oliviermartin a6caee65ac ArmPlatformPkg: Remove PcdStandalone from Sec module and Introduce ArmPlatformSecExtraAction()
The PcdStandalone is a PCD ARM Ltd uses to make the difference between a standalone UEFI (boot
from cold boot to Boot Manager without user intervention) and a Debug UEFI firmware (the firmware
engineer has to copy the Normale World image into the DRAM to enable his/her firmware).

By coping the firmware into DRAM in the non standalone version it is much faster than reflashing
the NOR Flash after each build.

ArmPlatformSecExtraAction() function is called just before the Sec module jump to normal world.
The platform firmware can run extra actions at this stage.
The 'ARM Standalone' concept has moved to the implementation of ArmPlatformSecExtraAction() for
the ARM development boards (in ArmPlatformPkg/Library/DebugSecExtraActionLib).


ArmPlatformPkg: Enable DebugAgentLib in Sec and PrePeiCore


ArmPlatformPkg: Fix line endings in some source files

Use CR+LF line endings as defined by the EDK2 coding convention




git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@11991 6f19259b-4bc3-4df7-8a09-765794883524
2011-07-06 16:07:54 +00:00

104 lines
3.6 KiB
C
Executable File

/** @file
*
* Copyright (c) 2011, ARM Limited. All rights reserved.
*
* This program and the accompanying materials
* are licensed and made available under the terms and conditions of the BSD License
* which accompanies this distribution. The full text of the license may be found at
* http://opensource.org/licenses/bsd-license.php
*
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
*
**/
#include <PiPei.h>
#include <Library/DebugLib.h>
#include <Library/PcdLib.h>
#include <Library/PrintLib.h>
#include <Library/SerialPortLib.h>
#include <Drivers/PL390Gic.h>
#define ARM_PRIMARY_CORE 0
// When the firmware is built as not Standalone, the secondary cores need to wait the firmware
// entirely written into DRAM. It is the firmware from DRAM which will wake up the secondary cores.
VOID
NonSecureWaitForFirmware (
VOID
)
{
VOID (*secondary_start)(VOID);
// The secondary cores will execute the firmware once wake from WFI.
secondary_start = (VOID (*)())PcdGet32(PcdNormalFvBaseAddress);
ArmCallWFI();
// Acknowledge the interrupt and send End of Interrupt signal.
PL390GicAcknowledgeSgiFrom (PcdGet32(PcdGicInterruptInterfaceBase), ARM_PRIMARY_CORE);
// Jump to secondary core entry point.
secondary_start ();
// PEI Core should always load and never return
ASSERT (FALSE);
}
/**
Call before jumping to Normal World
This function allows the firmware platform to do extra actions before
jumping to the Normal World
**/
VOID
ArmPlatformSecExtraAction (
IN UINTN CoreId,
OUT UINTN* JumpAddress
)
{
CHAR8 Buffer[100];
UINTN CharCount;
if (FeaturePcdGet (PcdStandalone) == FALSE) {
if (CoreId == ARM_PRIMARY_CORE) {
UINTN* StartAddress = (UINTN*)PcdGet32(PcdNormalFvBaseAddress);
// Patch the DRAM to make an infinite loop at the start address
*StartAddress = 0xEAFFFFFE; // opcode for while(1)
CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"Waiting for firmware at 0x%08X ...\n\r",StartAddress);
SerialPortWrite ((UINT8 *) Buffer, CharCount);
*JumpAddress = PcdGet32(PcdNormalFvBaseAddress);
} else {
// When the primary core is stopped by the hardware debugger to copy the firmware
// into DRAM. The secondary cores are still running. As soon as the first bytes of
// the firmware are written into DRAM, the secondary cores will start to execute the
// code even if the firmware is not entirely written into the memory.
// That's why the secondary cores need to be parked in WFI and wake up once the
// firmware is ready.
*JumpAddress = (UINTN)NonSecureWaitForFirmware;
}
} else if (FeaturePcdGet (PcdSystemMemoryInitializeInSec)) {
if (CoreId == ARM_PRIMARY_CORE) {
// Signal the secondary cores they can jump to PEI phase
PL390GicSendSgiTo (PcdGet32(PcdGicDistributorBase), GIC_ICDSGIR_FILTER_EVERYONEELSE, 0x0E);
// To enter into Non Secure state, we need to make a return from exception
*JumpAddress = PcdGet32(PcdNormalFvBaseAddress);
} else {
// We wait for the primary core to finish to initialize the System Memory. Otherwise the secondary
// cores would make crash the system by setting their stacks in DRAM before the primary core has not
// finished to initialize the system memory.
*JumpAddress = (UINTN)NonSecureWaitForFirmware;
}
} else {
*JumpAddress = PcdGet32(PcdNormalFvBaseAddress);
}
}