REF: https://bugzilla.tianocore.org/show_bug.cgi?id=4348 Per SDM: DisplayFamily = Extended_Family_ID + Family_ID. DisplayModelID = (Extended_Model_ID << 4) + Family_ID. Correct the related code. Cc: Eric Dong <eric.dong@intel.com> Reviewed-by: Ray Ni <ray.ni@intel.com> Cc: Rahul Kumar <rahul1.kumar@intel.com> Acked-by: Gerd Hoffmann <kraxel@redhat.com> Reviewed-by: Star Zeng <star.zeng@intel.com> Cc: Mike Maslenkin <mike.maslenkin@gmail.com> Signed-off-by: Zhiguang Liu <zhiguang.liu@intel.com>
1225 lines
42 KiB
C
1225 lines
42 KiB
C
/** @file
|
|
CPU Features Initialize functions.
|
|
|
|
Copyright (c) 2017 - 2023, Intel Corporation. All rights reserved.<BR>
|
|
SPDX-License-Identifier: BSD-2-Clause-Patent
|
|
|
|
**/
|
|
|
|
#include "RegisterCpuFeatures.h"
|
|
|
|
CHAR16 *mDependTypeStr[] = { L"None", L"Thread", L"Core", L"Package", L"Invalid" };
|
|
|
|
/**
|
|
Worker function to save PcdCpuFeaturesCapability.
|
|
|
|
@param[in] SupportedFeatureMask The pointer to CPU feature bits mask buffer
|
|
@param[in] BitMaskSize CPU feature bits mask buffer size.
|
|
|
|
**/
|
|
VOID
|
|
SetCapabilityPcd (
|
|
IN UINT8 *SupportedFeatureMask,
|
|
IN UINTN BitMaskSize
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
|
|
Status = PcdSetPtrS (PcdCpuFeaturesCapability, &BitMaskSize, SupportedFeatureMask);
|
|
ASSERT_EFI_ERROR (Status);
|
|
}
|
|
|
|
/**
|
|
Worker function to save PcdCpuFeaturesSetting.
|
|
|
|
@param[in] SupportedFeatureMask The pointer to CPU feature bits mask buffer
|
|
@param[in] BitMaskSize CPU feature bits mask buffer size.
|
|
**/
|
|
VOID
|
|
SetSettingPcd (
|
|
IN UINT8 *SupportedFeatureMask,
|
|
IN UINTN BitMaskSize
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
|
|
Status = PcdSetPtrS (PcdCpuFeaturesSetting, &BitMaskSize, SupportedFeatureMask);
|
|
ASSERT_EFI_ERROR (Status);
|
|
}
|
|
|
|
/**
|
|
Collects CPU type and feature information.
|
|
|
|
@param[in, out] CpuInfo The pointer to CPU feature information
|
|
**/
|
|
VOID
|
|
FillProcessorInfo (
|
|
IN OUT REGISTER_CPU_FEATURE_INFORMATION *CpuInfo
|
|
)
|
|
{
|
|
CPUID_VERSION_INFO_EAX Eax;
|
|
CPUID_VERSION_INFO_ECX Ecx;
|
|
CPUID_VERSION_INFO_EDX Edx;
|
|
UINT32 DisplayedFamily;
|
|
UINT32 DisplayedModel;
|
|
|
|
AsmCpuid (CPUID_VERSION_INFO, &Eax.Uint32, NULL, &Ecx.Uint32, &Edx.Uint32);
|
|
|
|
DisplayedFamily = Eax.Bits.FamilyId;
|
|
if (Eax.Bits.FamilyId == 0x0F) {
|
|
DisplayedFamily += Eax.Bits.ExtendedFamilyId;
|
|
}
|
|
|
|
DisplayedModel = Eax.Bits.Model;
|
|
if ((Eax.Bits.FamilyId == 0x06) || (Eax.Bits.FamilyId == 0x0f)) {
|
|
DisplayedModel += (Eax.Bits.ExtendedModelId << 4);
|
|
}
|
|
|
|
CpuInfo->DisplayFamily = DisplayedFamily;
|
|
CpuInfo->DisplayModel = DisplayedModel;
|
|
CpuInfo->SteppingId = Eax.Bits.SteppingId;
|
|
CpuInfo->ProcessorType = Eax.Bits.ProcessorType;
|
|
CpuInfo->CpuIdVersionInfoEcx.Uint32 = Ecx.Uint32;
|
|
CpuInfo->CpuIdVersionInfoEdx.Uint32 = Edx.Uint32;
|
|
}
|
|
|
|
/**
|
|
Prepares for private data used for CPU features.
|
|
|
|
**/
|
|
VOID
|
|
CpuInitDataInitialize (
|
|
VOID
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
UINTN ProcessorNumber;
|
|
EFI_PROCESSOR_INFORMATION ProcessorInfoBuffer;
|
|
CPU_FEATURES_ENTRY *CpuFeature;
|
|
CPU_FEATURES_INIT_ORDER *InitOrder;
|
|
CPU_FEATURES_DATA *CpuFeaturesData;
|
|
LIST_ENTRY *Entry;
|
|
UINT32 Core;
|
|
UINT32 Package;
|
|
UINT32 Thread;
|
|
EFI_CPU_PHYSICAL_LOCATION *Location;
|
|
UINT32 PackageIndex;
|
|
UINT32 CoreIndex;
|
|
UINTN Pages;
|
|
UINT32 FirstPackage;
|
|
UINT32 *FirstCore;
|
|
UINT32 *FirstThread;
|
|
ACPI_CPU_DATA *AcpiCpuData;
|
|
CPU_STATUS_INFORMATION *CpuStatus;
|
|
UINT32 *ThreadCountPerPackage;
|
|
UINT8 *ThreadCountPerCore;
|
|
UINTN NumberOfCpus;
|
|
UINTN NumberOfEnabledProcessors;
|
|
|
|
Core = 0;
|
|
Package = 0;
|
|
Thread = 0;
|
|
|
|
CpuFeaturesData = GetCpuFeaturesData ();
|
|
|
|
//
|
|
// Initialize CpuFeaturesData->MpService as early as possile, so later function can use it.
