));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute the EBC DIV instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     DIV[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Op1               Operand 1 from the instruction
 | |
|   @param  Op2               Operand 2 from the instruction
 | |
| 
 | |
|   @return Op1 / Op2
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| ExecuteDIV (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT64      Op1,
 | |
|   IN UINT64      Op2
 | |
|   )
 | |
| {
 | |
|   INT64  Remainder;
 | |
| 
 | |
|   //
 | |
|   // Check for divide-by-0
 | |
|   //
 | |
|   if (Op2 == 0) {
 | |
|     EbcDebugSignalException (
 | |
|       EXCEPT_EBC_DIVIDE_ERROR,
 | |
|       EXCEPTION_FLAG_FATAL,
 | |
|       VmPtr
 | |
|       );
 | |
| 
 | |
|     return 0;
 | |
|   } else {
 | |
|     if ((*VmPtr->Ip & DATAMANIP_M_64) != 0) {
 | |
|       return (UINT64)(DivS64x64Remainder (Op1, Op2, &Remainder));
 | |
|     } else {
 | |
|       return (UINT64)((INT64)((INT32)Op1 / (INT32)Op2));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute the EBC DIVU instruction
 | |
| 
 | |
|   Instruction syntax:
 | |
|     DIVU[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Op1               Operand 1 from the instruction
 | |
|   @param  Op2               Operand 2 from the instruction
 | |
| 
 | |
|   @return (unsigned)Op1 / (unsigned)Op2
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| ExecuteDIVU (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT64      Op1,
 | |
|   IN UINT64      Op2
 | |
|   )
 | |
| {
 | |
|   UINT64  Remainder;
 | |
| 
 | |
|   //
 | |
|   // Check for divide-by-0
 | |
|   //
 | |
|   if (Op2 == 0) {
 | |
|     EbcDebugSignalException (
 | |
|       EXCEPT_EBC_DIVIDE_ERROR,
 | |
|       EXCEPTION_FLAG_FATAL,
 | |
|       VmPtr
 | |
|       );
 | |
|     return 0;
 | |
|   } else {
 | |
|     //
 | |
|     // Get the destination register
 | |
|     //
 | |
|     if ((*VmPtr->Ip & DATAMANIP_M_64) != 0) {
 | |
|       return (UINT64)(DivU64x64Remainder (Op1, Op2, &Remainder));
 | |
|     } else {
 | |
|       return (UINT64)((UINT32)Op1 / (UINT32)Op2);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute the EBC MOD instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     MOD[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Op1               Operand 1 from the instruction
 | |
|   @param  Op2               Operand 2 from the instruction
 | |
| 
 | |
|   @return Op1 MODULUS Op2
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| ExecuteMOD (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT64      Op1,
 | |
|   IN UINT64      Op2
 | |
|   )
 | |
| {
 | |
|   INT64  Remainder;
 | |
| 
 | |
|   //
 | |
|   // Check for divide-by-0
 | |
|   //
 | |
|   if (Op2 == 0) {
 | |
|     EbcDebugSignalException (
 | |
|       EXCEPT_EBC_DIVIDE_ERROR,
 | |
|       EXCEPTION_FLAG_FATAL,
 | |
|       VmPtr
 | |
|       );
 | |
|     return 0;
 | |
|   } else {
 | |
|     DivS64x64Remainder ((INT64)Op1, (INT64)Op2, &Remainder);
 | |
|     return Remainder;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute the EBC MODU instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     MODU[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Op1               Operand 1 from the instruction
 | |
|   @param  Op2               Operand 2 from the instruction
 | |
| 
 | |
|   @return Op1 UNSIGNED_MODULUS Op2
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| ExecuteMODU (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT64      Op1,
 | |
|   IN UINT64      Op2
 | |
|   )
 | |
| {
 | |
|   UINT64  Remainder;
 | |
| 
 | |
|   //
 | |
|   // Check for divide-by-0
 | |
|   //
 | |
|   if (Op2 == 0) {
 | |
|     EbcDebugSignalException (
 | |
|       EXCEPT_EBC_DIVIDE_ERROR,
 | |
|       EXCEPTION_FLAG_FATAL,
 | |
|       VmPtr
 | |
|       );
 | |
|     return 0;
 | |
|   } else {
 | |
|     DivU64x64Remainder (Op1, Op2, &Remainder);
 | |
|     return Remainder;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute the EBC AND instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     AND[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Op1               Operand 1 from the instruction
 | |
|   @param  Op2               Operand 2 from the instruction
 | |
| 
 | |
|   @return Op1 AND Op2
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| ExecuteAND (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT64      Op1,
 | |
|   IN UINT64      Op2
 | |
|   )
 | |
| {
 | |
|   return Op1 & Op2;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute the EBC OR instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     OR[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Op1               Operand 1 from the instruction
 | |
|   @param  Op2               Operand 2 from the instruction
 | |
| 
 | |
|   @return Op1 OR Op2
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| ExecuteOR (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT64      Op1,
 | |
|   IN UINT64      Op2
 | |
|   )
 | |
| {
 | |
|   return Op1 | Op2;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute the EBC XOR instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     XOR[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Op1               Operand 1 from the instruction
 | |
|   @param  Op2               Operand 2 from the instruction
 | |
| 
 | |
|   @return Op1 XOR Op2
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| ExecuteXOR (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT64      Op1,
 | |
|   IN UINT64      Op2
 | |
|   )
 | |
| {
 | |
|   return Op1 ^ Op2;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute the EBC SHL shift left instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     SHL[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Op1               Operand 1 from the instruction
 | |
|   @param  Op2               Operand 2 from the instruction
 | |
| 
 | |
|   @return Op1 << Op2
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| ExecuteSHL (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT64      Op1,
 | |
|   IN UINT64      Op2
 | |
|   )
 | |
| {
 | |
|   if ((*VmPtr->Ip & DATAMANIP_M_64) != 0) {
 | |
|     return LShiftU64 (Op1, (UINTN)Op2);
 | |
|   } else {
 | |
|     return (UINT64)((UINT32)((UINT32)Op1 << (UINT32)Op2));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute the EBC SHR instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     SHR[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Op1               Operand 1 from the instruction
 | |
|   @param  Op2               Operand 2 from the instruction
 | |
| 
 | |
|   @return Op1 >> Op2  (unsigned operands)
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| ExecuteSHR (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT64      Op1,
 | |
|   IN UINT64      Op2
 | |
|   )
 | |
| {
 | |
|   if ((*VmPtr->Ip & DATAMANIP_M_64) != 0) {
 | |
|     return RShiftU64 (Op1, (UINTN)Op2);
 | |
|   } else {
 | |
|     return (UINT64)((UINT32)Op1 >> (UINT32)Op2);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute the EBC ASHR instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     ASHR[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Op1               Operand 1 from the instruction
 | |
|   @param  Op2               Operand 2 from the instruction
 | |
| 
 | |
|   @return Op1 >> Op2 (signed)
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| ExecuteASHR (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT64      Op1,
 | |
|   IN UINT64      Op2
 | |
|   )
 | |
| {
 | |
|   if ((*VmPtr->Ip & DATAMANIP_M_64) != 0) {
 | |
|     return ARShiftU64 (Op1, (UINTN)Op2);
 | |
|   } else {
 | |
|     return (UINT64)((INT64)((INT32)Op1 >> (UINT32)Op2));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute the EBC EXTNDB instruction to sign-extend a byte value.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     EXTNDB[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Op1               Operand 1 from the instruction
 | |
|   @param  Op2               Operand 2 from the instruction
 | |
| 
 | |
|   @return (INT64)(INT8)Op2
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| ExecuteEXTNDB (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT64      Op1,
 | |
|   IN UINT64      Op2
 | |
|   )
 | |
| {
 | |
|   INT8   Data8;
 | |
|   INT64  Data64;
 | |
| 
 | |
|   //
 | |
|   // Convert to byte, then return as 64-bit signed value to let compiler
 | |
|   // sign-extend the value
 | |
|   //
 | |
|   Data8  = (INT8)Op2;
 | |
|   Data64 = (INT64)Data8;
 | |
| 
 | |
|   return (UINT64)Data64;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute the EBC EXTNDW instruction to sign-extend a 16-bit value.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     EXTNDW[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Op1               Operand 1 from the instruction
 | |
|   @param  Op2               Operand 2 from the instruction
 | |
| 
 | |
|   @return (INT64)(INT16)Op2
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| ExecuteEXTNDW (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT64      Op1,
 | |
|   IN UINT64      Op2
 | |
|   )
 | |
| {
 | |
|   INT16  Data16;
 | |
|   INT64  Data64;
 | |
| 
 | |
|   //
 | |
|   // Convert to word, then return as 64-bit signed value to let compiler
 | |
|   // sign-extend the value
 | |
|   //
 | |
|   Data16 = (INT16)Op2;
 | |
|   Data64 = (INT64)Data16;
 | |
| 
 | |
|   return (UINT64)Data64;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Execute the EBC EXTNDD instruction.
 | |
| //
 | |
| // Format: EXTNDD {@}Rx, {@}Ry [Index16|Immed16]
 | |
| //         EXTNDD Dest, Source
 | |
| //
 | |
| // Operation:  Dest <- SignExtended((DWORD)Source))
 | |
| //
 | |
| 
 | |
| /**
 | |
|   Execute the EBC EXTNDD instruction to sign-extend a 32-bit value.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     EXTNDD[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Op1               Operand 1 from the instruction
 | |
|   @param  Op2               Operand 2 from the instruction
 | |
| 
 | |
|   @return (INT64)(INT32)Op2
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| ExecuteEXTNDD (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT64      Op1,
 | |
|   IN UINT64      Op2
 | |
|   )
 | |
| {
 | |
|   INT32  Data32;
 | |
|   INT64  Data64;
 | |
| 
 | |
|   //
 | |
|   // Convert to 32-bit value, then return as 64-bit signed value to let compiler
 | |
|   // sign-extend the value
 | |
|   //
 | |
|   Data32 = (INT32)Op2;
 | |
|   Data64 = (INT64)Data32;
 | |
| 
 | |
|   return (UINT64)Data64;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute all the EBC signed data manipulation instructions.
 | |
|   Since the EBC data manipulation instructions all have the same basic form,
 | |
|   they can share the code that does the fetch of operands and the write-back
 | |
|   of the result. This function performs the fetch of the operands (even if
 | |
|   both are not needed to be fetched, like NOT instruction), dispatches to the
 | |
|   appropriate subfunction, then writes back the returned result.
 | |
| 
 | |
|   Format:
 | |
|     INSTRUCITON[32|64] {@}R1, {@}R2 {Immed16|Index16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to VM context.
 | |
| 
 | |
|   @retval EFI_UNSUPPORTED   The opcodes/operands is not supported.
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecuteSignedDataManip (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   )
 | |
| {
 | |
|   //
 | |
|   // Just call the data manipulation function with a flag indicating this
 | |
|   // is a signed operation.
 | |
|   //
 | |
|   return ExecuteDataManip (VmPtr, TRUE);
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute all the EBC unsigned data manipulation instructions.
 | |
|   Since the EBC data manipulation instructions all have the same basic form,
 | |
|   they can share the code that does the fetch of operands and the write-back
 | |
|   of the result. This function performs the fetch of the operands (even if
 | |
|   both are not needed to be fetched, like NOT instruction), dispatches to the
 | |
|   appropriate subfunction, then writes back the returned result.
 | |
| 
 | |
|   Format:
 | |
|     INSTRUCITON[32|64] {@}R1, {@}R2 {Immed16|Index16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to VM context.
 | |
| 
 | |
|   @retval EFI_UNSUPPORTED   The opcodes/operands is not supported.
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecuteUnsignedDataManip (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   )
 | |
| {
 | |
|   //
 | |
|   // Just call the data manipulation function with a flag indicating this
 | |
|   // is not a signed operation.
 | |
|   //
 | |
|   return ExecuteDataManip (VmPtr, FALSE);
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute all the EBC data manipulation instructions.
 | |
|   Since the EBC data manipulation instructions all have the same basic form,
 | |
|   they can share the code that does the fetch of operands and the write-back
 | |
|   of the result. This function performs the fetch of the operands (even if
 | |
|   both are not needed to be fetched, like NOT instruction), dispatches to the
 | |
|   appropriate subfunction, then writes back the returned result.
 | |
| 
 | |
|   Format:
 | |
|     INSTRUCITON[32|64] {@}R1, {@}R2 {Immed16|Index16}
 | |
| 
 | |
|   @param  VmPtr             A pointer to VM context.
 | |
|   @param  IsSignedOp        Indicates whether the operand is signed or not.
 | |
| 
 | |
|   @retval EFI_UNSUPPORTED   The opcodes/operands is not supported.