|
|
//
|
|
CpuFeaturesData->MpService = GetMpService ();
|
|
|
|
GetNumberOfProcessor (&NumberOfCpus, &NumberOfEnabledProcessors);
|
|
|
|
CpuFeaturesData->InitOrder = AllocatePages (EFI_SIZE_TO_PAGES (sizeof (CPU_FEATURES_INIT_ORDER) * NumberOfCpus));
|
|
ASSERT (CpuFeaturesData->InitOrder != NULL);
|
|
ZeroMem (CpuFeaturesData->InitOrder, sizeof (CPU_FEATURES_INIT_ORDER) * NumberOfCpus);
|
|
|
|
//
|
|
// Collect CPU Features information
|
|
//
|
|
Entry = GetFirstNode (&CpuFeaturesData->FeatureList);
|
|
while (!IsNull (&CpuFeaturesData->FeatureList, Entry)) {
|
|
CpuFeature = CPU_FEATURE_ENTRY_FROM_LINK (Entry);
|
|
ASSERT (CpuFeature->InitializeFunc != NULL);
|
|
if (CpuFeature->GetConfigDataFunc != NULL) {
|
|
CpuFeature->ConfigData = CpuFeature->GetConfigDataFunc (NumberOfCpus);
|
|
}
|
|
|
|
Entry = Entry->ForwardLink;
|
|
}
|
|
|
|
CpuFeaturesData->NumberOfCpus = (UINT32)NumberOfCpus;
|
|
|
|
AcpiCpuData = GetAcpiCpuData ();
|
|
ASSERT (AcpiCpuData != NULL);
|
|
CpuFeaturesData->AcpiCpuData = AcpiCpuData;
|
|
|
|
CpuStatus = &AcpiCpuData->CpuFeatureInitData.CpuStatus;
|
|
Location = AllocatePages (EFI_SIZE_TO_PAGES (sizeof (EFI_CPU_PHYSICAL_LOCATION) * NumberOfCpus));
|
|
ASSERT (Location != NULL);
|
|
ZeroMem (Location, sizeof (EFI_CPU_PHYSICAL_LOCATION) * NumberOfCpus);
|
|
AcpiCpuData->CpuFeatureInitData.ApLocation = (EFI_PHYSICAL_ADDRESS)(UINTN)Location;
|
|
|
|
for (ProcessorNumber = 0; ProcessorNumber < NumberOfCpus; ProcessorNumber++) {
|
|
InitOrder = &CpuFeaturesData->InitOrder[ProcessorNumber];
|
|
InitOrder->FeaturesSupportedMask = AllocateZeroPool (CpuFeaturesData->BitMaskSize);
|
|
ASSERT (InitOrder->FeaturesSupportedMask != NULL);
|
|
InitializeListHead (&InitOrder->OrderList);
|
|
Status = GetProcessorInformation (ProcessorNumber, &ProcessorInfoBuffer);
|
|
ASSERT_EFI_ERROR (Status);
|
|
CopyMem (
|
|
&InitOrder->CpuInfo.ProcessorInfo,
|
|
&ProcessorInfoBuffer,
|
|
sizeof (EFI_PROCESSOR_INFORMATION)
|
|
);
|
|
CopyMem (
|
|
&Location[ProcessorNumber],
|
|
&ProcessorInfoBuffer.Location,
|
|
sizeof (EFI_CPU_PHYSICAL_LOCATION)
|
|
);
|
|
|
|
//
|
|
// Collect CPU package count info.
|
|
//
|
|
if (Package < ProcessorInfoBuffer.Location.Package) {
|
|
Package = ProcessorInfoBuffer.Location.Package;
|
|
}
|
|
|
|
//
|
|
// Collect CPU max core count info.
|
|
//
|
|
if (Core < ProcessorInfoBuffer.Location.Core) {
|
|
Core = ProcessorInfoBuffer.Location.Core;
|
|
}
|
|
|
|
//
|
|
// Collect CPU max thread count info.
|
|
//
|
|
if (Thread < ProcessorInfoBuffer.Location.Thread) {
|
|
Thread = ProcessorInfoBuffer.Location.Thread;
|
|
}
|
|
}
|
|
|
|
CpuStatus->PackageCount = Package + 1;
|
|
CpuStatus->MaxCoreCount = Core + 1;
|
|
CpuStatus->MaxThreadCount = Thread + 1;
|
|
DEBUG ((
|
|
DEBUG_INFO,
|
|
"Processor Info: Package: %d, MaxCore : %d, MaxThread: %d\n",
|
|
CpuStatus->PackageCount,
|
|
CpuStatus->MaxCoreCount,
|
|
CpuStatus->MaxThreadCount
|
|
));
|
|
|
|
//
|
|
// Collect valid core count in each package because not all cores are valid.
|
|
//
|
|
ThreadCountPerPackage = AllocatePages (EFI_SIZE_TO_PAGES (sizeof (UINT32) * CpuStatus->PackageCount));
|
|
ASSERT (ThreadCountPerPackage != NULL);
|
|
ZeroMem (ThreadCountPerPackage, sizeof (UINT32) * CpuStatus->PackageCount);
|
|
CpuStatus->ThreadCountPerPackage = (EFI_PHYSICAL_ADDRESS)(UINTN)ThreadCountPerPackage;
|
|
|
|
ThreadCountPerCore = AllocatePages (EFI_SIZE_TO_PAGES (sizeof (UINT8) * CpuStatus->PackageCount * CpuStatus->MaxCoreCount));
|
|
ASSERT (ThreadCountPerCore != NULL);
|
|
ZeroMem (ThreadCountPerCore, sizeof (UINT8) * CpuStatus->PackageCount * CpuStatus->MaxCoreCount);
|
|
CpuStatus->ThreadCountPerCore = (EFI_PHYSICAL_ADDRESS)(UINTN)ThreadCountPerCore;
|
|
|
|
for (ProcessorNumber = 0; ProcessorNumber < NumberOfCpus; ProcessorNumber++) {
|
|
Location = &CpuFeaturesData->InitOrder[ProcessorNumber].CpuInfo.ProcessorInfo.Location;
|
|
ThreadCountPerPackage[Location->Package]++;
|
|
ThreadCountPerCore[Location->Package * CpuStatus->MaxCoreCount + Location->Core]++;
|
|
}
|
|
|
|
for (PackageIndex = 0; PackageIndex < CpuStatus->PackageCount; PackageIndex++) {
|
|
if (ThreadCountPerPackage[PackageIndex] != 0) {
|
|
DEBUG ((DEBUG_INFO, "P%02d: Thread Count = %d\n", PackageIndex, ThreadCountPerPackage[PackageIndex]));
|
|
for (CoreIndex = 0; CoreIndex < CpuStatus->MaxCoreCount; CoreIndex++) {
|
|
if (ThreadCountPerCore[PackageIndex * CpuStatus->MaxCoreCount + CoreIndex] != 0) {
|
|
DEBUG ((
|
|
DEBUG_INFO,
|
|
" P%02d C%04d, Thread Count = %d\n",
|
|
PackageIndex,
|
|
CoreIndex,
|
|
ThreadCountPerCore[PackageIndex * CpuStatus->MaxCoreCount + CoreIndex]
|
|
));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
CpuFeaturesData->CpuFlags.CoreSemaphoreCount = AllocateZeroPool (sizeof (UINT32) * CpuStatus->PackageCount * CpuStatus->MaxCoreCount * CpuStatus->MaxThreadCount);
|
|
ASSERT (CpuFeaturesData->CpuFlags.CoreSemaphoreCount != NULL);
|
|
CpuFeaturesData->CpuFlags.PackageSemaphoreCount = AllocateZeroPool (sizeof (UINT32) * CpuStatus->PackageCount * CpuStatus->MaxCoreCount * CpuStatus->MaxThreadCount);
|
|
ASSERT (CpuFeaturesData->CpuFlags.PackageSemaphoreCount != NULL);
|
|
|
|
//
|
|
// Initialize CpuFeaturesData->InitOrder[].CpuInfo.First
|
|
// Use AllocatePages () instead of AllocatePool () because pool cannot be freed in PEI phase but page can.
|
|
//
|
|
Pages = EFI_SIZE_TO_PAGES (CpuStatus->PackageCount * sizeof (UINT32) + CpuStatus->PackageCount * CpuStatus->MaxCoreCount * sizeof (UINT32));
|
|
FirstCore = AllocatePages (Pages);
|
|
ASSERT (FirstCore != NULL);
|
|
FirstThread = FirstCore + CpuStatus->PackageCount;
|
|
|
|
//
|
|
// Set FirstPackage, FirstCore[], FirstThread[] to maximum package ID, core ID, thread ID.
|
|
//
|
|
FirstPackage = MAX_UINT32;
|
|
SetMem32 (FirstCore, CpuStatus->PackageCount * sizeof (UINT32), MAX_UINT32);
|
|
SetMem32 (FirstThread, CpuStatus->PackageCount * CpuStatus->MaxCoreCount * sizeof (UINT32), MAX_UINT32);
|
|
|
|
for (ProcessorNumber = 0; ProcessorNumber < NumberOfCpus; ProcessorNumber++) {
|
|
Location = &CpuFeaturesData->InitOrder[ProcessorNumber].CpuInfo.ProcessorInfo.Location;
|
|
|
|
//
|
|
// Save the minimum package ID in the platform.
|
|
//
|
|
FirstPackage = MIN (Location->Package, FirstPackage);
|
|
|
|
//
|
|
// Save the minimum core ID per package.
|
|
//
|
|
FirstCore[Location->Package] = MIN (Location->Core, FirstCore[Location->Package]);
|
|
|
|
//
|
|
// Save the minimum thread ID per core.
|
|
//
|
|
FirstThread[Location->Package * CpuStatus->MaxCoreCount + Location->Core] = MIN (
|
|
Location->Thread,
|
|
FirstThread[Location->Package * CpuStatus->MaxCoreCount + Location->Core]
|
|
);
|
|
}
|
|
|
|
//
|
|
// Update the First field.
|
|
//
|
|
for (ProcessorNumber = 0; ProcessorNumber < NumberOfCpus; ProcessorNumber++) {
|
|
Location = &CpuFeaturesData->InitOrder[ProcessorNumber].CpuInfo.ProcessorInfo.Location;
|
|
|
|
if (Location->Package == FirstPackage) {
|
|
CpuFeaturesData->InitOrder[ProcessorNumber].CpuInfo.First.Package = 1;
|
|
}
|
|
|
|
//
|
|
// Set First.Die/Tile/Module for each thread assuming:
|
|
// single Die under each package, single Tile under each Die, single Module under each Tile
|
|
//
|
|
CpuFeaturesData->InitOrder[ProcessorNumber].CpuInfo.First.Die = 1;
|
|
CpuFeaturesData->InitOrder[ProcessorNumber].CpuInfo.First.Tile = 1;
|
|
CpuFeaturesData->InitOrder[ProcessorNumber].CpuInfo.First.Module = 1;
|
|
|
|
if (Location->Core == FirstCore[Location->Package]) {
|
|
CpuFeaturesData->InitOrder[ProcessorNumber].CpuInfo.First.Core = 1;
|
|
}
|
|
|
|
if (Location->Thread == FirstThread[Location->Package * CpuStatus->MaxCoreCount + Location->Core]) {
|
|
CpuFeaturesData->InitOrder[ProcessorNumber].CpuInfo.First.Thread = 1;
|
|
}
|
|
}
|
|
|
|
FreePages (FirstCore, Pages);
|
|
}
|
|
|
|
/**
|
|
Worker function to do OR operation on CPU feature supported bits mask buffer.
|
|
|
|
@param[in] SupportedFeatureMask The pointer to CPU feature bits mask buffer
|
|
@param[in] OrFeatureBitMask The feature bit mask to do OR operation
|
|
@param[in] BitMaskSize The CPU feature bits mask buffer size.
|
|
|
|
**/
|
|
VOID
|
|
SupportedMaskOr (
|
|
IN UINT8 *SupportedFeatureMask,
|
|
IN UINT8 *OrFeatureBitMask,
|
|
IN UINT32 BitMaskSize
|
|
)
|
|
{
|
|
UINTN Index;
|
|
UINT8 *Data1;
|
|
UINT8 *Data2;
|
|
|
|
Data1 = SupportedFeatureMask;
|
|
Data2 = OrFeatureBitMask;
|
|
for (Index = 0; Index < BitMaskSize; Index++) {
|
|
*(Data1++) |= *(Data2++);
|
|
}
|
|
}
|
|
|
|
/**
|
|
Worker function to do AND operation on CPU feature supported bits mask buffer.
|
|
|
|
@param[in] SupportedFeatureMask The pointer to CPU feature bits mask buffer
|
|
@param[in] AndFeatureBitMask The feature bit mask to do AND operation
|
|
@param[in] BitMaskSize CPU feature bits mask buffer size.
|
|
|
|
**/
|
|
VOID
|
|
SupportedMaskAnd (
|
|
IN UINT8 *SupportedFeatureMask,
|
|
IN CONST UINT8 *AndFeatureBitMask,
|
|
IN UINT32 BitMaskSize
|
|
)
|
|
{
|
|
UINTN Index;
|
|
UINT8 *Data1;
|
|
CONST UINT8 *Data2;
|
|
|
|
Data1 = SupportedFeatureMask;
|
|
Data2 = AndFeatureBitMask;
|
|
for (Index = 0; Index < BitMaskSize; Index++) {
|
|
*(Data1++) &= *(Data2++);
|
|
}
|
|
}
|
|
|
|
/**
|
|
Worker function to clean bit operation on CPU feature supported bits mask buffer.
|
|
|
|
@param[in] SupportedFeatureMask The pointer to CPU feature bits mask buffer
|
|
@param[in] AndFeatureBitMask The feature bit mask to do XOR operation
|
|
@param[in] BitMaskSize CPU feature bits mask buffer size.
|
|
**/
|
|
VOID
|
|
SupportedMaskCleanBit (
|
|
IN UINT8 *SupportedFeatureMask,
|
|
IN UINT8 *AndFeatureBitMask,
|
|
IN UINT32 BitMaskSize
|
|
)
|
|
{
|
|
UINTN Index;
|
|
UINT8 *Data1;
|
|
UINT8 *Data2;
|
|
|
|
Data1 = SupportedFeatureMask;
|
|
Data2 = AndFeatureBitMask;
|
|
for (Index = 0; Index < BitMaskSize; Index++) {
|
|
*(Data1++) &= ~(*(Data2++));
|
|
}
|
|
}
|
|
|
|
/**
|
|
Worker function to check if the compared CPU feature set in the CPU feature
|
|
supported bits mask buffer.
|
|
|
|
@param[in] SupportedFeatureMask The pointer to CPU feature bits mask buffer
|
|
@param[in] ComparedFeatureBitMask The feature bit mask to be compared
|
|
@param[in] BitMaskSize CPU feature bits mask buffer size.
|
|
|
|
@retval TRUE The ComparedFeatureBitMask is set in CPU feature supported bits
|
|
mask buffer.
|
|
@retval FALSE The ComparedFeatureBitMask is not set in CPU feature supported bits
|
|
mask buffer.