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecuteDataManip (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN BOOLEAN     IsSignedOp
 | |
|   )
 | |
| {
 | |
|   UINT8   Opcode;
 | |
|   INT16   Index16;
 | |
|   UINT8   Operands;
 | |
|   UINT8   Size;
 | |
|   UINT64  Op1;
 | |
|   UINT64  Op2;
 | |
|   INTN    DataManipDispatchTableIndex;
 | |
| 
 | |
|   //
 | |
|   // Get opcode and operands
 | |
|   //
 | |
|   Opcode   = GETOPCODE (VmPtr);
 | |
|   Operands = GETOPERANDS (VmPtr);
 | |
| 
 | |
|   //
 | |
|   // Determine if we have immediate data by the opcode
 | |
|   //
 | |
|   if ((Opcode & DATAMANIP_M_IMMDATA) != 0) {
 | |
|     //
 | |
|     // Index16 if Ry is indirect, or Immed16 if Ry direct.
 | |
|     //
 | |
|     if (OPERAND2_INDIRECT (Operands)) {
 | |
|       Index16 = VmReadIndex16 (VmPtr, 2);
 | |
|     } else {
 | |
|       Index16 = VmReadImmed16 (VmPtr, 2);
 | |
|     }
 | |
| 
 | |
|     Size = 4;
 | |
|   } else {
 | |
|     Index16 = 0;
 | |
|     Size    = 2;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Now get operand2 (source). It's of format {@}R2 {Index16|Immed16}
 | |
|   //
 | |
|   Op2 = (UINT64)VmPtr->Gpr[OPERAND2_REGNUM (Operands)] + Index16;
 | |
|   if (OPERAND2_INDIRECT (Operands)) {
 | |
|     //
 | |
|     // Indirect form: @R2 Index16. Fetch as 32- or 64-bit data
 | |
|     //
 | |
|     if ((Opcode & DATAMANIP_M_64) != 0) {
 | |
|       Op2 = VmReadMem64 (VmPtr, (UINTN)Op2);
 | |
|     } else {
 | |
|       //
 | |
|       // Read as signed value where appropriate.
 | |
|       //
 | |
|       if (IsSignedOp) {
 | |
|         Op2 = (UINT64)(INT64)((INT32)VmReadMem32 (VmPtr, (UINTN)Op2));
 | |
|       } else {
 | |
|         Op2 = (UINT64)VmReadMem32 (VmPtr, (UINTN)Op2);
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     if ((Opcode & DATAMANIP_M_64) == 0) {
 | |
|       if (IsSignedOp) {
 | |
|         Op2 = (UINT64)(INT64)((INT32)Op2);
 | |
|       } else {
 | |
|         Op2 = (UINT64)((UINT32)Op2);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Get operand1 (destination and sometimes also an actual operand)
 | |
|   // of form {@}R1
 | |
|   //
 | |
|   Op1 = (UINT64)VmPtr->Gpr[OPERAND1_REGNUM (Operands)];
 | |
|   if (OPERAND1_INDIRECT (Operands)) {
 | |
|     if ((Opcode & DATAMANIP_M_64) != 0) {
 | |
|       Op1 = VmReadMem64 (VmPtr, (UINTN)Op1);
 | |
|     } else {
 | |
|       if (IsSignedOp) {
 | |
|         Op1 = (UINT64)(INT64)((INT32)VmReadMem32 (VmPtr, (UINTN)Op1));
 | |
|       } else {
 | |
|         Op1 = (UINT64)VmReadMem32 (VmPtr, (UINTN)Op1);
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     if ((Opcode & DATAMANIP_M_64) == 0) {
 | |
|       if (IsSignedOp) {
 | |
|         Op1 = (UINT64)(INT64)((INT32)Op1);
 | |
|       } else {
 | |
|         Op1 = (UINT64)((UINT32)Op1);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Dispatch to the computation function
 | |
|   //
 | |
|   DataManipDispatchTableIndex = (Opcode & OPCODE_M_OPCODE) - OPCODE_NOT;
 | |
|   if ((DataManipDispatchTableIndex < 0) ||
 | |
|       (DataManipDispatchTableIndex >= ARRAY_SIZE (mDataManipDispatchTable)))
 | |
|   {
 | |
|     EbcDebugSignalException (
 | |
|       EXCEPT_EBC_INVALID_OPCODE,
 | |
|       EXCEPTION_FLAG_ERROR,
 | |
|       VmPtr
 | |
|       );
 | |
|     //
 | |
|     // Advance and return
 | |
|     //
 | |
|     VmPtr->Ip += Size;
 | |
|     return EFI_UNSUPPORTED;
 | |
|   } else {
 | |
|     Op2 = mDataManipDispatchTable[DataManipDispatchTableIndex](VmPtr, Op1, Op2);
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Write back the result.
 | |
|   //
 | |
|   if (OPERAND1_INDIRECT (Operands)) {
 | |
|     Op1 = (UINT64)VmPtr->Gpr[OPERAND1_REGNUM (Operands)];
 | |
|     if ((Opcode & DATAMANIP_M_64) != 0) {
 | |
|       VmWriteMem64 (VmPtr, (UINTN)Op1, Op2);
 | |
|     } else {
 | |
|       VmWriteMem32 (VmPtr, (UINTN)Op1, (UINT32)Op2);
 | |
|     }
 | |
|   } else {
 | |
|     //
 | |
|     // Storage back to a register. Write back, clearing upper bits (as per
 | |
|     // the specification) if 32-bit operation.
 | |
|     //
 | |
|     VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = Op2;
 | |
|     if ((Opcode & DATAMANIP_M_64) == 0) {
 | |
|       VmPtr->Gpr[OPERAND1_REGNUM (Operands)] &= 0xFFFFFFFF;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Advance the instruction pointer
 | |
|   //
 | |
|   VmPtr->Ip += Size;
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute the EBC LOADSP instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     LOADSP  SP1, R2
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
| 
 | |
|   @retval EFI_UNSUPPORTED   The opcodes/operands is not supported.
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecuteLOADSP (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   )
 | |
| {
 | |
|   UINT8  Operands;
 | |
| 
 | |
|   //
 | |
|   // Get the operands
 | |
|   //
 | |
|   Operands = GETOPERANDS (VmPtr);
 | |
| 
 | |
|   //
 | |
|   // Do the operation
 | |
|   //
 | |
|   switch (OPERAND1_REGNUM (Operands)) {
 | |
|     //
 | |
|     // Set flags
 | |
|     //
 | |
|     case 0:
 | |
|       //
 | |
|       // Spec states that this instruction will not modify reserved bits in
 | |
|       // the flags register.
 | |
|       //
 | |
|       VmPtr->Flags = (VmPtr->Flags &~VMFLAGS_ALL_VALID) | (VmPtr->Gpr[OPERAND2_REGNUM (Operands)] & VMFLAGS_ALL_VALID);
 | |
|       break;
 | |
| 
 | |
|     default:
 | |
|       EbcDebugSignalException (
 | |
|         EXCEPT_EBC_INSTRUCTION_ENCODING,
 | |
|         EXCEPTION_FLAG_WARNING,
 | |
|         VmPtr
 | |
|         );
 | |
|       VmPtr->Ip += 2;
 | |
|       return EFI_UNSUPPORTED;
 | |
|   }
 | |
| 
 | |
|   VmPtr->Ip += 2;
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Execute the EBC STORESP instruction.
 | |
| 
 | |
|   Instruction syntax:
 | |
|     STORESP  Rx, FLAGS|IP
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
| 
 | |
|   @retval EFI_UNSUPPORTED   The opcodes/operands is not supported.