|
|
**/
|
|
BOOLEAN
|
|
IsBitMaskMatch (
|
|
IN UINT8 *SupportedFeatureMask,
|
|
IN UINT8 *ComparedFeatureBitMask,
|
|
IN UINT32 BitMaskSize
|
|
)
|
|
{
|
|
UINTN Index;
|
|
UINT8 *Data1;
|
|
UINT8 *Data2;
|
|
|
|
Data1 = SupportedFeatureMask;
|
|
Data2 = ComparedFeatureBitMask;
|
|
for (Index = 0; Index < BitMaskSize; Index++) {
|
|
if (((*(Data1++)) & (*(Data2++))) != 0) {
|
|
return TRUE;
|
|
}
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
/**
|
|
Collects processor data for calling processor.
|
|
|
|
@param[in,out] Buffer The pointer to private data buffer.
|
|
**/
|
|
VOID
|
|
EFIAPI
|
|
CollectProcessorData (
|
|
IN OUT VOID *Buffer
|
|
)
|
|
{
|
|
UINTN ProcessorNumber;
|
|
CPU_FEATURES_ENTRY *CpuFeature;
|
|
REGISTER_CPU_FEATURE_INFORMATION *CpuInfo;
|
|
LIST_ENTRY *Entry;
|
|
CPU_FEATURES_DATA *CpuFeaturesData;
|
|
|
|
CpuFeaturesData = (CPU_FEATURES_DATA *)Buffer;
|
|
ProcessorNumber = GetProcessorIndex (CpuFeaturesData);
|
|
CpuInfo = &CpuFeaturesData->InitOrder[ProcessorNumber].CpuInfo;
|
|
//
|
|
// collect processor information
|
|
//
|
|
FillProcessorInfo (CpuInfo);
|
|
Entry = GetFirstNode (&CpuFeaturesData->FeatureList);
|
|
while (!IsNull (&CpuFeaturesData->FeatureList, Entry)) {
|
|
CpuFeature = CPU_FEATURE_ENTRY_FROM_LINK (Entry);
|
|
if (CpuFeature->SupportFunc == NULL) {
|
|
//
|
|
// If SupportFunc is NULL, then the feature is supported.
|
|
//
|
|
SupportedMaskOr (
|
|
CpuFeaturesData->InitOrder[ProcessorNumber].FeaturesSupportedMask,
|
|
CpuFeature->FeatureMask,
|
|
CpuFeaturesData->BitMaskSize
|
|
);
|
|
} else if (CpuFeature->SupportFunc (ProcessorNumber, CpuInfo, CpuFeature->ConfigData)) {
|
|
SupportedMaskOr (
|
|
CpuFeaturesData->InitOrder[ProcessorNumber].FeaturesSupportedMask,
|
|
CpuFeature->FeatureMask,
|
|
CpuFeaturesData->BitMaskSize
|
|
);
|
|
}
|
|
|
|
Entry = Entry->ForwardLink;
|
|
}
|
|
}
|
|
|
|
/**
|
|
Dump the contents of a CPU register table.
|
|
|
|
@param[in] ProcessorNumber The index of the CPU to show the register table contents
|
|
|
|
@note This service could be called by BSP only.
|
|
**/
|
|
VOID
|
|
DumpRegisterTableOnProcessor (
|
|
IN UINTN ProcessorNumber
|
|
)
|
|
{
|
|
CPU_FEATURES_DATA *CpuFeaturesData;
|
|
UINTN FeatureIndex;
|
|
CPU_REGISTER_TABLE *RegisterTable;
|
|
CPU_REGISTER_TABLE_ENTRY *RegisterTableEntry;
|
|
CPU_REGISTER_TABLE_ENTRY *RegisterTableEntryHead;
|
|
UINT32 DebugPrintErrorLevel;
|
|
|
|
DebugPrintErrorLevel = (ProcessorNumber == 0) ? DEBUG_INFO : DEBUG_VERBOSE;
|
|
CpuFeaturesData = GetCpuFeaturesData ();
|
|
//
|
|
// Debug information
|
|
//
|
|
RegisterTable = &CpuFeaturesData->RegisterTable[ProcessorNumber];
|
|
DEBUG ((DebugPrintErrorLevel, "RegisterTable->TableLength = %d\n", RegisterTable->TableLength));
|
|
|
|
RegisterTableEntryHead = (CPU_REGISTER_TABLE_ENTRY *)(UINTN)RegisterTable->RegisterTableEntry;
|
|
|
|
for (FeatureIndex = 0; FeatureIndex < RegisterTable->TableLength; FeatureIndex++) {
|
|
RegisterTableEntry = &RegisterTableEntryHead[FeatureIndex];
|
|
switch (RegisterTableEntry->RegisterType) {
|
|
case Msr:
|
|
DEBUG ((
|
|
DebugPrintErrorLevel,
|
|
"Processor: %04d: Index %04d, MSR : %08x, Bit Start: %02d, Bit Length: %02d, Value: %016lx\r\n",
|
|
(UINT32)ProcessorNumber,
|
|
(UINT32)FeatureIndex,
|
|
RegisterTableEntry->Index,
|
|
RegisterTableEntry->ValidBitStart,
|
|
RegisterTableEntry->ValidBitLength,
|
|
RegisterTableEntry->Value
|
|
));
|
|
break;
|
|
case ControlRegister:
|
|
DEBUG ((
|
|
DebugPrintErrorLevel,
|
|
"Processor: %04d: Index %04d, CR : %08x, Bit Start: %02d, Bit Length: %02d, Value: %016lx\r\n",
|
|
(UINT32)ProcessorNumber,
|
|
(UINT32)FeatureIndex,
|
|
RegisterTableEntry->Index,
|
|
RegisterTableEntry->ValidBitStart,
|
|
RegisterTableEntry->ValidBitLength,
|
|
RegisterTableEntry->Value
|
|
));
|
|
break;
|
|
case MemoryMapped:
|
|
DEBUG ((
|
|
DebugPrintErrorLevel,
|
|
"Processor: %04d: Index %04d, MMIO : %016lx, Bit Start: %02d, Bit Length: %02d, Value: %016lx\r\n",
|
|
(UINT32)ProcessorNumber,
|
|
(UINT32)FeatureIndex,
|
|
RegisterTableEntry->Index | LShiftU64 (RegisterTableEntry->HighIndex, 32),
|
|
RegisterTableEntry->ValidBitStart,
|
|
RegisterTableEntry->ValidBitLength,
|
|
RegisterTableEntry->Value
|
|
));
|
|
break;
|
|
case CacheControl:
|
|
DEBUG ((
|
|
DebugPrintErrorLevel,
|
|
"Processor: %04d: Index %04d, CACHE: %08x, Bit Start: %02d, Bit Length: %02d, Value: %016lx\r\n",
|
|
(UINT32)ProcessorNumber,
|
|
(UINT32)FeatureIndex,
|
|
RegisterTableEntry->Index,
|
|
RegisterTableEntry->ValidBitStart,
|
|
RegisterTableEntry->ValidBitLength,
|
|
RegisterTableEntry->Value
|
|
));
|
|
break;
|
|
case Semaphore:
|
|
DEBUG ((
|
|
DebugPrintErrorLevel,
|
|
"Processor: %04d: Index %04d, SEMAP: %s\r\n",
|
|
(UINT32)ProcessorNumber,
|
|
(UINT32)FeatureIndex,
|
|
mDependTypeStr[MIN ((UINT32)RegisterTableEntry->Value, InvalidDepType)]
|
|
));
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
Get the biggest dependence type.
|
|
PackageDepType > CoreDepType > ThreadDepType > NoneDepType.
|
|
|
|
@param[in] BeforeDep Before dependence type.
|
|
@param[in] AfterDep After dependence type.
|
|
@param[in] NoneNeibBeforeDep Before dependence type for not neighborhood features.
|
|
@param[in] NoneNeibAfterDep After dependence type for not neighborhood features.
|
|
|
|
@retval Return the biggest dependence type.
|
|
**/
|
|
CPU_FEATURE_DEPENDENCE_TYPE
|
|
BiggestDep (
|
|
IN CPU_FEATURE_DEPENDENCE_TYPE BeforeDep,
|
|
IN CPU_FEATURE_DEPENDENCE_TYPE AfterDep,
|
|
IN CPU_FEATURE_DEPENDENCE_TYPE NoneNeibBeforeDep,
|
|
IN CPU_FEATURE_DEPENDENCE_TYPE NoneNeibAfterDep
|
|
)
|
|
{
|
|
CPU_FEATURE_DEPENDENCE_TYPE Bigger;
|
|
|
|
Bigger = MAX (BeforeDep, AfterDep);
|
|
Bigger = MAX (Bigger, NoneNeibBeforeDep);
|
|
return MAX (Bigger, NoneNeibAfterDep);
|
|
}
|
|
|
|
/**
|
|
Analysis register CPU features on each processor and save CPU setting in CPU register table.
|
|
|
|
@param[in] NumberOfCpus Number of processor in system
|
|
|
|
**/
|
|
VOID
|
|
AnalysisProcessorFeatures (
|
|
IN UINTN NumberOfCpus
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
UINTN ProcessorNumber;
|
|
CPU_FEATURES_ENTRY *CpuFeature;
|
|
CPU_FEATURES_ENTRY *CpuFeatureInOrder;
|
|
CPU_FEATURES_INIT_ORDER *CpuInitOrder;
|
|
REGISTER_CPU_FEATURE_INFORMATION *CpuInfo;
|
|
LIST_ENTRY *Entry;
|
|
CPU_FEATURES_DATA *CpuFeaturesData;
|
|
LIST_ENTRY *NextEntry;
|
|
CPU_FEATURES_ENTRY *NextCpuFeatureInOrder;
|
|
BOOLEAN Success;
|
|
CPU_FEATURE_DEPENDENCE_TYPE BeforeDep;
|
|
CPU_FEATURE_DEPENDENCE_TYPE AfterDep;
|
|
CPU_FEATURE_DEPENDENCE_TYPE NoneNeibBeforeDep;
|
|
CPU_FEATURE_DEPENDENCE_TYPE NoneNeibAfterDep;
|
|
|
|
CpuFeaturesData = GetCpuFeaturesData ();
|
|
CpuFeaturesData->CapabilityPcd = AllocatePool (CpuFeaturesData->BitMaskSize);
|
|
ASSERT (CpuFeaturesData->CapabilityPcd != NULL);
|
|
SetMem (CpuFeaturesData->CapabilityPcd, CpuFeaturesData->BitMaskSize, 0xFF);
|
|
for (ProcessorNumber = 0; ProcessorNumber < NumberOfCpus; ProcessorNumber++) {
|
|
CpuInitOrder = &CpuFeaturesData->InitOrder[ProcessorNumber];
|
|
//
|
|
// Calculate the last capability on all processors
|
|
//
|
|
SupportedMaskAnd (CpuFeaturesData->CapabilityPcd, CpuInitOrder->FeaturesSupportedMask, CpuFeaturesData->BitMaskSize);
|
|
}
|
|
|
|
//
|
|
// Calculate the last setting
|
|
//
|
|
CpuFeaturesData->SettingPcd = AllocateCopyPool (CpuFeaturesData->BitMaskSize, CpuFeaturesData->CapabilityPcd);
|
|
ASSERT (CpuFeaturesData->SettingPcd != NULL);
|
|
SupportedMaskAnd (CpuFeaturesData->SettingPcd, PcdGetPtr (PcdCpuFeaturesSetting), CpuFeaturesData->BitMaskSize);
|
|
|
|
//
|
|
// Dump the last CPU feature list
|
|
//
|
|
DEBUG_CODE_BEGIN ();
|
|
DEBUG ((DEBUG_INFO, "Last CPU features list...\n"));
|
|
Entry = GetFirstNode (&CpuFeaturesData->FeatureList);
|
|
while (!IsNull (&CpuFeaturesData->FeatureList, Entry)) {
|
|
CpuFeature = CPU_FEATURE_ENTRY_FROM_LINK (Entry);
|
|
if (IsBitMaskMatch (CpuFeature->FeatureMask, CpuFeaturesData->CapabilityPcd, CpuFeaturesData->BitMaskSize)) {
|
|
if (IsBitMaskMatch (CpuFeature->FeatureMask, CpuFeaturesData->SettingPcd, CpuFeaturesData->BitMaskSize)) {
|
|
DEBUG ((DEBUG_INFO, "[Enable ] "));
|
|
} else {
|
|
DEBUG ((DEBUG_INFO, "[Disable ] "));
|
|
}
|
|
} else {
|
|
DEBUG ((DEBUG_INFO, "[Unsupport] "));
|
|
}
|
|
|
|
DumpCpuFeature (CpuFeature, CpuFeaturesData->BitMaskSize);
|
|
Entry = Entry->ForwardLink;
|
|
}
|
|
|
|
DEBUG ((DEBUG_INFO, "PcdCpuFeaturesCapability:\n"));
|
|
DumpCpuFeatureMask (CpuFeaturesData->CapabilityPcd, CpuFeaturesData->BitMaskSize);
|
|
DEBUG ((DEBUG_INFO, "Origin PcdCpuFeaturesSetting:\n"));
|
|
DumpCpuFeatureMask (PcdGetPtr (PcdCpuFeaturesSetting), CpuFeaturesData->BitMaskSize);
|
|
DEBUG ((DEBUG_INFO, "Final PcdCpuFeaturesSetting:\n"));
|
|
DumpCpuFeatureMask (CpuFeaturesData->SettingPcd, CpuFeaturesData->BitMaskSize);
|
|
DEBUG_CODE_END ();
|
|
|
|
//
|
|
// Save PCDs and display CPU PCDs
|
|
//
|
|
SetCapabilityPcd (CpuFeaturesData->CapabilityPcd, CpuFeaturesData->BitMaskSize);
|
|
SetSettingPcd (CpuFeaturesData->SettingPcd, CpuFeaturesData->BitMaskSize);
|
|
|
|
for (ProcessorNumber = 0; ProcessorNumber < NumberOfCpus; ProcessorNumber++) {
|
|
CpuInitOrder = &CpuFeaturesData->InitOrder[ProcessorNumber];
|
|
Entry = GetFirstNode (&CpuFeaturesData->FeatureList);
|
|
while (!IsNull (&CpuFeaturesData->FeatureList, Entry)) {
|
|
//
|
|
// Insert each feature into processor's order list
|
|
//
|
|
CpuFeature = CPU_FEATURE_ENTRY_FROM_LINK (Entry);
|
|
if (IsBitMaskMatch (CpuFeature->FeatureMask, CpuFeaturesData->CapabilityPcd, CpuFeaturesData->BitMaskSize)) {
|
|
CpuFeatureInOrder = AllocateCopyPool (sizeof (CPU_FEATURES_ENTRY), CpuFeature);
|
|
ASSERT (CpuFeatureInOrder != NULL);
|
|
InsertTailList (&CpuInitOrder->OrderList, &CpuFeatureInOrder->Link);
|
|
}
|
|
|
|
Entry = Entry->ForwardLink;
|
|
}
|
|
|
|
//
|
|
// Go through ordered feature list to initialize CPU features
|
|
//
|
|
CpuInfo = &CpuFeaturesData->InitOrder[ProcessorNumber].CpuInfo;
|
|
Entry = GetFirstNode (&CpuInitOrder->OrderList);
|
|
while (!IsNull (&CpuInitOrder->OrderList, Entry)) {
|
|
CpuFeatureInOrder = CPU_FEATURE_ENTRY_FROM_LINK (Entry);
|
|
|
|
Success = FALSE;
|
|
if (IsBitMaskMatch (CpuFeatureInOrder->FeatureMask, CpuFeaturesData->SettingPcd, CpuFeaturesData->BitMaskSize)) {
|
|
Status = CpuFeatureInOrder->InitializeFunc (ProcessorNumber, CpuInfo, CpuFeatureInOrder->ConfigData, TRUE);
|
|
if (EFI_ERROR (Status)) {
|
|
//
|
|
// Clean the CpuFeatureInOrder->FeatureMask in setting PCD.