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| ExecuteSTORESP (
 | |
|   IN VM_CONTEXT  *VmPtr
 | |
|   )
 | |
| {
 | |
|   UINT8  Operands;
 | |
| 
 | |
|   //
 | |
|   // Get the operands
 | |
|   //
 | |
|   Operands = GETOPERANDS (VmPtr);
 | |
| 
 | |
|   //
 | |
|   // Do the operation
 | |
|   //
 | |
|   switch (OPERAND2_REGNUM (Operands)) {
 | |
|     //
 | |
|     // Get flags
 | |
|     //
 | |
|     case 0:
 | |
|       //
 | |
|       // Retrieve the value in the flags register, then clear reserved bits
 | |
|       //
 | |
|       VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = (UINT64)(VmPtr->Flags & VMFLAGS_ALL_VALID);
 | |
|       break;
 | |
| 
 | |
|     //
 | |
|     // Get IP -- address of following instruction
 | |
|     //
 | |
|     case 1:
 | |
|       VmPtr->Gpr[OPERAND1_REGNUM (Operands)] = (UINT64)(UINTN)VmPtr->Ip + 2;
 | |
|       break;
 | |
| 
 | |
|     default:
 | |
|       EbcDebugSignalException (
 | |
|         EXCEPT_EBC_INSTRUCTION_ENCODING,
 | |
|         EXCEPTION_FLAG_WARNING,
 | |
|         VmPtr
 | |
|         );
 | |
|       VmPtr->Ip += 2;
 | |
|       return EFI_UNSUPPORTED;
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   VmPtr->Ip += 2;
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Decode a 16-bit index to determine the offset. Given an index value:
 | |
| 
 | |
|     b15     - sign bit
 | |
|     b14:12  - number of bits in this index assigned to natural units (=a)
 | |
|     ba:11   - constant units = ConstUnits
 | |
|     b0:a    - natural units = NaturalUnits
 | |
| 
 | |
|   Given this info, the offset can be computed by:
 | |
|     offset = sign_bit * (ConstUnits + NaturalUnits * sizeof(UINTN))
 | |
| 
 | |
|   Max offset is achieved with index = 0x7FFF giving an offset of
 | |
|   0x27B (32-bit machine) or 0x477 (64-bit machine).
 | |
|   Min offset is achieved with index =
 | |
| 
 | |
|   @param  VmPtr             A pointer to VM context.
 | |
|   @param  CodeOffset        Offset from IP of the location of the 16-bit index
 | |
|                             to decode.
 | |
| 
 | |
|   @return The decoded offset.
 | |
| 
 | |
| **/
 | |
| INT16
 | |
| VmReadIndex16 (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT32      CodeOffset
 | |
|   )
 | |
| {
 | |
|   UINT16  Index;
 | |
|   INT16   Offset;
 | |
|   INT16   ConstUnits;
 | |
|   INT16   NaturalUnits;
 | |
|   INT16   NBits;
 | |
|   INT16   Mask;
 | |
| 
 | |
|   //
 | |
|   // First read the index from the code stream
 | |
|   //
 | |
|   Index = VmReadCode16 (VmPtr, CodeOffset);
 | |
| 
 | |
|   //
 | |
|   // Get the mask for NaturalUnits. First get the number of bits from the index.
 | |
|   //
 | |
|   NBits = (INT16)((Index & 0x7000) >> 12);
 | |
| 
 | |
|   //
 | |
|   // Scale it for 16-bit indexes
 | |
|   //
 | |
|   NBits *= 2;
 | |
| 
 | |
|   //
 | |
|   // Now using the number of bits, create a mask.
 | |
|   //
 | |
|   Mask = (INT16)((INT16) ~0 << NBits);
 | |
| 
 | |
|   //
 | |
|   // Now using the mask, extract NaturalUnits from the lower bits of the index.
 | |
|   //
 | |
|   NaturalUnits = (INT16)(Index &~Mask);
 | |
| 
 | |
|   //
 | |
|   // Now compute ConstUnits
 | |
|   //
 | |
|   ConstUnits = (INT16)(((Index &~0xF000) & Mask) >> NBits);
 | |
| 
 | |
|   Offset = (INT16)(NaturalUnits * sizeof (UINTN) + ConstUnits);
 | |
| 
 | |
|   //
 | |
|   // Now set the sign
 | |
|   //
 | |
|   if ((Index & 0x8000) != 0) {
 | |
|     //
 | |
|     // Do it the hard way to work around a bogus compiler warning
 | |
|     //
 | |
|     // Offset = -1 * Offset;
 | |
|     //
 | |
|     Offset = (INT16)((INT32)Offset * -1);
 | |
|   }
 | |
| 
 | |
|   return Offset;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Decode a 32-bit index to determine the offset.
 | |
| 
 | |
|   @param  VmPtr             A pointer to VM context.
 | |
|   @param  CodeOffset        Offset from IP of the location of the 32-bit index
 | |
|                             to decode.
 | |
| 
 | |
|   @return Converted index per EBC VM specification.
 | |
| 
 | |
| **/
 | |
| INT32
 | |
| VmReadIndex32 (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT32      CodeOffset
 | |
|   )
 | |
| {
 | |
|   UINT32  Index;
 | |
|   INT32   Offset;
 | |
|   INT32   ConstUnits;
 | |
|   INT32   NaturalUnits;
 | |
|   INT32   NBits;
 | |
|   INT32   Mask;
 | |
| 
 | |
|   Index = VmReadImmed32 (VmPtr, CodeOffset);
 | |
| 
 | |
|   //
 | |
|   // Get the mask for NaturalUnits. First get the number of bits from the index.
 | |
|   //
 | |
|   NBits = (Index & 0x70000000) >> 28;
 | |
| 
 | |
|   //
 | |
|   // Scale it for 32-bit indexes
 | |
|   //
 | |
|   NBits *= 4;
 | |
| 
 | |
|   //
 | |
|   // Now using the number of bits, create a mask.
 | |
|   //
 | |
|   Mask = (INT32) ~0 << NBits;
 | |
| 
 | |
|   //
 | |
|   // Now using the mask, extract NaturalUnits from the lower bits of the index.
 | |
|   //
 | |
|   NaturalUnits = Index &~Mask;
 | |
| 
 | |
|   //
 | |
|   // Now compute ConstUnits
 | |
|   //
 | |
|   ConstUnits = ((Index &~0xF0000000) & Mask) >> NBits;
 | |
| 
 | |
|   Offset = NaturalUnits * sizeof (UINTN) + ConstUnits;
 | |
| 
 | |
|   //
 | |
|   // Now set the sign
 | |
|   //
 | |
|   if ((Index & 0x80000000) != 0) {
 | |
|     Offset = Offset * -1;
 | |
|   }
 | |
| 
 | |
|   return Offset;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Decode a 64-bit index to determine the offset.