|
|
//
|
|
SupportedMaskCleanBit (CpuFeaturesData->SettingPcd, CpuFeatureInOrder->FeatureMask, CpuFeaturesData->BitMaskSize);
|
|
if (CpuFeatureInOrder->FeatureName != NULL) {
|
|
DEBUG ((DEBUG_WARN, "Warning :: Failed to enable Feature: Name = %a.\n", CpuFeatureInOrder->FeatureName));
|
|
} else {
|
|
DEBUG ((DEBUG_WARN, "Warning :: Failed to enable Feature: Mask = "));
|
|
DumpCpuFeatureMask (CpuFeatureInOrder->FeatureMask, CpuFeaturesData->BitMaskSize);
|
|
}
|
|
} else {
|
|
Success = TRUE;
|
|
}
|
|
} else {
|
|
Status = CpuFeatureInOrder->InitializeFunc (ProcessorNumber, CpuInfo, CpuFeatureInOrder->ConfigData, FALSE);
|
|
if (EFI_ERROR (Status)) {
|
|
if (CpuFeatureInOrder->FeatureName != NULL) {
|
|
DEBUG ((DEBUG_WARN, "Warning :: Failed to disable Feature: Name = %a.\n", CpuFeatureInOrder->FeatureName));
|
|
} else {
|
|
DEBUG ((DEBUG_WARN, "Warning :: Failed to disable Feature: Mask = "));
|
|
DumpCpuFeatureMask (CpuFeatureInOrder->FeatureMask, CpuFeaturesData->BitMaskSize);
|
|
}
|
|
} else {
|
|
Success = TRUE;
|
|
}
|
|
}
|
|
|
|
if (Success) {
|
|
NextEntry = Entry->ForwardLink;
|
|
if (!IsNull (&CpuInitOrder->OrderList, NextEntry)) {
|
|
NextCpuFeatureInOrder = CPU_FEATURE_ENTRY_FROM_LINK (NextEntry);
|
|
|
|
//
|
|
// If feature has dependence with the next feature (ONLY care core/package dependency).
|
|
// and feature initialize succeed, add sync semaphere here.
|
|
//
|
|
BeforeDep = DetectFeatureScope (CpuFeatureInOrder, TRUE, NextCpuFeatureInOrder->FeatureMask);
|
|
AfterDep = DetectFeatureScope (NextCpuFeatureInOrder, FALSE, CpuFeatureInOrder->FeatureMask);
|
|
//
|
|
// Check whether next feature has After type dependence with not neighborhood CPU
|
|
// Features in former CPU features.
|
|
//
|
|
NoneNeibAfterDep = DetectNoneNeighborhoodFeatureScope (NextCpuFeatureInOrder, FALSE, &CpuInitOrder->OrderList);
|
|
} else {
|
|
BeforeDep = NoneDepType;
|
|
AfterDep = NoneDepType;
|
|
NoneNeibAfterDep = NoneDepType;
|
|
}
|
|
|
|
//
|
|
// Check whether current feature has Before type dependence with none neighborhood
|
|
// CPU features in after Cpu features.
|
|
//
|
|
NoneNeibBeforeDep = DetectNoneNeighborhoodFeatureScope (CpuFeatureInOrder, TRUE, &CpuInitOrder->OrderList);
|
|
|
|
//
|
|
// Get the biggest dependence and add semaphore for it.
|
|
// PackageDepType > CoreDepType > ThreadDepType > NoneDepType.
|
|
//
|
|
BeforeDep = BiggestDep (BeforeDep, AfterDep, NoneNeibBeforeDep, NoneNeibAfterDep);
|
|
if (BeforeDep > ThreadDepType) {
|
|
CPU_REGISTER_TABLE_WRITE32 (ProcessorNumber, Semaphore, 0, BeforeDep);
|
|
}
|
|
}
|
|
|
|
Entry = Entry->ForwardLink;
|
|
}
|
|
|
|
//
|
|
// Dump PcdCpuFeaturesSetting again because this value maybe updated
|
|
// again during initialize the features.
|
|
//
|
|
DEBUG ((DEBUG_INFO, "Dump final value for PcdCpuFeaturesSetting:\n"));
|
|
DumpCpuFeatureMask (CpuFeaturesData->SettingPcd, CpuFeaturesData->BitMaskSize);
|
|
|
|
//
|
|
// Dump the RegisterTable
|
|
//
|
|
DumpRegisterTableOnProcessor (ProcessorNumber);
|
|
}
|
|
}
|
|
|
|
/**
|
|
Increment semaphore by 1.
|
|
|
|
@param Sem IN: 32-bit unsigned integer
|
|
|
|
**/
|
|
VOID
|
|
LibReleaseSemaphore (
|
|
IN OUT volatile UINT32 *Sem
|
|
)
|
|
{
|
|
InterlockedIncrement (Sem);
|
|
}
|
|
|
|
/**
|
|
Decrement the semaphore by 1 if it is not zero.
|
|
|
|
Performs an atomic decrement operation for semaphore.
|
|
The compare exchange operation must be performed using
|
|
MP safe mechanisms.
|
|
|
|
@param Sem IN: 32-bit unsigned integer
|
|
|
|
**/
|
|
VOID
|
|
LibWaitForSemaphore (
|
|
IN OUT volatile UINT32 *Sem
|
|
)
|
|
{
|
|
UINT32 Value;
|
|
|
|
do {
|
|
Value = *Sem;
|
|
} while (Value == 0 ||
|
|
InterlockedCompareExchange32 (
|
|
Sem,
|
|
Value,
|
|
Value - 1
|
|
) != Value);
|
|
}
|
|
|
|
/**
|
|
Read / write CR value.
|
|
|
|
@param[in] CrIndex The CR index which need to read/write.
|
|
@param[in] Read Read or write. TRUE is read.