 | |
| 
 | |
|   @param  VmPtr             A pointer to VM context.s
 | |
|   @param  CodeOffset        Offset from IP of the location of the 64-bit index
 | |
|                             to decode.
 | |
| 
 | |
|   @return Converted index per EBC VM specification
 | |
| 
 | |
| **/
 | |
| INT64
 | |
| VmReadIndex64 (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT32      CodeOffset
 | |
|   )
 | |
| {
 | |
|   UINT64  Index;
 | |
|   INT64   Offset;
 | |
|   INT64   ConstUnits;
 | |
|   INT64   NaturalUnits;
 | |
|   INT64   NBits;
 | |
|   INT64   Mask;
 | |
| 
 | |
|   Index = VmReadCode64 (VmPtr, CodeOffset);
 | |
| 
 | |
|   //
 | |
|   // Get the mask for NaturalUnits. First get the number of bits from the index.
 | |
|   //
 | |
|   NBits = RShiftU64 ((Index & 0x7000000000000000ULL), 60);
 | |
| 
 | |
|   //
 | |
|   // Scale it for 64-bit indexes (multiply by 8 by shifting left 3)
 | |
|   //
 | |
|   NBits = LShiftU64 ((UINT64)NBits, 3);
 | |
| 
 | |
|   //
 | |
|   // Now using the number of bits, create a mask.
 | |
|   //
 | |
|   Mask = (LShiftU64 ((UINT64) ~0, (UINTN)NBits));
 | |
| 
 | |
|   //
 | |
|   // Now using the mask, extract NaturalUnits from the lower bits of the index.
 | |
|   //
 | |
|   NaturalUnits = Index &~Mask;
 | |
| 
 | |
|   //
 | |
|   // Now compute ConstUnits
 | |
|   //
 | |
|   ConstUnits = ARShiftU64 (((Index &~0xF000000000000000ULL) & Mask), (UINTN)NBits);
 | |
| 
 | |
|   Offset = MultU64x64 ((UINT64)NaturalUnits, sizeof (UINTN)) + ConstUnits;
 | |
| 
 | |
|   //
 | |
|   // Now set the sign
 | |
|   //
 | |
|   if ((Index & 0x8000000000000000ULL) != 0) {
 | |
|     Offset = MultS64x64 (Offset, -1);
 | |
|   }
 | |
| 
 | |
|   return Offset;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Writes 8-bit data to memory address.
 | |
| 
 | |
|   This routine is called by the EBC data
 | |
|   movement instructions that write to memory. Since these writes
 | |
|   may be to the stack, which looks like (high address on top) this,
 | |
| 
 | |
|   [EBC entry point arguments]
 | |
|   [VM stack]
 | |
|   [EBC stack]
 | |
| 
 | |
|   we need to detect all attempts to write to the EBC entry point argument
 | |
|   stack area and adjust the address (which will initially point into the
 | |
|   VM stack) to point into the EBC entry point arguments.
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Addr              Address to write to.
 | |
|   @param  Data              Value to write to Addr.
 | |
| 
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
|   @retval Other             Some error occurs when writing data to the address.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| VmWriteMem8 (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINTN       Addr,
 | |
|   IN UINT8       Data
 | |
|   )
 | |
| {
 | |
|   //
 | |
|   // Convert the address if it's in the stack gap
 | |
|   //
 | |
|   Addr           = ConvertStackAddr (VmPtr, Addr);
 | |
|   *(UINT8 *)Addr = Data;
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Writes 16-bit data to memory address.
 | |
| 
 | |
|   This routine is called by the EBC data
 | |
|   movement instructions that write to memory. Since these writes
 | |
|   may be to the stack, which looks like (high address on top) this,
 | |
| 
 | |
|   [EBC entry point arguments]
 | |
|   [VM stack]
 | |
|   [EBC stack]
 | |
| 
 | |
|   we need to detect all attempts to write to the EBC entry point argument
 | |
|   stack area and adjust the address (which will initially point into the
 | |
|   VM stack) to point into the EBC entry point arguments.
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Addr              Address to write to.
 | |
|   @param  Data              Value to write to Addr.
 | |
| 
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
|   @retval Other             Some error occurs when writing data to the address.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| VmWriteMem16 (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINTN       Addr,
 | |
|   IN UINT16      Data
 | |
|   )
 | |
| {
 | |
|   EFI_STATUS  Status;
 | |
| 
 | |
|   //
 | |
|   // Convert the address if it's in the stack gap
 | |
|   //
 | |
|   Addr = ConvertStackAddr (VmPtr, Addr);
 | |
| 
 | |
|   //
 | |
|   // Do a simple write if aligned
 | |
|   //
 | |
|   if (IS_ALIGNED (Addr, sizeof (UINT16))) {
 | |
|     *(UINT16 *)Addr = Data;
 | |
|   } else {
 | |
|     //
 | |
|     // Write as two bytes
 | |
|     //
 | |
|     MemoryFence ();
 | |
|     if ((Status = VmWriteMem8 (VmPtr, Addr, (UINT8)Data)) != EFI_SUCCESS) {
 | |
|       return Status;
 | |
|     }
 | |
| 
 | |
|     MemoryFence ();
 | |
|     if ((Status = VmWriteMem8 (VmPtr, Addr + 1, (UINT8)(Data >> 8))) != EFI_SUCCESS) {
 | |
|       return Status;
 | |
|     }
 | |
| 
 | |
|     MemoryFence ();
 | |
|   }
 | |
| 
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Writes 32-bit data to memory address.
 | |
| 
 | |
|   This routine is called by the EBC data
 | |
|   movement instructions that write to memory. Since these writes
 | |
|   may be to the stack, which looks like (high address on top) this,
 | |
| 
 | |
|   [EBC entry point arguments]
 | |
|   [VM stack]
 | |
|   [EBC stack]
 | |
| 
 | |
|   we need to detect all attempts to write to the EBC entry point argument
 | |
|   stack area and adjust the address (which will initially point into the
 | |
|   VM stack) to point into the EBC entry point arguments.