|
|
@param[in,out] CrValue CR value.
|
|
|
|
@retval EFI_SUCCESS means read/write success, else return EFI_UNSUPPORTED.
|
|
**/
|
|
UINTN
|
|
ReadWriteCr (
|
|
IN UINT32 CrIndex,
|
|
IN BOOLEAN Read,
|
|
IN OUT UINTN *CrValue
|
|
)
|
|
{
|
|
switch (CrIndex) {
|
|
case 0:
|
|
if (Read) {
|
|
*CrValue = AsmReadCr0 ();
|
|
} else {
|
|
AsmWriteCr0 (*CrValue);
|
|
}
|
|
|
|
break;
|
|
case 2:
|
|
if (Read) {
|
|
*CrValue = AsmReadCr2 ();
|
|
} else {
|
|
AsmWriteCr2 (*CrValue);
|
|
}
|
|
|
|
break;
|
|
case 3:
|
|
if (Read) {
|
|
*CrValue = AsmReadCr3 ();
|
|
} else {
|
|
AsmWriteCr3 (*CrValue);
|
|
}
|
|
|
|
break;
|
|
case 4:
|
|
if (Read) {
|
|
*CrValue = AsmReadCr4 ();
|
|
} else {
|
|
AsmWriteCr4 (*CrValue);
|
|
}
|
|
|
|
break;
|
|
default:
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
Initialize the CPU registers from a register table.
|
|
|
|
@param[in] RegisterTable The register table for this AP.
|
|
@param[in] ApLocation AP location info for this ap.
|
|
@param[in] CpuStatus CPU status info for this CPU.
|
|
@param[in] CpuFlags Flags data structure used when program the register.
|
|
|
|
@note This service could be called by BSP/APs.
|
|
**/
|
|
VOID
|
|
ProgramProcessorRegister (
|
|
IN CPU_REGISTER_TABLE *RegisterTable,
|
|
IN EFI_CPU_PHYSICAL_LOCATION *ApLocation,
|
|
IN CPU_STATUS_INFORMATION *CpuStatus,
|
|
IN PROGRAM_CPU_REGISTER_FLAGS *CpuFlags
|
|
)
|
|
{
|
|
CPU_REGISTER_TABLE_ENTRY *RegisterTableEntry;
|
|
UINTN Index;
|
|
UINTN Value;
|
|
CPU_REGISTER_TABLE_ENTRY *RegisterTableEntryHead;
|
|
volatile UINT32 *SemaphorePtr;
|
|
UINT32 FirstThread;
|
|
UINT32 CurrentThread;
|
|
UINT32 CurrentCore;
|
|
UINTN ProcessorIndex;
|
|
UINT32 *ThreadCountPerPackage;
|
|
UINT8 *ThreadCountPerCore;
|
|
EFI_STATUS Status;
|
|
UINT64 CurrentValue;
|
|
|
|
//
|
|
// Traverse Register Table of this logical processor
|
|
//
|
|
RegisterTableEntryHead = (CPU_REGISTER_TABLE_ENTRY *)(UINTN)RegisterTable->RegisterTableEntry;
|
|
|
|
for (Index = 0; Index < RegisterTable->TableLength; Index++) {
|
|
RegisterTableEntry = &RegisterTableEntryHead[Index];
|
|
|
|
//
|
|
// Check the type of specified register
|
|
//
|
|
switch (RegisterTableEntry->RegisterType) {
|
|
//
|
|
// The specified register is Control Register
|
|
//
|
|
case ControlRegister:
|
|
Status = ReadWriteCr (RegisterTableEntry->Index, TRUE, &Value);
|
|
if (EFI_ERROR (Status)) {
|
|
break;
|
|
}
|
|
|
|
if (RegisterTableEntry->TestThenWrite) {
|
|
CurrentValue = BitFieldRead64 (
|
|
Value,
|
|
RegisterTableEntry->ValidBitStart,
|
|
RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1
|
|
);
|
|
if (CurrentValue == RegisterTableEntry->Value) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
Value = (UINTN)BitFieldWrite64 (
|
|
Value,
|
|
RegisterTableEntry->ValidBitStart,
|
|
RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
|
|
RegisterTableEntry->Value
|
|
);
|
|
ReadWriteCr (RegisterTableEntry->Index, FALSE, &Value);
|
|
break;
|
|
|
|
//
|
|
// The specified register is Model Specific Register
|
|
//
|
|
case Msr:
|
|
if (RegisterTableEntry->TestThenWrite) {
|
|
Value = (UINTN)AsmReadMsr64 (RegisterTableEntry->Index);
|
|
if (RegisterTableEntry->ValidBitLength >= 64) {
|
|
if (Value == RegisterTableEntry->Value) {
|
|
break;
|
|
}
|
|
} else {
|
|
CurrentValue = BitFieldRead64 (
|
|
Value,
|
|
RegisterTableEntry->ValidBitStart,
|
|
RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1
|
|
);
|
|
if (CurrentValue == RegisterTableEntry->Value) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (RegisterTableEntry->ValidBitLength >= 64) {
|
|
//
|
|
// If length is not less than 64 bits, then directly write without reading
|
|
//
|
|
AsmWriteMsr64 (
|
|
RegisterTableEntry->Index,
|
|
RegisterTableEntry->Value
|
|
);
|
|
} else {
|
|
//
|
|
// Set the bit section according to bit start and length
|
|
//
|
|
AsmMsrBitFieldWrite64 (
|
|
RegisterTableEntry->Index,
|
|
RegisterTableEntry->ValidBitStart,
|
|
RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
|
|
RegisterTableEntry->Value
|
|
);
|
|
}
|
|
|
|
break;
|
|
//
|
|
// MemoryMapped operations
|
|
//
|
|
case MemoryMapped:
|
|
AcquireSpinLock (&CpuFlags->MemoryMappedLock);
|
|
MmioBitFieldWrite32 (
|
|
(UINTN)(RegisterTableEntry->Index | LShiftU64 (RegisterTableEntry->HighIndex, 32)),
|
|
RegisterTableEntry->ValidBitStart,
|
|
RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
|
|
(UINT32)RegisterTableEntry->Value
|
|
);
|
|
ReleaseSpinLock (&CpuFlags->MemoryMappedLock);
|
|
break;
|
|
//
|
|
// Enable or disable cache
|
|
//
|
|
case CacheControl:
|
|
//
|
|
// If value of the entry is 0, then disable cache. Otherwise, enable cache.
|
|
//
|
|
if (RegisterTableEntry->Value == 0) {
|
|
AsmDisableCache ();
|
|
} else {
|
|
AsmEnableCache ();
|
|
}
|
|
|
|
break;
|
|
|
|
case Semaphore:
|
|
// Semaphore works logic like below:
|
|
//
|
|
// V(x) = LibReleaseSemaphore (Semaphore[FirstThread + x]);
|
|
// P(x) = LibWaitForSemaphore (Semaphore[FirstThread + x]);
|
|
//
|
|
// All threads (T0...Tn) waits in P() line and continues running
|
|
// together.
|
|
//
|
|
//
|
|
// T0 T1 ... Tn
|
|
//
|
|
// V(0...n) V(0...n) ... V(0...n)
|
|
// n * P(0) n * P(1) ... n * P(n)
|
|
//
|
|
switch (RegisterTableEntry->Value) {
|
|
case CoreDepType:
|
|
SemaphorePtr = CpuFlags->CoreSemaphoreCount;
|
|
ThreadCountPerCore = (UINT8 *)(UINTN)CpuStatus->ThreadCountPerCore;
|
|
|
|
CurrentCore = ApLocation->Package * CpuStatus->MaxCoreCount + ApLocation->Core;
|
|
//
|
|
// Get Offset info for the first thread in the core which current thread belongs to.
|
|
//
|
|
FirstThread = CurrentCore * CpuStatus->MaxThreadCount;
|
|
CurrentThread = FirstThread + ApLocation->Thread;
|
|
|
|
//
|
|
// Different cores may have different valid threads in them. If driver maintail clearly
|
|
// thread index in different cores, the logic will be much complicated.
|
|
// Here driver just simply records the max thread number in all cores and use it as expect
|
|
// thread number for all cores.
|
|
// In below two steps logic, first current thread will Release semaphore for each thread
|
|
// in current core. Maybe some threads are not valid in this core, but driver don't
|
|
// care. Second, driver will let current thread wait semaphore for all valid threads in
|
|
// current core. Because only the valid threads will do release semaphore for this
|
|
// thread, driver here only need to wait the valid thread count.
|
|
//
|
|
|
|
//
|
|
// First Notify ALL THREADs in current Core that this thread is ready.
|
|
//
|
|
for (ProcessorIndex = 0; ProcessorIndex < CpuStatus->MaxThreadCount; ProcessorIndex++) {
|
|
LibReleaseSemaphore (&SemaphorePtr[FirstThread + ProcessorIndex]);
|
|
}
|
|
|
|
//
|
|
// Second, check whether all VALID THREADs (not all threads) in current core are ready.
|
|
//
|
|
for (ProcessorIndex = 0; ProcessorIndex < ThreadCountPerCore[CurrentCore]; ProcessorIndex++) {
|
|
LibWaitForSemaphore (&SemaphorePtr[CurrentThread]);
|
|
}
|
|
|
|
break;
|
|
|
|
case PackageDepType:
|
|
SemaphorePtr = CpuFlags->PackageSemaphoreCount;
|
|
ThreadCountPerPackage = (UINT32 *)(UINTN)CpuStatus->ThreadCountPerPackage;
|
|
//
|
|
// Get Offset info for the first thread in the package which current thread belongs to.
|
|
//
|
|
FirstThread = ApLocation->Package * CpuStatus->MaxCoreCount * CpuStatus->MaxThreadCount;
|
|
//
|
|
// Get the possible threads count for current package.
|
|
//
|
|
CurrentThread = FirstThread + CpuStatus->MaxThreadCount * ApLocation->Core + ApLocation->Thread;
|
|
|
|
//
|
|
// Different packages may have different valid threads in them. If driver maintail clearly
|
|
// thread index in different packages, the logic will be much complicated.
|
|
// Here driver just simply records the max thread number in all packages and use it as expect
|
|
// thread number for all packages.
|
|
// In below two steps logic, first current thread will Release semaphore for each thread
|
|
// in current package. Maybe some threads are not valid in this package, but driver don't
|
|
// care. Second, driver will let current thread wait semaphore for all valid threads in
|
|
// current package. Because only the valid threads will do release semaphore for this
|
|
// thread, driver here only need to wait the valid thread count.
|
|
//
|
|
|
|
//
|
|
// First Notify ALL THREADS in current package that this thread is ready.
|
|
//
|
|
for (ProcessorIndex = 0; ProcessorIndex < CpuStatus->MaxThreadCount * CpuStatus->MaxCoreCount; ProcessorIndex++) {
|
|
LibReleaseSemaphore (&SemaphorePtr[FirstThread + ProcessorIndex]);
|
|
}
|
|
|
|
//
|
|
// Second, check whether VALID THREADS (not all threads) in current package are ready.
|
|
//
|
|
for (ProcessorIndex = 0; ProcessorIndex < ThreadCountPerPackage[ApLocation->Package]; ProcessorIndex++) {
|
|
LibWaitForSemaphore (&SemaphorePtr[CurrentThread]);
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
Programs registers for the calling processor.
|
|
|
|
@param[in,out] Buffer The pointer to private data buffer.
|
|
|
|
**/
|
|
VOID
|
|
EFIAPI
|
|
SetProcessorRegister (
|
|
IN OUT VOID *Buffer
|
|
)
|
|
{
|
|
CPU_FEATURES_DATA *CpuFeaturesData;
|
|
CPU_REGISTER_TABLE *RegisterTable;
|
|
CPU_REGISTER_TABLE *RegisterTables;
|
|
UINT32 InitApicId;
|
|
UINTN ProcIndex;
|
|
UINTN Index;
|
|
ACPI_CPU_DATA *AcpiCpuData;
|
|
|
|
CpuFeaturesData = (CPU_FEATURES_DATA *)Buffer;
|
|
AcpiCpuData = CpuFeaturesData->AcpiCpuData;
|
|
|
|
RegisterTables = (CPU_REGISTER_TABLE *)(UINTN)AcpiCpuData->CpuFeatureInitData.RegisterTable;
|
|
|
|
InitApicId = GetInitialApicId ();
|
|
RegisterTable = NULL;
|
|
ProcIndex = (UINTN)-1;
|
|
for (Index = 0; Index < AcpiCpuData->NumberOfCpus; Index++) {
|
|
if (RegisterTables[Index].InitialApicId == InitApicId) {
|
|
RegisterTable = &RegisterTables[Index];
|
|
ProcIndex = Index;
|
|
break;
|
|
}
|
|
}
|
|
|
|
ASSERT (RegisterTable != NULL);
|
|
|
|
ProgramProcessorRegister (
|
|
RegisterTable,
|
|
(EFI_CPU_PHYSICAL_LOCATION *)(UINTN)AcpiCpuData->CpuFeatureInitData.ApLocation + ProcIndex,
|
|
&AcpiCpuData->CpuFeatureInitData.CpuStatus,
|
|
&CpuFeaturesData->CpuFlags
|
|
);
|
|
}
|
|
|
|
/**
|
|
Performs CPU features detection.
|
|
|
|
This service will invoke MP service to check CPU features'
|
|
capabilities on BSP/APs.
|
|
|
|
@note This service could be called by BSP only.
|
|
**/
|
|
VOID
|
|
EFIAPI
|
|
CpuFeaturesDetect (
|
|
VOID
|
|
)
|
|
{
|
|
CPU_FEATURES_DATA *CpuFeaturesData;
|
|
|
|
CpuFeaturesData = GetCpuFeaturesData ();
|
|
|
|
CpuInitDataInitialize ();
|
|
|
|
if (CpuFeaturesData->NumberOfCpus > 1) {
|
|
//
|
|
// Wakeup all APs for data collection.
|
|
//
|
|
StartupAllAPsWorker (CollectProcessorData, NULL);
|
|
}
|
|
|
|
//
|
|
// Collect data on BSP
|
|
//
|
|
CollectProcessorData (CpuFeaturesData);
|
|
|
|
AnalysisProcessorFeatures (CpuFeaturesData->NumberOfCpus);
|
|
}
|