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Addr              Address to write to.
 | |
|   @param  Data              Value to write to Addr.
 | |
| 
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
|   @retval Other             Some error occurs when writing data to the address.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| VmWriteMem32 (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINTN       Addr,
 | |
|   IN UINT32      Data
 | |
|   )
 | |
| {
 | |
|   EFI_STATUS  Status;
 | |
| 
 | |
|   //
 | |
|   // Convert the address if it's in the stack gap
 | |
|   //
 | |
|   Addr = ConvertStackAddr (VmPtr, Addr);
 | |
| 
 | |
|   //
 | |
|   // Do a simple write if aligned
 | |
|   //
 | |
|   if (IS_ALIGNED (Addr, sizeof (UINT32))) {
 | |
|     *(UINT32 *)Addr = Data;
 | |
|   } else {
 | |
|     //
 | |
|     // Write as two words
 | |
|     //
 | |
|     MemoryFence ();
 | |
|     if ((Status = VmWriteMem16 (VmPtr, Addr, (UINT16)Data)) != EFI_SUCCESS) {
 | |
|       return Status;
 | |
|     }
 | |
| 
 | |
|     MemoryFence ();
 | |
|     if ((Status = VmWriteMem16 (VmPtr, Addr + sizeof (UINT16), (UINT16)(Data >> 16))) != EFI_SUCCESS) {
 | |
|       return Status;
 | |
|     }
 | |
| 
 | |
|     MemoryFence ();
 | |
|   }
 | |
| 
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Writes 64-bit data to memory address.
 | |
| 
 | |
|   This routine is called by the EBC data
 | |
|   movement instructions that write to memory. Since these writes
 | |
|   may be to the stack, which looks like (high address on top) this,
 | |
| 
 | |
|   [EBC entry point arguments]
 | |
|   [VM stack]
 | |
|   [EBC stack]
 | |
| 
 | |
|   we need to detect all attempts to write to the EBC entry point argument
 | |
|   stack area and adjust the address (which will initially point into the
 | |
|   VM stack) to point into the EBC entry point arguments.
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Addr              Address to write to.
 | |
|   @param  Data              Value to write to Addr.
 | |
| 
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
|   @retval Other             Some error occurs when writing data to the address.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| VmWriteMem64 (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINTN       Addr,
 | |
|   IN UINT64      Data
 | |
|   )
 | |
| {
 | |
|   EFI_STATUS  Status;
 | |
| 
 | |
|   //
 | |
|   // Convert the address if it's in the stack gap
 | |
|   //
 | |
|   Addr = ConvertStackAddr (VmPtr, Addr);
 | |
| 
 | |
|   //
 | |
|   // Do a simple write if aligned
 | |
|   //
 | |
|   if (IS_ALIGNED (Addr, sizeof (UINT64))) {
 | |
|     *(UINT64 *)Addr = Data;
 | |
|   } else {
 | |
|     //
 | |
|     // Write as two 32-bit words
 | |
|     //
 | |
|     MemoryFence ();
 | |
|     if ((Status = VmWriteMem32 (VmPtr, Addr, (UINT32)Data)) != EFI_SUCCESS) {
 | |
|       return Status;
 | |
|     }
 | |
| 
 | |
|     MemoryFence ();
 | |
|     if ((Status = VmWriteMem32 (VmPtr, Addr + sizeof (UINT32), (UINT32)RShiftU64 (Data, 32))) != EFI_SUCCESS) {
 | |
|       return Status;
 | |
|     }
 | |
| 
 | |
|     MemoryFence ();
 | |
|   }
 | |
| 
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Writes UINTN data to memory address.
 | |
| 
 | |
|   This routine is called by the EBC data
 | |
|   movement instructions that write to memory. Since these writes
 | |
|   may be to the stack, which looks like (high address on top) this,
 | |
| 
 | |
|   [EBC entry point arguments]
 | |
|   [VM stack]
 | |
|   [EBC stack]
 | |
| 
 | |
|   we need to detect all attempts to write to the EBC entry point argument
 | |
|   stack area and adjust the address (which will initially point into the
 | |
|   VM stack) to point into the EBC entry point arguments.
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Addr              Address to write to.
 | |
|   @param  Data              Value to write to Addr.
 | |
| 
 | |
|   @retval EFI_SUCCESS       The instruction is executed successfully.
 | |
|   @retval Other             Some error occurs when writing data to the address.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| VmWriteMemN (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINTN       Addr,
 | |
|   IN UINTN       Data
 | |
|   )
 | |
| {
 | |
|   EFI_STATUS  Status;
 | |
|   UINTN       Index;
 | |
| 
 | |
|   Status = EFI_SUCCESS;
 | |
| 
 | |
|   //
 | |
|   // Convert the address if it's in the stack gap
 | |
|   //
 | |
|   Addr = ConvertStackAddr (VmPtr, Addr);
 | |
| 
 | |
|   //
 | |
|   // Do a simple write if aligned
 | |
|   //
 | |
|   if (IS_ALIGNED (Addr, sizeof (UINTN))) {
 | |
|     *(UINTN *)Addr = Data;
 | |
|   } else {
 | |
|     for (Index = 0; Index < sizeof (UINTN) / sizeof (UINT32); Index++) {
 | |
|       MemoryFence ();
 | |
|       Status = VmWriteMem32 (VmPtr, Addr + Index * sizeof (UINT32), (UINT32)Data);
 | |
|       MemoryFence ();
 | |
|       Data = (UINTN)RShiftU64 ((UINT64)Data, 32);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Reads 8-bit immediate value at the offset.
 | |
| 
 | |
|   This routine is called by the EBC execute
 | |
|   functions to read EBC immediate values from the code stream.
 | |
|   Since we can't assume alignment, each tries to read in the biggest
 | |
|   chunks size available, but will revert to smaller reads if necessary.
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Offset            offset from IP of the code bytes to read.
 | |
| 
 | |
|   @return Signed data of the requested size from the specified address.
 | |
| 
 | |
| **/
 | |
| INT8
 | |
| VmReadImmed8 (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT32      Offset
 | |
|   )
 | |
| {
 | |
|   //
 | |
|   // Simply return the data in flat memory space
 | |
|   //
 | |
|   return *(INT8 *)(VmPtr->Ip + Offset);
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Reads 16-bit immediate value at the offset.
 | |
| 
 | |
|   This routine is called by the EBC execute
 | |
|   functions to read EBC immediate values from the code stream.
 | |
|   Since we can't assume alignment, each tries to read in the biggest
 | |
|   chunks size available, but will revert to smaller reads if necessary.
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Offset            offset from IP of the code bytes to read.
 | |
| 
 | |
|   @return Signed data of the requested size from the specified address.
 | |
| 
 | |
| **/
 | |
| INT16
 | |
| VmReadImmed16 (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT32      Offset
 | |
|   )
 | |
| {
 | |
|   //
 | |
|   // Read direct if aligned
 | |
|   //
 | |
|   if (IS_ALIGNED ((UINTN)VmPtr->Ip + Offset, sizeof (INT16))) {
 | |
|     return *(INT16 *)(VmPtr->Ip + Offset);
 | |
|   } else {
 | |
|     //
 | |
|     // All code word reads should be aligned
 | |
|     //
 | |
|     EbcDebugSignalException (
 | |
|       EXCEPT_EBC_ALIGNMENT_CHECK,
 | |
|       EXCEPTION_FLAG_WARNING,
 | |
|       VmPtr
 | |
|       );
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Return unaligned data
 | |
|   //
 | |
|   return (INT16)(*(UINT8 *)(VmPtr->Ip + Offset) + (*(UINT8 *)(VmPtr->Ip + Offset + 1) << 8));
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Reads 32-bit immediate value at the offset.
 | |
| 
 | |
|   This routine is called by the EBC execute
 | |
|   functions to read EBC immediate values from the code stream.
 | |
|   Since we can't assume alignment, each tries to read in the biggest
 | |
|   chunks size available, but will revert to smaller reads if necessary.
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Offset            offset from IP of the code bytes to read.
 | |
| 
 | |
|   @return Signed data of the requested size from the specified address.
 | |
| 
 | |
| **/
 | |
| INT32
 | |
| VmReadImmed32 (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT32      Offset
 | |
|   )
 | |
| {
 | |
|   UINT32  Data;
 | |
| 
 | |
|   //
 | |
|   // Read direct if aligned
 | |
|   //
 | |
|   if (IS_ALIGNED ((UINTN)VmPtr->Ip + Offset, sizeof (UINT32))) {
 | |
|     return *(INT32 *)(VmPtr->Ip + Offset);
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Return unaligned data
 | |
|   //
 | |
|   Data  = (UINT32)VmReadCode16 (VmPtr, Offset);
 | |
|   Data |= (UINT32)(VmReadCode16 (VmPtr, Offset + 2) << 16);
 | |
|   return Data;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Reads 64-bit immediate value at the offset.
 | |
| 
 | |
|   This routine is called by the EBC execute
 | |
|   functions to read EBC immediate values from the code stream.
 | |
|   Since we can't assume alignment, each tries to read in the biggest
 | |
|   chunks size available, but will revert to smaller reads if necessary.
 | |
| 
 | |
|   @param  VmPtr             A pointer to a VM context.
 | |
|   @param  Offset            offset from IP of the code bytes to read.
 | |
| 
 | |
|   @return Signed data of the requested size from the specified address.
 | |
| 
 | |
| **/
 | |
| INT64
 | |
| VmReadImmed64 (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT32      Offset
 | |
|   )
 | |
| {
 | |
|   UINT64  Data64;
 | |
|   UINT32  Data32;
 | |
|   UINT8   *Ptr;
 | |
| 
 | |
|   //
 | |
|   // Read direct if aligned
 | |
|   //
 | |
|   if (IS_ALIGNED ((UINTN)VmPtr->Ip + Offset, sizeof (UINT64))) {
 | |
|     return *(UINT64 *)(VmPtr->Ip + Offset);
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Return unaligned data.
 | |
|   //
 | |
|   Ptr            = (UINT8 *)&Data64;
 | |
|   Data32         = VmReadCode32 (VmPtr, Offset);
 | |
|   *(UINT32 *)Ptr = Data32;
 | |
|   Ptr           += sizeof (Data32);
 | |
|   Data32         = VmReadCode32 (VmPtr, Offset + sizeof (UINT32));
 | |
|   *(UINT32 *)Ptr = Data32;
 | |
|   return Data64;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Reads 16-bit unsigned data from the code stream.
 | |
| 
 | |
|   This routine provides the ability to read raw unsigned data from the code
 | |
|   stream.
 | |
| 
 | |
|   @param  VmPtr             A pointer to VM context
 | |
|   @param  Offset            Offset from current IP to the raw data to read.
 | |
| 
 | |
|   @return The raw unsigned 16-bit value from the code stream.
 | |
| 
 | |
| **/
 | |
| UINT16
 | |
| VmReadCode16 (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT32      Offset
 | |
|   )
 | |
| {
 | |
|   //
 | |
|   // Read direct if aligned
 | |
|   //
 | |
|   if (IS_ALIGNED ((UINTN)VmPtr->Ip + Offset, sizeof (UINT16))) {
 | |
|     return *(UINT16 *)(VmPtr->Ip + Offset);
 | |
|   } else {
 | |
|     //
 | |
|     // All code word reads should be aligned
 | |
|     //
 | |
|     EbcDebugSignalException (
 | |
|       EXCEPT_EBC_ALIGNMENT_CHECK,
 | |
|       EXCEPTION_FLAG_WARNING,
 | |
|       VmPtr
 | |
|       );
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Return unaligned data
 | |
|   //
 | |
|   return (UINT16)(*(UINT8 *)(VmPtr->Ip + Offset) + (*(UINT8 *)(VmPtr->Ip + Offset + 1) << 8));
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Reads 32-bit unsigned data from the code stream.
 | |
| 
 | |
|   This routine provides the ability to read raw unsigned data from the code
 | |
|   stream.
 | |
| 
 | |
|   @param  VmPtr             A pointer to VM context
 | |
|   @param  Offset            Offset from current IP to the raw data to read.
 | |
| 
 | |
|   @return The raw unsigned 32-bit value from the code stream.
 | |
| 
 | |
| **/
 | |
| UINT32
 | |
| VmReadCode32 (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT32      Offset
 | |
|   )
 | |
| {
 | |
|   UINT32  Data;
 | |
| 
 | |
|   //
 | |
|   // Read direct if aligned
 | |
|   //
 | |
|   if (IS_ALIGNED ((UINTN)VmPtr->Ip + Offset, sizeof (UINT32))) {
 | |
|     return *(UINT32 *)(VmPtr->Ip + Offset);
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Return unaligned data
 | |
|   //
 | |
|   Data  = (UINT32)VmReadCode16 (VmPtr, Offset);
 | |
|   Data |= (VmReadCode16 (VmPtr, Offset + 2) << 16);
 | |
|   return Data;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Reads 64-bit unsigned data from the code stream.
 | |
| 
 | |
|   This routine provides the ability to read raw unsigned data from the code
 | |
|   stream.
 | |
| 
 | |
|   @param  VmPtr             A pointer to VM context
 | |
|   @param  Offset            Offset from current IP to the raw data to read.
 | |
| 
 | |
|   @return The raw unsigned 64-bit value from the code stream.
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| VmReadCode64 (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINT32      Offset
 | |
|   )
 | |
| {
 | |
|   UINT64  Data64;
 | |
|   UINT32  Data32;
 | |
|   UINT8   *Ptr;
 | |
| 
 | |
|   //
 | |
|   // Read direct if aligned
 | |
|   //
 | |
|   if (IS_ALIGNED ((UINTN)VmPtr->Ip + Offset, sizeof (UINT64))) {
 | |
|     return *(UINT64 *)(VmPtr->Ip + Offset);
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Return unaligned data.
 | |
|   //
 | |
|   Ptr            = (UINT8 *)&Data64;
 | |
|   Data32         = VmReadCode32 (VmPtr, Offset);
 | |
|   *(UINT32 *)Ptr = Data32;
 | |
|   Ptr           += sizeof (Data32);
 | |
|   Data32         = VmReadCode32 (VmPtr, Offset + sizeof (UINT32));
 | |
|   *(UINT32 *)Ptr = Data32;
 | |
|   return Data64;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Reads 8-bit data form the memory address.
 | |
| 
 | |
|   @param  VmPtr             A pointer to VM context.
 | |
|   @param  Addr              The memory address.
 | |
| 
 | |
|   @return The 8-bit value from the memory address.
 | |
| 
 | |
| **/
 | |
| UINT8
 | |
| VmReadMem8 (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINTN       Addr
 | |
|   )
 | |
| {
 | |
|   //
 | |
|   // Convert the address if it's in the stack gap
 | |
|   //
 | |
|   Addr = ConvertStackAddr (VmPtr, Addr);
 | |
|   //
 | |
|   // Simply return the data in flat memory space
 | |
|   //
 | |
|   return *(UINT8 *)Addr;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Reads 16-bit data form the memory address.
 | |
| 
 | |
|   @param  VmPtr             A pointer to VM context.
 | |
|   @param  Addr              The memory address.
 | |
| 
 | |
|   @return The 16-bit value from the memory address.
 | |
| 
 | |
| **/
 | |
| UINT16
 | |
| VmReadMem16 (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINTN       Addr
 | |
|   )
 | |
| {
 | |
|   //
 | |
|   // Convert the address if it's in the stack gap
 | |
|   //
 | |
|   Addr = ConvertStackAddr (VmPtr, Addr);
 | |
|   //
 | |
|   // Read direct if aligned
 | |
|   //
 | |
|   if (IS_ALIGNED (Addr, sizeof (UINT16))) {
 | |
|     return *(UINT16 *)Addr;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Return unaligned data
 | |
|   //
 | |
|   return (UINT16)(*(UINT8 *)Addr + (*(UINT8 *)(Addr + 1) << 8));
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Reads 32-bit data form the memory address.
 | |
| 
 | |
|   @param  VmPtr             A pointer to VM context.
 | |
|   @param  Addr              The memory address.
 | |
| 
 | |
|   @return The 32-bit value from the memory address.
 | |
| 
 | |
| **/
 | |
| UINT32
 | |
| VmReadMem32 (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINTN       Addr
 | |
|   )
 | |
| {
 | |
|   UINT32  Data;
 | |
| 
 | |
|   //
 | |
|   // Convert the address if it's in the stack gap
 | |
|   //
 | |
|   Addr = ConvertStackAddr (VmPtr, Addr);
 | |
|   //
 | |
|   // Read direct if aligned
 | |
|   //
 | |
|   if (IS_ALIGNED (Addr, sizeof (UINT32))) {
 | |
|     return *(UINT32 *)Addr;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Return unaligned data
 | |
|   //
 | |
|   Data  = (UINT32)VmReadMem16 (VmPtr, Addr);
 | |
|   Data |= (VmReadMem16 (VmPtr, Addr + 2) << 16);
 | |
|   return Data;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Reads 64-bit data form the memory address.
 | |
| 
 | |
|   @param  VmPtr             A pointer to VM context.
 | |
|   @param  Addr              The memory address.
 | |
| 
 | |
|   @return The 64-bit value from the memory address.
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| VmReadMem64 (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINTN       Addr
 | |
|   )
 | |
| {
 | |
|   UINT64  Data;
 | |
|   UINT32  Data32;
 | |
| 
 | |
|   //
 | |
|   // Convert the address if it's in the stack gap
 | |
|   //
 | |
|   Addr = ConvertStackAddr (VmPtr, Addr);
 | |
| 
 | |
|   //
 | |
|   // Read direct if aligned
 | |
|   //
 | |
|   if (IS_ALIGNED (Addr, sizeof (UINT64))) {
 | |
|     return *(UINT64 *)Addr;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Return unaligned data. Assume little endian.
 | |
|   //
 | |
|   Data32 = VmReadMem32 (VmPtr, Addr);
 | |
|   Data   = (UINT64)VmReadMem32 (VmPtr, Addr + sizeof (UINT32));
 | |
|   Data   = LShiftU64 (Data, 32) | Data32;
 | |
|   return Data;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Given an address that EBC is going to read from or write to, return
 | |
|   an appropriate address that accounts for a gap in the stack.
 | |
|   The stack for this application looks like this (high addr on top)
 | |
|   [EBC entry point arguments]
 | |
|   [VM stack]
 | |
|   [EBC stack]
 | |
|   The EBC assumes that its arguments are at the top of its stack, which
 | |
|   is where the VM stack is really. Therefore if the EBC does memory
 | |
|   accesses into the VM stack area, then we need to convert the address
 | |
|   to point to the EBC entry point arguments area. Do this here.
 | |
| 
 | |
|   @param  VmPtr             A Pointer to VM context.
 | |
|   @param  Addr              Address of interest
 | |
| 
 | |
|   @return The unchanged address if it's not in the VM stack region. Otherwise,
 | |
|           adjust for the stack gap and return the modified address.
 | |
| 
 | |
| **/
 | |
| UINTN
 | |
| ConvertStackAddr (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINTN       Addr
 | |
|   )
 | |
| {
 | |
|   ASSERT (((Addr < VmPtr->LowStackTop) || (Addr > VmPtr->HighStackBottom)));
 | |
|   return Addr;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Read a natural value from memory. May or may not be aligned.
 | |
| 
 | |
|   @param  VmPtr             current VM context
 | |
|   @param  Addr              the address to read from
 | |
| 
 | |
|   @return The natural value at address Addr.
 | |
| 
 | |
| **/
 | |
| UINTN
 | |
| VmReadMemN (
 | |
|   IN VM_CONTEXT  *VmPtr,
 | |
|   IN UINTN       Addr
 | |
|   )
 | |
| {
 | |
|   UINTN            Data;
 | |
|   volatile UINT32  Size;
 | |
|   UINT8            *FromPtr;
 | |
|   UINT8            *ToPtr;
 | |
| 
 | |
|   //
 | |
|   // Convert the address if it's in the stack gap
 | |
|   //
 | |
|   Addr = ConvertStackAddr (VmPtr, Addr);
 | |
|   //
 | |
|   // Read direct if aligned
 | |
|   //
 | |
|   if (IS_ALIGNED (Addr, sizeof (UINTN))) {
 | |
|     return *(UINTN *)Addr;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Return unaligned data
 | |
|   //
 | |
|   Data    = 0;
 | |
|   FromPtr = (UINT8 *)Addr;
 | |
|   ToPtr   = (UINT8 *)&Data;
 | |
| 
 | |
|   for (Size = 0; Size < sizeof (Data); Size++) {
 | |
|     *ToPtr = *FromPtr;
 | |
|     ToPtr++;
 | |
|     FromPtr++;
 | |
|   }
 | |
| 
 | |
|   return Data;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Returns the version of the EBC virtual machine.
 | |
| 
 | |
|   @return The 64-bit version of EBC virtual machine.
 | |
| 
 | |
| **/
 | |
| UINT64
 | |
| GetVmVersion (
 | |
|   VOID
 | |
|   )
 | |
| {
 | |
|   return (UINT64)(((VM_MAJOR_VERSION & 0xFFFF) << 16) | ((VM_MINOR_VERSION & 0xFFFF)));
 | |
| }
 |